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Almost disjoint families and “never” cardinal invariants

Charles Morgan, Samuel Gomes da Silva

Abstract. We define two cardinal invariants of the continuum which arise natu-
rally from combinatorially and topologically appealing properties of almost dis-

joint families of sets of the natural numbers. These are the never soft and
never countably paracompact numbers. We show that these cardinals must both
be equal to ω1 under the effective weak diamond principle ♦(ω, ω, <), answer-
ing questions of da Silva S.G., On the presence of countable paracompactness,

normality and property (a) in spaces from almost disjoint families, Questions
Answers Gen. Topology 25 (2007), no. 1, 1–18, and give some information about
the strength of this principle.
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1. Introduction

A family A = 〈Aα | α < κ〉 of infinite subsets of ω is said to be almost disjoint

if Aα ∩Aβ is finite for all distinct α, β < κ.

Definition 1.1. An almost disjoint family A = 〈Aα | α < κ〉 has property (a), or
(a)A holds , if

∀ g ∈ κω ∃P ∈ [ω]ω ∀α < κ (|P ∩Aα| < ω and P ∩Aα 6⊆ g(α)).

The condition (a)A is an appealing combinatorial property, strengthening non-
maximality of A, and deserves further investigation. It prompts the definition
of two (uncountable) cardinal invariants of the continuum, the non-soft number
and the never soft number, which help formulate concisely some of the more
combinatorial results surveyed in [Sil2] and questions arising from them.

Definition 1.2. The cardinal invariants nsa and vsa are defined by:

nsa = min{|A| : ¬(a)A }.

vsa = min{κ ∈ Card : ∀A (|A| = κ =⇒ ¬(a)A)}.

The first author was supported by Fapesb, the Fundação de Amparo à Pesquisa do Estado
da Bahia (Grant BOL 0430/2008).
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Besides its intrinsic combinatorial interest the property (a)A also has consid-
erable topological importance. Although not necessary for the rest of the paper
we now briefly outline this.

The Isbell-Mrówka space Ψ(A) derived from an almost disjoint family A has
the elements of A∪ω as points. Its topology is that the elements of ω are isolated
and the neighbourhoods of each A ∈ A are the sets {A} ∪ (A \ F ) for each
finite subset F of ω. It is striking that every Hausdorff, first countable, locally
compact, separable space whose set of accumulation points is non-empty and
discrete is homeomorphic to some Isbell-Mrówka space, and thus almost disjoint
families are topologically natural and significant objects.

Consideration of various topological properties related to the normality of
Isbell-Mrówka spaces (surveyed in [Sil2]) led to the isolation of (a)A (see [SV]).
As in this paper we focus on combinatorial aspects of almost disjoint families we
will say, in a general and very natural way, that an almost disjoint family A is P if
the corresponding Isbell-Mrówka space Ψ(A) is P for any topological property P .

We do not need to make explicit either the Matveev’s general, topological defi-
nition of “property (a)” from [M] or the definition of the adjective soft , inherited
from [SV], or indeed the general topological definition of countable paracompact-
ness (see the following definition), for the purpose of this note. The definitions we
give in this paper, Definition 1.1 and Definition 1.3, are immediately equivalent
to these more general definitions, as can be seen from intermediate formulations
given in the context of Isbell-Mrówka spaces in [Sil2] and [SV].

A property related to almost disjoint families is countable paracompactness.
In the following definition, we abbreviate the formula

∃〈En | n < ω 〉 ∀m < n < ω En ⊆ Em ⊆ ω

by

∃
ց

〈En | n < ω 〉.

Definition 1.3. An almost disjoint family A = 〈Aα | α < κ〉 is countably para-

compact if, and only if,

∀ g ∈ κω ∃
ց

〈En | n < ω 〉 ∃f ∈ κω ∀α < κ

Aα \ Eg(α) and Aα ∩ Ef(α) are both finite.

As for “property (a)”, we can immediately define two cardinal invariants, the
non-countably paracompact and never countably paracompact numbers.

