Regular methods of summability in some locally convex spaces

Costas Poulios

Abstract. Suppose that X is a Fréchet space, $\langle a_{ij} \rangle$ is a regular method of summability and (x_i) is a bounded sequence in X. We prove that there exists a subsequence (y_i) of (x_i) such that: either (a) all the subsequences of (y_i) are summable to a common limit with respect to $\langle a_{ij} \rangle$; or (b) no subsequence of (y_i) is summable with respect to $\langle a_{ij} \rangle$. This result generalizes the Erdös-Magidor theorem which refers to summability of bounded sequences in Banach spaces. We also show that two analogous results for some ω_1 -locally convex spaces are consistent to ZFC.

Keywords: Fréchet space, regular method of summability, summable sequence, Galvin-Prikry theorem, Erdös-Magidor theorem

Classification: Primary 46A04; Secondary 05D10, 46B15

1. Introduction, preliminaries

The results of the present paper are motivated by the Erdös-Magidor theorem [4], concerning summability of bounded sequences in Banach spaces. In Section 2, we generalize the Erdös-Magidor theorem for Fréchet spaces. This result is based on Galvin-Prikry theorem [5], as that of Erdös-Magidor. In Section 3 we show that two analogous results, for some ω_1 -locally convex spaces, are consistent to ZFC. These are based on the work of B. Balcar, J. Pelant and P. Simon given in [1] and also on a theorem of S. Plewik [7], concerning unions of completely Ramsey sets.

Let X be a topological vector space; denote by τ the topology of X. A sequence (x_n) in X is called τ -Cauchy if for every neighborhood V of $0 \in X$ there exists $n_0 \in \mathbb{N}$ such that $x_n - x_m \in V$ whenever $n, m \geq n_0$. If d is an invariant metric on X which induces the topology τ , then obviously, (x_n) is τ -Cauchy if and only if (x_n) is d-Cauchy. The space X is said to be sequentially complete if every Cauchy sequence in X converges to a point of X. A family \mathcal{P} of seminorms on X is called separating if for every $x \in X$ with $x \neq 0$, there exists $p \in \mathcal{P}$ such that $p(x) \neq 0$. The local topological weight of X is defined to be the least cardinal number α such that there is a basis \mathcal{B} of neighborhoods of $0 \in X$ with $\operatorname{card}(\mathcal{B}) = \alpha$. The topological vector space X is called a Fréchet space if it is locally convex and its topology is induced by a complete and invariant metric. A locally convex space is called an ω_1 -locally convex space if its local weight is not greater than ω_1 .

Suppose that X is an ω_1 -locally convex space. Then we can find a basis \mathcal{B} of neighborhoods of $0 \in X$, consisting of open, convex and balanced sets, with $\operatorname{card}(\mathcal{B}) \leq \omega_1$. For every $U \in \mathcal{B}$ we write p_U for the Minkowski functional corresponding to the set U, that is, the map $p_U : X \to \mathbb{R}$ given by $p_U(x) = \inf\{t > 0 \mid x \in tU\}$. Then p_U is a continuous seminorm on X and $U = \{x \in X \mid p_U(x) < 1\}$. The topology induced on X by the family $\mathcal{P} = \{p_U \mid U \in \mathcal{B}\}$ of seminorms, is the topology of X and $\operatorname{card}(\mathcal{P}) \leq \omega_1$. For the basic theory of locally convex spaces, we refer to [8].

If M is an infinite subset of \mathbb{N} , let $[M]^{\omega}$ denote the set of all infinite subsets of M. Let N be an infinite subset of \mathbb{N} and α a finite subset of \mathbb{N} . We set $\alpha < N$ if $\alpha \neq \emptyset$ and $\max \alpha < \min N$, or $\alpha = \emptyset$. Moreover, for an infinite subset M of \mathbb{N} and a finite subset α of \mathbb{N} , we set

$$[\alpha,M] = \{\alpha \cup L \mid L \in [M]^{\omega} \& \alpha < L\}.$$

A subset \mathcal{A} of $[\mathbb{N}]^{\omega}$ is called *completely Ramsey* if for every $M \in [\mathbb{N}]^{\omega}$ and every finite subset α of \mathbb{N} with $\alpha < M$, there is $N \in [M]^{\omega}$ such that: either $[\alpha, N] \subseteq \mathcal{A}$ or $[\alpha, N] \cap \mathcal{A} = \emptyset$. Considering on $[\mathbb{N}]^{\omega}$ the topology of pointwise convergence, the *Galvin-Prikry* theorem [5] (see also [9]) is the following.

