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On weakly monotonically monolithic spaces

LiaANG-XUE PENG

Abstract. In this note, we introduce the concept of weakly monotonically mo-
nolithic spaces, and show that every weakly monotonically monolithic space is
a D-space. Thus most known conclusions on D-spaces can be obtained by this
conclusion. As a corollary, we have that if a regular space X is sequential and
has a point-countable wecs*-network then X is a D-space.
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1. Introduction

The notion of a D-space was first investigated by van Douwen and Pfeffer in [6].
A neighborhood assignment for a space X is a function ¢ from X to the topology
of the space X such that z € ¢(z) for any x € X. A space X is called a D-space if
for any neighborhood assignment ¢ for X there exists a closed discrete subspace
D of X such that X = [J{¢(d) : d € D} (cf. [6]). By results of [3], we know
that all semi-stratifiable spaces and all metrizable spaces are D-spaces. We also
know that the union of a finite family of metrizable subspaces is a D-space and
every space with a point-countable base is a D-space by results of [1] and [2],
respectively.

In [5], it was proved that C,(X) is hereditarily a D-space if X is compact.
Some sufficiencies of D-spaces were discussed in [4], [8], [9], [16] and [19]. Let us
recall that a space is called monolithic if nw(A) < max{|A|,w} for any A C X.
By results of [5] and [9], we know that many monolithic spaces have D-property.
Thus V.V. Tkachuk introduced the concept of monotonically monolithic spaces
in [19]. It was proved that every monotonically monolithic space is hereditarily
a D-space (cf. [19]). Thus every Lindel6f X-space is hereditarily a D-space (cf. [9]
and [19]).

In [4] and [15], it was proved that a space with a point-countable weak base
is a D-space. In [16], Peng proved that a space with a point-countable cs*-
network is a D-space. In this paper, the idea of [19] and [16] is generalized and
we introduce the concept of weakly monotonically monolithic spaces. It is proved
that every weakly monotonically monolithic space is a D-space. Thus we have
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that if a regular space X is sequential and has a point-countable wcs*-network
then X is a D-space. In fact, most known results on D-spaces can be obtained
by the conclusions of the paper.

All the spaces in this note are at least T7-spaces. Let N be the set of all natural
numbers and w = NU{0}. In notation and terminology we will follow [7] and [10].

2. Main results

Definition 1 (cf. [19]). Given a set A in a space X say that a family N of subsets
of X is an external network of A in X if for any x € A and U the neighborhood
of z there exists B € N such that x € B C U. If A = {z} for some z € X and
N is an external network of A in X, then we say that N is an external network

of x.

Definition 2 (cf. [19]). We say that a space X is monotonically monolithic if for
any A C X we can assign an external network O(A) to the set A in such a way
that the following conditions are satisfied:
(1) |O(A)] < max{|A],w};
(2) if AC B C X then O(A) C O(B);
(3) if a is an ordinal and we have a family {Ag : § < a} of subsets of X such
that 8 < ' < a implies Ag C Ag then O(Us-,, 4s) = Ug O(Ap).

Definition 3. We say that a space X is weakly monotonically monolithic if for
any A C X we can assign an external network W(A) of A in such a way that the
following conditions are satisfied:
(1) W(A)| < max{|A],w};
(2) it AC B C X then W(A) C W(B);
(3) if v is an ordinal and we have a family {Ag : § < a} of subsets of X such
that 8 < ' < a implies Ag C Ag then W(Ujs-,, 4s) = U0 W(4p);
(4) If A C X is not closed in X then there is some x € A\ A such that W(A)
is an external network of x.

Every monotonically monolithic space is a weakly monotonically monolithic
space. We also know that if a monotonically monolithic space X is separable
then X is hereditarily separable and hereditarily Lindelof.

Example 4. Let X =R, Q = {x,, : n € N} be the set of all rational numbers of
the real set R and I =R\ Q.

For each n € N, let B(xy,) = {{z,}} be a neighborhood base of the point z,.

