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An algorithm for free algebras

J. Ježek

Abstract. We present an algorithm for constructing the free algebra over a given
finite partial algebra in the variety determined by a finite list of equations. The
algorithm succeeds whenever the desired free algebra is finite.
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1. Introduction

Let A be a partial algebra of a signature σ and V be a variety (an equationally
defined class) of algebras of the same signature σ. By a free algebra in V over the
partial algebra A we mean a reflection of A in V , i.e., a pair 〈B, h〉 consisting of
an algebra B ∈ V and a homomorphism h of A such that h(A) is a generating
subset of B and for any homomorphism f of A into any algebra C ∈ V there
exists a homomorphism g : B → C with f = gh. As it is well known, the free
algebra in V exists over any partial algebra of the given signature and it is unique
up to isomorphism. It is also known that there is no algorithm deciding for any
finite partial algebra A and any finite set of equations E whether the free algebra
over A in the variety determined by E is finite or infinite. The aim of this paper is
to present an algorithm trying to construct the free algebra and succeeding each
time when the free algebra is finite; if the free algebra is infinite, the algorithm
never halts; of course, we cannot predict which case will take place or estimate
the number of necessary steps.

The idea is to modify the given partial algebra in a sequence of steps, each
of which either extends the partial algebra by adding a new element or factors
the partial algebra if an equation requires two different elements to be identified;
the algorithm halts if the last partial algebra is complete and satisfies all the
equations. The extending steps depend on the choice of an undefined place in the
table for a partial operation. We will see, however, that an arbitrary choice, or
even one that could seem to be the most natural, may result in an infinite number
of steps even if the free algebra is finite. So, we must pay attention to a proper
way how the selection should be done.

The work is a part of the research project MSM0021620839, financed by MSMT and partly
supported by the Grant Agency of the Czech Republic, grant #201/09/0296.
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The algorithm has been implemented in the computer program Alg which can
be found at www.karlin.mff.cuni.cz/~jezek.

For notation and terminology not introduced in this paper we refer to the books
[1] and [4].

2. Partial algebras

By a partial operation of arity n (for n ≥ 0) on a nonempty set A we mean a
mapping of a subset of An into A. If the domain is the whole of An, we say that the
partial operation is complete; complete partial operations are called operations.

Let σ be a fixed finite signature, i.e., a finite set of operation symbols each
of which is assigned a nonnegative integer, called its arity. By a partial algebra

(of this fixed signature σ) we mean a nonempty set A together with a mapping
assigning to each symbol F ∈ σ a partial operation of the same arity on A; this
partial operation will be denoted by FA. A partial algebra is said to be complete

if FA is complete for all F ∈ σ. Algebras are complete partial algebras.
For a partial algebra A and a nonempty subset S of A we denote by A ↾ S the

partial algebra with underlying set S and partial operations defined as follows:
for a1, . . . , an, b ∈ S, FA↾S(a1, . . . , an) = b if and only if FA(a1, . . . , an) = b.

Let A, B be two partial algebras. By a homomorphism of A into B we mean
a mapping f : A → B such that f(FA(a1, . . . , an)) = FB(f(a1), . . . , f(an)) when-
ever FA(a1, . . . , an) is defined.

By a congruence of a partial algebra A we mean an equivalence r on A such
that 〈FA(a1, . . . , an), FA(b1, . . . , bn)〉 ∈ r whenever these two elements are defined
and 〈ai, bi〉 ∈ r for all i. If r is a congruence of A then the factor of A by r
is the partial algebra with the underlying set A/r (the set of blocks of r) and
operations defined as follows. Let F ∈ σ be of arity n and a1/r, . . . , an/r be
elements of A/r. If there exist elements b1, . . . , bn ∈ A such that 〈ai, bi〉 ∈ r for
all i and FA(b1, . . . , bn) is defined, then FA/r(a1/r, . . . , an/r) = FA(b1, . . . , bn)/r;
otherwise, FA/r(a1/r, . . . , an/r) is not defined. The factor of A by r will be
denoted by A/r (as its underlying set).