Theorem 1.1. Let \mathcal{A} be a Borel subset of $[\mathbb{N}]^{\omega}$. Then \mathcal{A} is completely Ramsey.

The distributivity number of the quotient algebra $\mathcal{P}(\omega)$ / fin is denoted by \mathfrak{h} . This notion was introduced and studied by Balcar, Pelant and Simon in [1]. They proved that \mathfrak{h} is a regular cardinal with $\omega_1 \leq \mathfrak{h} \leq c$, and that the value of \mathfrak{h} depends on the axioms of set theory. In particular, there are models of ZFC set theory in which $\mathfrak{h} = \omega_2$. Therefore, the assumption that $\mathfrak{h} = \omega_2$, is consistent to ZFC axioms.

A topological characterisation of the completely Ramsey sets was given by E. Ellentuck [3] (see also [6]). S. Plewik [7], using this characterisation, proved the following.

Theorem 1.2. The union of less than \mathfrak{h} completely Ramsey sets is completely Ramsey.

It follows that the assumption that the union of ω_1 completely Ramsey sets is completely Ramsey, is consistent to ZFC axioms. We will use the next consequence of this and of Theorem 1.1.

Theorem 1.3. Assume that $\mathfrak{h} = \omega_2$. Then the intersection of less or equal to ω_1 Borel subsets of $[\mathbb{N}]^{\omega}$ is completely Ramsey.

An infinite matrix $\langle a_{ij} \rangle_{i,j \in \mathbb{N}}$ of real numbers is called a regular method of summability if, given a sequence $(x_i)_{i \in \mathbb{N}}$ of elements of a sequentially complete locally convex space X converging to $x \in X$, the sequence $x_i' = \sum_{j=1}^{\infty} a_{ij}x_j$ is well-defined and also converges to x. A sequence (x_i) in a sequentially complete locally convex space is called summable with respect to $\langle a_{ij} \rangle$ if the sequence (x_i') ,

where $x_i' = \sum_{j=1}^{\infty} a_{ij} x_j$, is well-defined and converges. The following proposition characterizes the regular methods of summability.

Proposition 1.1. Let $\langle a_{ij} \rangle$ be an infinite matrix of real numbers. The following assertions are equivalent.

- (1) $\langle a_{ij} \rangle$ is a regular summability method.
- (2) The following conditions hold: (a) $\sup_{i} \sum_{j=1}^{\infty} |a_{ij}| < \infty;$

 - (b) $\lim_{i\to\infty} a_{ij} = 0$ for every j and (c) $\lim_{i\to\infty} \sum_{j=1}^{\infty} a_{ij} = 1$.

PROOF: The implication $(1)\Rightarrow(2)$ is well-known (see [2, p. 75]). The converse implication for a sequentially complete locally convex space X is proved as in the case of a Banach space, by considering all the seminorms belonging to a family \mathcal{P} of seminorms defining the topology of X. We give this proof for completeness. Suppose that (x_i) is a sequence in X converging to x and let $p \in \mathcal{P}$ and $\epsilon > 0$ be given. Then it is clear that the sequence (x_i') , with $x_i' = \sum_{j=1}^{\infty} a_{ij}x_j$, is welldefined. Condition (c) implies that there exists $i_1 \in \mathbb{N}$ such that for $i \geq i_1$,

$$p(x) \Big| \sum_{i=1}^{\infty} a_{ij} - 1 \Big| < \epsilon/3.$$

Since the sequence (x_j) converges, there is $K_1 < \infty$ such that $p(x_j - x) < K_1$ for all j. We set $K_2 = \sup_i \sum_{j=1}^{\infty} |a_{ij}| < \infty$. Since $\lim_{j \to \infty} p(x_j - x) = 0$ there is $j_0 \in \mathbb{N}$ such that for $j \geq j_0$, $p(x_j - x) < \frac{\epsilon}{3K_2}$. Condition (b) implies that $\lim_{i\to\infty}\sum_{j=1}^{j_0}|a_{ij}|=0$, hence there is $i_2\in\mathbb{N}$ such that for $i\geq i_2$,

