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Local monotonicity of Hausdorff

measures restricted to real analytic curves

ROBERT CERNY

Abstract. We prove that the 1-dimensional Hausdorff measure restricted to a sim-
ple real analytic curve v : R — RN, N > 2, is locally 1-monotone.
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Classification: 53A10, 49Q15, 28A75

1. Introduction

Definition 1.1. Let u be a Radon measure on RY and k € N. We say that p

is k-monotone if the function r — % is nondecreasing on (0, 00) for every

z € RV, Instead of 1-monotone, we simply write monotone.

The monotonicity plays an important role when studying the existence and the
regularity problems concerning minimal surfaces (see e.g. [5]). Even though the
definition of the monotonicity looks very brief, checking this property in particular
cases usually leads to complicated technical computations. These computations
are often difficult even for very small radii, i.e. in the case of the local monotonicity.

Definition 1.2. Let x4 be a Radon measure on RY and & € N. We say that
p is locally k-monotone at zy € RN if there is g > 0 such that the function
% is nondecreasing on (0, rg) for every z € B(zo,70).

Instead of locally 1-monotone, we simply write locally monotone.

VA d

The local monotonicity is an important tool for constructing examples of badly
behaved monotone measures by the compensation method of Kolaf [3].

The first results concerning local monotonicity were obtained by Kirchheim.
In his unpublished work he used the Taylor expansion to study the local mono-
tonicity of the 1-dimensional Hausdorff measure restricted to a symmetrical pair
of logarithmic spirals.

In recent papers [1] and [2], there are given sufficient conditions for the 1-
dimensional Hausdorff measure restricted to a curve to ensure the local mono-
tonicity. The positive results generalize the observation that the 1-dimensional
Hausdorff measure restricted to the graph of the function f(x) = 22 or to a
sphere in R? is locally monotone on R?. Let us recall one of the results (see [2,

Proposition 3.1. and Lemma 3.3.].
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Theorem 1.3. Let a < b and v : (a,b) — RY be a simple regular C?-curve. If
to € (a,b) and ¥(to) # 0 then u. is locally monotone at y(to).

Here and in the sequel we use the notation pu, = H' L v((a,b)). When ~ is
a graph of a function f (i.e. y(t) = ter + f(t)e2, t € (a,b)), then we prefer to
write ps. Recall that a curve + is regular if it has non-vanishing derivative, and
~ is simple if y(¢1) = y(t2) implies t; = to.

Let us give two typical examples of a measure which is not locally monotone.
First, set g(z) = |z| and let us prove that the measure pg4 is not locally mo-
notone at the origin. For any r > 0 we have pu,B((0,7),7) = 2v/2r. On the
other hand lim,_. M = 2. This implies that there is £k > 1 such that

g B((0,7), kr) < 2¢/2kr and we are done.

Second, set h(z) = a? sin(=;), p,q > 0. We obviously have u; B((0,0),7) > 2r
for every r > 0, but we can find arbitrarily small x¢ > 0 such that the tangent to
the graph of h at (o, h(xo)) is orthogonal to the sphere S((0,0), /22 + h?(z0)),
and thus we have 21, B((0,0),r)|,—., = 2. Hence

% w |r:ro = Ti2 (T %Mh(B(Oa 0)7 T)|r:ro - ,uh(B(O’ 0), TO)) <.
Thus the measure py, is not locally monotone at the origin.

It might seem that the pathological behavior from these examples can be pre-
vented if we consider smooth convex functions only. Nevertheless, even if f is
a convex C*°-function, then p¢ is not necessarily monotone. An example is given
in [1].

A natural question immediately arises, whether the real analyticity of the func-
tion f implies the local monotonicity of the measure py. Surprisingly, it actually
does. Our main result is

Theorem 1.4. Let a < b and 7 : (a,b) — RN, N > 2 be a simple regular real
analytic curve. Then (i, Is locally monotone at ~y(to) for every ty € (a,b).

This result is proven by different methods than those used in [1] and [2] because
methods using rough estimates for bad centers and bad radii do not work in our
case. Let us give the main idea of the proof: Suppose that v : (a,b) — R is
a regular real analytic curve, v((a,b)) is not a line segment, and we study the
local monotonicity at vy(¢p), a < to < b. By Lemma 2.2 we can suppose that
to = 0 and there is p € N, p > 2, such that ~(¢) is very close to (¢,t?,0,...,0)
(up to a small analytic error function for each coordinate) on some neighborhood
of 0. We prove the local monotonicity by contradiction. If the restricted measure
is not locally monotone at the origin, then there are centers z, — 0 and radii
r, — 0 such that %Mh:m < 0. For each pair z,,r, there are 7, < o,
such that {v(7,),v(on)} = v((a,b)) N S(zpn, 7). Obviously o, — 0 and 7, — 0.
Passing to a subsequence we can suppose that o, > 0, ;_Z — s € [-1,1]. Using
a criterion for the monotonicity based on Lemma 2.3 and a suitable blow-up in
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the case s # 1 we obtain

1 1 1

fAydt > (1 - 5)(§f2(1) + §f2(8) —=(f() - f(S))Q),

where f(t) = ptP~! — 1= For s = 1 we obtain

—S

1

| e =250+ 550 - 500 - 1)),

where f(t) = t. Since for any p € N, p > 2, and any s € [—1, 1] above inequalities
are not satisfied, we have a contradiction.