Let us remark that for a binary operation symbol F (in contrast to the sit-
uation for complete algebras), congruences of a partial algebra A do not coin-
cide with the equivalences r on A satisfying the following two weaker conditions:
〈FA(a, c), FA(b, c)〉 ∈ r whenever 〈a, b〉 ∈ r and FA(a, c), FA(b, c) are defined; and
〈FA(c, a), FA(c, b)〉 ∈ r whenever 〈a, b〉 ∈ r and FA(c, a), FA(c, b) are both defined.
For example, let A be the partial groupoid with three elements a, b, c and aa = a,
bb = c the only products defined in A. The equivalence with blocks {a, b} and {c}
satisfies both weaker conditions but is not a congruence of A.

2.1 Lemma. Let f be a homomorphism of a partial algebra A into a partial

algebra B and let r be a congruence of A such that r ⊆ ker(f). Then the unique

mapping g : A/r → B satisfying g(a/r) = f(a) for all a ∈ A, is a homomorphism

of A/r into B.

Proof: It is obvious. �
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Let x1, x2, . . . be countably many variables. Denote by T the algebra of terms

(of the given signature) over the set of variables. For a positive integer k denote
by Tk the subalgebra generated by {x1, . . . , xk}, so that Tk is the algebra of terms
over x1, . . . , xk.

The length of a term t is the total number of occurrences of variables and
operation symbols in t.

By an elementary lift in a partial algebra A we mean a partial mapping of
the form a 7→ FA(b1, . . . , bi−1, a, bi+1, . . . , bk) for an operation symbol F of an
arity k, a number i ∈ {1, . . . , k} and some elements bi ∈ A. A composition of m
elementary lifts is called a lift of depth m. For a complete algebra A, all lifts are
mappings of A into A.

By the depth of a term t we mean the maximal number m such that t = L(u)
for a term u and a lift L of depth m in the algebra of terms. Thus variables and
constants are terms of depth 0, and all other terms are of positive depth.

A partial algebra A is said to be 0-complete if all constants (operation symbols
of arity 0) are defined in A. The 0-completion of A is the partial algebra A′ with
the underlying set A ∪ {c0, . . . , cm} where c0, . . . , cm are all the constants of σ
that are not defined in A (we assume that the constants do not belong to A);
the value of ci in A′ is ci, and FA′ = FA for all operation symbols F of σ not
belonging to {c0, . . . , cm}. It is easy to see that the free algebras over A and over
A′ in a variety V coincide. Therefore, it will be sufficient to work with 0-complete
partial algebras only.

3. The order of an element of a renovation of A

In the sequel let A be a fixed finite 0-complete partial algebra of the signature σ.
Put n = |A| and let a1, . . . , an be all elements of A.

By a renovation of A we will mean a pair 〈B, h〉 consisting of a finite partial
algebra B and a homomorphism h of A into B such that the range h(A) of h is
a generating subset of B.

Let 〈B, h〉 be a renovation of A. By a k-interpretation in B (where k is a
positive integer) we mean a mapping of the set {x1, . . . , xk} into B. If α is a
k-interpretation in B then for some terms t ∈ Tk we define (by induction on the
length of t) an element αB(t) of B as follows: if t is a variable then αB(t) = α(t);
if t = Ft1 . . . tm, if αB(ti) are defined for all i and if FB(αB(t1), . . . , α

B(tm))
is defined, put αB(t) = FB(αB(t1), . . . , α

B(tm)); in all other cases let αB(t) be
undefined. Clearly, Dom(αB) is a subset of Tk containing {x1, . . . , xk} and all
constants and closed under subterms. Clearly, αB is a homomorphism of Tk ↾

Dom(αB) into B.
Let 〈B, h〉 be a renovation of A. For a term t ∈ Tn we put tB,h = αB(t) where

α(xi) = h(ai) for i = 1, . . . , n. The set of the terms t ∈ Tn for which tB,h is
defined will be denoted by D(B, h). We consider D(B, h) as a partial groupoid,
D(B, h) = Tn ↾ D(B, h).
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3.1 Lemma. Let 〈B, h〉 be a renovation of A. Then t 7→ tB,h is a homomor-

phism of D(B, h) onto B.

