On weakly monotonically monolithic spaces

LIANG-XUE PENG

Abstract. In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a D-space. Thus most known conclusions on D-spaces can be obtained by this conclusion. As a corollary, we have that if a regular space X is sequential and has a point-countable wcs^* -network then X is a D-space.

Keywords: $D\-$ space, sequential space, $wcs\-$ -network, weakly monotonically monothic space

Classification: Primary 54F99; Secondary 54G99

1. Introduction

The notion of a *D*-space was first investigated by van Douwen and Pfeffer in [6]. A neighborhood assignment for a space X is a function ϕ from X to the topology of the space X such that $x \in \phi(x)$ for any $x \in X$. A space X is called a *D*-space if for any neighborhood assignment ϕ for X there exists a closed discrete subspace D of X such that $X = \bigcup \{\phi(d) : d \in D\}$ (cf. [6]). By results of [3], we know that all semi-stratifiable spaces and all metrizable spaces are *D*-spaces. We also know that the union of a finite family of metrizable subspaces is a *D*-space and every space with a point-countable base is a *D*-space by results of [1] and [2], respectively.

In [5], it was proved that $C_p(X)$ is hereditarily a *D*-space if *X* is compact. Some sufficiencies of *D*-spaces were discussed in [4], [8], [9], [16] and [19]. Let us recall that a space is called *monolithic* if $nw(\overline{A}) \leq \max\{|A|, \omega\}$ for any $A \subset X$. By results of [5] and [9], we know that many monolithic spaces have *D*-property. Thus V.V. Tkachuk introduced the concept of monotonically monolithic spaces in [19]. It was proved that every monotonically monolithic space is hereditarily a *D*-space (cf. [19]). Thus every Lindelöf Σ -space is hereditarily a *D*-space (cf. [9] and [19]).

In [4] and [15], it was proved that a space with a point-countable weak base is a *D*-space. In [16], Peng proved that a space with a point-countable cs^* network is a *D*-space. In this paper, the idea of [19] and [16] is generalized and we introduce the concept of weakly monotonically monolithic spaces. It is proved that every weakly monotonically monolithic space is a *D*-space. Thus we have

Project supported by the National Natural Science Foundation of China (Grant No. 10971185).

that if a regular space X is sequential and has a point-countable wcs^* -network then X is a D-space. In fact, most known results on D-spaces can be obtained by the conclusions of the paper.

All the spaces in this note are at least T_1 -spaces. Let \mathbb{N} be the set of all natural numbers and $\omega = \mathbb{N} \cup \{0\}$. In notation and terminology we will follow [7] and [10].

2. Main results

Definition 1 (cf. [19]). Given a set A in a space X say that a family \mathcal{N} of subsets of X is an *external network* of A in X if for any $x \in A$ and U the neighborhood of x there exists $B \in \mathcal{N}$ such that $x \in B \subset U$. If $A = \{x\}$ for some $x \in X$ and \mathcal{N} is an external network of A in X, then we say that \mathcal{N} is an *external network of* x.

Definition 2 (cf. [19]). We say that a space X is monotonically monolithic if for any $A \subset X$ we can assign an external network $\mathcal{O}(A)$ to the set \overline{A} in such a way that the following conditions are satisfied:

- (1) $|\mathcal{O}(A)| \le \max\{|A|, \omega\};\$
- (2) if $A \subset B \subset X$ then $\mathcal{O}(A) \subset \mathcal{O}(B)$;
- (3) if α is an ordinal and we have a family $\{A_{\beta} : \beta < \alpha\}$ of subsets of X such that $\beta < \beta' < \alpha$ implies $A_{\beta} \subset A_{\beta'}$ then $\mathcal{O}(\bigcup_{\beta < \alpha} A_{\beta}) = \bigcup_{\beta < \alpha} \mathcal{O}(A_{\beta})$.

Definition 3. We say that a space X is *weakly monotonically monolithic* if for any $A \subset X$ we can assign an external network $\mathcal{W}(A)$ of A in such a way that the following conditions are satisfied:

- (1) $|\mathcal{W}(A)| \le \max\{|A|, \omega\};\$
- (2) if $A \subset B \subset X$ then $\mathcal{W}(A) \subset \mathcal{W}(B)$;
- (3) if α is an ordinal and we have a family $\{A_{\beta} : \beta < \alpha\}$ of subsets of X such that $\beta < \beta' < \alpha$ implies $A_{\beta} \subset A_{\beta'}$ then $\mathcal{W}(\bigcup_{\beta < \alpha} A_{\beta}) = \bigcup_{\beta < \alpha} \mathcal{W}(A_{\beta});$
- (4) If $A \subset X$ is not closed in X then there is some $x \in \overline{A} \setminus A$ such that $\mathcal{W}(A)$ is an external network of x.

Every monotonically monolithic space is a weakly monotonically monolithic space. We also know that if a monotonically monolithic space X is separable then X is hereditarily separable and hereditarily Lindelöf.