In the fourth section, our methods are applied to the graph of the function
f(z) = |z|”, p > 0 (in case p = 0, it is easy to compute that py is monotone).
We obtain that py is locally monotone at the origin if and only if p > % (and by
Theorem 1.3 the local monotonicity is proven at any point but the origin). This
result does not follow from Theorem 1.3 because we have f”(0) = 0 for p > 2 and
lim, o f"(x) = oo for p € (0, 2).

We refer to [4] and [5] for other information concerning the geometry of mea-
sures and the Monotonicity Formula.

2. Preliminaries

Notation. The scalar product of z,3y € RY is denoted by z -y and the Euclidean
norm of x is denoted by |z|. The i-th coordinate of x is z; and the standard
orthonormal basis in RY is {ej,...,ex}. The origin in RY is denoted by 0.
When u,v € RY and u-v = 0, we write u L v. Further ut = {v € RY : v L u}.

We use the convention that C' is a generic positive constant that may change
from occurence to occurence, as usual.

The I-dimensional Hausdorff measure is denoted by H! and H! L A is its
restriction to a Borel set A.

For z € RN and r > 0, we set

B(z,r) ={x e RN : |z — 2| <7} and S(z,r)={zx eRY : |z —z| =r}.
We need the following property of the scalar product.

Lemma 2.1. Let a,b,c € R, ac > —1 and let u, @, v1,v2 € RN, with |u| = || =

1] = |v2| =1, v1 L va, u,@ € vi Nwy. Set F(t) = (v1 + ave + bit) - %
Then
F(t) = F(t).
max F/(t) max  F(t)

[bl(1+c
lt|< 33—

PROOF: Set b= b(u - i) € [—|b],|b|]. The proof obviously follows from
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F’(t)—(1+ac+5t )’_BJrl;cQ—tfact_ 1+ ac (B(lJch)_t)
V142 +¢2 (VI+e2+12)3  (Vi+c2+2)3\ 1+ac '

O

The following lemma tells us that any real analytic curve is locally a graph of
an analytic function.

Lemma 2.2. Let v : (a,b) — RY, N > 2, be a regular real analytic curve such
that v((a,b)) is not a line segment and let ty € (a,b). Then there are § > 0,
01,02 >0, m > 2, m €N, and a real analytic function 7 : (—o1,02) — RY such
that 5(0) = 0, 31(s) = s for s € (—o1,02), 7(0) = €1, ¥D(0) =0,i =2,...,m—1,
7(m)(0) = ey and 4 parameterizes the set {~(t + to) — v(to) : t € (—6,6)} after
suitable rotation and rescaling of coordinates.

PROOF: We observe that for any vector v € RN, F,(t) = v - (y(t +to) — y(to)) is
a real analytic function on (a,b). If v = (), then this function is even invertible
on some neighborhood of 0 because F!(0) = |¥(to)|?> # 0. Moreover, this inverse
function is again real analytic. Let m € N be the minimal number such that §(¢o)
and (") (t,) are linearly independent. This number actually exists because 7 is a
real analytic curve and v((a, b)) is not a line. Let w € Span(¥(to), 7™ (to)) satisfy
|w| =1, w-4(tg) = 0 and w - y™)(ty) > 0. Further, we find v; € RV, |v;| = 1,
j =3,..., N, complementing w and #(to) to an orthogonal basis of R". Since the
composition of real analytic functions is again real analytic, the parameterization
with respect to the new basis

(S) = (Fv(to)(F»;(io)(s))’ Fw(F»'yi(io)(S))’ Fvs (F»;(io)(s))a v ’F'UN (F—;(io)(s)))

¢

satisfies all desired equalities but the last one. We have (™ (0) = ces, where
¢ > 0. Therefore we set ¥(s) = cﬁ’y(cfﬁs) and we are done. O

Local monotonicity. Let us recall some well known facts concerning the local
monotonicity. For more details see for example [1] and [2].

Let v : [a,b] — RY be a simple regular C'-curve. If we want to prove that

sy B(zr)

. is nondecreasing on (0,7) for some z € R, then it is done provided

VA d

) p, lPET) LoD, Ber) - 1y Ber)

is nonnegative on (0,79). Here we use the notation D, f(r) = lign i(I)lf M.

Condition D, %(Z’T) > 0 is satisfied when p,B(z,7) < 2r and v(a),v(b) ¢
B(z,r) (if uyB(z,7) = 0 then the proof is trivial and if 0 < p,B(z,r) < 2, then
there are at least two points of intersection S(z, ) Nvy((a,b)) and the contribution
of each of them to D, u,B(z,7) is at least 1).
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If v : (a,b) — RN is a Cl-curve satisfying v(0) = 0, a < 0 < b, §(t) =
e1 +o(l)es + -+ 4+ o(l)eny then there can be found 1 > 0 such that if |z| < 7,
r € (0,m) and pyB(z,7) > 2r, then we have:

There are 7 < o such that S(z,r) Ny((a,b)) = {7y(7),7v(0)}, we have derivatives
instead of lower derivatives in (1) and

1
+ 5
COS s,  COSQr

0
EM’YB(Zv T) -

where @, is the angle between z —~(7) and %(7), . is the angle between v(o) — 2z
and (o). Moreover as the center z lies on the perpendicular bisector of a line
segment joining (o) and ~(7) we have r = %:;gﬂl
between y(c) — v(7) and z — y(7) (and also between y(o) — z and (o) — v(7)).