Proof: Clearly, the mapping is a homomorphism. Since B is generated by h(A),
its range is the whole of B. �

Let 〈B, h〉 be a renovation of A and let b be an element of B. The least number
i such that b = tB,h for a term t ∈ Tn of length i will be called the order of b
(in B, with respect to h), and denoted by ordB,h(b) or just ord(b). Thus elements
of order 1 are precisely the elements of h(A); the elements of B−h(A) have order
≥ 2. The following lemma provides a way of constructing (by induction on i) the
set of all elements of B of order i without reference to terms.

3.2 Lemma. Let 〈B, h〉 be a renovation of A. For every i ≥ 1 define a subset Oi

of B as follows: O1 = h(A); Oi+1 is the set of those elements b ∈ B−(O1∪· · ·∪Oi)
for which there exist an operation symbol F of arity m ≥ 1 and elements d1 ∈
Oj1 , . . . , dm ∈ Ojm

for some j1, . . . , jm with 1 + j1 + · · · + jm = i, such that

b = FB(d1, . . . , dm). Then for any i ≥ 1, Oi is just the set of elements of B of

order i.

Proof: It is easy. �

3.3 Lemma. Let 〈B, h〉 be a renovation of A and C be a partial algebra such

that B ⊆ C, idB is a homomorphism of B into C and C is generated by h(A).
Then 〈C, h〉 is also a renovation of A; we have D(B, h) ⊆ D(C, h) and ordC,h(b) ≤
ordB,h(b) for all b ∈ B.

Proof: It is obvious. �

3.4 Lemma. Let 〈B, h〉 be a renovation of A and r be a congruence of B; put

g(b) = b/r for b ∈ B. Then 〈B/r, gh〉 is a renovation of A, D(B, h) ⊆ D(B/r, gh)
and ordB/r,gh(b/r) ≤ ordB,h(b) for all b ∈ B.

Proof: It is obvious. �

4. Reductive steps

As before, let A be a fixed finite 0-complete partial algebra. Moreover, let E be
a finite set of equations and V be the variety determined by E. Denote by N the
least positive integer such that for any 〈u, v〉 ∈ E, the set {x1, . . . , xN} contains
all variables occurring in either u or v.

A renovation 〈B, h〉 of A is said to be admissible if for any homomorphism f
of A into any algebra G ∈ V there exists a homomorphism g of B into G with
f = gh.

Let 〈B, h〉 be a renovation of A. We denote by Γ(B) the set of the ordered
triples 〈u, v, α〉 such that 〈u, v〉 ∈ E ∪E−1, α is an N -interpretation in B, αB(u),
αB(v) are both defined and αB(u) 6= αB(v). Denote by C(B) the congruence of
B generated by the pairs 〈α(u), α(v)〉 with 〈u, v, α〉 ∈ Γ(B). Put Br = B/ C(B)
and define hr : A → Br by hr(a) = h(a)/ C(B) for all a ∈ A.
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4.1 Lemma. Let 〈B, h〉 be a renovation of A. Then 〈Br, hr〉 is also a renovation

of A. If 〈B, h〉 is admissible then 〈Br, hr〉 is also admissible.

Proof: It follows from 3.4 and 2.1 that 〈Br, hr〉 is a renovation and it is sufficient
to prove that whenever f is a homomorphism of B into an algebra G ∈ V then the
generating relation for the congruence C(B) is contained in ker(f) (so that then
the congruence itself is contained in ker(f)). Let 〈u, v, α〉 ∈ Γ(B). Denote by g the
homomorphism of TN into G with g(xi) = fα(xi) for i = 1, . . . , N . Since 〈u, v〉 is
satisfied in G, we have g(u) = g(v). It is easy to check by induction on the length
of t that g(t) = fαB(t) for all t ∈ TN . Thus fαB(u) = g(u) = g(v) = fαB(v),
i.e., 〈αB(u), αB(v)〉 ∈ ker(f). �

Starting with a renovation 〈B, h〉 such that Γ(B) is nonempty, it may happen
that Γ(Br) is still nonempty. Then we need to repeat the process and to create
a sequence of renovations 〈Bi, hi〉 where 〈B0, h0〉 = 〈B, h〉 and 〈Bi+1, hi+1〉 =
〈Br

i , hr
i 〉. This sequence necessarily terminates with a renovation 〈Bk, hk〉 such

that Γ(Bk) is empty. This last member of the sequence will be denoted by
〈Bρ, hρ〉. The transition from 〈B, h〉 to 〈Bρ, hρ〉 will be called a reductive step.