For each z € T, let B(z) = {{zx}UA : A C Q and Q \ A is finite } be
a neighborhood base of the point . We denote the topology of X by 7. Thus
(X,T) is a Ty-space and [ is a closed discrete subspace of X. So (X, 7) is separable
but it is not Lindeldf. Thus it is not monolithic.

Let y; € I. For each B C X, we let W(B) = {{z} : « € B} if B C I, otherwise

W(B) = {{z} U{w}: 2 € B} U{{z}: 2z € B}.
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We can see that W witnesses weak monotonic monolithity of X. Thus X is a
weakly monotonically monolithic Ti-space but it is not a monotonically monolithic
space.

Let us recall that a family F of subsets of X is a cs*-network of X, if for any
sequence {Z, tnen which converges to a point z and for any open set U which
contains z, there is some F' € F such that xt € F C U and |{n : z, € F}| =w
(cf. [13] and [14]). A space is called sequential if for any non-closed subset A of
X, there exists a sequence {zp, }nen, T, € A for each n € N, such that {z, }nen
converges to a point x € A\ A. We also know that every space with a point-
countable weak base is sequential and has a point-countable cs*-network.

Lemma 5. If X is a sequential space with a point-countable cs*-network, then
X is a weakly monotonically monolithic space.

PROOF: Let F be a point-countable cs*-network of X. For any A C X, we let
W(A) ={F: FNA=#0and F € F}. By the sequential property we see that
W(A) satisfies the conditions which appear in the Definition 3. O

Corollary 6. Let X be a space. If X has a point-countable weak base, then X
is a weakly monotonically monolithic space.

Example 7 ([11, Example 9.3). Let S = {1 :n € N} U {0} and Y = [0,1] x 5.
Let Y’ = [0,1] x {1 : n € N} have the usual Euclidean topology as a subspace
of [0,1] x S. Define a typical neighborhood (¢,0) in Y to be the form {(¢,0)} U
(U{U(t, 1) : k = n}), where U(t, +) is a neighborhood of (¢, ) in [0,1] x {4}

In [11], it is pointed out that Y is a completely regular separable space but it
is not Lindelof, and it is also pointed out that Y is a two-to-one quotient image of
the topological sum M of compact metric spaces {[0,1] x {£} : n € N}U{{t} x S :
t €0,1]}.

The space Y has a point-countable weak base (this is pointed out in [12, p. 26]).
So we know that the space Y is not a monotonically monolithic space but Y is a
weakly monotonically monolithic regular space by Corollary 6.

In [12], Lin did not give a proof that the space Y has a point-countable weak
base. To assist the reader, we give a short proof.

Let f : M — Y be the two-to-one quotient map, where M is the topological
sum of compact metric spaces {[0,1] x {2} : n € N} U{{t} x S : ¢t € [0,1]}. For
each y € Y, we let y = (a1, az2). Suppose {yn}nen is a sequence of Y such that
{Yn }nen converges to the point y and we assume that y, # y for each n € N.

(1) If az # 0 then there is some m € N such that y, € [0,1] x {az} for
each n > m, since Y is determined by the collection {[0,1] x {1} : n €
N}U{{t} x S:te[0,1]}.

(2) If ag = O then there is some m € N such that y, € {a1} x S for each
n > m, since [0,1] x {0} is a closed discrete subspace of ¥ and Y is
determined by the collection {[0,1] x {1} :n e NYU{{t} x S :t € [0,1]}.

Thus we have the following conclusion:
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If y € Y then there is some point z, € f~!(y) such that whenever a sequence
{Yn}nen of Y converges to the point y and y,, # y for each n € N then there is
a sequence {z, }nen of X such that the sequence {z,,},en converges to the point
zy and x,, € f~!(y,) for each n € N. (This is pointed out in [12, p. 26]).

Let B be a point-countable base of M. For each y € Y, let B = {B : v, € B
and B € B} and let By = {f(B) : B € B, }. We will show that B* = |J{B;, : y €
Y} is a point-countable weak base of Y.

We only need to prove that U is open if for any y € U there is some B* € B,
such that y € B* C U.