Example 4. Let $X = \mathbb{R}$, $\mathbb{Q} = \{x_n : n \in \mathbb{N}\}$ be the set of all rational numbers of the real set \mathbb{R} and $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$.

For each $n \in \mathbb{N}$, let $\mathcal{B}(x_n) = \{\{x_n\}\}\$ be a neighborhood base of the point x_n .

For each $x \in \mathbb{I}$, let $\mathcal{B}(x) = \{\{x\} \cup A : A \subset Q \text{ and } Q \setminus A \text{ is finite }\}$ be a neighborhood base of the point x. We denote the topology of X by \mathcal{T} . Thus (X, \mathcal{T}) is a T_1 -space and \mathbb{I} is a closed discrete subspace of X. So (X, \mathcal{T}) is separable but it is not Lindelöf. Thus it is not monolithic.

Let $y_1 \in \mathbb{I}$. For each $B \subset X$, we let $\mathcal{W}(B) = \{\{x\} : x \in B\}$ if $B \subset \mathbb{I}$, otherwise $\mathcal{W}(B) = \{\{x\} \cup \{y_1\} : x \in B\} \bigcup \{\{x\} : x \in B\}.$

We can see that \mathcal{W} witnesses weak monotonic monolithity of X. Thus X is a weakly monotonically monolithic T_1 -space but it is not a monotonically monolithic space.

Let us recall that a family \mathcal{F} of subsets of X is a cs^* -network of X, if for any sequence $\{x_n\}_{n\in\mathbb{N}}$ which converges to a point x and for any open set U which contains x, there is some $F \in \mathcal{F}$ such that $x \in F \subset U$ and $|\{n : x_n \in F\}| = \omega$ (cf. [13] and [14]). A space is called *sequential* if for any non-closed subset A of X, there exists a sequence $\{x_n\}_{n\in\mathbb{N}}, x_n \in A$ for each $n \in \mathbb{N}$, such that $\{x_n\}_{n\in\mathbb{N}}$ converges to a point $x \in \overline{A} \setminus A$. We also know that every space with a pointcountable weak base is sequential and has a point-countable cs^* -network.

Lemma 5. If X is a sequential space with a point-countable cs^* -network, then X is a weakly monotonically monolithic space.

PROOF: Let \mathcal{F} be a point-countable cs^* -network of X. For any $A \subset X$, we let $\mathcal{W}(A) = \{F : F \cap A \neq \emptyset \text{ and } F \in \mathcal{F}\}$. By the sequential property we see that $\mathcal{W}(A)$ satisfies the conditions which appear in the Definition 3. \Box

Corollary 6. Let X be a space. If X has a point-countable weak base, then X is a weakly monotonically monolithic space.

Example 7 ([11, Example 9.3). Let $S = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$ and $Y = [0, 1] \times S$. Let $Y' = [0, 1] \times \{\frac{1}{n} : n \in \mathbb{N}\}$ have the usual Euclidean topology as a subspace of $[0, 1] \times S$. Define a typical neighborhood (t, 0) in Y to be the form $\{(t, 0)\} \cup (\bigcup \{U(t, \frac{1}{k}) : k \ge n\})$, where $U(t, \frac{1}{k})$ is a neighborhood of $(t, \frac{1}{k})$ in $[0, 1] \times \{\frac{1}{k}\}$. In [11], it is pointed out that Y is a completely regular separable space but it

In [11], it is pointed out that Y is a completely regular separable space but it is not Lindelöf, and it is also pointed out that Y is a two-to-one quotient image of the topological sum M of compact metric spaces $\{[0,1] \times \{\frac{1}{n}\} : n \in \mathbb{N}\} \cup \{\{t\} \times S : t \in [0,1]\}.$

The space Y has a point-countable weak base (this is pointed out in [12, p. 26]). So we know that the space Y is not a monotonically monolithic space but Y is a weakly monotonically monolithic regular space by Corollary 6.

In [12], Lin did not give a proof that the space Y has a point-countable weak base. To assist the reader, we give a short proof.

Let $f: M \to Y$ be the two-to-one quotient map, where M is the topological sum of compact metric spaces $\{[0,1] \times \{\frac{1}{n}\} : n \in \mathbb{N}\} \cup \{\{t\} \times S : t \in [0,1]\}$. For each $y \in Y$, we let $y = (a_1, a_2)$. Suppose $\{y_n\}_{n \in \mathbb{N}}$ is a sequence of Y such that $\{y_n\}_{n \in \mathbb{N}}$ converges to the point y and we assume that $y_n \neq y$ for each $n \in \mathbb{N}$.