Definition 1.4. The uncountable cardinal invariants ncp and vcp are defined by:

ncp = min{|A| : A is not countably paracompact}.

vcp = min{κ ∈ Card : no A of size κ is countably paracompact}.
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The cardinal invariants nsa and ncp were first defined, respectively, in [Sze]
and [Sil2]. In this paper, we introduce the “never” cardinal invariants vsa and
vcp. Clearly ω1 ≤ nsa ≤ vsa and ω1 ≤ ncp ≤ vcp.

Fact 1.5. vsa, vcp ≤ 2ω.

Proof: These inequalities are consequences of the books of Matveev ([M]) and
Fleissner ([F]), respectively. See [Sil2, pp. 5–7]. �

Thus vsa and vcp are well defined cardinal invariants. Moreover, “not having
property (a)” and “not being countably paracompact” are coherent notions of
“large” for subsets of [ω]ω, broadening simply having maximal cardinality, that
is, cardinality 2ω. This is in contrast, for example, with being “maximal almost
disjoint”, since (trivially) for any maximal almost disjoint family there are non-
maximal almost disjoint families of the same size.

The next remark and corollary give a unified (and mildly generalized) view of
observations of the second author [Sil1] and (in a specific case) of Watson [W].

Remark 1.6. If κ < max{vsa, vcp} there is a dominating family of size 2ω in

(κω,<).

Proof: As κ < max{vsa, vcp} there is some almost disjoint A = 〈Aα | α < κ〉
such that either (a)A or A is countably paracompact. For each P ⊆ ω, define a
partial function hP from κ into ω by hP (α) = max(P ∩Aα) if it exists, and leave
it undefined otherwise. Similarly, for every descending sequence E = 〈En | n < ω 〉
of elements of [ω]ω let hE be the partial function given by hE(α) = the least n
such that Aα ∩ En is finite if such an n exists, and undefined otherwise. Let
g ∈ κω.

If (a)A then there is some P ⊆ ω such that hP is total and for every α < κ one
has g(α) < hP (α). So {hP : P ⊆ ω} is a dominating family.

If A is countably paracompact there is a descending ω-sequence E such that hE
is total and for every α < κ one has g(α) < hE(α). It follows that the collection
of all such hE is a dominating family. �

Corollary 1.7. If ω1 < max{vsa, vcp} and 2ω < 2ω1 then ℵω1
< 2ω and if 2ω is

also regular then there are inner models in which there are measurable cardinals.

Proof: By Remark 1.6 the first hypothesis gives that there is a dominating
family of size 2ω in ω1ω, and the work of Jech-Prikry ([JP]) then gives the con-
clusions. �

The paper is organized as follows. In Section 2 we recall the definition of a cer-
tain category, PV . Each object in this category has an associated “parametrized
weak diamond principle”, and we detail basic facts showing that these principles
are closely related to set-theoretic hypotheses such as ♦ and 2ω < 2ω1 and so
merit their name. In Section 3 we study (ω, ω,<), one of the objects of PV ,
establishing various equivalences and giving some information about the strength
of the corresponding effective weak diamond principle ♦(ω, ω,<). (For instance,
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we prove that the latter is independent of CH, and that it is consistent with ¬CH
independently of whether 2ω < 2ω1 or not.) In Section 4 we prove that ♦(ω, ω,<)
implies vsa = vcp = ω1. In Section 5 we present a number of new questions
including some touching on cardinal invariants related directly to normality.

Our notation is standard, but for clarity we run over some of the more fre-
quently used terms. |X | denotes the cardinality of a set X . ω is the set of all
natural numbers and the first infinite cardinal. ω1 is the first uncountable cardi-
nal and c, the cardinality of the continuum, is the cardinal 2ω. CH denotes the
statement “ω1 = c” (the Continuum Hypothesis). [ω]ω is the family of all infinite
subsets of ω and [ω]<ω is the family of all finite subsets of ω. αA is the family of
functions from α to A, but we write 2<α for

⋃
β<α

β2. Inclusion mod finite, ⊆∗,

is the quasi-order (i.e., reflexive, transitive relation) defined by A ⊆∗ B if A \ B
is finite. We assume that the reader is familiar with the standard definitions of
“club” (closed and unbounded) and “stationary” subsets of ω1. The set of all
countable limit ordinals is denoted by lim(ω1).