Suppose U is not open. Then there is a sequence {y,}nen such that {y,}nen
converges to a point y € U and y,, ¢ U for each n € N, since Y is sequential. Thus
there is a sequence {x,, }nen of M such that z,, € f~(y,) and {x,, }nen converges
to x,. There is some B* € B} such that y € B* C U. We let B* = f(B) for some
B e B;. Thus z, € B, and hence there is some m € N such that z,, € B for each
n>m. So y, = f(x,) € f(B) = B* C U. This contradicts y, ¢ U. Thus B* is a
weak base of Y. Since B is point-countable and |f~!(y)| = 2 for each y € Y, we
know that B* is point-countable in Y. Thus Y has a point-countable weak base.

A family P of subsets of X is called a wecs*-network of X if for any sequence
{zn}nen which converges to a point x, and any open set U which contains x,
there is some P € P such that P C U and |[{n : x, € P}| = w (cf. [14]). We know
that every k-network of X is a wes*-network of X and if X is regular and P is a
wes*-network of X then {P : P € P} is a cs*-network of X.

Example 8 ([18, Example 78]). Let 7 be the usual Euclidean topology of R2.
Let S1 = {(z,y) : 2,y € R,y > 0}, L = {(2,0) : z € R} and X = S; UL. Let
T ={T|X}u{{z}u(SiNU):ze€L,xeUandU € T}, where T|X ={UNX :
U € T}. The space (X,7%) is a non-regular Ts-space.

In [12, p. 28], it is pointed out that the space X which appears in Example 8 has
a locally countable k-network but it has no point-countable cs*-network. Thus it
has a point-countable wcs*-network but it has no point-countable cs*-network.

Lemma 9. If a regular space X is sequential and has a point-countable wcs*-
network, then X is a weakly monotonically monolithic space.

PrOOF: Let F be a point-countable wcs*-network of X. For any A C X, let
W(A)={F:FNA#{and F € F}. We see that W(A) satisfies the conditions
which appear in the Definition 3, since X is regular and sequential. (]

Similarly to Definition 2.11 from [19], we have:

Definition 10. Assume that Y is a weakly monotonically monolithic space and
fix an operator W which witnesses that. Let ¢ be any neighborhood assignment
on X. For every P C X, we denote P* = {z : x € P and P C ¢(x)}. For any
open set U C X say that a set A C X is U-saturated if P* C ¢(A) UU for any
P e W(A), where ¢(A) = | H{é(x) : © € A}. If U = ) then U-saturated sets will
be called saturated.
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Lemma 11. Let ¢ be any neighborhood assignment for X. If X is a weakly
monotonically monolithic space, A C X is a countable closed discrete subspace
of X and U is any open subset of X, then there is a closed discrete subspace
B C X\ UU¢(A), such that AU B is U-saturated and |B| < w.

PRrOOF: X is a weakly monotonically monolithic space. We fix an operator W
which witnesses that. Let F§ = {P* : P € W(A)}. Thus F{§ is a countable
family. Enumerate it by prime numbers p. We take the first member F'* of F{
such that F* \ U U ¢(A) # 0. We choose a point 1 € F*\ U U ¢(A). Then
F C ¢(x1). The family W(A U {z1}) is countable. We denote Fy = {F* : F €
W(AU{x1}) \ W(A)}. We enumerate F; by the squares p? of prime numbers.

Suppose we have finished n steps. We have ¢(A), U U ¢(A U {z1}), ..., UU
$(AU{z1,...,2,}), and families F; of subsets of X, the family F is enumerated
by the i-th powers of prime numbers for each 0 < i < n.

fUUp(AU{x1,...,2,}) = X, then we stop the induction and let B = {z; : 1 <
i < n}. So we assume that UUP(AU{z1,...,z,}) ZX. TU{UFF: 0<i<n}is
contained in UU@(AU{z1,...,2,}) then we choose a point z,+1 € X \UU@(AU
{1, xn}). WU{UF; : 0 <i <n}\(UUd(AU{z1,...,2,})) # 0 then we take
the first member F* of | J{F; : 0 <4 < n} such that F*\UU@(AU{x1,...,2n}) #
() and choose a point x,,+1 € F*\UU@p(AU{x1,...,2,}). Thus F* C F C ¢(xps1)-
We let Fri ) = {F*: F e WAU{x1,...,2n41}) \ WA U {z1,...,2,})} and
enumerate it by the (n + 1)-st powers of prime numbers.