- (1) If $a_2 \neq 0$ then there is some $m \in \mathbb{N}$ such that $y_n \in [0,1] \times \{a_2\}$ for each n > m, since Y is determined by the collection $\{[0,1] \times \{\frac{1}{n}\} : n \in \mathbb{N}\} \cup \{\{t\} \times S : t \in [0,1]\}.$
- (2) If $a_2 = 0$ then there is some $m \in \mathbb{N}$ such that $y_n \in \{a_1\} \times S$ for each n > m, since $[0,1] \times \{0\}$ is a closed discrete subspace of Y and Y is determined by the collection $\{[0,1] \times \{\frac{1}{n}\} : n \in \mathbb{N}\} \cup \{\{t\} \times S : t \in [0,1]\}.$

Thus we have the following conclusion:

If $y \in Y$ then there is some point $x_y \in f^{-1}(y)$ such that whenever a sequence $\{y_n\}_{n\in\mathbb{N}}$ of Y converges to the point y and $y_n \neq y$ for each $n \in \mathbb{N}$ then there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ of X such that the sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to the point x_y and $x_n \in f^{-1}(y_n)$ for each $n \in \mathbb{N}$. (This is pointed out in [12, p. 26]).

Let \mathcal{B} be a point-countable base of M. For each $y \in Y$, let $\mathcal{B}'_y = \{B : x_y \in B \text{ and } B \in \mathcal{B}\}$ and let $\mathcal{B}^*_y = \{f(B) : B \in \mathcal{B}'_y\}$. We will show that $\mathcal{B}^* = \bigcup \{\mathcal{B}^*_y : y \in Y\}$ is a point-countable weak base of Y.

We only need to prove that U is open if for any $y \in U$ there is some $B^* \in \mathcal{B}_y^*$ such that $y \in B^* \subset U$.

Suppose U is not open. Then there is a sequence $\{y_n\}_{n\in\mathbb{N}}$ such that $\{y_n\}_{n\in\mathbb{N}}$ converges to a point $y \in U$ and $y_n \notin U$ for each $n \in \mathbb{N}$, since Y is sequential. Thus there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ of M such that $x_n \in f^{-1}(y_n)$ and $\{x_n\}_{n\in\mathbb{N}}$ converges to x_y . There is some $B^* \in \mathcal{B}_y^*$ such that $y \in B^* \subset U$. We let $B^* = f(B)$ for some $B \in \mathcal{B}'_y$. Thus $x_y \in B$, and hence there is some $m \in \mathbb{N}$ such that $x_n \in B$ for each n > m. So $y_n = f(x_n) \in f(B) = B^* \subset U$. This contradicts $y_n \notin U$. Thus \mathcal{B}^* is a weak base of Y. Since \mathcal{B} is point-countable and $|f^{-1}(y)| = 2$ for each $y \in Y$, we know that \mathcal{B}^* is point-countable in Y. Thus Y has a point-countable weak base.

A family \mathcal{P} of subsets of X is called a wcs^* -network of X if for any sequence $\{x_n\}_{n\in\mathbb{N}}$ which converges to a point x, and any open set U which contains x, there is some $P \in \mathcal{P}$ such that $P \subset U$ and $|\{n : x_n \in P\}| = \omega$ (cf. [14]). We know that every k-network of X is a wcs^* -network of X and if X is regular and \mathcal{P} is a wcs^* -network of X then $\{\overline{P} : P \in \mathcal{P}\}$ is a cs^* -network of X.

Example 8 ([18, Example 78]). Let \mathcal{T} be the usual Euclidean topology of \mathbb{R}^2 . Let $S_1 = \{(x, y) : x, y \in \mathbb{R}, y > 0\}$, $L = \{(x, 0) : x \in \mathbb{R}\}$ and $X = S_1 \cup L$. Let $\mathcal{T}^* = \{\mathcal{T}|X\} \cup \{\{x\} \cup (S_1 \cap U) : x \in L, x \in U \text{ and } U \in \mathcal{T}\}$, where $\mathcal{T}|X = \{U \cap X : U \in \mathcal{T}\}$. The space (X, \mathcal{T}^*) is a non-regular T_2 -space.

In [12, p. 28], it is pointed out that the space X which appears in Example 8 has a locally countable k-network but it has no point-countable cs^* -network. Thus it has a point-countable wcs^* -network but it has no point-countable cs^* -network.

Lemma 9. If a regular space X is sequential and has a point-countable wcs^* -network, then X is a weakly monotonically monolithic space.

PROOF: Let \mathcal{F} be a point-countable wcs^* -network of X. For any $A \subset X$, let $\mathcal{W}(A) = \{\overline{F} : F \cap A \neq \emptyset \text{ and } F \in \mathcal{F}\}$. We see that $\mathcal{W}(A)$ satisfies the conditions which appear in the Definition 3, since X is regular and sequential. \Box

Similarly to Definition 2.11 from [19], we have:

Definition 10. Assume that Y is a weakly monotonically monolithic space and fix an operator \mathcal{W} which witnesses that. Let ϕ be any neighborhood assignment on X. For every $P \subset X$, we denote $P^* = \{x : x \in P \text{ and } P \subset \phi(x)\}$. For any open set $U \subset X$ say that a set $A \subset X$ is U-saturated if $P^* \subset \phi(A) \cup U$ for any $P \in \mathcal{W}(A)$, where $\phi(A) = \bigcup \{\phi(x) : x \in A\}$. If $U = \emptyset$ then U-saturated sets will be called saturated.