We thank the referee for their very useful comments and suggestions.

2. The category PV and parametrized ♦’s

The category Dial2(Sets)op is the dual of the fundamental (and simplest)
example of a Dialectica category ([P2]). As surveyed in the Blass’s interesting
paper [Bla1], it has proven useful in linear logic, the study of cardinal invariants
of the continuum and complexity theory. Its objects are triples o = (A,B,E)
consisting of sets A and B and a relation E ⊆ A×B such that

∀ a ∈ A ∃b ∈ B aE b and ∀ b ∈ B ∃a ∈ A ¬aE b.

(φ, ψ) is a morphism from o2 = (A2, B2.E2), to o1 = (A1, B1, E1), if φ : A1 −→ A2,
ψ : B2 −→ B1 and

∀ a ∈ A1 ∀ b ∈ B2 φ(a)E2 b −→ aE1 ψ(b).

(The ‘Sets’ part of the name comes from the fact that if o = (A,B,E) is an object
in the category then A and B are sets, while the ‘2’ comes from the equivalence of
such an E ⊆ A×B with its characteristic function — whose range is {0, 1} = 2.)

The category is partially ordered by o1 ≤GT o2 if there is a morphism from
o2 to o1. Two objects are Galois-Tukey equivalent, o1 ∼GT o2, if o1 ≤GT o2 and
o2 ≤GT o1.

We now restrict attention to the small subcategory whose objects have con-
stituent sets A and B with |A|, |B| ≤ 2ω. We use Blass’s notation PV (after de
Paiva ([P1]) and Vojtáš ([V]), its introducers) for this category. Note that Vojtáš
uses order-theoretic vocabulary and refers to morphisms in PV as generalized

Galois-Tukey connections.
The following fact is well known and easy to check.

Fact 2.1. (R,R, 6=) is minimal and (R,R,=) is maximal in the restriction of ≤GT

to PV. �
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Next, we recall the parametrized diamond principles, defined in [MHD], asso-
ciated to objects in PV.

Definition 2.2 ([MHD]). Let o = (A,B,E) be an object in PV. Then Φ(o) is
the statement:

∀F : 2<ω1 −→ A ∃g ∈ ω1B ∀ f ∈ ω12

{α < ω1 : F (f ↾ α)E g(α)} is stationary in ω1.

Fact 2.3. If o1 ≤GT o2 then Φ(o2) implies Φ(o1). So if o1 ∼GT o2 then

Φ(o1)←→ Φ(o2).

Proof: Immediate from the definitions. �

We include some information about the Φ(o) for context; it is not used below.

Fact 2.4. The following implications hold, for every object o ∈ ob(PV):

♦ ←→ Φ(R,R,=) −→ Φ(o) −→

Φ(R,R, 6=)←→ Φ(2, 2, 6=)←→ Φ(2, 2,=)←→ 2ω < 2ω1 .

Proof: For the first equivalence see [MHD]. The two subsequent implications
follow from Facts 2.1 and 2.3. The next equivalence is due to Abraham (unpub-
lished); a proof may be found in [MHD]. The penultimate equivalence is easy —
g witnesses Φ(2, 2,=) for some F if and only if 1 − g witnesses Φ(2, 2, 6=). The
final equivalence is due to Devlin and Shelah. (The proof is non-trivial, see [DS]
or [I].) �

In this note we make use of effective versions of these parametrized diamond
principles rather than the full, unrestricted principles themselves. These effec-
tive parametrized diamond principles, whose definition we now give, were also
originally introduced in [MHD].

Definition 2.5. (i) An object (A,B,E) in PV is Borel if A, B and E are
Borel subsets of some Polish space.

(ii) A map f : X −→ Y from a Borel subset of a Polish space to a Borel
subset of another is itself Borel if for every Borel Z ⊆ Y one has that
f−1“Z is Borel.