$$\sum_{j=1}^{j_0} \left| a_{ij} \right| < \frac{\epsilon}{3K_1} \,.$$

For $i \ge \max\{i_1, i_2\}$,

$$p(x_{i}' - x) = p\left(\sum_{j=1}^{\infty} a_{ij}x_{j} - x\right)$$

$$= p\left(\sum_{j=1}^{\infty} a_{ij}x_{j} - \sum_{j=1}^{\infty} a_{ij}x + \sum_{j=1}^{\infty} a_{ij}x - x\right)$$

$$\leq p\left(\sum_{j=1}^{\infty} a_{ij}(x_{j} - x)\right) + p(x)\left|\sum_{j=1}^{\infty} a_{ij} - 1\right|$$

$$\leq p\left(\sum_{j=1}^{j_{0}} a_{ij}(x_{j} - x)\right) + p\left(\sum_{j>j_{0}} a_{ij}(x_{j} - x)\right) + \frac{\epsilon}{3}$$

$$\leq \sum_{j=1}^{j_0} |a_{ij}| p(x_j - x) + \sum_{j>j_0} |a_{ij}| p(x_j - x) + \frac{\epsilon}{3}$$

$$< K_1 \sum_{j=1}^{j_0} |a_{ij}| + \frac{\epsilon}{3K_2} \sum_{j>j_0} |a_{ij}| + \frac{\epsilon}{3}$$

$$< K_1 \frac{\epsilon}{3K_1} + \frac{\epsilon}{3K_2} K_2 + \frac{\epsilon}{3} = \epsilon.$$

2. Summability in Fréchet spaces

In this section we prove the following theorem.

Theorem 2.1. Suppose that X is a Fréchet space, $\langle a_{ij} \rangle_{i,j \in \mathbb{N}}$ is a regular method of summability and $(x_i)_{i \in \mathbb{N}}$ is a bounded sequence in X. Then there exists a subsequence (y_i) of (x_i) such that: either

- (a) all subsequences of (y_i) are summable, with respect to $\langle a_{ij} \rangle$; or
- (b) no subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$.

Moreover, in the first case we can find a subsequence (z_i) of (y_i) such that all its subsequences are summable to the same limit.

This theorem, in case X is a Banach space, is the Erdös-Magidor theorem [4]. In the following by a basis of neighborhoods of $0 \in X$ we shall mean a countable basis \mathcal{B} of neighborhoods of $0 \in X$ consisting of open, convex and balanced sets. For the proof we need the following two lemmas.

Lemma 2.1. Let (z_j) be a bounded sequence in the Fréchet space X. For every i, we define the function

$$f_i : [\mathbb{N}]^{\omega} \to X$$
 by
$$A = \{k_1 < k_2 < \ldots\} \longmapsto f_i(A) = \sum_{i=1}^{\infty} a_{ij} z_{k_j}.$$

Then f_i is continuous.

PROOF: Fix $A = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega}$. Let $U = U_n \in \mathcal{B}$ be a basic neighborhood of $0 \in X$ and let $p = p_n$ be the corresponding Minkowski functional. Since (z_j) is bounded, the sequence $(p(z_j))$ is also bounded, so there exists $K < \infty$ such that $p(z_j) < K$ for every $j \in \mathbb{N}$. Furthermore, it follows from Proposition 1.1 that $\sum_{j=1}^{\infty} |a_{ij}| < \infty$, hence there exists ζ such that $\sum_{j>\zeta} |a_{ij}| < \frac{1}{2K}$. Put

$$C = \{B = \{m_1 < m_2 < \ldots\} \in [\mathbb{N}]^{\omega} \mid m_j = k_j \text{ for } j \leq \zeta\}.$$

Clearly, \mathcal{C} is an open neighborhood of A in $[\mathbb{N}]^{\omega}$. We show that $f_i[\mathcal{C}] \subseteq f_i(A) + U$. Indeed, if $B \in \mathcal{C}$,

$$p(f_{i}(B) - f_{i}(A)) = p\left(\sum_{j=1}^{\infty} a_{ij} z_{m_{j}} - \sum_{j=1}^{\infty} a_{ij} z_{k_{j}}\right)$$

$$= p\left(\sum_{j=1}^{\infty} a_{ij} (z_{m_{j}} - z_{k_{j}})\right)$$

$$\leq \sum_{j>\zeta} |a_{ij}| p(z_{m_{j}} - z_{k_{j}})$$

$$\leq \sum_{j>\zeta} |a_{ij}| 2K < 1,$$

and hence $f_i(B) - f_i(A) \in U$, that is $f_i(B) \in f_i(A) + U$. Thus f_i is continuous at A; since A is arbitrary, the proof is complete.

