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Relatively pseudocomplemented directoids

IvaAN CHAJDA

Abstract. The concept of relative pseudocomplement is introduced in a commuta-
tive directoid. It is shown that the operation of relative pseudocomplementation
can be characterized by identities and hence the class of these algebras forms a
variety. This variety is congruence weakly regular and congruence distributive.
A description of congruences via their kernels is presented and the kernels are
characterized as the so-called p-ideals.
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By a directoid (a commutative directoid in sense of [3]) we understand a
groupoid D = (D; M) satisfying the identities
(D1) z Nz = x;
(D2) My =yNa;
D3) 2N ((zNy)MNz)=(zMNy)MNz.
It is known (see [3]) that the relation < defined on D by

z<y ifandonlyif zMNy==x

is an order and for any z,y € D we have x My < z, x My < y. Also conversely, if
(D; <) is downward directed ordered set and for any xz,y € D we define x My =
yNa € L(z,y) ={z € D;z < x,z < y} arbitrarily if z, y are non-comparable and
xMy=yNz =z if <y then the resulting algebra (D;M) is a directoid.

The concept of pseudocomplementation was introduced for directoids by the
author in [1]. Our aim here is to extend the concept of relative pseudocomplement
from semilattices or lattices (see e.g. [2], [4]) to directoids.

If (S;A) is a meet-semilattice and a,b € S, a relative pseudocomplement of a
with respect to b is a greatest element x (if it exists) such that

aNx <b.
It is easy to check that this condition is equivalent to

aNz=aAlb.
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However, if a directoid is considered instead of a semilattice, these conditions are
not equivalent, see the following

Example 1. Let D = (D;MN) be a directoid whose diagram is visualized in
Figure 1

1
T
a b
alb alx
0
Figure 1

Then clearly, aMax < b but aMax # aMb, in fact the elements a Mz, a Mb are
non-comparable. &

The situation explained in Example 1 is caused by the fact that ¢ < b in a
directoid D does not imply aMec < bMc for any ¢ € D. It holds if and only if D
is a semilattice. To avoid these difficulties, we define

Definition. Let D = (D;M) be a directoid, a,b € D. By a relative pseudocom-
plement of a with respect to b, a*b in symbol, is meant a greatest element x of D
such that a Mx = aMb. A directoid D is called relatively pseudocomplemented if
there exists a x b for every a,b € D. We will denote by D = (D;, %) a relatively
pseudocomplemented directoid.

In what follows, we will suppose the priority of the operation * and hence we
will write e.g. x My * z instead of x M (y * 2).

Example 2. Consider the directoid as shown in Figure 2

1

N
N

0
Figure 2
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where allb=p, allc = q, blMc =r. Then there does not exist a greatest element
:vEDWithaﬂxgbsinceal_lb:pgb,al_lc:ngbutal’llzafb.
On the other hand, there is a greatest element x = b with a Ma = a M b since
aMc=q#p=anb, thus a x b exists and equals to b. &

Example 3. An example of relatively pseudocomplemented directoid is depicted
in Figure 3

1
c d
a b
0
Figure 3

where for non-comparable elements we define ¢ d = a. Then, relative pseudo-
complements are given by the table

*x|0 a b ¢ d 1
0|1 1 1 1 1 1
alb 1 b 1 1 1
bla a 1 1 1 1
cl0 d b 1 d 1
d{0 ¢ b ¢ 1 1
110 a b ¢ d 1

¢

Theorem 1. Every relatively pseudocomplemented directoid has a greatest
element which is equal to a * a for each a € D.

PROOF: Let D = (D;M, %) be a relatively pseudocomplemented directoid and
a,b € D. Let p = amMb. Then p < a, p < b and hence for p x a we have
pMpxa = pla = pthus a < pxa. However p < b thus pfb=p =plla = plfp*a
whence p*a < pxb. Interchanging a and b in the previous reasoning we conclude
that pxa = pxb. Since b < px b, we have that p*a is a common upper bound of
both a,b, i.e. (D;<) is an upward directed set.

Now, let a,b € D. We have that a < a*a and b < b*xb where a*a is a greatest
element with aMa *a = a, i.e. a greatest element over a and b b is a greatest
element over b. Since (D; <) is upward directed, it easily yields that a xa = b* b,
i.e. a*a is a greatest element of (D; <). O
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For a relatively pseudocomplemented directoid, its greatest element will be
denoted by 1.

