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Metric spaces with point character equal to their size

C. Avart, P. Komjath, V. Rödl

In memory of Honza Pelant’s 60th birthday.

Abstract. In this paper we consider the point character of metric spaces. This
parameter which is a uniform version of dimension, was introduced in the context
of uniform spaces in the late seventies by Jan Pelant, Cardinal reflections and

point-character of uniformities, Seminar Uniform Spaces (Prague, 1973–1974),
Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149–158. Here we prove
for each cardinal κ, the existence of a metric space of cardinality and point
character κ. Since the point character can never exceed the cardinality of a
metric space this gives the construction of metric spaces with “largest possible”
point character. The existence of such spaces was already proved using GCH
in Rödl V., Small spaces with large point character , European J. Combin. 8

(1987), no. 1, 55–58. The goal of this note is to remove this assumption.
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1. Introduction

Let (X, d) be a metric space. An open cover U of (X, d) is a family of open
subsets of X with X =

⋃

U . An open cover of the space X is called locally finite

if every point of the set X has a neighborhood which intersects only finitely many
sets in the cover. Given two covers U and V of X , we say that V refines U and
write V ≺ U if every set in V is contained in some set in U . A.H. Stone proved
the following.

Theorem 1 (See [4]). Any open cover of a metric space has a locally finite open

refinement.

In general, a topological space having the property that every open cover admits
a locally finite refinement is called paracompact . Stone’s Theorem states that
metric spaces (and thus metrizable spaces) are paracompact. A natural question
raised by this result is whether the uniform version of Stone Theorem is valid. To
make this statement precise we need to recall a few more definitions.

An open cover U is called ε-uniform if for every x ∈ X there is a U ∈ U which
contains the ε-ball Bε(x) = {y : d(x, y) < ε}. If there exists ε such that U is
ε-uniform, we say that U is uniform.
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In [5] (see also [6]), A.H. Stone asked whether it is true that in a metric space,
every uniform cover has a locally finite uniform refinement. A space X having
the property that any uniform cover of X has a locally finite refinement will be
said to have the Stone Uniform Property. It was proved by E.V. Schepin [12]
and J. Pelant [7] that l∞(κ), for sufficiently large κ, does not have this property.
Subsequently, the analogous statement was proved for l1(κ) in [10]. These results
motivated further interest into determining “how far” a metric space can be from
satisfying the Stone Uniform Property, which leads to the concept of the point

character of a metric space.

2. Point character

For a family V of sets, we define ord(V) = sup {|D|+ : D ⊂ V ,
⋂

D 6= ∅}. For
instance, a locally finite cover U is a cover satisfying ord(U) ≤ ω0. Note that it is
equivalent to define ord(V) = min {β : ∀x ∈ X, |{V ∈ V : x ∈ V }| < β}.

Definition 1 (Point Character). Let (X, d) be a metric space. The point char-

acter pc(X, d) (or pc(X) if there is no confusion) of (X, d) is the least cardinal β
such that each uniform cover U of X has a uniform refinement V with ord(V) ≤ β.

Note that in the definition of the point character, we are interested in how many
times a point of the space is covered, while Theorem 1 ensures a neighborhood of
each x ∈ X which is intersected by only a few members of a cover. In fact these
two points of view are equivalent in terms of uniform covers:

Proposition 1. Given a metric space X , the following properties are equivalent:

1. For every uniform cover W of X there exists a uniform cover U , U ≺ W ,

such that every x ∈ X belongs to less than α elements of U .

2. For every uniform cover W of X , there exists δ > 0 and a δ-uniform cover

V , V ≺ W , such that for every x ∈ X , the ball Bδ(x) meets less than α
elements of V .

Proof: Property 2 clearly implies 1. To prove the opposite implication, consider
W a given uniform cover. By Property 1, there exists U = {Ui : i ∈ I} ≺ W
which is ε-uniform for some ε > 0 and such that every x ∈ X belongs to less than
α elements of U . We will prove the existence of a ε/2-uniform cover V satisfying
Property 2.

For each x ∈ X , there is i(x) ∈ I such that Bε(x) ⊆ Ui(x). Set Vi =
⋃

{Bε/2(x) :
i(x) = i}. Since for every x ∈ X , Bε/2(x) ⊆ Vi(x), the family V = {Vi : i ∈ I} is
an ε/2-uniform cover refining U .

