Corrigendum

to "Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space"

Toka Diagana, George D. McNeal

Keywords: non-archimedean Hilbert space, fractional non-archimedean Hilbert space, bounded operator, operator adjoint, succession operator *Classification:* 47S10, 46S10

In the paper [Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space, Comment. Math. Univ. Carolin. **50** (2009), no. 3, 385–400] by T. Diagana and G.D. Mc Neal, one needs to replace assumption (vi) [in Section 4, Spectral Analysis], that is: Replace:

"(vi) $0 < m_{\alpha} := \inf_{j \in \mathbb{N}} |\alpha_j| |\omega_j|^{1/2} \le ||X - \alpha_0 e_0|| = \sup_{j \ge 1} |\alpha_j| |\omega_j|^{1/2} < \widehat{m},$ where \widehat{m} is the constant appearing in (v)."

with the following:

"(vi) $||X - \alpha_0 e_0|| = \sup_{j \ge 1} |\alpha_j| |\omega_j|^{1/2} < \widehat{m}$, where \widehat{m} is the constant appearing in (v)."

Indeed, since $X \in c_0(\mathbb{N}, \omega, \mathbb{K})$, it does make sense to suppose that

$$\inf_{j\in\mathbb{N}} \left|\alpha_j\right| \left|\omega_j\right|^{1/2} = m_\alpha > 0.$$

Consequently, the proof of Proposition 4.3(ii) needs to be slightly modified as follows: Replace:

"Using assumption (vii) it follows that

$$\left| \left(\frac{\lambda_j - 1}{\lambda_j - \theta_j} \right) x_j \right| = \left| \left(\frac{\lambda_j - 1}{-\omega_j \alpha_j \beta_j} \right) x_j \right|$$
$$= \frac{\left| \lambda_j - 1 \right|}{\left| \alpha_j \right| \left| \omega_j \right|^{1/2}} \left\| x_j \widehat{e}_j \right\|$$
$$\leq \frac{\max(1, \widehat{M})}{m_\alpha} \cdot \left\| x_j \widehat{e}_j \right\|$$

Now $|x_0| = \lim_{j \to \infty} |(\frac{\lambda_j - 1}{\lambda_j - \theta_j})x_j| = 0$, as $\lim_{j \to \infty} ||x_j\hat{e}_j|| = 0$."

with the following:

"Using assumption facts $|\omega_j| > 1$ for all $j \ge 1$ and $|\alpha_j \beta_j| = 1$ for all $j \in \mathbb{N}$ [see assumption (vii) and Remark 4.1(1)] it follows that for all $j \ge 1$,

$$\left| \left(\frac{\lambda_j - 1}{\lambda_j - \theta_j} \right) x_j \right| = \left| \left(\frac{\lambda_j - 1}{-\omega_j \alpha_j \beta_j} \right) x_j \right|$$
$$= \frac{|\lambda_j - 1|}{|\alpha_j| |\omega_j|^{1/2}} ||x_j \widehat{e}_j||$$
$$= \frac{|\beta_j| |\lambda_j - 1|}{|\omega_j|^{1/2}} ||x_j \widehat{e}_j||$$
$$= \frac{|\lambda_j - 1| |\beta_j| |\omega_j|^{1/2}}{|\omega_j|} ||x_j \widehat{e}_j||$$
$$\leq \max\left(1, \widehat{M}\right) \frac{|\beta_j| |\omega_j|^{1/2}}{|\omega_j|} \cdot ||x_j \widehat{e}_j||$$
$$< \max\left(1, \widehat{M}\right) |\beta_j| |\omega_j|^{1/2} \cdot ||x_j \widehat{e}_j||$$

Now $|x_0| = \lim_{j \to \infty} |(\frac{\lambda_j - 1}{\lambda_j - \theta_j})x_j| = 0$, as $\lim_{j \to \infty} |\beta_j| \omega_j|^{1/2} = 0$, and $\lim_{j \to \infty} ||x_j \hat{e}_j|| = 0$."

Acknowledgment. The authors would like to express their thanks to Professors Dariusz Bugajewski and Piotr Kasprzak for pointing out these corrections.

References

 Diagana T., McNeal G.D., Spectral analysis for rank one perturbations of diagonal operators in non-archimedean Hilbert space, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 385–400.

Department of Mathematics, Howard University, 2441 Sixth Street N.W., Washington, DC 20059, USA

(Received October 27, 2009)