In this way, we have a set B = {z, : n € N} and B C X \ U U ¢(A). To prove
that B is a closed discrete subspace of X, we only need to prove that B is closed
since z, ¢ ¢(xy) whenever m > n.

Suppose B\ B # ). Then there is some & € B\ B such that W(B) is an external
network of . Thus there is some P € W(B) such that x € P C ¢(x) and hence
x € P*. Since B = J{{z1,...,2n} :n e N} c U{AU{z1,...,2,} : n € N}, we
see that P € W(U{AU{z1,...,z,} : n € N}). So P e W(AU{x1,...,2,}) for
some n € N. Thus P* € F; for some 0 < ¢ < n. So there is some m > n such
that P* C UU¢(AU {x1,...,2m}). Thus z € (AU {x1,...,2,,}). Sox ¢ B.
This contradicts the fact 2 € B. So B is closed and hence it is a closed discrete
subspace of X and B C X \ U U ¢(A), |B| < w.

For any P € W(AU B), since AUB = |J{AU{z1,...,2,} : n € N}, we have
PeW(AU{zy,...,x,}) for some n € N. Hence P* € F; for some 0 < i < n.
So P* will be covered by U U ¢(A U {x1,...,2m}) for some m > n. Thus AU B
is U-saturated. (]

Lemma 12. Let ¢ be any neighborhood assignment for X. If X is a weakly
monotonically monolithic space and A C X is a closed discrete subspace of X
and U is any open subset of X, then there is a closed discrete subspace D C
X \UU¢(A), such that AU D is U-saturated and |D| < max{|A|,w}.

PRrROOF: We will use induction on the cardinal k = |A|. If |A| < w, then it is true
by Lemma 11. Now assume that x is an uncountable cardinal and our theorem is
proved whenever U an open subset of X and A C X, |4| < k.
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Take an arbitrary set A C X such that |A| = k and let A = {x, : @ < k}.
Let Ay = {z3: 8 < a} for each @ € [w, k) and let U’ = U U ¢(A). Proceeding
inductively assume that w < a < k and we have a family {Dg : w < § < a} of
closed discrete subspaces of X with the following properties:

(1) A, U D, is U'-saturated;

2) fw<pf<athnUz=U Up(U{Dy:w<v<p), DgC X\Us and
1Dsl < 18]

(3) If Bg = AgU(U{D~ : w <y < 8}) then BgUDg is Ug-saturated whenever
w< B <

4) The set D, :w < v < [} is a closed discrete subspace of X for each

( v Y P
B € (w,a).

We first prove that (J{Ds : w < 8 < a} is a closed discrete subspace of X. We
only need to prove that |J{Dgs : § < a} is a closed subspace of X. If o =y + 1,
then | {Dp 1w < B <a} =U{Dsg:w < B <~}UD,. The sets Dy and
U{Dp : w < B <~} are closed discrete and hence | J{Dg : w < 8 < a} is closed
discrete. Let a be a limit ordinal. Suppose J{Dg : w < 8 < «} is not closed
in X. Then there is some x € |J{Dg:w < B <a} \U{Ds : w < B < a} such
that W(U{Dp : w < 8 < a}) is an external network of the point z. So there is
some P € W(U{Ds : w < 8 < a}) such that x € P C ¢(x) and hence = € P*.
The set | J{Dg:w < B <a} CUH{AsU(U{Dy:w<~vy<pF}) :w<pF<a},so
PeW(Ag, U(U{Dy:w <~ <p1})) for some f; € [w, ).