Therefore (note that 7, ¢,, ¢, are very small provided r; is small) we obtain

, where 7 is the angle

ho) =2l L, Ly

0
2 —u. B =
) "ot (z7) 2cosn COS@y  COS Y

Our next aim is to obtain a new criterion for the local monotonicity.
For 7,0 € R, 7 < 0, € > 0 and a continuous function h we set

Bz (h) = (a—T)((% <)o)+ (% )R () —%(h(a)—h(T))Q) —/TU B2(¢) dt.

We observe that if ¢ > 0, d € R and h(t) = h(ct 4 d) then

~ 1
(3) q)i,o'(Ch) = C2(I)f’,a(h’) a’nd (I)‘Er,a(h’) = Eq)iT-‘rd,co'-i-d(h)'

Further, for given C'-function f and fixed 7 < o set ¢(t) = f/'(t) — w
(when 7 = 7,,, 0 = 0, we write ¢y,).

The following lemma tells us that the non-negativity of %M follows
from the non-negativity of ®  (¢) for the curve y(t) = tvy + f(t)v2. We restrict

ourselves to planar curves to deal easily with the angles in the proof of the lemma
(see (8)).

Lemma 2.3. Let ¢ > 0, A > 0, v1,v2 € RV, |v1| = |vo| = 1, v; L vy and let f
be a C'-function on (—A, A) such that f(0) = f'(0) = 0. Set v(t) = tvy + f(t)va,
t € (—A,A). Then there is 6 > 0 with the following property:

If z € B(0,0), r € (0,9) and uyB(z,7) > 2 then there are T < o such that

S(z,r) N((a,0)) = {7(7),7(0)} and

O mBzr) 1 1y(e) =)

1
@) SZnl s ST+ 2es ()

PRrROOF: For fixed t, 7,0 € [-A, A] let a be the angle between v(o) — v(7) and
4(t). Let 3 be the angle between vy and (o) — (7). Choose § € (0, 3A) so small

41
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that we can use estimate (2) and for every t, 7,0 € (—24,26) the angles 3 and oy
are small enough so that |a¢| < %, [8] < §,

1—¢ 1—¢
S 0R(1) = — (tan(oy + ) — tan )7
1—¢/ tanay + tan g 2
= —t
(5) 2 (1 — tan oy tan 3 an 6)
1-— 1 — tan? 2 1
= Eta’n2 O‘t(&) S —O[?
2 1 — tanay tan 3 2
and similarly
(6) tan? oy < (14 )¢ (t).

Fix z € B(0,6) and r € (0,0) such that p,B(z,7) > 2. Hence there are 7,0 €
(—26,26) so that S(z,r) Ny((—A,A)) = {~(7),v(0)}.

Since p,B(z,7) is obtained integrating ¢ — coslat = /1 + tan? a; along the
line joining v(7) and v(o) we have by (6)

pu~yB(z, 1) /\/1+tan ath |dt
@ S N EETEOL
B0, L [ g

As o, = aT N, ¢o =ag+nand —— > 1+ % on (—=%,%) (indeed the function

Y(t) = -1 satisfies 1(0) = 1, ¢/(0) = 0 and ¢ (t) = Lisin®t > 1 op (-Z.,2)),

Tcos®t 272
using (2) we have

SO e I N S W

2 cosn \cospy | cosor
R I e S
> (o) =7 (14 302 + 02 + (1= (00 — an)) = 2clar — ar)?)
> 3(0) = 1(nI(1 + 02 + 702 — to(ap — ar)?)

Further from tan’t > 1 on (=%, §) we have

lao — ar| = [(ag + 8) = (ar + B)| < |tan(as + B) — tan(ar + )| = |¢(0) — o(7)]
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=< we obtain

IN
‘>—-

and thus from (5) and (1 +¢)(5 —¢)

iag + 30%2- - 1_16(a<7 - a7)2 = %(%Ozi + %a?r - %(O‘U aT)Q)
O 23(55F 0 + 80 - 5(000) - 6()?)

> 1+9)((3-)#0) + (3 )80 — 5 (6(0) — () ).
Finally, (1), (7), (8) and (9) imply (4). O

3. Local monotonicity

We want to prove the local monotonicity of 7' restricted to a real analytic
curve and to the graph of the function |z|P. The main step of the proof is the
following proposition, where we consider the curves satisfying v(0) = 0 and either

A(t) = (1, psgn®) [t~ +n2 ()t ns (R oav ()P
(10) 3
for some p > 5
or
A(t) = (LpltP~t +me @) s (O (0[P
(11) ] - 5. /8
r som =- —
or some p >po = 15

on (—A,A) for some A > 0, with n; € C1(—=A,A), 7;(0) =0 for i =2,..., N.