Lemma 11. Let ϕ be any neighborhood assignment for X. If X is a weakly monotonically monolithic space, $A \subset X$ is a countable closed discrete subspace of X and U is any open subset of X, then there is a closed discrete subspace $B \subset X \setminus U \cup \phi(A)$, such that $A \cup B$ is U-saturated and $|B| \leq \omega$.

PROOF: X is a weakly monotonically monolithic space. We fix an operator \mathcal{W} which witnesses that. Let $\mathcal{F}_0^* = \{P^* : P \in \mathcal{W}(A)\}$. Thus \mathcal{F}_0^* is a countable family. Enumerate it by prime numbers p. We take the first member F^* of \mathcal{F}_0^* such that $F^* \setminus U \cup \phi(A) \neq \emptyset$. We choose a point $x_1 \in F^* \setminus U \cup \phi(A)$. Then $F \subset \phi(x_1)$. The family $\mathcal{W}(A \cup \{x_1\})$ is countable. We denote $\mathcal{F}_1^* = \{F^* : F \in \mathcal{W}(A \cup \{x_1\}) \setminus \mathcal{W}(A)\}$. We enumerate \mathcal{F}_1^* by the squares p^2 of prime numbers.

Suppose we have finished n steps. We have $\phi(A)$, $U \cup \phi(A \cup \{x_1\})$, ..., $U \cup \phi(A \cup \{x_1, \ldots, x_n\})$, and families \mathcal{F}_i^* of subsets of X, the family \mathcal{F}_i^* is enumerated by the *i*-th powers of prime numbers for each $0 \le i \le n$.

If $U \cup \phi(A \cup \{x_1, \dots, x_n\}) = X$, then we stop the induction and let $B = \{x_i : 1 \le i \le n\}$. So we assume that $U \cup \phi(A \cup \{x_1, \dots, x_n\}) \ne X$. If $\bigcup \{\bigcup \mathcal{F}_i^* : 0 \le i \le n\}$ is contained in $U \cup \phi(A \cup \{x_1, \dots, x_n\})$ then we choose a point $x_{n+1} \in X \setminus U \cup \phi(A \cup \{x_1, \dots, x_n\})$. If $\bigcup \{\bigcup \mathcal{F}_i^* : 0 \le i \le n\} \setminus (U \cup \phi(A \cup \{x_1, \dots, x_n\})) \ne \emptyset$ then we take the first member F^* of $\bigcup \{\mathcal{F}_i^* : 0 \le i \le n\}$ such that $F^* \setminus U \cup \phi(A \cup \{x_1, \dots, x_n\}) \ne \emptyset$ and choose a point $x_{n+1} \in F^* \setminus U \cup \phi(A \cup \{x_1, \dots, x_n\})$. Thus $F^* \subset F \subset \phi(x_{n+1})$. We let $\mathcal{F}_{n+1}^* = \{F^* : F \in \mathcal{W}(A \cup \{x_1, \dots, x_{n+1}\}) \setminus \mathcal{W}(A \cup \{x_1, \dots, x_n\})\}$ and enumerate it by the (n + 1)-st powers of prime numbers.

In this way, we have a set $B = \{x_n : n \in \mathbb{N}\}$ and $B \subset X \setminus U \cup \phi(A)$. To prove that B is a closed discrete subspace of X, we only need to prove that B is closed since $x_m \notin \phi(x_n)$ whenever m > n.

Suppose $\overline{B} \setminus B \neq \emptyset$. Then there is some $x \in \overline{B} \setminus B$ such that $\mathcal{W}(B)$ is an external network of x. Thus there is some $P \in \mathcal{W}(B)$ such that $x \in P \subset \phi(x)$ and hence $x \in P^*$. Since $B = \bigcup \{ \{x_1, \ldots, x_n\} : n \in \mathbb{N} \} \subset \bigcup \{A \cup \{x_1, \ldots, x_n\} : n \in \mathbb{N} \}$, we see that $P \in \mathcal{W}(\bigcup \{A \cup \{x_1, \ldots, x_n\} : n \in \mathbb{N}\})$. So $P \in \mathcal{W}(A \cup \{x_1, \ldots, x_n\})$ for some $n \in \mathbb{N}$. Thus $P^* \in \mathcal{F}_i^*$ for some $0 \le i \le n$. So there is some m > n such that $P^* \subset U \cup \phi(A \cup \{x_1, \ldots, x_m\})$. Thus $x \in \phi(A \cup \{x_1, \ldots, x_m\})$. So $x \notin \overline{B}$. This contradicts the fact $x \in \overline{B}$. So B is closed and hence it is a closed discrete subspace of X and $B \subset X \setminus U \cup \phi(A)$, $|B| \le \omega$.