(iii) If o1 and o2 are both Borel then o1 ≤B
GT o2 if there is a morphism from

o2 to o1 both of whose constituent maps are Borel, and o1 ∼B
GT o2 if

o1 ≤B
GT o2 and o2 ≤B

GT o1.
(iv) A map F : 2<ω1 −→ A is Borel if it is level-by-level Borel: i.e., if for each

α < ω1 the map F ↾ 2<α : 2<α −→ A is Borel.
(v) If o is Borel we define the principle ♦(o) as in [MHD]:

∀ Borel F : 2<ω1 −→ A ∃g ∈ ω1B ∀ f ∈ ω12

{α < ω1 : F (f ↾ α)E g(α)} is stationary in ω1.
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Fact 2.6. If o1, o2 are both Borel and o1 ≤B
GT o2 then ♦(o2) −→ ♦(o1); if

o1 ∼B
GT o2 we have ♦(o2)←→ ♦(o1).

Proof: Again immediate from the definitions. �

3. The object (ω, ω,<)

We focus attention on the object (ω, ω,<) of the category PV. We give several
equivalents of it and some further information about its place in the Galois-
Tukey ordering. We also show that ♦(ω, ω,<) is independent of CH, and that it
is consistent with the failure of CH independently of whether 2ω < 2ω1 holds or
not.

Lemma 3.1. (ω, ω,<) ∼GT ([ω]<ω, [ω]<ω,().

Proof: The pair of functions n 7→ {0, . . . , n−1} and a 7→ max(a) give morphisms
in both directions. �

Lemma 3.2. Let E ⊆ P(ω) × ω be given by aE n iff a ∈ [ω]ω or a ⊆ n. Then

(ω, ω,<) ∼GT (P(ω), ω, E).

Proof: In order to show (ω, ω,<) ≤GT (P(ω), ω, E) consider the morphism con-
sisting of the singleton map n 7→ {n} from ω to P(ω) and the identity map on ω.
If {n}Em then, since {n} is finite, one has n < m, which is what is required.

For the reverse inequality consider the morphism consisting of the map x :
P(ω) −→ ω given by x(a) = max(a) if a is finite and x(a) = 0 if a is infinite and
the identity map on ω. If x(a) < k then either a is infinite or max(a) < k. But
then either a is infinite or a ⊆ k. �

Lemma 3.3. For every finite m we have

([ω]m, ω, 6∋) ≤GT (ω, ω,<) ∼GT ([ω]<ω, ω, 6∋).

Proof: The pair consisting of the map mx : [ω]m −→ ω, given by mx(a) =
max(a), and the identity on ω yields that ([ω]m, ω, 6∋) ≤GT (ω, ω,<) for all
m ∈ ω ∪ {< ω}. For if max(a) < k then k /∈ a. On the other hand, the
pair consisting of the map f : ω −→ [ω]<ω, given by f(n) = {0, . . . , n}, and the
identity function on ω shows that we have (ω, ω,<) ≤GT ([ω]<ω, ω, 6∋). For if
k /∈ f(n) then n < k. �

Lemma 3.4. (ω, ω,<) ≤GT (ωω,ω ω,<).

Proof: The maps c : ω −→ ωω, given by c(n) = cn and cn(k) = n for all
k ∈ ω, and min : ωω −→ ω given by min(f) = min(im(f)) form a Galois-Tukey
connection. For if cn ≤ f one has cn(k) = n < f(k) for all k ∈ ω, whence
n < min(im(f)). �

We now discuss the relationship between ♦(ω, ω,<) and cardinal arithmetic
assumptions such as CH and 2ω < 2ω1 .

First of all we show that ♦(ω, ω,<) is independent of CH.
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Definition 3.5. (i) A sequence H = 〈ηα |α ∈ lim(ω1)〉 is a ladder system if
each ηα : ω −→ α is a cofinal embedding.

(ii) Let n ∈ ω∪{ω}\2 and k ∈ ω∪{< ω}\1 with k < n. The ladder system
H can be (n, k)-uniformized if

∀ f : ω1 −→ n ∃g :ω1 −→ [n]k ∀α ∈ lim(ω1)

{i < ω : f(α) /∈ g(ηα(i))} is finite.

(iii) For n and k as in (ii), the principle ¬Unifn(k) is given by the statement
“No ladder system is (n, k)-uniformizable.”