5. Extensive steps

Let A and E be as above. By a spark in a renovation 〈B, h〉 of A (or just in B)
we mean an (m + 1)-tuple 〈F, b1, . . . , bm〉 where m ≥ 1, F is an m-ary operation
symbol and b1, . . . , bm are elements of B such that FB(b1, . . . , bm) is not defined.
For any spark e = 〈F, b1, . . . , bm〉 define 〈Be, he〉 as follows: the underlying set of
Be is the union B ∪ {c} for an element c /∈ B; the operations of Be coincide with
the operations of B, with only the addition of FBe(b1, . . . , bm) = c; he = h.

5.1 Lemma. Let 〈B, h〉 be a renovation of A and let e = 〈F, b1, . . . , bm〉 be a

spark in B. Then 〈Be, he〉 is also a renovation of A. If 〈B, h〉 is admissible then

〈Be, he〉 is also admissible.

Proof: It follows from 3.3 that 〈Be, he〉 is a renovation of A. Let 〈B, h〉 be admis-
sible and let f be a homomorphism of B into an algebra G ∈ V . It is sufficient to
prove that f can be extended to a homomorphism of Be to G. Such an extension f ′

can be defined by f ′(b) = g(b) for all b ∈ B and f ′(c) = FG(f(b1), . . . , f(bm)). �

The transition from 〈B, h〉 to 〈Be, he〉 will be called an extensive step.

6. The algorithm

Let A be a fixed finite partial algebra and E be a finite set of equations. We
want to construct the reflection of A in the variety V determined by E, whenever
the reflection is finite. We can assume that A is 0-complete, because if it is not,
we can replace it by its 0-completion.

By a building sequence we mean a sequence 〈Bi, hi〉 (i = 0, 1, . . . ) of renovations
of A with the following properties:
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(1) B0 = A and h0 = idA;
(2) for each i ≥ 1, either Γ(Bi−1) 6= ∅ and 〈Bi, hi〉 = 〈Bρ

i−1
, hρ

i−1
〉, or else

Γ(Bi−1) = ∅ and 〈Bi, hi〉 = 〈Be
i−1, h

e
i−1〉 for a spark e in Bi−1;

(3) the sequence is either infinite or terminates with a (complete) algebra Bk

such that Γ(Bk) is empty.

Of course, there may exist various building sequences for the given partial
algebra A. If we find one of them that terminates then our task is finished
according to the following theorem.

6.1 Theorem. Let 〈Bi, hi〉 (i = 0, 1, . . . , k) be a terminating building sequence

starting with 〈A, idA〉. Then 〈Bk, hk〉 is a reflection of A in V .

Proof: The algebra Bk belongs to V , since the set Γ(Bk) is empty. The fact
that 〈Bk, hk〉 is a reflection of A in K follows from 4.1 and 5.1. �

6.2 Example. Let the signature be the signature of groupoids and let E consist
of these equations:

〈x1x2, x1(x2x2)〉 and 〈x1, x1(x2x2)〉 .

Let A be the partial groupoid with the underlying set {0, 1} and no products
defined. Since the two equations imply 〈x1x2, x1〉, we can immediately see that
the groupoid with the same underlying set as A and with multiplication ab = a
is, together with the identity, the reflection of A in V . However, let us pretend
that we do not know it and let us try to find the reflection by constructing
the building sequence starting with A as above. With an inept choice of the
sparks for the extensive steps we could obtain the following infinite sequence:
Bi = {0, 1, . . . , i + 1} with multiplication on Bi defined by ab = c if and only if
a = 0, 1 ≤ b < i and c = b + 1.