The set Ag, U (IU{D~ : w <~ < p1}) is Ug,-saturated, so P* C Ug, U ¢(Dg,)
and hence z € U' U ¢(Ap, U (U{Dy:w <y <p})). We have z € ¢o(U{D, :w <
v <Bi}),sincex € | {Dg:w<B<a}\U{Dsg:w<pB<a}and U N(JH{Ds:
w < B <al)=10. Let 7, be the smallest ordinal such that = € ¢(D,,). Since
z € {Dp:w < B < a}l, we see that 7, # w. The set (J{D, :w <y <7} isa
closed discrete subspace of X by induction and ¢ ¢(|{D~ : w < v < vz}). If
Vo = (X\U{Dy :w <y <v})Né(D,,)NO,, where z € O, and |0, ND,, | <1
for an open set O, then |V, N (U{Dp : w < 8 < a})] < 1. This contradicts
e UDp:w<p<a}\U{Dpg:w<pB<a} Thus H{Dsg:w<p<a}isa
closed discrete subspace of X.

Let Uy = U'Up(AU(U{Ds:w < B <a})),so |[AU(U{Dp:w < B <a})| <
la] <k and Ay U (U{Dp : w < 8 < a}) C U,. Thus by induction, there exists a
closed discrete subspace D, C X \ U, such that (A, U(J{Dg: w < 8 < a}))UD,
is U,-saturated.

If D=U{Dy:w<a<k}then DC X\UUG¢(A) and |D| < k. In what
follows, we show that D is a closed discrete subspace of X.

For any (3 € (w, k), the set |J{Dq : w < o < 8} is closed and ¢(Dg) N D, =0
for any v € (8,k). Thus to prove that D is a closed discrete subspace of X
we only need to prove that D is closed in X. Suppose D is not closed; then
there is some * € D \ D such that W(D) is an external network of z. Since
U{Dv :w <~ < B} is closed discrete for each 8 < k, we can see that x ¢ ¢(D).
There is some P € W(D) such that x € P C ¢(z) and hence € P*. The set
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D cCcU{AcU(U{Ds:w < pB<a}):w<a< K}, so there exists some v < K
such that P € W(A, U (U{Ds : w < B <~})). Let Uy = U U p(Ay U (U{Dpg :
w < B <v})), we know that A, U (U{Dp :w < B < ~})UD, is Uy-saturated. So
P*CU UA,U(U{Dp:w < B <~})). Thus z € ¢(D). This contradicts the
fact © ¢ ¢(D). So D is a closed discrete subspace of X and D C X \ U’.
Consider the set AUD = |J{A, U (U{Ds:w<B<a}):w<a<k}. For
any P € W(A U D), there exists some a < & such that P € W(A, U (U{Dg :
w < B < a})). The set A, U (U{Ds : w < 8 < a}) is Uy-saturated. Thus
P CU UP(A U (U{Dp :w < B <a}) CUUPAUD). Thus AUD is
U-saturated and |D| < max{|A|,w}. O

Corollary 13. Let X be a space and ¢ be a neighborhood assignment for X. If
X is a weakly monotonically monolithic space and A is a closed discrete subspace
of X, then there is a closed discrete subspace D C X \ ¢(A) such that AU D is
saturated.

Theorem 14. If X is a weakly monotonically monolithic space, then X is a
D-space.

PROOF: Let |X| = k and X = {z, : @ € k}. Let ¢ be any neighborhood
assignment for X and Dy = {x0}. Then by Corollary 13 there is a closed discrete
subspace D] C X \ ¢(Dg) such that Dy U D] is saturated. Let D; = Do U D] if
x1 € ¢(Dg U DY), otherwise D1 = {x1} U Dy U Dj.

Let 0 < o < k and assume we have closed discrete subspaces Dg and DZJ for
each 8 < « such that:

Dj =
2) Dﬁl C Dﬁz lfﬁl < 62 < ﬁ,
3) wp € ¢(Dp);
4) U{Dy : v < B} is closed discrete and D C X\ ¢(U{D : v < 8}) is such

that (J{D, : v < 8} U Dj is saturated;

(5) Dg=U{Dy:v<pB}U D’ﬁ if 25 € ¢(U{D~ : v < B} U Dj), otherwise
Dy = UD, 7 < BYU DY U {5},

In what follows, we will show that (J{Dg : 8 < a} is a closed discrete subspace
of X.