Proposition 3.1. Let v satisfy v(0) = 0 and either (10) or (11). Then u is
locally monotone at the origin.

Let us write f(t) = 12(t) and n(t) = n2(t). Hence f(0) = 0 and from (10) we
have

(12) F1(8) = psgn(®)[tP~" + (),

while from (11) we have

(13) F(t) = pltP=" + n(@)r~"

For fixed s € [—1, 1), the following functions are important in the sequel:

p—1 1- |S|p
gabs(t) = psgn(t)let - =,
-5
_ 1 —sgn(s)|s|?
enlt) = plept - LI

Lemma 3.2. The function g(t) =t satisfies ®° | ;(g) > 0.
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PrOOF: The proof is trivial because

2(%92(1) + %gQ(—l) - 1(g(l) —~ g(—1))2) _/ Pt dt =2 — % o,

Lemma 3.3. Let s € [-1,1). If p > 2 then ®%,(gans) > 0. If p > po then
‘I)g,l(gsgn) > 0.

The proof of Lemma 3.3 is also straightforward but very long and technical.
Therefore it is postponed to the last section.

Lemma 3.4. Assume that f(0) = 0 and either (12) or (13) is satisfied. Suppose
that the sequences {7,},{on} satisfy 7, < o, 0 >0, 0 — 0 and s,, := 2> —
€ [-1,1]. Then there is € > 0 and ng € N such that

(14) i) (fn) > soflp*‘l(an —7)3 for every n > ng.

Tn,On

ProOF: We distinguish two cases. First suppose that s € [—1,1). Assume (12)
(for (13) the proof is similar). Set v, (t) = %qﬁn(ant). As f(0) =0, from (12)
we obtain f(t) = |t|? + 7(t)[t|P, where lim;_o 7j(t) = 7(0) = 0. Hence

ult) = 1 (o) - LRI
= 5 (bt s (et~ + nlot)ot i

_op+ fi(on)op, — [mal? — ﬁ(7n>|7—n|p)

on(l = sy,)
1+ ii(o) — 235 — () 122
= psgn(t) P+ (o)t — — L ek o
—
B 1—|s|P
~ psanr - g

uniformly on [—2,2]. By Lemma 3.3 we have ®9 | (gaps) > 0. Hence there is ¢ > 0
such that ®% ; (gabs) > 2¢(1 — ). Since ¢, — gabs uniformly on [—2, 2], we have

P51 (1) — DS 1 (gans) and thus there is ng € N such that @5 (¢n) > e(1—s,)?
for n > ng. Hence (3) implies for all n > ng

q)'arn,an () = Uip_lq)in,l(?/}n) > Jip_ls(l - 5n>3 = 5‘77211)_4(‘771 - Tn>3-
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Now assume that s = 1. In this case (12) and (13) coincide. Set h, = Z=—T=

(hence 7, = op(1 — hy)), ¢p = p(p2—1) and

0= (o1~ )

0"271 n
0 ke Jew)  fon(l— k)
= i e (-5 51) - Ouln )

Let us show that 1, (t) — ¢ uniformly on [—1,1]. From (12) we obtain

aﬁfﬁh 7' (on(1- h?n t h_gnt))

(16) "
— iﬁ( _ i_l i_l ) S ( ( _ E h_" ))
I, 1 5 hy, + 5 hat) + hnn onl1 5 + 5 t +9n(t),

where 6,,(t) — 0 uniformly on [—1, 1]. Let us investigate —=2 (f(d")ff(”"(lfh")) ).

oP~1h, onhn

Set fi(t) =tP and fo = f — f1, hence fi(t) = n(t)tP~1. We have
Cp fl(o'n)ffl(o—n(lfhn)) Cp

2 (_1—h,)
(17) o 7ol h%( ( K
—1

where ¢, — 0. Further f5(¢) = n(t)t*P~!, n € C*(-=A,A) and 7(0) = 0 imply

o falon) Dol b)) o gy (1 Ry B Y,

b hy, onhn ~ ohh2 23
c h h h h p—1
18 :_P<n(1f_n _nn))(l,_n —"n)
(18) hnn o 5 + 2§ > + > 13
_ % ( (1__n fin )) F
hnn On 5 + 5 &n ) ) + Cns

where &, € (—1,1) and (o — 0. Finally there is K > 0 and a neighborhood of
the origin such that the C!-function 7 is K-Lipschitz there and thus for n large

(19) [u(on(t-"2 4 2)) o (1B 2o )Y < o

From (15), (16), (17), (18) and (19) we obtain 9, (t) — t uniformly on [—1, 1]. As
Lemma 3.2 implies ®°  ;(g) > 0, there is € > 0 such that ®<, ;(g) > 3ec}. Since
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Y — g uniformly on [~1,1], we have ®°, ,(¢,) — @, ,(g) and thus there is
no € N such that ¢, ;(¢,,) > 2e¢Z for n > ng. Hence using (3) we conclude

1 1 _ _
c2 ianhnq)s—l,l(wn) > eonP " hy, = ol Hon — ).

