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On Jordan ideals and derivations in rings with involution

LAHCEN OUKHTITE

Abstract. Let R be a 2-torsion free x-prime ring, d a derivation which commutes
with * and J a *-Jordan ideal and a subring of R. In this paper, it is shown
that if either d acts as a homomorphism or as an anti-homomorphism on J, then
d=0or JC Z(R). Furthermore, an example is given to demonstrate that the
x-primeness hypothesis is not superfluous.
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1. Introduction

Throughout this paper, R will denote an associative ring with center Z(R).
We will write for all z,y € R, [z,y] = 2y —yx and z oy = zy + yx for the Lie
product and Jordan product, respectively. R is 2-torsion free if whenever 2z = 0,
with € R, then x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. If R admits
an involution %, then R is *-prime if aRb = aRb* = 0 yields a = 0 or b = 0. Note
that every prime ring having an involution * is #-prime but the converse is in
general not true. Indeed, if R° denotes the opposite ring of a prime ring R, then
R x R° equipped with the exchange involution ., defined by *..(x,y) = (y,x),
is *¢z-prime but not prime. This example shows that every prime ring can be
injected in a x-prime ring and from this point of view *-prime rings constitute a
more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if uor € J,
for all w € J and » € R. A Jordan ideal J which satisfies J* = J is called a
x-Jordan ideal. An additive mapping d : R — R is called a derivation if d(zy) =
d(x)y + xzd(y) holds for all z,y in R. A derivation d commutes with an involution
« if d(r*) = (d(r))* for all r € R. A derivation d acts as a homomorphism
(resp. as an anti-homomorphism) on a subset S of R, if d(zy) = d(x)d(y) (resp.
d(xzy) = d(y)d(x)), for all z,y € S. In [2], Bell and Kappe proved that if d is
a derivation of a prime ring R which acts as a homomorphism or as an anti-
homomorphism on a nonzero right ideal I of R, then d = 0. This result was
extended by Asma et al. [1] to square closed Lie ideals of 2-torsion free prime
rings. Indeed, they showed that if d is a derivation of a 2-torsion free prime ring
R which acts as a homomorphism or an anti-homomorphism on a nonzero square
closed Lie ideal U of R, then either d = 0 or U C Z(R). In the year 2007, the
author et al. [3] established the analogous result for Lie ideals of *-prime rings.

389



390 L. Oukhtite

In this paper, our attempt is to extend the result of [2] to Jordan ideals of rings
with involution.

2. The results

Throughout, (R, *) will be a 2-torsion free ring with involution and Sa.(R) :=
{r € R/r* = £r} the set of symmetric and skew symmetric elements of R.

Lemma 1 ([5, Lemma 2.4]). If R is a ring and J a nonzero Jordan ideal of R,
then 2[R, R)J C J and 2J[R,R] C J.

Lemma 2. Let R be a 2-torsion free x-prime ring and J a nonzero *-Jordan ideal
of R. If aJb=a*Jb=0, then a =0 or b= 0.

PROOF: Assume that a # 0. Since 2[R, R]J C J by Lemma 1, then 2alr, s]jb =0
for all r,s € R, j € J. This implies that

(1) afr,s]jb=10 forall r,seR, jeE.J
Replacing s by sa in (1), because of ajb = 0, we find that asarjb = 0 and thus
(2) aRarjb=0 forall re R, j€ J.

On the other hand, from a*Jb = 0 it follows that a*[r, sa]jb = 0, which leads to
a*sarjb =0 for all r, s € R and therefore

(3) a*Rarjb=0 forall r€ R, j€J.

From equations (2) and (3), because of a # 0, the *-primeness of R yields arjb =0
for all r € R, j € J. Accordingly

(4) aRjb=0 forall jeJ.
Writing sa* instead of s in (1), because of a*Jb = 0, we get asa*rjb =0 so that
(5) aRa*rjb=0 forall r€ R, j € J.