For any $P \in \mathcal{W}(A \cup B)$, since $A \cup B = \bigcup \{A \cup \{x_1, \dots, x_n\} : n \in \mathbb{N}\}$, we have $P \in \mathcal{W}(A \cup \{x_1, \dots, x_n\})$ for some $n \in \mathbb{N}$. Hence $P^* \in \mathcal{F}_i^*$ for some $0 \le i \le n$. So P^* will be covered by $U \cup \phi(A \cup \{x_1, \dots, x_m\})$ for some m > n. Thus $A \cup B$ is U-saturated. \Box

Lemma 12. Let ϕ be any neighborhood assignment for X. If X is a weakly monotonically monolithic space and $A \subset X$ is a closed discrete subspace of X and U is any open subset of X, then there is a closed discrete subspace $D \subset X \setminus U \cup \phi(A)$, such that $A \cup D$ is U-saturated and $|D| \leq \max\{|A|, \omega\}$.

PROOF: We will use induction on the cardinal $\kappa = |A|$. If $|A| \leq \omega$, then it is true by Lemma 11. Now assume that κ is an uncountable cardinal and our theorem is proved whenever U an open subset of X and $A \subset X$, $|A| < \kappa$.

Take an arbitrary set $A \subset X$ such that $|A| = \kappa$ and let $A = \{x_{\alpha} : \alpha < \kappa\}$. Let $A_{\alpha} = \{x_{\beta} : \beta < \alpha\}$ for each $\alpha \in [\omega, \kappa)$ and let $U' = U \cup \phi(A)$. Proceeding inductively assume that $\omega < \alpha < \kappa$ and we have a family $\{D_{\beta} : \omega \leq \beta < \alpha\}$ of closed discrete subspaces of X with the following properties:

- (1) $A_{\omega} \cup D_{\omega}$ is U'-saturated;
- (2) If $\omega < \beta < \alpha$ then $U_{\beta} = U' \cup \phi(\bigcup \{D_{\gamma} : \omega \leq \gamma < \beta), D_{\beta} \subset X \setminus U_{\beta}$ and $|D_{\beta}| \leq |\beta|;$
- (3) If $B_{\beta} = A_{\beta} \cup (\bigcup \{D_{\gamma} : \omega \leq \gamma < \beta\})$ then $B_{\beta} \cup D_{\beta}$ is U_{β} -saturated whenever $\omega < \beta < \alpha$;
- (4) The set $\bigcup \{D_{\gamma} : \omega \leq \gamma < \beta\}$ is a closed discrete subspace of X for each $\beta \in (\omega, \alpha)$.

We first prove that $\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ is a closed discrete subspace of X. We only need to prove that $\bigcup \{D_{\beta} : \beta < \alpha\}$ is a closed subspace of X. If $\alpha = \gamma + 1$, then $\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} = \bigcup \{D_{\beta} : \omega \leq \beta < \gamma\} \cup D_{\gamma}$. The sets $D\gamma$ and $\bigcup \{D_{\beta} : \omega \leq \beta < \gamma\}$ are closed discrete and hence $\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ is closed discrete. Let α be a limit ordinal. Suppose $\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ is not closed in X. Then there is some $x \in \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} \setminus \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ such that $\mathcal{W}(\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\})$ is an external network of the point x. So there is some $P \in \mathcal{W}(\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\})$ such that $x \in P \subset \phi(x)$ and hence $x \in P^*$. The set $\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} \subset \bigcup \{A_{\beta} \cup (\bigcup \{D_{\gamma} : \omega \leq \gamma \leq \beta\}) : \omega \leq \beta < \alpha\}$, so $P \in \mathcal{W}(A_{\beta_1} \cup (\bigcup \{D_{\gamma} : \omega \leq \gamma \leq \beta_1\}))$ for some $\beta_1 \in [\omega, \alpha)$.

The set $A_{\beta_1} \cup (\bigcup \{D_{\gamma} : \omega \leq \gamma \leq \beta_1\})$ is U_{β_1} -saturated, so $P^* \subset U_{\beta_1} \cup \phi(D_{\beta_1})$ and hence $x \in U' \cup \phi(A_{\beta_1} \cup (\bigcup \{D_{\gamma} : \omega \leq \gamma \leq \beta_1\}))$. We have $x \in \phi(\bigcup \{D_{\gamma} : \omega \leq \gamma \leq \beta_1\})$, since $x \in \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} \setminus \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ and $U' \cap (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}) = \emptyset$. Let γ_x be the smallest ordinal such that $x \in \phi(D_{r_x})$. Since $x \in \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$, we see that $\gamma_x \neq \omega$. The set $\bigcup \{D_{\gamma} : \omega \leq \gamma < \gamma_x\}$ is a closed discrete subspace of X by induction and $x \notin \phi(\bigcup \{D_{\gamma} : \omega \leq \gamma < \gamma_x\})$. If $V_x = (X \setminus \bigcup \{D_{\gamma} : \omega \leq \gamma < \gamma_x\}) \cap \phi(D_{\gamma_x}) \cap O_x$, where $x \in O_x$ and $|O_x \cap D_{\gamma_x}| \leq 1$ for an open set O_x , then $|V_x \cap (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\})| \leq 1$. This contradicts $x \in \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} \setminus \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\} \setminus \bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}$ is a closed discrete subspace of X.