We see that if we want to be successful, at least the sparks for the extensive
steps must be chosen in a not arbitrary way.

A building sequence 〈Bi, hi〉, . . . (i = 0, 1, . . . ) will be called smart if for each
its extensive step from 〈Bi−1, hi−1〉 to 〈Bi, hi〉 the spark 〈F, b1, . . . , bm〉 is selected
in such a way that the sum ordBi−1,hi−1

(b1) + · · · + ordBi−1,hi−1
(bm) is the least

possible.

6.3 Theorem. Let 〈G, h〉 be the reflection of the partial algebra A in V and let

G be finite. Then any smart building sequence starting with 〈A, idA〉 is finite and

its last member is isomorphic to G.

Proof: Suppose, on the contrary, that a smart building sequence 〈Bi, hi〉 (i ≥ 0)
starting with 〈A, idA〉 is infinite. For every i ≥ 0 put Di = D(Bi, hi), so that
D0 ⊆ D1 ⊆ . . . by 3.3 and 3.4. Denote by mi the least positive integer such that
there exists a term of length mi not belonging to Di. We have m0 ≤ m1 ≤ . . . .

Since every step must be later followed by an extensive step, it follows from
the smartness of the sequence that for any t ∈ Tn there exists an m with t ∈ Di

for all i ≥ m. (Recall that n = |A| and A = {a1, . . . , an}.)



An algorithm for free algebras 15

Denote by g the extension of xi 7→ h(ai) to a homomorphism of Tn onto G. It is
easy to see that for u, v ∈ Tn, g(u) = g(v) if and only if there exist a nonnegative
integer k and terms u0, . . . , uk such that u0 = u, uk = v and for every I = 1, . . . , k
one of the following two cases takes place:

(i) 〈uI−1, uI〉 = 〈Lβ(p), Lβ(q)〉 for some lift L in Tn, some 〈p, q〉 ∈ E ∪ E−1

and some homomorphism β of T into Tn;
(ii) {uI−1, uI} = {L(Fxj1 . . . xjk

), L(xj)} for some lift L in Tn and some
defined situation FA(aj1 , . . . , ajk

) = aj in A.

For every pair u, v of elements of Tn such that g(u) = g(v) let us fix one such
sequence from u to v and denote it by Su,v.

Let i be so large that for any pair u, v of elements of Tn such that g(u) = g(v)
and the depths of both u and v are at most |G|, all members of Su,v belong to
Di; moreover, we may assume that C(Bi) = idBi

.
Since Bi is not a complete algebra, there exists a term t ∈ Tn not belonging

to Di. Among all such terms t fix one of minimal possible depth, and among
those of the minimal depth one of minimal length. Denote by m the depth of t,
so that m > |G|. There exists a sequence w0, . . . , wm of terms from Tn such that
w0 ∈ {x1, . . . , xn}, wm = t and for every i = 1, . . . , m, wi is obtained from wi−1

by an elementary lift in Tn. Thus wi is of depth i. Since g(w0), . . . , g(w|G|) are
|G|+1 elements of G, there exist 0 ≤ j1 < j2 ≤ |G| with g(wj1) = g(wj2). Denote
by u0, . . . , uk the sequence Swj1

,wj2
. These terms all belong to Di.

Let 0 < I ≤ k. One of the two cases, either (i) or (ii), takes place. Let (i)
take place. It follows from 4.1 and 5.1 that there is a (unique) homomorphism
h′ : Bi → G with h = h′hi. Where fi is the homomorphism of Di onto Bi defined
by fi(s) = sBi,hi (as in 3.1), we have h′fi(s) = g(s) for all s ∈ Di. Since uI−1 and
uI belong to Di, we have β(p) ∈ Di and β(q) ∈ Di. Easily, there exists a lift L′

in Bi such that fiLβ(p) = L′fiβ(p) and fiLβ(q) = L′fiβ(q). It follows from the
definition of C(Bi) that 〈fiβ(p), fiβ(q)〉 ∈ C(Bi). Since C(Bi) is a congruence,
we get 〈L′fiβ(p), L′fiβ(q)〉 ∈ C(Bi), i.e., 〈uI−1, uI〉 ∈ C(Bi). But C(Bi) = idBi