Proposition 3.6. Let 0 < k ≤ m < n ≤ ω. Then, we have that

♦([n]m, n, 6∋) =⇒ ¬Unifn(k).

Proof: Fix a coding of ω1([n]k) by ω12 in such a way that δ([n]k) is coded by δ2
for all limit δ. (This is trivial as n, k are countable.)

Let H = 〈ηα |α ∈ lim(ω1)〉 be a ladder system. Define a function
F : 2<ω1 −→ [n]m by F (e) = ∅ for successor δ + 1 and all e ∈ δ+12, and

F (e) = {j < n : {i < ω : j /∈ e(ηδ(i))} is finite}

for all limit δ < ω1 and all e ∈ δ2. Notice that F is Borel.
By ♦([n]m, n, 6∋) choose g : ω1 −→ n. Suppose h : ω1 −→ [n]k and regard it as

a function with co-domain 2 by the coding fixed at the start of the proof.
Let S be a stationary set given by applying Φ([n]m, n, 6∋) to h and let

δ ∈ S be a limit ordinal. Then g(δ) /∈ F (h ↾ δ). Hence, by the definition of F ,
{i < ω : g(δ) /∈ h(ηδ(i))} is not finite. Thus h does not uniformize the color-
ing g. �

Fact 3.7 ([BEGPS, §2]). For each k ∈ ω it is consistent with CH that every ladder

system on ω1 can be (ω, k + 1)-uniformized but none can be (ω, k)-uniformized.

We remark that the authors of [BEGPS] write that a ladder system “satisfies
Mk” exactly when, in our terminology, it can be (ω, k)-uniformized.

Corollary 3.8. CH does not imply ♦(ω, ω,<).

Proof: It is immediate from Proposition 3.6 and Fact 3.7 that if ZFC is consis-
tent then for each m ∈ [2, ω] one has that ZFC + CH + ¬♦([ω]m, ω, 6∋) is also
consistent. The corollary now follows from Lemma 3.3 and Fact 2.6. �

Next we observe that ♦(ω, ω,<) is consistent with the failure of CH. We give
two models. In the first the weak diamond, 2ω < 2ω1 , is false and in the second
it holds.

Proposition 3.9. It is consistent that ♦(ω, ω,<) holds and 2ω = ω2.
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Proof: The cardinal min({‖X‖ : X ⊆ ω & ∀n < ω ∃m < X n < m}), the
evaluation of (ω, ω,<), is trivially always ω. It is then immediate from Proposi-
tion 6.6 of [MHD] that ♦(ω, ω,<) holds in a broad collection of forcing extensions
which are countable support iterations of length ω2. The collection includes, for
example, iteration of Sacks forcing. Proposition 6.6 and Remark 6.7 of [MHD]
give precise details of the nature that the components of these iterations may
have. �

Proposition 3.10. ♦(ω, ω,<) is consistent with 2ω = ωω1
< 2ω1 .

Proof: The proof is a modest modification of the proof of Proposition 6.1 of
[MHD], that Cω1

, the Cohen algebra corresponding to the product space 2ω1 ,
forces ♦(non(M)). We give details for completeness.

We force with P = Cωω1
. Let Ġ be a P-name for the element of 2ωω1 corre-

sponding to the generic filter. Let Ḟ be a P-name for a map from 2<ω1 −→ ω
and let ṙδ be a P-name for a real such that Ḟ ↾ 2δ is definable from ṙδ. Pick a
strictly increasing function h : ω1 −→ {ωα : α < ω1 } such that ṙδ is forced to be

in V [Ġ ↾ h(δ)]. Interpret Ġ ↾ [h(δ), h(δ) + ω) canonically as a real (a subset of ω)
and let ġ(δ) be the first element of it.

Now let ḟ : ω1 −→ 2 be a P-name. Let X be the collection of all δ for which
it is forced that ḟ ↾ δ ∈ V [Ġ ↾ ωδ]. Because P is ccc one has that X is closed and

unbounded. Let Y ⊆ X be forced to be closed and unbounded. Since Ġ is generic
it follows that there are δ ∈ Y such that it is forced that Ḟ (ḟ ↾ δ) < ġ(δ). �

We thank Justin Moore for drawing our attention to this example in an email
discussion of the possible consistency of Φ(ω, ω,<) together with ¬CH and 2ω <
2ω1 . This latter problem is still an open question as far as we know. See Section 5
of this paper.