Let $U_{\alpha} = U' \cup \phi(A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}))$, so $|A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\})| \leq |\alpha| < \kappa$ and $A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\}) \subset U_{\alpha}$. Thus by induction, there exists a closed discrete subspace $D_{\alpha} \subset X \setminus U_{\alpha}$ such that $(A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \alpha\})) \cup D_{\alpha}$ is U_{α} -saturated.

If $D = \bigcup \{D_{\alpha} : \omega \leq \alpha < \kappa\}$ then $D \subset X \setminus U \cup \phi(A)$ and $|D| \leq \kappa$. In what follows, we show that D is a closed discrete subspace of X.

For any $\beta \in (\omega, \kappa)$, the set $\bigcup \{D_{\alpha} : \omega \leq \alpha < \beta\}$ is closed and $\phi(D_{\beta}) \cap D_{\gamma} = \emptyset$ for any $\gamma \in (\beta, \kappa)$. Thus to prove that D is a closed discrete subspace of Xwe only need to prove that D is closed in X. Suppose D is not closed; then there is some $x \in \overline{D} \setminus D$ such that $\mathcal{W}(D)$ is an external network of x. Since $\bigcup \{D\gamma : \omega \leq \gamma < \beta\}$ is closed discrete for each $\beta < \kappa$, we can see that $x \notin \phi(D)$. There is some $P \in \mathcal{W}(D)$ such that $x \in P \subset \phi(x)$ and hence $x \in P^*$. The set $D \subset \bigcup \{A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \alpha\}) : \omega \leq \alpha < \kappa\}, \text{ so there exists some } \gamma < \kappa \text{ such that } P \in \mathcal{W}(A_{\gamma} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \gamma\})). \text{ Let } U_{\gamma} = U' \cup \phi(A_{\gamma} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \gamma\})), \text{ we know that } A_{\gamma} \cup (\bigcup \{D_{\beta} : \omega \leq \beta < \gamma\}) \cup D_{\gamma} \text{ is } U_{\gamma}\text{-saturated. So } P^* \subset U' \cup \phi(A_{\gamma} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \gamma\})). \text{ Thus } x \in \phi(D). \text{ This contradicts the fact } x \notin \phi(D). \text{ So } D \text{ is a closed discrete subspace of } X \text{ and } D \subset X \setminus U'.$

Consider the set $A \cup D = \bigcup \{A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \alpha\}) : \omega \leq \alpha < \kappa\}$. For any $P \in \mathcal{W}(A \cup D)$, there exists some $\alpha < \kappa$ such that $P \in \mathcal{W}(A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \alpha\}))$. The set $A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \alpha\})$ is U_{α} -saturated. Thus $P^* \subset U' \cup \phi(A_{\alpha} \cup (\bigcup \{D_{\beta} : \omega \leq \beta \leq \alpha\})) \subset U \cup \phi(A \cup D)$. Thus $A \cup D$ is U-saturated and $|D| \leq \max\{|A|, \omega\}$.

Corollary 13. Let X be a space and ϕ be a neighborhood assignment for X. If X is a weakly monotonically monolithic space and A is a closed discrete subspace of X, then there is a closed discrete subspace $D \subset X \setminus \phi(A)$ such that $A \cup D$ is saturated.

Theorem 14. If X is a weakly monotonically monolithic space, then X is a D-space.

PROOF: Let $|X| = \kappa$ and $X = \{x_{\alpha} : \alpha \in \kappa\}$. Let ϕ be any neighborhood assignment for X and $D_0 = \{x_0\}$. Then by Corollary 13 there is a closed discrete subspace $D'_1 \subset X \setminus \phi(D_0)$ such that $D_0 \cup D'_1$ is saturated. Let $D_1 = D_0 \cup D'_1$ if $x_1 \in \phi(D_0 \cup D'_1)$, otherwise $D_1 = \{x_1\} \cup D_0 \cup D'_1$.

Let $0 < \alpha < \kappa$ and assume we have closed discrete subspaces D_{β} and D'_{β} for each $\beta < \alpha$ such that:

- (1) $D'_0 = \emptyset;$
- (2) $D_{\beta_1} \subset D_{\beta_2}$ if $\beta_1 < \beta_2 < \beta$;
- (3) $x_{\beta} \in \phi(D_{\beta});$
- (4) $\bigcup \{D_{\gamma} : \gamma < \beta\}$ is closed discrete and $D'_{\beta} \subset X \setminus \phi(\bigcup \{D_{\gamma} : \gamma < \beta\})$ is such that $\bigcup \{D_{\gamma} : \gamma < \beta\} \cup D'_{\beta}$ is saturated;
- (5) $D_{\beta} = \bigcup \{ D_{\gamma} : \gamma < \beta \} \cup D'_{\beta} \text{ if } x_{\beta} \in \phi(\bigcup \{ D_{\gamma} : \gamma < \beta \} \cup D'_{\beta}), \text{ otherwise}$ $D_{\beta} = \bigcup \{ D_{\gamma} : \gamma < \beta \} \cup D'_{\beta} \cup \{ x_{\beta} \}.$

In what follows, we will show that $\bigcup \{D_{\beta} : \beta < \alpha\}$ is a closed discrete subspace of X.