Let y ∈ X be an arbitrary point. We claim that Bε/2(y) meets less than α
elements of V . Indeed, if Bε/2(y)

⋂

Vi 6= ∅, then there are zi, xi with i(xi) = i,
zi ∈ Bε/2(y)

⋂

Bε/2(xi). Therefore, d(y, xi) < ε and so y ∈ Bε(xi) ⊆ Ui. Since y
is in less than α of the Ui’s, Bε/2(y) meets less than α elements of V , concluding
the proof. �

For any Euclidean space R
n we have pc(Rn) = n + 2. Consequently the point

character provides a suitable generalization of the notion of dimension for the
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“infinite dimensional case”. Note also that a space having the Uniform Stone
Property satisfies pc(X) ≤ ω0, so that any space with uncountable point character
is a counter example to Stone’s question.

Several examples of spaces with large point character have been given. It
was proved by E.V. Schepin [12] and J. Pelant [7] that l∞(κ), for sufficiently
large κ, satisfies pc(l∞(κ)) ≥ κ. Subsequently, in [9], the analogous statement
was proved for lp spaces. More precisely, it is shown that, if α is a limit ordinal
then pc(lp(ωα)) ≥ ωα, for any p ≥ 1.

A result concerning uniform spaces proved in [8] by J. Pelant implies that the
point character of a metric space cannot be larger than its cardinality. In [11],
V. Rödl gave an example of a space for which pc(X) = |X |. The construction
is based on infinite graphs considered by Erdös, Galvin and Hajnal [2], [3]. The
proof given in [11] assumes the Generalized Continuum Hypothesis (GCH). The
main result of this paper is the elimination of the need of GCH, thus proving the
following:

Theorem 2. (i) For every infinite cardinal κ, there exists a metric space X
satisfying pc(X) = |X | = κ.

(ii) For every metric space X , pc(X) ≤ |X |.

As mentioned above, the second part of Theorem 2 follows from a more general
result of [8]. In order to give a self contained exposition, following a similar idea,
we now present a simple proof of this fact.

Proof of Theorem 2, Part (ii): Let X be a metric space and d(X) the small-
est cardinality of a dense subset of X . We will in fact proof a slightly stronger
statement, namely that

pc(X) ≤ d(X).

Let ε > 0 and let U be an ε-uniform cover of the metric space X . Set κ = d(X)
and let {dα : α < κ} be a dense subset of X . For each α < κ we consider the
following open set:

Vα = Bε(dα) \
⋃

β<α

Bε/5(dβ).

Since U is ε-uniform, for every α ∈ κ, there exists U ∈ U such that

Vα ⊆ Bε(dα) ⊆ U.

Consequently the family V = {Vα : α < κ} refines the cover U . We will show that
V is an ε/4-uniform cover of X with no point contained in κ elements of V .

Claim 1. The set V is an ε/4-uniform cover of X .

Proof: Fix x ∈ X and let α ≤ κ be minimal with d(x, dα) < ε/2. We will
show that Bε/4(x) ⊆ Vα. Indeed, for every z ∈ Bε/4(x) we have d(dα, z) <
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d(dα, x) + d(x, z) < ε/2 + ε/4 < ε, proving that z ∈ Bε(dα). For any β < α, we
have z /∈ Bε/4(dβ) as otherwise

d(x, dβ) ≤ d(x, z) + d(z, dβ) < ε/4 + ε/4 = ε/2,

contradicting the choice of α. This implies that z /∈
⋃

β<α Bε/4(dβ), hence

z /∈
⋃

β<α Bε/5(dβ). �

Claim 2. For each β < α < κ, Bε/5(dβ)
⋂

Vα = ∅.

Proof: This is a consequence of the construction of Vα. �

Claim 3. For each x ∈ X there are less than κ of the sets Vα containing x.

Proof: Let x ∈ X and β < κ be such that d(x, dβ) < ε/5. Then x ∈ Bε/5(dβ)
and by the previous claim, x /∈ Vα for any α > β. �

Summarizing, for any ε-uniform cover U of X , we constructed an ε/4-uniform
refinement V satisfying ord(V) ≤ κ = d(X). Thus pc(X) ≤ d(X), concluding the
proof of Part (ii) of Theorem 2. �

The proof of the first part follows closely the proof given in [11]. Instead of
using the existence of graphs with large chromatic number and arbitrary girth, we
give an explicit construction of appropriate graphs. This will allow us to eliminate
GCH. The proof is based on a combinatorial lemma which we state and prove in
Section 4.

Note that it is sufficient to prove the first part of Theorem 2 for successor
cardinals only. Indeed by contradiction, suppose θ is the least limit cardinal for
which the statement fails. Let then (Xi, di), for each i ∈ θ, be a metric space
satisfying pc(Xi) = |Xi|. Set X =

⋃

i∈θ Xi and define a metric d on X by setting
d(x, y) = di(x, y) if x, y belongs to the same Xi for some i, and d(x, y) = ∞
otherwise. It is clear that pc(X) = sup{pc(Xi) : i ∈ θ} = sup{|Xi| : i ∈ θ} = θ =
|X |.