4. ♦(ω, ω,<) and the “never” cardinal invariants

Proposition 4.1. ♦(ω, ω,<) implies vsa = ω1.

The preceding proposition is an immediate corollary of the following result.

Proposition 4.2. ♦(ω, ω,<) implies that for every almost disjoint family A =
〈Aα | α < ω1 〉 there is some g ∈ ω1ω such that, for every P ∈ [ω]ω,

either {α < ω1 : P ∩Aα is infinite}

or {α < ω1 : P ∩Aα ⊆ g(α)} is a stationary subset of ω1.

Proof: Let A = 〈Aα |α < ω1 〉 be an almost disjoint family. Define F : 2<ω1 −→
P(ω) by F (h) = Adom(h) ∩ Xh↾ω for h ∈ 2<ω1 , where k ∈ Xh↾ω if and only if
h(k) = 1 for k ∈ ω. Notice that F is Borel. Apply (by Lemma 3.2 and Fact 2.6),
♦(P(ω), ω, E) to F and obtain a function g : ω1 −→ ω.

Let P ∈ [ω]ω. If {α < ω1 : P ∩ Aα is infinite} is not stationary in ω1 then
its complement, {α < ω1 : |P ∩Aα| < ω}, contains a closed and unbounded set,
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say, C. In this case choose some f ∈ ω12 such that Xf↾ω = P . By the property
of g given by ♦(P(ω), ω, E) one has that the set

S = {α < ω1 : Aα ∩ P is infinite or Aα ∩ P ⊆ g(α)}

is stationary in ω1. Since C is club and S is stationary one has that {α < ω1 :
Aα ∩ P ⊆ g(α)} ⊇ C ∩ S is stationary in ω1. �

Proposition 4.3. ♦(ω, ω,<) implies vcp = ω1.

In a similar manner to the proof of Proposition 4.1, Proposition 4.3 is an
immediate corollary of the following result.

Proposition 4.4. ♦(ω, ω,<) implies that for every almost disjoint family A =
〈Aα | α < ω1 〉 there is some g ∈ ω1ω such that, for every sequence 〈En | n < ω 〉
in [ω]ω descending under inclusion and f ∈ ω1ω,

either {α < ω1 : Aα ∩ Ef(α) is infinite}

or {α < ω1 : Aα 6⊆
∗ Eg(α) } is a stationary subset of ω1.

Proof: Let A = 〈Aα | α < ω1 〉 be an almost disjoint family. Fix some canonical
way in which functions in ωω code sequences in ωP(ω). If e is such a function we
write 〈Xe

m |m ∈ ω 〉 for associated sequence.

Define F : 2<ω1 −→ ω by F (e) = least m such that Adom(e) \X
e↾ω
m+1 is infinite

for e ∈ 2<ω1, if such an m exists, and = 0 otherwise. Apply ♦(ω, ω,<) to F and
obtain a function g : ω1 −→ ω.

Let E = 〈Em |m < ω 〉 ∈ ωP(ω) and suppose that for every α < ω1 we
have Aα ⊆∗ E0 and that for all m < n < ω we have En ⊆ Em. If the set
{α < ω1 : Aα ∩ Ef(α) is infinite} is not stationary in ω1 then the function fE

given by fE(α) = “least m such that Aα∩Em is finite” is well-defined on a subset
of ω1 containing a club set, say, C. Let h : ω1 −→ 2 be any function such that
〈Xh↾ω

m |m ∈ ω 〉 = 〈Em |m < ω 〉. Note that F (h ↾ α) never takes the value 0
since if Aα ∩ Em is finite then Aα \ Em is infinite (and m > 0).