If $\alpha = \gamma + 1$ for some γ then $\bigcup \{D_{\beta} : \beta < \alpha\} = \bigcup \{D_{\beta} : \beta < \gamma\} \cup D_{\gamma}$ is a closed discrete subspace of X. If α is a limit ordinal and $\bigcup \{D_{\beta} : \beta < \alpha\}$ is not closed, then there is some $x \in \bigcup \{D_{\beta} : \beta < \alpha\} \setminus \bigcup \{D_{\beta} : \beta < \alpha\}$ such that $\mathcal{W}(\bigcup \{D_{\beta} : \beta < \alpha\})$ is an external network of the point x. So there is some $P \in \mathcal{W}(\bigcup \{D_{\beta} : \beta < \alpha\})$ such that $x \in P \subset \phi(x)$ and hence $x \in P^*$. We know that $\mathcal{W}(\bigcup \{D_{\beta} : \beta < \alpha\}) = \bigcup \{\mathcal{W}(D_{\beta}) : \beta < \alpha\}$. So $P \in \mathcal{W}(D_{\beta_1})$ for some $\beta_1 < \alpha$. The set $D_{\beta_1} \cup D'_{\beta_1+1}$ is saturated. Thus $P^* \subset \phi(D_{\beta_1} \cup D'_{\beta_1+1})$ and hence $x \in \phi(D_{\beta_1+1})$. Thus $\phi(D_{\beta_1+1}) \cap D'_{\gamma} = \emptyset$ for any $\gamma \in (\beta_1 + 1, \kappa)$. The set D_{β_1+1} is a closed discrete subspace of X, so $x \notin \bigcup \{D_{\beta} : \beta < \alpha\}$. This contradicts $x \in \bigcup \{D_{\beta} : \beta < \alpha\}$. So $\bigcup \{D_{\beta} : \beta < \alpha\}$ is a closed discrete subspace of X.

Thus there is a closed discrete subspace $D'_{\alpha} \subset X \setminus \phi(\bigcup\{D_{\beta} : \beta < \alpha\})$ such that $\bigcup\{D_{\beta} : \beta < \alpha\} \cup D'_{\alpha}$ is saturated by Corollary 13. Let $D_{\alpha} = \bigcup\{D_{\beta} : \beta < \alpha\} \cup D'_{\alpha}$ if $x_{\alpha} \in \phi(\bigcup\{D_{\beta} : \beta < \alpha\} \cup D'_{\alpha})$, otherwise $D_{\alpha} = \bigcup\{D_{\beta} : \beta < \alpha\} \cup D'_{\alpha} \cup \{x_{\alpha}\}$.

Let $D = \bigcup \{D_{\alpha} : \alpha < \kappa\}$. We see that $X = \bigcup \{\phi(d) : d \in D\}$. For each $x \in X$, let $\alpha_x = \min\{\alpha : x \in \phi(D_{\alpha})\}$. Thus $\phi(D_{\alpha_x}) \cap D'_{\beta} = \emptyset$ for each $\beta \in (\alpha_x, \kappa)$. Let O_x be an open set of x such that $|O_x \cap D_{\alpha_x}| \le 1$. Thus $|(O_x \cap \phi(D_{\alpha_x})) \cap D| \le 1$. Thus D is a closed discrete subspace of X. So X is a D-space.

By Lemma 9 and Theorem 14, we have:

Corollary 15. If a regular space X is sequential and has a point-countable wcs^* -network, then X is a D-space.

Theorem 16. Let X be a space and $\mathcal{F}(x)$ be a countable family of subsets of X for each $x \in X$. If for any non-closed subset $A \subset X$ there exists some point $x \in \overline{A} \setminus A$ such that for every open neighborhood U of x there exists some $y \in A$ and some $F \in \mathcal{F}(y)$ such that $x \in F \subset U$, then X is a D-space.

PROOF: For any $A \subset X$, we let $\mathcal{W}(A) = \bigcup \{\mathcal{F}(a) : a \in A\}$. We can see that \mathcal{W} witnesses weak monotonic monolithity of X. Thus X is a weakly monotonically monolithic space and hence X is a D-space by Theorem 14. \Box

Recall that a space X satisfies open (G) if each point $x \in X$ has a countable neighborhood base \mathcal{B}_x such that whenever $x \in \overline{A}$ and N(x) is a neighborhood of x, then there is an $a \in A$ and $B \in \mathcal{B}_a$ for which $x \in B \subset N(x)$.