It remains to prove the first part of Theorem 2 for all successor cardinal κ+.
In order to keep the exposition self-contained, we first present the elements of the
proof from [11] which we will use.

3. Preliminary results

3.1 An equivalent definition of the point character. Let (X, d) be a metric
space and let U ⊂ X . The diameter of U is defined by diam(U) = sup{d(x, y) :
x, y ∈ U}. A cover U of X is bounded if there exists b > 0 such that diam U < b
for all U ∈ U . We find convenient to use a variant to the definition of the point
character which we now give.

Proposition 2. Let (X, d) be a metric space. The point character pc(X) is

the least infinite cardinal α such that for every b > 0, there exists a b-bounded

uniform cover U with no point of X in α sets of U .
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Proof of Proposition 2: Let us write pc∗(X) = min{β : ∀ b > 0, ∃U , b-
bounded uniform cover with ord(U) < β}. With this notation, our goal is to
show that pc(X) = pc∗(X). We will first show that pc∗(X) ≤ pc(X) and then
that pc(X) ≤ pc∗(X).

Suppose pc(X) ≤ α. Fix b > 0 and let U be a b-bounded uniform cover of X .
Let V be a uniform refinement of U satisfying ord(V) ≤ α. Then V is also b-
bounded and every point of X belongs to less than α members of V , proving
pc∗(X) ≤ α.

Conversely, suppose pc∗(X) ≤ α and let U be an arbitrary ε-uniform cover
of X . Choose b = ε. Since pc∗(X) ≤ α, there exists an ε-bounded uniform cover
V with every point of X in less than α members of V . We will observe that V
refines U and thus pc(X) ≤ α. Indeed, let V ∈ V and v ∈ V . Since diam(V ) ≤ ε,
V ⊆ B(v, ε). On the other hand, since U is ε-uniform we also have B(v, ε) ⊆ U
for some U ∈ U . Hence V ⊆ B(v, ε) ⊆ U . In other words, the cover V refines U
and thus pc(X) ≤ α. �

Let X be a metric space. According to Proposition 2, pc(X) > α if there exists
b > 0 such that every b-bounded uniform cover of U covers a point of X at least
α times. We will use this fact in the proof of Proposition 3.

3.2 Graphs and point character. We recall some standard definition from
graph theory. A graph is a couple (V, E), where V = V (G) is the set of vertices

and E = E(G) is a subset of the set of unordered pairs of V . The elements of E
are called the edges of the graph. A sequence of vertices xi, 1 ≤ i ≤ n, such that
for every 1 ≤ i ≤ n, {xi, xi+1} is an edge of G is called a path of length n. Given
two vertices x and y of a graph G, the distance between x and y is the smallest
integer n, if it exists, such that there is a path of length n from x to y. We then
write dG(x, y) = n and dG(x, y) = ∞ if no such path exist. The neighborhood of
a vertex x ∈ V is the set N(x) = {y ∈ V : {x, y} ∈ E}. The elements of N(x) are
called the neighbors of x.

A vertex coloring of G is a map c : V → C, where C is any set. The elements
of C are called colors . A vertex coloring c of a graph G will be called n-bounded

if any pair of vertices x and y satisfying dG(x, y) ≥ n are colored differently by c.
More formally:

Definition 2. Let n ∈ N and let G = (V, E) be a graph. A vertex coloring
c : V → C is n-bounded if for every pair of vertices x and y,

dG(x, y) ≥ n =⇒ c(x) 6= c(y).

We now give the definition of the point character of a graph, resembling the
definition of the point character of a metric space as in Proposition 2:

Definition 3. Let G be a graph, n ∈ N and κ a cardinal. We will say the nth point
character of G is bigger than κ and we write pcn(G) > κ if for every n-bounded
vertex coloring c : V → C there exists a vertex x0 of G with |c(N(x0))| ≥ κ.
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Let (Gn)n∈N be a sequence of connected graphs on disjoint sets of vertices. We
define a metric space (X, d) by setting X =

⋃

n∈N
V (Gn) and, for any x, y ∈ X ,

d(x, y) = 1
ndGn

(x, y) if x, y ∈ V (Gn) for some n, and d(x, y) = ∞ if no such n
exists.

The following result was proved in [11].