By ♦(ω, ω,<) we have that

C ∩ {α < ω1 : Aα 6⊆
∗ Eg(α) or Aα ∩Ef(α) is infinite}

is stationary in ω1, and hence so is {α < ω1 : Aα 6⊆∗ Eg(α) }. �

We note that, in view of Proposition 3.7, Proposition 4.3 answers the open
Questions 3.7 and 4.5 of [Sil2] as to whether it is consistent that ncp < 2ω in a
strong way since it shows that vcp < 2ω is consistent.

5. Notes, problems and questions

We conclude by posing a handful of problems and questions arising from this
work. We preface these by introducing a cardinal invariant for normality. The
following definition is “folklore”.
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Definition 5.1. An almost disjoint family A = 〈Aα | α < κ〉 is normal if, and
only if, for any disjoint subfamilies F and G of A there is a set S ∈ [ω]ω such that

∀F ∈ F F ⊆∗ S and ∀G ∈ G |S ∩G| < ω.

There is no need to define a “non-normal” number because there are almost
disjoint families of size ω1 in ZFC that are non-normal. This follows from the
existence of “Luzin gaps”.

However it is well-known that normal separable spaces cannot include closed
discrete subsets of size 2ω (and one can easily check that ω is dense and A is closed
and discrete in any Isbell-Mrówka space). Therefore the following definition is
justified.

Definition 5.2. The uncountable cardinal invariant vn is defined by:

vn = min{κ ∈ Card : there is no A of size κ which is normal}.

Normal Isbell-Mrówka spaces are also countably paracompact (see [Sil2]), and
thus vn ≤ vcp. Therefore, it is immediate from Proposition 4.3 that Φ(ω, ω,<)
implies vn = ω1. Note also (as the referee reminded us) that Szeptycki and
Vaughan ([SV]) showed that a normal Ψ-space of cardinality < d has property (a).
So vn ≤ d implies that vn ≤ vsa.

Problem 5.3. Establish upper bounds for any of the cardinals vsa, vcp and vn in

terms of other cardinal invariants. Specifically, is it true that if θ ∈ {vsa, vcp, vn}
then θ ≤ d, a or even b? (Here d, a and b are the minimal sizes of families which

are dominating in ωω, maximal almost disjoint in [ω]ω and unbounded in ωω,

respectively.)

Work of Brendle, Brendle-Yatabe, and Szeptycki shows that nsa ≤ b. However,
apart from the bounds on vn in terms of vcp and vsa mentioned in the paragraph
immediately prior to this problem, we know of no better upper bound for vsa,
vcp or vn than 2ω.

Question 5.4. Does 2ω < 2ω1 alone imply vsa = ω1 or vcp = ω1?

CH and Φ(ω, ω,<) both imply vsa = vcp = ω1. Both also imply 2ω < 2ω1 and,
as mentioned in Section 1,

Con(ZFC + “2ω < 2ω1” + “2ω is regular” + “ω1 < max{vsa, vcp}”)

implies

Con(ZFC + “There is a measurable cardinal”).

Moreover, 2ω < 2ω1 is sufficient to prove that some cardinal invariants are small.
For example it is well known that 2ω < 2ω1 implies vn = ω1.
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A possibly related open question (due to the second author) is whether it is
consistent with 2ω < 2ω1 that there is a separable space X satisfying property (a)
and including an uncountable closed discrete subset ([Sil2, Question 2.5]).

Question 5.5. Is Φ(ω, ω,<) consistent with the failure of CH?

In Section 3 we show ♦(ω, ω,<), and hence Φ(ω, ω,<) is independent of CH.
We also show that ♦(ω, ω,<) is consistent with the failure of CH. However, the
proofs we give, exploiting the models of §6 of [MHD], rely heavily on the effectivity
of ♦(ω, ω,<) and we not know how to remove this dependency.

Moreover, showing that CH is independent of Φ(ω, ω,<) is also an interesting
problem because doing so may well require new developments in the theory of
iterated forcing. Specifically, it seems to be an appropriate test case for trying to
develop iterated forcing mixing ωω-bounding forcing with D-completeness since it
appears one will not need to juggle with intricate technical details not connected
with the iteration theory per se. (In this it contrasts, for example, with the
questions arising from the work of Mildenberger on models with weak diamond
principles and no Souslin trees (see, e.g., [Mil]).)
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