Lemma 1. Let D = (D;MN,*) be a relatively pseudocomplemented directoid.
Then

)

) a <bifandonlyif axb=1,
(c) b<axb;

) axb=ax(alb).

PROOF: (a) Since 1Mz = x for each z € D, we get 1 * x = x immediately.
(b) Assume a < b. Then aMb=a and hence aM1 =a =aMbgets 1 =axb.
Conversely, if axb =1 then a =a M1 = alMb whence a < b.
(c) Since a * b is a greatest element with a Ma b= aMb, we have b < a x b.
(d) Tt follows immediately by the fact that a b= a M (aMb). O

We are going to show that also conversely, the properties (c), (d) and those
of Theorem 1 and of the Definition characterize the operation of relative pseudo-
complementation.

Theorem 2. Let D = (D;MN) be commutative directoid and * be a binary
operation on D. Then D = (D;, %) is relatively pseudocomplemented if and
only if it satisfies the following identities

(S1) z N (z*y) =xMNy;

(52) (z+y) Ny = y;

(S3) zxy =x* (xMy);

(S4) zxx =y*y.

PRrROOF: If D = (D;M, %) is a relatively pseudocomplemented directoid then it
satisfies (S1)—(S4) directly by the Definition and Theorem 1 and Lemma 1.
Conversely, assume that a directoid (D;M) with * satisfies (S1)—(S4). By (S2)
we have (y*y) My =y and, by (S4) we conclude (z *2z) My =y for each x,y € D
thus (D;M) has a greatest element 1 = z * .
Suppose a,b € S and a Mz = aMb for some z € D. By (S3) we obtain

axr=ax(afNz)=ax(alNb)=axb

thus, due to (S2), z < axx = a*b. By (S1), we have al (a*xb) = alb ie.
a x b is a greatest element x of D satisfying a Mz = a M b and hence a relative
pseudocomplement of a with respect to b. (Il

Corollary. The class of all relatively pseudocomplemented directoids is a variety
presented by the identities (D1)—(D3), (S1)—(S4).

Denote by V the variety of relatively pseudocomplemented directoids. Recall
that a variety with a constant 1 is weakly regular if for any algebra A of this
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variety, every congruence 6 € ConA is determined by its 1-class [1]g. By Csdkény
Theorem (see e.g. [2]), a variety is weakly regular if and only if there exist binary
terms by (x,y),...,by(x,y) such that

(W) bi(z,y) =+ =by(x,y) =1 ifand only if =z =y.
We can state the following

Theorem 3. The variety V of relatively pseudocomplemented directoids is
weakly regular.

PRrOOF: Counsider the term by (z,y) = (z+y)M(y*x). If £ = y then, by Theorem 1,
bi(z,z) = (x+xx)MN(z+xx) = 1M1= 1. Conversely, let by(x,y) = 1. Since 1 is the
greatest element of this directoid, it yields that 2 xy =1 and y*x = 1. By (b) of
Lemma 1 we have < y and y < x thus x = y. By (W), V is weakly regular. O

It means that congruences on a relatively pseudocomplemented directoid will
be fully described when the congruence kernels are known. In what follows we
get this description.

Let D = (D;M) be a directoid. A non-void subset F' C D is called a filter of D
if it satisfies the following conditions:

(i) if a,b € F then also aMb € F;
(ii) if a € F and a < z for x € D then z € F.

For relatively pseudocomplemented directoids, filters can be characterized as
the so-called deductive systems, i.e. as subset closed under Modus Ponens, see the
following

Lemma 2. Let D = (D;MN, %) be a relatively pseudocomplemented directoid and
F C D. The following are equivalent:

(a) F is a filter of D;

(b) le Fandif t € F andx+y € F then alsoy € F.

PROOF: (a)=(b): Since F # 0, there is a € F. By (ii) of the previous definition
we conclude 1 € F since a < 1. Assume x € F and z *y € F. Then, by (i) and
the definition of relative pseudocomplement we have

zMNy=zxzMNxxy € F,

thus 2 My <y yields y € I

(b)=(a): Assume b € F and b < a. Then bxa =1 € F and, due to (b), also
ac k.