Lemma 2.2. Let (z_j) be a bounded sequence in the Fréchet space X which is summable to z with respect to $\langle a_{ij} \rangle$ and let $v_1, \ldots, v_N \in X$. Then the sequence $(v_1, \ldots, v_N, z_{N+1}, \ldots)$ is also summable to z with respect to $\langle a_{ij} \rangle$.

PROOF: For every i we set

$$w_i = \sum_{j=1}^{N} a_{ij} v_j + \sum_{j>N} a_{ij} z_j.$$

We need to prove that the sequence (w_i) converges to z. Indeed, let \mathcal{P} be a family of seminorms on X, defining the topology of X, and let $p \in \mathcal{P}$. Then for every i we have:

$$p(w_{i} - z) = p\left(\sum_{j=1}^{N} a_{ij}v_{j} + \sum_{j>N} a_{ij}z_{j} - z\right)$$

$$= p\left(\sum_{j=1}^{N} a_{ij}v_{j} - \sum_{j=1}^{N} a_{ij}z_{j} + \sum_{j=1}^{\infty} a_{ij}z_{j} - z\right)$$

$$\leq p\left(\sum_{j=1}^{N} a_{ij}(v_{j} - z_{j})\right) + p\left(\sum_{j=1}^{\infty} a_{ij}z_{j} - z\right)$$

$$\leq \sum_{j=1}^{N} |a_{ij}| p(v_{j} - z_{j}) + p\left(\sum_{j=1}^{\infty} a_{ij}z_{j} - z\right).$$

Now $\lim_{i\to\infty} p(\sum_{j=1}^{\infty} a_{ij}z_j - z) = 0$ and it follows from condition (b) of Proposition 1.1 that $\lim_{i\to\infty} \sum_{j=1}^{N} |a_{ij}| p(v_j - z_j) = 0$. Thus $\lim_{i\to\infty} p(w_i - z) = 0$ and the result follows since $p \in \mathcal{P}$ is arbitrary.

PROOF OF THEOREM 2.1: Let $\mathcal{B} = \{U_l \mid l \in \mathbb{N}\}$ be a basis of neighborhoods of $0 \in X$, let $\mathcal{P} = \{p_l \mid l \in \mathbb{N}\}$ be the corresponding family of Minkowski functional and let d be a complete and invariant metric on X which induces the topology τ of X. Consider the set:

$$\mathcal{A} = \left\{ A = \left\{ k_1 < k_2 < \ldots \right\} \in [\mathbb{N}]^{\omega} \mid (x_{k_i}) \text{ is summable with respect to } \langle a_{ij} \rangle \right\}.$$

Claim 1. The set \mathcal{A} is a Borel subset of $[\mathbb{N}]^{\omega}$. Indeed, observe that

$$\{k_1 < k_2 < \ldots\} \in \mathcal{A} \quad \Leftrightarrow \quad \big(x_{k_i}\big) \text{ is summable with respect to } \langle a_{ij} \rangle \\ \Leftrightarrow \quad x_i' = \sum_{j=1}^\infty a_{ij} x_{k_j} \text{ converges in } X \\ \Leftrightarrow \quad (x_i') \text{ converges with respect to the metric } d \\ \Leftrightarrow \quad (x_i') \text{ is } d\text{-Cauchy} \\ \Leftrightarrow \quad (x_i') \text{ is } \tau\text{-Cauchy} \\ \Leftrightarrow \quad (\forall U_l \in \mathcal{B}) \left(\exists \, s \in \mathbb{N}\right) \left[(\forall \, n, m \geq s) \left((x_n' - x_m') \in U_l \right) \right].$$

Therefore,

$$\mathcal{A} = \bigcap_{l \in \mathbb{N}} \bigcup_{s \in \mathbb{N}} \bigcap_{n,m \geq s} \mathcal{D}_{l,n,m},$$

where

$$\mathcal{D}_{l,n,m} = \left\{ \left\{ k_1 < k_2 < \ldots \right\} \in [\mathbb{N}]^{\omega} \mid \left(\sum_{j=1}^{\infty} a_{nj} x_{k_j} - \sum_{j=1}^{\infty} a_{mj} x_{k_j} \right) \in U_l \right\}.$$

By Lemma 2.1, the set $\mathcal{D}_{l,n,m}$ is open, being the inverse image of the open set U_l by the continuous function $f_n - f_m$ (here f_n and f_m are as in Lemma 2.1). Hence the set \mathcal{A} is Borel.