In view of a*Jb = 0, we find that a*[r, sa*]jb = 0 and thus a*sa*rjb = 0 for all
r,s € R, 7 € J. Hence

(6) a*Ra*rjb=0 forall reR, jeJ

Using (5) and (6), because of a # 0, the *-primeness of R yields a*rjb = 0 and
therefore

(7) a*Rjb=0 forall jeJ

Again, because of equations (4) and (7), *-primeness of R assures that jb = 0 for
all j € J. Whence it follows that

8) Jb = 0.
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From (j or)b =0, by view of (8), we get jrb =0 for all r € R, j € J and thus
9) jRb=0 forall jeJ.
Since J is invariant under *, from (9) it follows that
(10) J*Rb=0 forall je.J

Using the *-primeness of R, because of J # 0, equations (9) and (10) assure that
b=0. O

Lemma 3. Let R be a 2-torsion free x-prime ring and J a nonzero x-Jordan ideal
of R. If [J,J] =0, then J C Z(R).

PRrROOF: From [2z[r, s],y] = 0 it follows that [z[r, s],y] = 0 and thus z[[r, s],y] =0
forall ;s € R, z,y € J. Hence

(11) J[r,s],y] =0 forall rseR, ye.J

Since equation (11) is analogous to equation (8), arguing as in the proof of
Lemma 2, we arrive at

(12) [[r,s],y) =0 forall r,seR, ye.J.

Replacing s by sr in (12) we get

(13) [r,s][r,y] =0 forall r,s€ R, yec.J

Writing zs instead of s in (13), where z € J, we obtain [r, z]s[r,y] = 0 and thus
(14) [r,z]R[r,y] =0 forall z,y€ J, r € R.

Since J* = J, replacing y by y* in (14), we get

(15) [r,z]R[r,y*] =0 forall z,ye€ J, r€R.

Let r € Sa.(R). From equation (15) it follows that

(16) [r,z]R[r,y]" =0 for all x,y € J.

Using (14) together with (16), the x-primeness of R forces [r,z] =0 for all x € J.
Accordingly

(17) [r,z] =0 for all r € Sa.(R), x € J.

Let r € R; since r — r* € Sa.(R), (17) yields [r —r*,z] = 0 for all z € J and
therefore

(18) [r,z] = [r*,z] forall reR, z€J
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Substituting r* for r in (15) and using (18) we obtain [r, z]R[r*,y*] = 0 for all
z,y € J, r € R, which leads to

(19) [r,z]R[r,y]* =0 forall z,y e J, r€R.

Using the #-primeness of R, equations (14) and (19) assure that [r, 2] = 0 for all
r € R, x € J, proving that J C Z(R). O

Lemma 4. Let R be a 2-torsion free x-prime ring and J a nonzero x-Jordan ideal
of R. If d is a derivation of R such that d(J) =0, then d =0 or J C Z(R).

PROOF: From d(j or) = 0 it follows that

(20) jd(r)+d(r)j =0 forall jeJ, reR.

Substituting rs for  in (20) and using (20) we find that

(21) d(r)ls,j] + [4,r]d(s) =0 forall r,se€ R, jeJ

Replacing s by g in (21), where g € J, the fact that d(g) = 0 yields

(22) d(r)[g,j] =0 forall g,j € J, r €R.

Writing 7t instead of r in (22), where t € R, we obtain d(r)t[g, j] = 0 and thus
(23) d(r)R[g,j] =0 forall g,5€J, r €R.

Since J* = J, from (23) it follows that

(24) d(r)R[g,j]* =0 forall g,5€ J, r €R.

Applying the *-primeness of R, because of equations (23) and (24), we conclude
that d(r) = 0 for all » € R or [g,j] = 0 for all g,j € J. Hence either d = 0 or
[J,J] = 0 and therefore J C Z(R) by Lemma 3. O

Theorem 1. Let R be a 2-torsion free x-prime ring, d a derivation which com-
mutes with x and J a nonzero x-Jordan ideal and a subring of R. If d acts as a
homomorphism or as an anti-homomorphism on J, then d =0 or J C Z(R).