Proposition 3. Let κ be a cardinal. Suppose (Gn)n∈N is a sequence of connected

graphs on disjoint sets of vertices such that pcn(Gn) > κ holds. Then the point

character of the space (X, d) is bigger than κ.

Proof: Let U be a 1-bounded ǫ-uniform covering of X . For every x ∈ X , choose
Ux ∈ U with the property that B(x, ǫ) ⊂ Ux. This defines a mapping ϕ : X → U .
Choose n0 sufficiently large so the 1/n0 < ǫ. If x, y ∈ V (Gn0

),

dGn0
(x, y) ≥ n0 =⇒ ϕ(x) 6= ϕ(y).

Consequently, there exists a vertex x0 ∈ V (Gn0
) such that |ϕ(N(x0))| ≥ κ. Since

dGn0
(x0, y) ≤ 1 implies d(x0, y) < ǫ, x0 is contained in at least κ members

of U . �

With the above proposition in mind and in order to prove Theorem 2, Part (i),
it is sufficient to show the existence of a graph Gn satisfying |V (Gn)| = κ+

and pcn(Gn) > κ, for every n ∈ N and infinite cardinal κ. Indeed, under this
assumption, the space X as defined above has cardinality |

⋃

n∈N
V (Gn)| = κ+

and satisfies pc(X) > κ. As mentioned in the introduction, the point character of
a metric space does not exceed its cardinality, and thus |X | = pc(X) = κ+. The
next section is devoted to the combinatorial lemma which implies the existence
of graphs (Gn)n∈N with pcn(Gn) > κ.

4. The combinatorial lemma

The construction of the graphs Gn is based on the following:

Lemma 1. Assume that 1 ≤ n < ω and f : [κ+]n → κ+ is a function such that

if x1 < x2 < · · · < xn < κ+ then

|{f(y1, . . . , yn) : x1 < y1 < x2 < y2 < · · · < xn < yn}| < κ.

Then there exist x1 < x2 < · · · < xn < y1 < y2 < · · · < yn with

f(x1, . . . , xn) = f(y1, . . . , yn).

We prove the following stronger statement.

Theorem 3. Assume that 1 ≤ n < ω and the function F : [κ+]n → [κ+]<κ be

such that for all {x1, x2, · · · , xn} ∈ [κ+]n

(i) F (x1, x2, · · · , xn) 6= 0, and

(ii) |
⋃

{y1,...,yn}{F (y1, . . . , yn) : x1 < y1 < x2 < y2 < · · · < xn < yn}| < κ.
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Then there is a ξ such that for every α < κ+ there are

α < y1 < y2 < · · · < yn < κ+

with ξ ∈ F (y1, . . . , yn).

Proof of Lemma 1: Indeed, given f as in Lemma 1, set

F (x1, . . . , xn) = {f(y1, . . . , yn) : x1 < y1 < x2 < y2 < · · · < xn < yn < κ+}

for x1 < x2 < · · · < xn < κ+. Then (ii) holds for F , so there is ξ as in Theorem 3.
Apply the statement with α = 0 and get x1 < · · · < xn with f(x1, x2, . . . , xn) = ξ,
and then apply the statement with α = xn and get xn < y1 < y2 < · · · < yn with
f(y1, y2, . . . , yn) = ξ.

Proof of Theorem 3: We prove the statement by induction on n.
Assume first that n = 1. Then F is a function from κ+ such that F (α) is

always a nonempty subset of κ+ with |F (α)| < κ and
∣

∣

∣

⋃

{F (α) : α < κ+}
∣

∣

∣

< κ.

Obviously, some value must be taken κ+ times.
Assume that we proved the result for n and F is a function, satisfying (i) and

(ii), on the (n + 1)-tuples of κ+.
Let 0 /∈ Y ⊆ κ+ be a subset of cardinality κ+ with no consecutive elements.

Notice that F restricted to Y still satisfies (i) and (ii).
What we have gained is that whenever y1 < y2 < · · · < yn are in Y then

x1 < y1 < x2 < y2 < · · · < xn < yn < xn+1

where x1 = 0, xi+1 = yi + 1 (1 ≤ i ≤ n), and so, by (ii), we get

(∗)
∣

∣

∣

⋃

{F (y1, y2, . . . , yn, y) : yn < y ∈ Y }
∣

∣

∣

< κ.

We now identify Y with κ+, i.e., assume that both (ii) and (∗) hold for F .
Set

A(y1, . . . , yn) =
⋃

{F (y1, . . . , yn, y) : yn < y < κ+}.

For y1 < y2 < · · · < yn < κ+ define the set F ∗(y1, . . . , yn) as follows. ξ ∈
F ∗(y1, y2, . . . , yn) if there are arbitrarily large y < κ+ with ξ ∈ F (y1, y2, . . . , yn, y).