By the Galvin-Prikry theorem, there is $M = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega}$ such that: either $[M]^{\omega} \subseteq \mathcal{A}$, or $[M]^{\omega} \cap \mathcal{A} = \emptyset$. Therefore, for the sequence $z_i = x_{k_i}$, either

- (I) every subsequence of (z_i) is summable with respect to $\langle a_{ij} \rangle$; or
- (II) no subsequence of (z_i) is summable with respect to $\langle a_{ij} \rangle$.

It remains to prove that in case (I) we can find a subsequence of (z_i) all of whose subsequences are summable to the same limit. Let $Z = \overline{\operatorname{span}}\{z_i \mid i \in \mathbb{N}\}$, be the closed linear span of (z_i) . Then (Z,d) is a separable metric space. Choose a countable cover $\{B_n^1 \mid n \in \mathbb{N}\}$ of Z consisting of open balls of radius 1. Consider the following subset of $[\mathbb{N}]^{\omega}$:

$$\mathcal{F} = \Big\{ A = \big\{ k_1 < k_2 < \dots \big\} \in [\mathbb{N}]^\omega \mid \text{ the subsequence } (z_{k_i}) \text{ is summable to some point of the ball } B_1^1 \Big\}.$$

Claim 2. \mathcal{F} is a Borel subset of $[\mathbb{N}]^{\omega}$. Indeed, we have:

$$A = \{k_1 < k_2 < \ldots\} \in \mathcal{F} \quad \Leftrightarrow \quad (z_{k_i}) \text{ is summable to some point of the ball } B_1^1$$

$$\Leftrightarrow \quad \text{the limit of } z_i' = \sum_{j=1}^{\infty} a_{ij} z_{k_j} \text{ belongs to the ball } B_1^1$$

$$\Leftrightarrow \quad (\exists \, k \in \mathbb{N} \, \exists \, l \in \mathbb{N}) \, (\forall \, i \geq l) \, \left[d \, (z_i', z) < 1 - \frac{1}{k} \right],$$

where z is the center of the ball B_1^1 . Therefore,

$$\mathcal{F} = \bigcup_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} \bigcap_{i > l} \mathcal{G}_{k,i},$$

where

$$\mathcal{G}_{k,i} = \left\{ \left\{ k_1 < k_2 < \ldots \right\} \in [\mathbb{N}]^{\omega} \mid d\left(\sum_{j=1}^{\infty} a_{ij} z_{k_j}, z\right) < 1 - \frac{1}{k} \right\}.$$

By Lemma 2.1, the set $\mathcal{G}_{k,i}$ is open, being the inverse image of some open set by a continuous function. Hence the set \mathcal{F} is Borel.

The Galvin-Prikry theorem, now implies that there exists $M_1 \in [\mathbb{N}]^{\omega}$ such that: either $[M_1]^{\omega} \subseteq \mathcal{F}$, or $[M_1]^{\omega} \cap \mathcal{F} = \emptyset$, that is, either

- each subsequence of $(z_i)_{i \in M_1}$ is summable to a point in the ball B_1^1 ; or
- each subsequence of $(z_i)_{i \in M_1}$ is summable to a point outside the ball B_1^1 .

Repeating the same argument we find a sequence, $\mathbb{N} \supseteq M_1 \supseteq M_2 \supseteq \ldots$, of infinite subsets of \mathbb{N} such that for each k, either

- (1) each subsequence of $(z_i)_{i \in M_k}$ is summable to a point of the ball B_k^1 ; or
- (2) each subsequence of $(z_i)_{i \in M_k}$ is summable to a point outside the ball B_k^1 .

If each M_k is given its natural order, we let $L_1 = \{l_1^1 < l_2^1 < \ldots\}$ be the diagonal sequence, where l_k^1 is the k-th term of M_k .