52
o’ " h2

D%, o (Pn) =

O

PROOF OF PROPOSITION 3.1. Suppose that v satisfies (10) (for (11) the proof is
similar). If u, is not locally monotone at the origin, then there are z, € RY,
|zn] — 0, and r, > 0, r,, — 0, such that D, M“ r, < 0. Hence (see
Prehmmarles) ,LL.YB(Zn,Tn> > 2ry, for all n € N and we can suppose that there
are o, — 0 and 7, — 0, 7, < 0, such that S(z,,7,) Nvy((a,b)) = {v(m),v(on)},
the derivatives in (1) exist and we have (2). Passing to a subsequence and to the
curve §(t) = y(—t) if necessary we can suppose that o, > 0 and = — s € [-1,1].
Set hy, = 7= T".

Further, by Lemma 3.4 there are € > 0 and ng € N such that we have (14).

Now, for fixed n € N (i.e. for 7,,, 0, fixed) we construct a suitable orthonormal
basis in RY. Pick &, € (7n,04,) such that y(o,) — v(mn) = Y(&n)(0n — o). Set
’l~}1 = ’y(fn)—( ) (fn) 62)62, ’172 = €29, further ’Di = 61'—2:;;11 (ei'ﬁj)%, 7= 3, ey N,
and finally v; i=1,...,N. We see that (v1); =1 — C,, where C,, — 0 as
n — oo.

By (10), the fact that ; are C!-functions and 1;(0) = 0 we have fori = 3,..., N

Vi) = 7i(€)l < Im@IEP = €7+ [na(t) — mi(€a)l1€R7

< Coplt —&nlob™ 2+C’|t—§n|0p 1 = Cobl™ 1|tf§|

*\v\’

Hence we obtain from |v;| =1

(20)  A(t) v = (5() = §(&)) v = m(t)oh (t = &) for i=3,...,N,

where 7j; are bounded functions and the bound is independent of n. Further we
have y(t) - v = (1 — Cyp)t and (t) - v2 = f(1).

Let 4 be a projection of y to Span(vy,v2), i.e. ¥(t) = (1 — Cp)tvy + f(t)ve. We
also define Z,, = (zy, - v1)v1 + (2 - v2)v2 and 7, = |¥(7) — Zn| = |¥(on) — Zn|- Let
@, be the angle between %, —5(7,) and 4(7,,) and let $,, be the angle between
:Y(O—n) — Zp and :Y(o'n)

Let us define y(t) = 3((1 — Cy)t). Then Lemma 2.3 applied to ¥ at 7, = 17—
and g,, = 1:’&’ gives ny > ng such that for n > n; we have

0 wBGur) 0 psBEur),
or r = or r =
1 113(0n) —3(7) y
> ——_ 2 VPl oL
= 2 2 |(v7 Tn| ( + ) n:0n (¢")’
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where

Falt) = (F(1 = Oty — L= Cn)En) = 1L = Cu)T)

&n *7u_n

(-G (- Con - LT e con.

1-C,p 1-C,p

Hence (3) and (14) imply that for n > n; we have

0 usyB(zp,r

) 2p—113
21 s > 1— P .
(21) or ” lr=r, > ( Cpn)ea,’ " hy,

S -
N =

As |4 > 1, by (20) there is nz > n; such that for n > ny we have

/MB(Zm rn) - N%B(zna Tn)

(22) /Tan

n

2

J Z(’Y(t) "Ui)2 - Z(’Y(f) 'Ui)2 dt

i=1 i=1

: / " Y () -vi)? dt < Clow —7a)(Col on — a))* < Cop? by

no =3

We want to estimate %,uvB(zn, )| per, — %MaB(Zn, 7)|r=r,. Let us start by
proving that there is ng > ny such that for n > ng we have
1

1
S _Unhn = Z(O—n - Tn)-

4

_ Y(7n) +7(o0)

(23) . :

Suppose that (23) is not satisfied. From (10) for n large enough we have |¥(t)| <

5 for ¢ € [7,,05] and thus

On . 5
B = [ ol < 2o, )
on —T\2 1
—9 n n L . 9
\/( )+ gglon =)

gq/(M)ﬁ L 2(m) +(on))?

" 2
Hence % M lr=r, > 0 for n large which contradicts the choice of B(zy,7,).

Set w = z, — (7). We distinguish two cases.
If |w-v;| <oPh2 foralli=3,..., N, then (20) implies

= 2r,.

(24) [3(7) - (20 =7 (1)) =3 (70) - G = A())| < D () -vil jw-vi] < Cohs.
=3
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Further there is ny > ng such that for n > ny we have [5(r,)| < [5(m)| < 2,

o < Ty (1) - (20 = ¥(70)) 2 B and A(7a) - (Zn = 7(7)) 2 G (the last two

estimates follow from (23)). Hence from (24) we obtain for n > ny

Tn _ 7:'n _ |’7(Tn)|7“7% _ |’§/(Tn)|~72l
COS Yr,, COS @Tn V(Tn) : (Z’ﬂ - 'Y(Tn)) '?(Tn) : (Zn - ’7(7-71))
T 7;2 h/(Tn (Zn - '?(Tn)) - ’Y(Tn) ) (zn - V(Tn)”
(25) Z R e A G G — (7))
> 723% > —CoZPhd.