By Theorem 16, we have:

Corollary 17 (cf. [9]). Any space satisfying open (G) is a D-space.

Corollary 18 (cf. [16]). Let a space X have a point-countable family \mathcal{F} of subsets of X, such that for any non-closed subset $A \subset X$ there exists some point $x \in \overline{A} \setminus A$ such that for every open neighborhood U of x there exists some $F \in \mathcal{F}$ with $x \in F \subset U$ and $F \cap A \neq \emptyset$. Then X is a D-space.

If X is a sequential space and $x \in W \subset X$ we say that W is a *weak-neighborhood* of x if whenever a sequence $\{x_n\}_{n\in\mathbb{N}}$ converges to x then $\{x_n\}_{n\in\mathbb{N}}$ is eventually in W. A collection \mathcal{W} of subsets of a sequential space X is said to be a \mathcal{W} -system for the topology if whenever $x \in U \subset X$, with U open, there exists a subcollection $\mathcal{V} \subset \mathcal{W}$ such that $x \in \bigcap \mathcal{V}, \bigcup \mathcal{V}$ is a weak-neighborhood of x and $\bigcup \mathcal{V} \subset U$ (cf. [4]).

Corollary 19 (cf. [4]). A sequential space with a point-countable \mathcal{W} -system is a *D*-space.

Corollary 20 (cf. [4] and [15]). If X has a point-countable weak base, then X is a D-space.

By Lemma 5 and Theorem 14, we have:

Corollary 21 (cf. [16]). If X is a sequential space with a point-countable cs^* -network, then X is a D-space.

Every k-network of X is a wcs^* -network of X, so by Lemma 9 and Theorem 14, we have:

Corollary 22 (cf. [17]). If a regular space X is sequential and has a pointcountable k-network, then X is a D-space.

Every monotonically monolithic space is a weakly monotonically monolithic space and every subspace of monotonically monolithic space is monotonically monolithic. So we have:

Corollary 23 (cf. [19]). If X is a monotonically monolithic space, then X is hereditarily a D-space.

Acknowledgement. The proofs of the main results (Lemma 11, Lemma 12 and Theorem 14) depended heavily on the proofs from [19]. The author would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

- Arhangel'skii A.V., D-spaces and finite unions, Proc. Amer. Math. Soc. 132.7 (2004), 2163–2170.
- [2] Arhangel'skii A.V., Buzyakova R.Z., Addition theorems and D-spaces, Comment. Math. Univ. Carolin. 43.4 (2002), 653–663.
- [3] Borges C.R., Wehrly A.C., A study of D-spaces, Topology Proc. 16 (1991), 7–15.
- [4] Burke D.K., Weak-base and D-space, Comment. Math. Univ. Carolin. 48.2 (2007), 281– 289.
- Buzyakova R.Z., Hereditary D-property of function spaces over compacta, Proc. Amer. Math. Soc. 132.11 (2004), 3433–3439.
- [6] van Douwen E.K., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81.2 (1979), 371–377.
- [7] Engelking R., General Topology, Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989.
- [8] Fleissner W.G., Stanley A.M., *D-spaces*, Topology Appl. **114.3** (2001), 261–271.
- [9] Gruenhage G., A note on D-spaces, Topology Appl. 153 (2006), 229-240.
- [10] Gruenhage G., Generalized metric spaces, in Handbook of Set-theoretic Topology, K. Kunen and J. Vaughan (Eds), North-Holland, Amsterdam, 1984, pp. 423–501.
- [11] Gruenhage G., Michael E., Tanaka Y., Spaces determined by point-countable covers, Pacific J. Math. 113.2 (1984), 303–332.
- [12] Lin S., Point-countable Covers and Sequence-covering Mappings, Chinese Science Press, Beijing, 2002.
- [13] Lin S., Liu C., On spaces with point-countable cs*-networks, Topology Appl. 74 (1996), 51–60.
- [14] Lin S., Tanaka Y., Point-countable k-network, closed maps and related results, Topology Appl. 59 (1994), 79–86.
- [15] Peng L.-X., The D-property of some Lindelöf spaces and related conclusions, Topology Appl. 154 (2007), 469–475.
- [16] Peng L.-X., A special point-countable family that makes a space to be a D-space, Adv. Math. (China) 37.6 (2008), 724–728.
- [17] Peng L.-X., A note on D-spaces and infinite unions, Topology Appl. 154 (2007), 2223– 2227.

- [18] Steen L.A., Seebach J.A., Jr., *Counterexamples in Topology*, second edition, Springer, New York-Heidelberg, 1978.
- [19] Tkachuk V.V., Monolithic spaces and D-spaces revised, Topology Appl. 156 (2009), 840– 846.

College of Applied Science, Beijing University of Technology, Beijing 100124, China *Email:* pengliangxue@bjut.edu.cn

(Received January 7, 2009, revised January 26, 2010)

142