Claim 3. There is $k_1 \in \mathbb{N}$ such that condition (1) holds for M_{k_1} .

Indeed, let us suppose that for all k, every subsequence of $(z_i)_{i \in M_k}$ is summable to a point outside the ball B_k^1 . The sequence $(z_{l_j^1})$, being a subsequence of (z_i) , is summable, say to $z \in Z$. If $M_k = \{m_1 < m_2 < \ldots\}$, then, by Lemma 2.2, the sequence $(z_{m_1}, \ldots z_{m_{k-1}}, z_{l_k^1}, z_{l_{k+1}^1}, \ldots)$ is also summable to z. Since this is a subsequence of $(z_i)_{i \in M_k}$, we obtain $z \notin B_k^1$. Since this happens for all k, we have reached a contradiction.

Using Lemma 2.2 again, we find that every subsequence of $(z_i)_{i \in L_1}$ is summable to a point of the ball $B_{k_1}^1$.

Now consider a countable cover $\{B_n^2 \mid n \in \mathbb{N}\}$ of the ball $B_{k_1}^1$, consisting of open balls in $B_{k_1}^1$ of radius 1/2. Repeat the previous procedure to the sequence $(z_i)_{i \in L_1}$

to obtain an infinite subset L_2 of L_1 and a $k_2 \in \mathbb{N}$ such that every subsequence of $(z_i)_{i \in L_2}$ is summable to a point of the ball $B_{k_2}^2$.

We inductively construct a sequence $\mathbb{N} \supseteq L_1 \supseteq L_2 \supseteq \ldots$, of infinite subsets of \mathbb{N} and a sequence $B_{k_1}^1 \supseteq B_{k_2}^2 \supseteq \ldots$, of open balls in Z, such that for every n the following properties hold:

- (i) diam $(B_{k_n}^n) \leq \frac{2}{n}$
- (ii) every subsequence of $(z_i)_{i\in L_n}$ is summable to a point of the ball $B_{k_n}^n$. Clearly, $\operatorname{diam}(\bigcap_{n=1}^\infty B_{k_n}^n) \leq \operatorname{diam}(B_{k_n}^n) \leq \frac{2}{n}$ for every n. Thus, $\operatorname{diam}(\bigcap_{n=1}^\infty B_{k_n}^n) = 0$, that is, the set $\bigcap_{n=1}^\infty B_{k_n}^n$ is at most a singleton.

If each L_n is given its natural order, we let $L = \{l_1 < l_2 < \ldots\}$ be the diagonal sequence, where l_n is the n-th term of L_n . Then every subsequence of $(z_i)_{i \in L}$ is summable to a point of $\bigcap_{n=1}^{\infty} B_{k_n}^n$ (by the construction and Lemma 2.2). Therefore the sequence $(z_i)_{i \in L}$ is the desired subsequence of (x_i) .

3. Summability in ω_1 -locally convex spaces

In this section, assuming that $\mathfrak{h} = \omega_2$ we quote first the following theorem, analogous to Theorem 2.1.

Theorem 3.1. Assume that $\mathfrak{h} = \omega_2$. Let X be a sequentially complete ω_1 -locally convex space. Suppose that there exists a countable family of neighborhoods of $0 \in X$ consisting of open, convex and balanced sets such that the family of corresponding Minkowski functionals is separating. Let $\langle a_{ij} \rangle_{i,j \in \mathbb{N}}$ be a regular method of summability and (x_i) be a bounded sequence in X. Then there exists a subsequence (y_i) of (x_i) such that: either

- (a) all subsequences of (y_i) are summable, with respect to $\langle a_{ij} \rangle$; or
- (b) no subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$.

Moreover, in the first case we can find a subsequence (z_i) of (y_i) such that all its subsequences are summable to the same limit.