Assume now that ¢,d € F. By Lemma 1(c) we have d < ¢ x d thus, as already
shown, also ¢ *d € F. However ¢ * (cMd) = ¢+ d by Lemma 1(d). Since ¢ € F,
the condition (b) yields ¢cMd € F and hence F is a filter of D. O

Lemma 3. Let D = (D;N,x) be a relatively pseudocomplemented directoid and
6 € ConD. Then [l]g is a filter of D.
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PROOF: It is evident that 1 € [1]g. Further, [1]p is certainly closed under M since
1M1 =1and @ is a congruence on D. Moreover, if x € [1]p and = < y, then
x=xMNyldlMNy =y, soy € [l]p. Hence [1]p is a filter of D. O

Theorem 4. Let D = (D;M, %) be a relatively pseudocomplemented directoid,
0 € ConD. Then

(x,y) €0 ifandonly if xxyMNyx*x € [1]p.

PRrROOF: Let (z,y) € 6. Then (l,z xy) = (z*xx,x*xy) € 0 and (y * z,1) =
(yxx,y*y) € 0. Hence x xy,y xx € [1]gp. By Lemma 3, [1]p is a filter thus also
xxyNyxx € [1]p.

Conversely, assume =« y My x x € [1]p. Then (z xy My *x,1) € 6 thus also

(xxyNysxz,xxy)={((zxy)N(zxyNyxx),(z*xy)N1)€b

and, analogously, (zxyMy+*x,yxx) € 6. Using transitivity, we get (xxy,y*x) € 6.
This yields

(zNy,z) =(zNxxy,zMNyxzxz) €6 and

(y,xMNy) =(yNaxy,yNy*z) €0
whence (x,y) € 0. O

To describe congruence kernels, let us introduce the following concept.
A filter F' of a relatively pseudocomplemented directoid is called a p-filter if it
satisfies the following condition

ifxxy € F and y*xx € F then
(xx2)*x(yxz2)€ Fand (zxx)x(zxy) € F
and (xMz)*(yMz) € F for each z € D.

Theorem 5. Let D = (D;,*) be a relatively pseudocomplemented directoid.
A subset F' C D is a congruence kernel if and only if F' is a p-filter. If F is a
p-filter of D then it induces the congruence 0 given by (z,y) € 0 if and only if
rxyNyxx € F.

PRrROOF: Let § € ConD and F = [l]gp. By Lemma 3, F is a filter of D. Assume
xxy € Fand yxx € F. Then also zxyMNyxx € F and, by Theorem 4, (x,y) € 6.
Thus also (z* z,y*2) € 0, (z*x,z*y) € § and (xMz,yMz) € §. By Theorem 4
we easily conclude that F' is a p-filter.

Conversely, let F' be a p-filter of D. Define (x,y) € 0p if and only if zxyMy*x €
F. Since 1 € F, the relation 0 is reflexive. Symmetry of 65 follows immediately.
Assume (z,y) € 0 and z € D. Then x xyMy*x € F thus also x xy,y«x € F.
Since F is a p-filter, we conclude (x * 2) * (y * 2), (2 x x) x (z xy) € F. Moreover,
the same memberships with x and y permuted follow as the condition "z xy € F
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and y*x € F” is symmetric, so we get also (yxz)*(xxz) € F, (zxy)*(2*y) € F.
Thus (2 % z) * (y * 2) M (y * 2) * (x *x 2) € F whence

(xxz,y*2z) € Op.

Analogously it can be shown (z xx,z*y) € 0p and (xMz,yMNz) € Op.

Assume now that also (y,z) € Op. Then yx z,zxy € F. Since y x z € F and
(y*z)*(xx2z) € F, by Lemma 2 also « x z € F. Analogously we check z xx € F
and hence xxzMz*x € F giving (x, z) € Op. Altogether, 0 is also transitive and
hence an equivalence on D and, due to the previous compatibility conditions, 8
is a congruence on D. The fact that F' = [1]y,. follows directly by Theorem 4. O

Theorem 6. The variety V of relatively pseudocomplemented directoids is
congruence distributive.