Conversely, if there is ig € {3,..., N} such that |w - v;,| > oPh2, set

w
W=w— (w-v1)vy — (W - V3)va, u=—,
||

w(t) = (w-v1)vy + (w - v2)ve + t(w - vy)u for t€R.

We observe that w = w(-2L). Finally set

w-v1

U1

(1) - v 2 (T) -

n): U2 n) " Ug w1

- vg + E - v-) . - }
W) v 0 AT o o+ 22yt

By (23) we observe that there is n5 > n4 such that w - vy € [Z2,7,] and |w - v;| <
w - vy, for all i = , N provided n > ns. Hence using Lemma 2.1 (with
a= ng:"g oy b= vaz3 zgf’;zi v; and ¢ = 72) and (20) we obtain that there is

to € R such that

. w |
26 ) — = G( ) < G(t
( ) 7(7_ ) |’LU| w- vy = ( 0)
and
Cmaxz- [ (7n )i | 1+ w-v2 \2 »
o] < €(8.N} Hiryor (L + (G58)7) _ Cotha(1+1) Corh.
1+ Lrn)-vz wwp 1—Cohhy, -1

Y(Tn)v1 wovr
Therefore there is ng > ns such that w(to) satisfies for n > ng and alli = 3, ...

(27) [w(to) - vi| < |to]|w - v1||u] < CoLh, Coph,1 < Colt h2 < oPh2.
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Thus for the auxiliary center zo = v(7,,) + w(to), 70 = |w(to)| and ¢ being the
angle between zg — y(7,) and 4(7,) we can use (25). Therefore
7“O|’.Y(Tn)| Tn 70 Tn

28 — = _
( ) G(tO) COS ()an, COS Yo COS ()an,

> —Co?Ph3.

Moreover (27) and assumption |w-v;,| > o h?2 imply that 7, = |w| > [ (to)| = ro.
Therefore we obtain from (26) and (28) for n > ng

"n 7zn~ _ rnh/(j-n)l . rnh/(Tn)l rnh/(Tn)l _ f"~ >0— CO_TQLphz
w0spr,  sPn, | GMIL)  Glo) | Glt))  cosin,
Similarly there is n7 > ng such that COST;U — cojcgg > Co?Ph3 whenever n > nr.
And thus we have '
0 ~ 0 ~ 2p1.3
(29) TnENvB(ZmT”T:m - rnEﬂ’?B('zn;r)lT:f” > —Co.Ph;,.

Therefore by (21), (22) and (29) there is ng > n7 so that for n > ng we obtain

a /L’YB(var)l _ f721 a M’;B(En,T>| .
or r T2 o T =
1 0 .0 -
+ E (rn EMWB('Z’M r)lr:rn —Tn Eﬂ’yB('Zna r)lr:%n
- ,UWB(Zm Tn) + M"?B(Zm 7:n))
1 1
> (1= C)o2 B + — (~Cohi — Cotind ) > 0,
r2 2 r2
Hence we have a contradiction with the choice of the balls B(z,, 7). O

PROOF OF THEOREM 1.4: Fix tg € (a,b). If v((a, b)) is a line segment, then it is
well known and easy to compute that p., is locally monotone at v(ty). Otherwise
we apply Lemma 2.2 and we obtain that v can be parameterized as a graph of an
analytic function which satisfies either (10) for p > 2 even or (11) for p > 3 odd.
Finally Proposition 3.1 concludes the proof. O

4. Graph of |z|P

Papers [1] and [2] were motivated by the fact that uy with f(z) = 22 is locally
monotone at every zgp € R2. As there is a convex C*-function such that H!
restricted to its graph is not locally monotone at the origin, it might be interesting
to study the local monotonicity at the origin of pp with f(x) = |x|P.

Proposition 4.1. The 1-dimensional Hausdorff measure restricted to the graph
of the function f(x) = |z|P, p > 0, is locally monotone at the origin if and only if
3
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PRrOOF: If p > % then the proof follows from Proposition 3.1.
Suppose p < % A necessary condition for the local monotonicity at the origin
for even Cl-functions given in [1] is that there is § > 0 such that

2z+/1+ f2(x) ¢ 3
—Hmz/o NESTIOr

for all z € (0,6). But the Taylor expansion gives us

20/THT2@) 0 Lenn Lo,
g (143070 — 5@ + 0 @)

4
:x+p_x2p71 7p_x4p73+0(x6p75)

4 8
and
¢ ¢ 1 12 1 14 16
VI+ R dt= [ 145 f5() = o f7(6) + O(f7(1)) dt
0 0
P’ 2p—1 P! 4p—3, 4p—3 6p—>5
— P 21 P 4Ap=3.4p=3 | ()(,6p—5)
x+2(2p_1)z 8(4p—3)z x +O(x )
Now it is enough to compare both expansions. If p < % then we have % < 2(%2_1).
pr:%thenwehave%:ﬁand —%<—m. O

Remark 4.2. If zy is not on the graph, then the local monotonicity at zp is
proven trivially and if zp # 0 is on the graph, then the local monotonicity at zg
follows from Theorem 1.3.