PROOF: There exists a basis \mathcal{B} of neighborhoods of $0 \in X$, consisting of open, convex and balanced sets, such that $\operatorname{card}(\mathcal{B}) \leq \omega_1$. Moreover we can find a countable subfamily \mathcal{B}' of \mathcal{B} such that the family of the corresponding Minkowski functionals is separating. Consider the set:

$$\mathcal{A} = \{A = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega} \mid (x_{k_i}) \text{ is summable with respect to } \langle a_{ij} \rangle \}.$$

Then,

$$\{k_1 < k_2 < \ldots\} \in \mathcal{A} \iff \text{ the sequence } (x_i'), \ x_i' = \sum_{j=1}^{\infty} \alpha_{ij} x_{k_j}, \text{ converges in } X \iff (\forall U \in \mathcal{B}) (\exists s \in \mathbb{N}) [(\forall n, m \ge s) ((x_n' - x_m') \in U)].$$

Therefore,

$$\mathcal{A} = \bigcap_{U \in \mathcal{B}} \bigcup_{s \in \mathbb{N}} \bigcap_{n,m > s} \mathcal{D}_{U,n,m},$$

where

$$\mathcal{D}_{U,n,m} = \left\{ \left\{ k_1 < k_2 < \ldots \right\} \in [\mathbb{N}]^{\omega} \mid \left(\sum_{j=1}^{\infty} a_{nj} x_{k_j} - \sum_{j=1}^{\infty} a_{mj} x_{k_j} \right) \in U \right\}.$$

It is easy to verify that Lemma 2.1 holds if X is any sequentially complete locally convex space. So the set $\mathcal{D}_{U,n,m}$ is open, being the inverse image of the open set U, by the continuous function $f_n - f_m$. Thus, by Theorem 1.3, the set \mathcal{A} is completely Ramsey being the intersection of ω_1 Borel sets. Therefore there is $M = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega}$ such that either $[M]^{\omega} \subseteq \mathcal{A}$ or $[M]^{\omega} \cap \mathcal{A} = \emptyset$. By setting $(y_i) = (x_{k_i})$, we have that either

- (1) every subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$; or
- (2) no subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$.

Finally, it is easy to see that in case (1) we can find a subsequence (z_i) of (y_i) such that all its subsequences are summable to the same limit. Indeed, denote by τ the topology of X and by τ' the topology on X induced by the family \mathcal{B}' . Since the family $\{p_U \mid U \in \mathcal{B}'\}$ is separating, the topology τ' is Hausdorff. Therefore (X, τ') is a locally convex space whose topology is induced by the countable family of seminorms $\{p_U \mid U \in \mathcal{B}'\}$. Hence, this topology is induced by an invariant metric. As $\tau' \subseteq \tau$, every subsequence of (y_i) is summable with respect to τ' . By repeating the second part of the proof of Theorem 2.1 we find $x \in X$ and a subsequence (z_i) of (y_i) such that each subsequence of (z_i) is summable to x with respect to τ' . But then every subsequence of (z_i) is summable to x with respect to τ . Thus, (z_i) is the desired subsequence.

In the following theorem, as there is no completeness, the method of summability $\langle a_{ij} \rangle$ we consider is such that for every i, $a_{ij} \neq 0$ only for finitely many j. Such a method of summability is, for instance, the Cesàro method of summability.

Theorem 3.2. Assume that $\mathfrak{h} = \omega_2$. Let X be a vector space and \mathcal{T} be a family of locally convex topologies on X such that $\operatorname{card}(\mathcal{T}) \leq \omega_1$ and for each $\tau \in \mathcal{T}$ the local weight of (X, τ) is not greater than ω_1 . We assume the existence of $\tau_0 \in \mathcal{T}$ such that the space (X, τ_0) is a Fréchet space. Let X be endowed with the locally convex topology induced by the family \mathcal{T} . Let $\langle a_{ij} \rangle$ be a method of summability such that for every i, $a_{ij} \neq 0$ only for finitely many j. Let (x_i) be a bounded sequence in X. Then there exists a subsequence (y_i) of (x_i) such that: either

- (a) all subsequences of (y_i) are summable to a common limit, with respect to $\langle a_{ij} \rangle$; or
- (b) no subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$.

PROOF: Since the space (X, τ_0) is a Fréchet space, from Theorem 2.1 we conclude that there exists a subsequence (z_i) of (x_i) such that, in the space (X, τ_0) , either

- (a') all subsequences of (z_i) are summable to a common limit, with respect to $\langle a_{ij} \rangle$; or
- (b') no subsequence of (z_i) is summable, with respect to $\langle a_{ij} \rangle$.

In case (b') the sequence $(y_i) = (z_i)$ proves the theorem. Consider now the case (a'), and let $x \in X$ be the limit to which are summable all the subsequences of (z_i) . There exists a family \mathcal{P} of seminorms on X, which induces the topology of X with $\operatorname{card}(\mathcal{P}) \leq \omega_1$. Consider the set:

$$A = \{A = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega} \mid (z_{k_i})\}$$

is summable to x with respect to $\langle a_{ij} \rangle \}$.