,
so uI−1 = uI . By transitivity we get wj1 = wj2 . In the case (ii) we get wj1 = wj2

similarly. Denote by t′ the term obtained from t by replacing wj2 with wj1 . Then
t′ is shorter than t and of depth at most that of t, so that fi(t

′) is defined. But
then clearly fi(t) is defined (and equals fi(t

′)), so that t ∈ Di, a contradiction. �

7. Examples

Since it is easy (using 3.2) to design a way of selecting sparks for the extensive
steps in an efficient way, theorems 6.1 and 6.3 give us an algorithm that outputs
a reflection of A in the variety V determined by E whenever the input is such
that the reflection of A in V is finite, and works for ever in the opposite case. We
cannot expect the algorithm to work fast. We can give no estimate for the number
of steps in the successful cases, because any recursive upper bound would imply
the existence of an algorithm deciding for any finite set of equations whether the
corresponding variety is trivial, and it is known that such an algorithm does not
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exist. (It follows from [3], where it is proved that the set of equations having a
nontrivial model, and also the set of equations having a nontrivial finite model,
are both undecidable.) So, it may be interesting to give at least some examples
to get an idea of how it works.

The examples were obtained by the computer program Alg, in which the above
described algorithm is implemented. We must remark that in the computer pro-
gram the steps do not correspond precisely to the steps as described above. This
has been done for the sake of speeding up the execution a little bit. Namely, in
each step we also try to partially complete the partial algebra in the following way.
Whenever 〈u, v〉 ∈ E ∪ E−1 and α is an N -interpretation in B such that αB(u)
is defined, αB(v) is not defined and v = Fv1 . . . vk where αB(vi) are all defined,
we can set FB′(αB(v1), . . . , α

B(vk)) = αB(u) in the new partial algebra B′. This
can be done in various ways, so the theory would become even more technical if
we wanted to explain it here in full detail. And each such partial completion can
be replaced by a combination of a reductive with an extensive step, so that they
are not interesting from the theoretical point of view.

In each of the following examples let ε be the number of extensive steps and
κ be the cardinality of the largest partial algebra that needed to be constructed.
Evidently, ε must be at least |G| − |A| where A is the partial algebra and G is its
reflection in the appropriate variety.

The free distributive lattice with 3 generators can be obtained as the reflection
of the 3-element partial algebra with partial operations empty, in the variety
determined by seven equations for distributive lattices. It has 18 elements; here
ε = 15 and κ = 18 (so that the process goes straight up). For 4 generators, the
free distributive lattice has 166 elements; here ε = 162 and κ = 166.

We can obtain the free modular lattice with 3 generators in a similar way. It
has 28 elements; here ε = 25 and κ = 28.

The free modular lattice over the partial lattice that is the cardinal sum of
the 3-element chain and the 4-element chain has 124 elements; here ε = 117 and
κ = 124.

The free lattice over the partial lattice that is the cardinal sum of the 3-element
chain and the 1-element lattice has 20 elements; here ε = 16 and κ = 20.

The free Boolean algebra with 2 generators has 16 elements; here ε = 233 and
κ = 106. For 3 generators we should obtain 256 elements; however, we did not
obtain this from the program; its execution would take a long time.

The 8-element quaternion group can be given by the so-called defining relations,
which means that it is the free group over a certain 6-element partial algebra; here
ε = 14 and κ = 9.

The free idempotent semigroup with 3 generators has 159 elements; here ε =
156 and κ = 159.

The variety generated by the commutative fork is based on six equations that
can be found in [2]. The free algebra in this variety with 3 generators has 13 ele-
ments; here ε = 44 and κ = 14. (Of course, since the variety is finitely generated,



An algorithm for free algebras 17

the free algebra can be found faster, using a different algorithm without reference
to any equations; the program Alg also contains this more simple function.)
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