Claim 4. F ∗(y1, y2, . . . , yn) 6= ∅ (y1 < y2 < · · · < yn < κ+).

Proof: For each y with yn < y < κ+, F (y1, . . . , yn, y) is a nonempty subset of
A(y1, y2, . . . , yn) with |A(y1, y2, . . . , yn)| < κ. As we choose κ+ times a nonempty
subset of some set of cardinality less than κ, some element of A(y1, y2, . . . , yn)
must be chosen κ+ times. �

Notice that, as |A(y1, y2, . . . , yn)| < κ, we always have |F ∗(y1, y2, . . . , yn)| < κ.
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Claim 5. If x1 < x2 < · · · < xn < κ+, then

∣

∣

∣

⋃

{F ∗(y1, y2, . . . , yn) : x1 < y1 < x2 < y2 < · · · < xn < yn}
∣

∣

∣
< κ.

Proof: Assume that this does not hold. Then we can choose a set A,

A ⊆
⋃

{F ∗(y1, y2, . . . , yn) : x1 < y1 < x2 < y2 < · · · < xn < yn}

with |A| = κ.

For each ξ ∈ A pick yξ
1 < yξ

2 < · · · < yξ
n with

x1 < yξ
1 < x2 < yξ

2 < · · · < xn < yξ
n

such that ξ ∈ F ∗(yξ
1, . . . , y

ξ
n).

Choose xn+1 with xn+1 > sup{yξ
n : ξ ∈ A} and for each ξ ∈ A choose yξ

n+1

with yξ
n+1 > xn+1 such that

ξ ∈ F (yξ
1, y

ξ
2, . . . , y

ξ
n, yξ

n+1).

Then A, a set of cardinality κ, is a subset of

⋃

{F (y1, y2, . . . , yn+1) : x1 < y1 < · · · < xn+1 < yn+1},

which by (ii) has cardinality less than κ, a contradiction. �

From Claim 5 we can conclude the proof of Theorem 2: if ξ is such that there
are arbitrarily large y1 < y2 < · · · < yn < κ+ with ξ ∈ F ∗(y1, . . . , yn), then there
are arbitrarily large y1 < y2 < · · · < yn < yn+1 with ξ ∈ F (y1, . . . , yn, yn+1). �

5. The graphs Gn

Let κ+ be an infinite cardinal and let n ∈ N. We define V (Gn) = [κ+]n. Given
v = (v1, v2, · · · , vn) and w = (w1, w2, · · · , wn) both in [κ+]n, we set

{v, w} ∈ E(Gn) ⇐⇒ v1 < w1 < v2 < · · · < vn < wn.

We will show that pcn(Gn) > κ.
Indeed, let ϕ : V (Gn) → C be an n-bounded coloring. We need to show that

there exists v ∈ V (G) such that |ϕ(N(v))| ≥ κ. Suppose such a v does not exist.
Then for every (v1, v2, · · · , vn) ∈ V (Gn) we have |{ϕ(w1, w2, · · · , wn) : v1 < w1 <
· · · < vn < wn}| < κ. According to Lemma 1, this implies that there exists
v = (v1, v2, · · · , vn) and w = (w1, w2, · · · , wn) ∈ V (Gn) such that ϕ(v) = ϕ(w)
and v1 < v2 < · · · < vn < w1 < · · · < wn, contradicting the assumption that ϕ is
n-bounded.

Consequently, the graph Gn satisfies |V (Gn)| = κ+ and pcn(Gn) > κ, conclud-
ing the proof of Theorem 2.
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[3] Erdös P., Galvin F., Hajnal A., On set-systems having large chromatic number and not

containing prescribed subsystems, Infinite and Finite Sets (A. Hajnal, R. Rado, V.T. Sós,
Eds.), North Holland, 1976, pp. 425–513.

[4] Stone A.H., Paracompactness and Product Spaces, Bull. Amer. Math. Soc. 54 (1948), 977–
982.

[5] Stone A.H., Universal Space for some Metrizable Uniformities, Quart. J. Math. 11 (1960),
105–115.

[6] Isbell J.R., Uniform Spaces, Mathematical Surveys, 12, American Mathematical Society,
Providence, RI, 1964.

[7] J. Pelant, Cardinal reflections and point-character of uniformities, Seminar Uniform Spaces
(Prague, 1973–1974), Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149–158.

[8] J. Pelant, Uniform metric spaces, Seminar Uniform Spaces 1975-1977 directed by Z. Froĺık,
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