PROOF: We need only to find Jénsson terms. For this, take

to(I,y,Z):I:tl(I,y,Z), t2(517,y72'):55|_|y*27
t3(x7yaz)le_lza t4('r7yaz)zzrly*xa t5(x7yaz)zz'

Then clearly to(z,y, z) = t1(x,y,x) = t5(z,y,x) = x and

to(z,y,z) =xNy*xx =z, ts3(z,y,x)=cNz=mux,

ta(z,y,z) =xNy*xx =z
For 7 even we have

to(fli,l’,y) =T =t1(:v7$7y)
tQ(xvxvy) :.IHI*’y:IH’y:tg(I,ZE,y)
t4($,$,y) :y|_|$*$:y|_|1:y:t5(iE,iE,y)

For i odd we compute

ti(z,y,y) =x=zNl=xNyx*xy=ta(z,9,9)
t3(z,y,y) =xNy=yNae=yNy*x=tyz,y,y).

Hence, tg,...,t5 are Jénsson terms and thus V is congruence distributive. (I

It is well-known that every relatively pseudocomplemented lattice is distribu-
tive. It is not the case of pseudocomplemented directoids (where the second
operation can be established) since distributivity of such an algebra yields that
it is a lattice, see e.g. [2] or [5]. However, a certain form of distributivity can
be considered. If D = (D;MM, ) is a relatively pseudocomplemented directoid
and M C D, denote by \/ M the supremum of M provided it exists. An easy
transcription of the definition of relative pseudocomplementation shows that D
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satisfies the identity

xﬂ\/{z;xI_IZZ:CI_Iy}::EI_Iy.

In what follows we show that relatively pseudocomplemented directoids need not
be even distributive ordered sets (see e.g. [6]). For our reasons, let us modify the
definition from [6] as follows:

We say that a commutative directoid D = (D;M) is order-distributive if it
satisfies the condition

(D) U(anb,c)=Ula,c)NU(b,c) forall a,b,ceD,

where U(z,y) = {# € D;z < z and y < 2z} and for subsets A, B C D we put
ANB ={aNb;ac A,be B} if A#( # B and AN B = () else. Moreover, denote
Ux) ={y € D;z <y}

Recall that a meet-semilattice (S, A) is distributive if for any a,b € S and each
¢ > a A b there exist a; > a, by > b such that ¢ = a; A b;.

We can state the following

Theorem 7. A commutative directoid D = (D;M) is order-distributive if and
only if it is a distributive meet-semilattice.

PROOF: Assume that D = (D;M) is not a semilattice. Then there are a,b € D
such that either a A b exists but aMb < aAb or a Ab does not exist.
Let D = (D;M) be order-distributive.

(a) If a Ab exists and a b < aAb=p, then U(aMb,p) = U(p) but p < a,
p < byield U(a,p) = U(a), U(b,p) = U(b) and hence
anbeU(a)NUDb)=Ul(a,p)U(b,p), alb¢ U(p)=U(aNb,p)

which is a contradiction.

(b) If a A b does not exist then there exists ¢ € D such that ¢ < a, ¢ < b but
q | amb, see Figure 4.

allb q
Figure 4

We have alb € U(a) MU(Bb) = Ula,q) MU(b,q) but aMb ¢ U(aMb,q), a
contradiction.

(c) Assume that D = (D;M) is a A-semilattice, i.e. a A b exist for all a,b € D
and a Ab = anb. Let a,b € D and ¢ > aAb. Then U(a A b,c) = U(c).
Since U(a Ab,c) = Ula,c) AU(b,c), we have ¢ € U(a A b,c) and hence there are
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a1 € Ula,c), by € U(b, c) such that ¢ = ay A by. Evidently, a; > a, by > b thus D
is a distributive semilattice.

Conversely, assume that D = (D;M) is a distributive semilattice and = €
U(amb,c) for given elements a,b,¢c € D. Then © > aMb=aAb, i.e. there exist
ay > a, by > b such that x = ay A by. Since x > ¢, we have a; > a1 A by > ¢,
by > a1 A by > ¢ thus a; € Ula,c), by € U(b, c) and hence

x=a1 Ab € Ua,c) NU(b,c).

Assume y € U(a,c) AU(b,c). Then there exist z € U(a,c), v € U(b, c) such that
y=zAv. Hence z > a,v>b, 2> ¢, v > c thus

y=zAv>aAb, y>c
which yield y € U(a A b, ¢). We have shown
U(aNb,e)=Ula,c) NU(b,c)
thus D is order-distributive. (]
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