Observe that

$$A = \{k_1 < k_2 < \ldots\} \in \mathcal{A} \Leftrightarrow$$

 $\Leftrightarrow (z_{k_i})$ is summable to x

$$\Leftrightarrow$$
 the sequence $(z_i'), z_i' = \sum_{j=1}^{\infty} \alpha_{ij} z_{k_j}$, converges to x

$$\Leftrightarrow (\forall p \in \mathcal{P})(\forall m \in \mathbb{N}) (\exists s \in \mathbb{N}) \left[(\forall n \ge s) \left(p(z'_n - x) < \frac{1}{m+1} \right) \right].$$

Therefore,

$$\mathcal{A} = \bigcap_{p \in \mathcal{P}} \bigcap_{m \in \mathbb{N}} \bigcup_{s \in \mathbb{N}} \bigcap_{n > s} \mathcal{D}_{p,m,n},$$

where

$$\mathcal{D}_{p,m,n} = \left\{ \left\{ k_1 < k_2 < \ldots \right\} \in [\mathbb{N}]^{\omega} \mid p \left(\sum_{j=1}^{\infty} a_{nj} z_{k_j} - x \right) < \frac{1}{m+1} \right\}.$$

The set $\mathcal{D}_{p,m,n}$ is open, being the inverse image of some open set by a continuous function. Hence the set

$$\bigcap_{m\in\mathbb{N}} \bigcup_{s\in\mathbb{N}} \bigcap_{n\geq s} \mathcal{D}_{p,m,n}$$

is Borel. By Theorem 1.3 it follows that the set \mathcal{A} is completely Ramsey. Thus, there exists $M = \{k_1 < k_2 < \ldots\} \in [\mathbb{N}]^{\omega}$ such that: either (I) $[M]^{\omega} \subseteq \mathcal{A}$ or (II) $[M]^{\omega} \cap \mathcal{A} = \emptyset$. We set $(y_i) = (z_{k_i})$. In case (I) all the subsequences of (y_i) are summable to x, with respect to $\langle a_{ij} \rangle$, and in case (II), no subsequence of (y_i) is summable, with respect to $\langle a_{ij} \rangle$.

Remarks 3.1. (1) Theorem 3.1, in the case of a sequentially complete locally convex space X of local weight ω , coincides with Theorem 2.1.

Theorem 3.2, in the case where the family \mathcal{T} is countable and for each $\tau \in \mathcal{T}$ the local weight of (X, τ) is ω , is proved in ZFC set theory and, clearly, gives

a generalization of Theorem 2.1 when $\langle a_{ij} \rangle$ is such that for every $i, a_{ij} \neq 0$ only for finitely many j.

(2) If the local weight of X is equal to ω_1 , we do not know whether Theorems 3.1 and 3.2 can be proved in ZFC set theory. However, we think that these theorems are independent of the ZFC axioms.

Acknowledgments. The author would like to thank the referee for their kind remarks about the notation.

References

- Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fund. Math. 110 (1980), 11−24.
- [2] Dunford N., Schwartz J.T., Linear Operators I: General Theory, Pure and Applied Mathematics, vol. 7, Interscience, New York, 1958.
- [3] Ellentuck E., A new proof that analytic sets are Ramsey, J. Symbolic Logic 39 (1974), 163–165.
- [4] Erdös P., Magidor M., A note on regular methods of summability and the Banach-Saks property, Proc. Amer. Math. Soc. 59 (1976), 232–234.
- [5] Galvin F., Prikry K., Borel sets and Ramsey's theorem, J. Symbolic Logic 38 (1973), 193–198
- [6] Kechris A., Classical Descriptive Set Theory, Springer, New York, 1995.
- [7] Plewik S., On completely Ramsey sets, Fund. Math. 127 (1986), 127–132.
- [8] Rudin W., Functional Analysis, McGraw-Hill, New York, 1973.
- [9] Tsarpalias A., A note on the Ramsey property, Proc. Amer. Math. Soc. 127 (1999), 583–527

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ATHENS, 15784 ATHENS, GREECE Email: k-poulios@math.uoa.gr

(Received January 16, 2009, revised May 21, 2009)