If « =~ +1 for some v then | {Ds : 8 < a} = U{Dg: 8 <~}UD, is
a closed discrete subspace of X. If o is a limit ordinal and (J{Ds : f < a} is
not closed, then there is some x € J{Dg: 8 < a} \ U{Dg : 3 < a} such that
W(U{Dg : B < a}) is an external network of the point z. So there is some
P e W(U{Dg : B < a}) such that z € P C ¢(z) and hence z € P*. We know
that W(U{Dgs : 8 < a}) = U{W(Dg) : B < a}. So P € W(Dg,) for some
Bi < a. The set Dg, U Dj ,, is saturated. Thus P* C ¢(Dg, U D} ) and
hence = € ¢(Dg,+1). Thus ¢(Dg,+1) N D!, = () for any v € (81 + 1,). The set
Dg, +1 is a closed discrete subspace of X, so z ¢ | J{Dg : § < a}. This contradicts
z e U{Ds:B<a}. SolJ{Dg: B < a}isa closed discrete subspace of X.

(1)
(
(
(
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Thus there is a closed discrete subspace D, C X\ ¢(U{Dg : 5 < a}) such that
U{Ds : 8 < a}UD), is saturated by Corollary 13. Let D, = |U{Ds: 8 < a}UD,,
if xo € O(U{Dp : B < a}UD.), otherwise Dy = J{Ds: 0 < a}UD,U{z}.

Let D = |J{Dq : @ < k}. We see that X = |J{¢(d) : d € D}. For each z € X,
let a; = min{a : x € $(Dy)}. Thus ¢(Dq,) N Dy = () for each 3 € (ag, k). Let

O, be an open set of = such that |0, N D, | < 1. Thus [(O, N¢(D,,))ND| < 1.
Thus D is a closed discrete subspace of X. So X is a D-space. O

By Lemma 9 and Theorem 14, we have:

Corollary 15. If a regular space X is sequential and has a point-countable wcs*-
network, then X is a D-space.

Theorem 16. Let X be a space and F(x) be a countable family of subsets of
X for each x € X. If for any non-closed subset A C X there exists some point
x € A\ A such that for every open neighborhood U of x there exists some y € A
and some F € F(y) such that x € F C U, then X is a D-space.

ProOF: For any A C X, we let W(A) = [J{F(a) : a € A}. We can see that W
witnesses weak monotonic monolithity of X. Thus X is a weakly monotonically
monolithic space and hence X is a D-space by Theorem 14. ([

Recall that a space X satisfies open (G) if each point € X has a countable
neighborhood base B, such that whenever x € A and N(z) is a neighborhood
of x, then there is an a € A and B € B, for which z € B C N(z).

By Theorem 16, we have:

Corollary 17 (cf. [9]). Any space satistying open (G) is a D-space.

Corollary 18 (cf. [16]). Let a space X have a point-countable family F of subsets
of X, such that for any non-closed subset A C X there exists some point z € A\ A
such that for every open neighborhood U of x there exists some F' € F with
z€FCUand FNA#(. Then X is a D-space.

If X is a sequential space and x € W C X we say that W is a weak-neighborhood
of z if whenever a sequence {z, }nen converges to = then {x,}nen is eventually
in W. A collection W of subsets of a sequential space X is said to be a W-system
for the topology if whenever x € U C X, with U open, there exists a subcollection
V C W such that z € (V, |JV is a weak-neighborhood of x and |V C U (cf. [4]).

Corollary 19 (cf. [4]). A sequential space with a point-countable W-system is a
D-space.

Corollary 20 (cf. [4] and [15]). If X has a point-countable weak base, then X
is a D-space.

By Lemma 5 and Theorem 14, we have:

Corollary 21 (cf. [16]). If X is a sequential space with a point-countable cs*-
network, then X is a D-space.
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Every k-network of X is a wes™-network of X, so by Lemma 9 and Theorem 14,
we have:

Corollary 22 (cf. [17]). If a regular space X is sequential and has a point-
countable k-network, then X is a D-space.

Every monotonically monolithic space is a weakly monotonically monolithic
space and every subspace of monotonically monolithic space is monotonically
monolithic. So we have:

Corollary 23 (cf. [19]). If X is a monotonically monolithic space, then X is
hereditarily a D-space.
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