Remark 4.3. By Proposition 3.1 we see that H! restricted to the graph of the

function sgn(z)|z[? is locally monotone provided p > py = 2 + 1/43. The bound

po is given by our weak version of Lemma 5.4 bellow (but for example it can be
easily shown that the assertion of the lemma holds for p = 2 too). The author
was not able to find a method how to get pg smaller. Computer approximations
indicate that the critical parameter is in the interval (1.796,1.797).

Remark 4.4. In [2] it is proved that the (N — 1)-dimensional Hausdorff measure
restricted to a sphere in RV, N > 2, is locally (N — 1)-monotone if and only if
N < 3. A similar method gives for a graph of |z|P in RY, that the restricted
measure cannot be locally (N — 1)-monotone for p < &L In R? it is quite
surprising because for the sphere and the graph of f(z1,72) = 22 + 22 we have
different results.
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5. Proof of Lemma 3.3
For s € [0,1) the definitions of gans and gsgn coincide with

Py =pr ™ = 2 = (- s - (1 )

We have
/1f’2(t) dt
(30) = /s (17% (p2(1 —8)2272 —2p(1 — 8)(1 — sP)tP 1 4+ (1 — sp)Q) dt
1 p?(1 —s)2(1 — s?P71) 2
:(1—5)2( 2p— 1 7(175)(175))
and
(1= 9)(5£20) + 577) — 5 (F ()~ £(5))°)
- 8(11_ 5 (460 =) = (=) + 41— )™ = (1= )
(31) — (1= )1 —5"71)%)

ST (AP0 =P+ —8p(1 = 5)(1 = )1+ 577)
+8(1—sP)% — p2(1— 5)2(1 — Sp71)2).

We define F(s) := 8(1 — s)(2p — 1)®) , (f). Therefore F(s) has the same sign as
B 1 (gabs) and @Y | (gsgn) for s € [0,1). Equations (30) and (31) imply

F(z) = (6p® — 27p* + 40p — 16)2*P — 2p(6p* — 15p + 4)z*P~1
+3p°(2p — )22 4+ 2p(p — 4)(2p — )P+ + 4(1 — 2p)(p® — 4p + 8)a?

+2p(p —4)(2p — DaP™ +3p*(2p — 1)a* — 2p(6p? — 15p + 4)x
+ (6p> — 27p* + 40p — 16).

For s € [—1,0) we consider each function ganhs and gsgn separately. Set x = —s
(hence = € (0,1]). The same way as above we obtain that the sign of ® ; (gabs)
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and ®9 | (gsgn) is the same as the sign of

F,(z) = (6p — 27p® + 40p — 16)2* + 2p(6p* — 15p + 4)z?P~!
+3p%(2p — 1)a® ™2 = 2p(p — 4)(2p — )P +4(1 — 2p)(p° — 4p + 8)a?
—2p(p —4)(2p — D)aP~! 4+ 3p?(2p — 1)2” + 2p(6p* — 15p + 4)z
+ (6p® — 27p? + 40p — 16)

and

Fy(x) = (6p® — 27p? + 40p — 16)z*” + 2p(6p* — 15p + 4)2*P~!
+3p(2p — D72 + 2p(p — 4)(2p — 1)t — 4(1 — 2p)(p* — 4p + 8)a?
+2p(p — 4)(2p — V)P~ 4+ 3p*(2p — 1)2? + 2p(6p® — 15p + 4)x
+ (6p> — 27p* + 40p — 16),

respectively. In the sequel, we need the following auxiliary lemma.

Lemma 5.1. The following polynomials are positive on [%, 00):

PROOF: The assertion trivially holds for Ps(t), Ps(t), P5(t) and Ps(t) because of
the negative discriminant.

We have Pi(1) =3, Pi(3) = 3 and

P{(t) = 18t* — 54t + 40 = 2(3t — 4)(3t — 5),

hence Pi(t) > 3 on [1,0).
Further, P(t) = (t — 1)(3t — 2) > 0 on [2, 00).
Now, we set

@7 (t) = 12t — 49> 4+ 52t — 9.
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We obtain ¢7(1) = 6, ¢7(2) = —5 and
©h(t) = 36t% — 98t 4+ 52 = 2(t — 2)(18 — 13).

Hence ¢7(t) > —5 on [1,00) and thus Pr(t) = ¢7(t) + 5t > 0 on [2,00).
Let

ps(t) = 12t* — 60> +99t% — 60t +18  and  )g(t) = 4% — 8t.
The first function satisfies pg(1) =9, pg(2) = 6 and
@i (t) = 6(8t> — 30t% 4 33t — 10) = 6(t — 2)(2t — 1)(4t — 5).

This implies @s(t) > 6 on [1,00). We observe ¢5(1) = —4 and ¢§(t) = 8¢t —8, thus
Yg(t) > —4 on [1,00) and the assertion follows from Ps(t) = pg(t) + 1s(t) + t.
We set

©o(t) = 24t* — 1441 + 321¢% — 324t + 116.
We obtain ¢9(2) = —16 and
O (1) = 961> —432t> +642t —324 = 6(t —2)(16t>—40t+27) = 6(t—2)((4t—5)*+2).
Therefore

Py(t) = po(t) + 14t > 14t + 9(2) > 14t — 16 >0  on [3,00).

Let
oro(t) = 24t* — 1143 + 15062 and  yo(t) = 25t% — 70t — 8.
We have ¢10(2) = 72, @10(%) = %7 > 72 and
©ho(t) = 963 — 342t% + 300t = 6t(t — 2)(16t — 25),

therefore p19(t) > 72 on [, 00). Further, we observe ¢{(t) = 50t — 70 and thus

Y10(t) > 110(Z) = —57 on R. Hence Pyo(t) = 1o(t) + t1o(t) > 0 on [2,00). O

The proofs of the following Lemma 5.2 and Lemma 5.3 use Lemma 5.1. These
technical proofs are based on the idea that if we need to show that a smooth
function f is positive on (a, o0), it is enough to show that f(a), f'(a),..., f*)(a) >
0 and f*+1(x) > 0 on (a,c0) for some k € N. To improve the readability of the
proofs, there are not given formulae for F'(z), F"(x), etc., but only the properties
we actually use.

Lemma 5.2. Assume p > 3. Then the function F(z) is positive on [0,1).

PRrROOF: First, we have

F(0) = 6p® — 27p* + 40p — 16 = P1(p) > 0.
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Further, as FI(2) = };(2?, we restrict ourselves to [1,00). The function F' satisfies

F(1)=F(1)=F"(1)=0
and

F"(x) =2p(p— 1)(2p — 1)2"~*g(x),

where
g(x) = 2(6p> — 27p* + 40p — 16)aP™! 4+ 2(3 — 2p)(6p> — 15p + 4)a?
+6p(p —2)(2p — 3)2P " + plp + 1) (p — 4)2”
+2(2=p)(p* —4p+8)z+ (p —2)(p — 3)(p — 4).

Therefore it is enough to show g(z) > 0 on (1, 00). The function g satisfies

g(1)=0, ¢(1)=4p(p—1)>0, g¢"(1)=4p(3p* —5p+2) =4pPs(p) >0

g"(x) = 2p(p — D)a?~*h(x),

where

h(x) = (p+ 1)(6p® — 27p* + 40p — 16)2? — (p — 2)(2p — 3)(6p> — 15p + 4)

+3(p—3)(p—2)%(2p - 3).
Our aim is to prove that h(z) > 0 on [1,00). We have
h(1) = 23p? — Tdp + 68 = P3(p) > 0,

K(1) = (2p — 1)(15p* — 54p + 56) = (2p — 1) Py(p) > 0,

R (x) = 2(p + 1)(6p> — 27Tp* +40p — 16) = 2(p + 1)Pi(p) >0 on [I,00).
Thus, we are done. (I

Lemma 5.3. Assume p > 3. Then the function F,(z) is positive on (0, 1].

PROOF: As Fo(1) = F;gf), we restrict ourselves to [1,00). The function F,
satisfies

F (1) =16p*(2p—3) >0,  F,(1) = 16p*(2p — 3) > 0,

F'(1) = 8p*(10p® — 37p? + 44p — 14) = 8p*(2p — 1) Ps(p) > 0
and

F'(x) =2p(p — 1)(2p — 1)a?*g(x),
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where
g(x) = 2(6p> — 27p* + 40p — 16)aP™! 4+ 2(2p — 3)(6p> — 15p + 4)a?
+6p(p —2)(2p — 3)2P ! 4+ p(p + 1)(4 — p)a®
+2(2=p)(p* —4p+8)z+ (2 —p)(p - 3)(p — 4).
It is enough to show that g(z) > 0 on [1,00). For this function we have
g(1) = 4p(11p* — 42p + 42) = 4pPs(p) > 0,
g'(1) = 4p(12p® — 49p* + 57p — 9) = 4pPr(p) > 0,
g"(1) = 4p(12p* — 60p® + 103p> — 67p + 18) = 4pPs(p) > 0
and

g" (x) = 2p(p — 12" *h(x),
where

h(z) = (p+ 1)(6p* — 27p* + 40p — 16)2* + (p — 2)(2p — 3)(6p* — 15p + 4)z
+3(p—3)(p—2)*(2p - 3).
Proving that h(z) > 0 on [1,00) we observe
h(1) = 24p* — 144p® 4 321p* — 310p + 116 = Py(p) > 0,
B'(1) = 24p* — 114p> + 175p* — 70p — 8 = Pyo(p) > 0,
R (x) = 2(p + 1)(6p> — 27p? +40p — 16) = 2(p + 1)Pi(p) >0 on [1,00).
O

In the proof of the following lemma we cannot use the same method because
we do not have F’(1) > 0. Therefore we use some rough estimates. In fact,
p = po is far from the borderline case.

Lemma 5.4. Let p > po = 3 + (/7. Then F(z) is positive on (0, 1].
PrRoOF: We have
Fi(z)=F(z) + 2(2p(6p2 — 15p +4)2?P~ 1 4 4(2p — 1)(p* — 4p + 8)a?
+ 2p(6p? — 15p + 4)x2p71z).

Since p? —4p+8=(p—2)2+4 >0 on R and
15++152—-4-6-4
2-6

the proof follows from Lemma 5.2. O

6p®> —15p+4>0 for p> = po,

Now, the proof of Lemma 3.3 follows from Lemmata 5.2, 5.3 and 5.4.
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