PROOF: Assume that d(zy) = d(z)d(y) for all x,y € J. Then
(25) d(z)y + zd(y) = d(x)d(y) for all z,y € J.

Replacing y by yz in (25) and using (25) we obtain (d(z) — z)yd(z) = 0 for all
x,y,z € J and thus

(26) (d(z) —x)Jd(z) =0 forall =,z € J.
Since d commutes with * and J* = J, (26) yields

(27) (d(z) —x)Jd(z)* =0 forall z,z € J.
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Applying Lemma 2, from (26) and (27) it follows that d(z) = 0 for all z € J or
dz) =z for all z € J.

If d(z) = « for all € J, then from d(zy) = zy we find, because of 2-torsion
freeness, that xy = 0 for all z,y € J. Since z(r oy) = 0, we get zry = 0 for all
z,y € J, r € R, whence it follows that

(28) xRy =0=xRy* forall z,y € J.

Applying Lemma 2, equation (28) contradicts the fact that 0 # J. Hence, d(z) = 0
for all z € J so that d(J) = 0 and, by Lemma 4, d =0 or J C Z(R).
Let us now assume that d acts as an anti-homomorphism on J. Then

(29) d(y)d(z) = d(x)y + xd(y) for all z,y € J.
Replacing x by zy in (29) we arrive at
(30) d(y)zd(y) = zyd(y) for all =,y € J.

Substituting zz for = in (30) and using (30) we get [d(y), z]zd(y) = 0 in such a
way that

(31) [d(y),z]Jd(y) =0 for all y,z € J.
Since d commutes with x, because of Lemma 2, equation (31) implies that
for all y € JNSa.(R) either d(y) =0 or [d(y),z] =0 forall z¢€ J.

Let y € J. Since y* —y € JN Sa.(R), we have d(y* —y) = 0 or [d(y* —y), J] = 0.
If d(y* —y) = 0, as d commutes with #, then d(y) € Sa.(R) and equation (31)
implies that d(y) = 0 or [d(y), J] = 0.
If [d(y* —y), J] = 0, then [d(y*), z] = [d(y), 2] for all z € J. Substituting y* for
y in (31) we arrive at

(32) [d(y), z]Jd(y*) =0 for all z e J.
Since d commutes with x, (32) becomes
(33) [d(y),z]J(d(y))* =0 forall ze J.

In view of equations (31) and (33), Lemma 2 yields d(y) = 0 or [d(y),J] = 0. In
conclusion, we have d(y) = 0 or [d(y),J] =0 for all y € J.

Let us consider J; = {y € J /d(y) =0} and J2 = {y € J/[d(y),J] = 0}; it is
clear that J; and J, are additive subgroups of J such that J = J; U J>. But a
group cannot be a union of two of its proper subgroups so that J = J; or J = Js.
If J = Jp, then d(J) = 0 and Lemma 4 forces d =0 or J C Z(R).
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Suppose that J = J5. Then
(34) [d(x),y] =0 for all z,y € J.
Replacing x in (34) by zy we get
(35) z[d(y),y] + [z,y]d(y) =0 for all z,y € J.
Substituting zx for x in (35) we obtain [z, y]zd(y) = 0 and thus
(36) [z,y]Jd(y) =0 for all y,z € J.

Reasoning as above, equation (36) leads to d(y) = 0 or [y, J] = 0 for all y € J.
Consider Uy = {y € J/d(y) =0} and Uz = {y € J /[y, J] = 0}; clearly U; and
U, are additive subgroups of J such that J = U; U Us and therefore J = Uy or
J =U,y. If J =U, then d(J) = 0 and Lemma 4 forces d = 0 or J C Z(R). If
J = Us, then [J,J] = 0 and Lemma 3 yields J C Z(R). O

The following example proves the necessity of the x-primeness hypothesis in
Theorem 1.

Example 1. Let S be a ring such that the square of each element in S is zero,
but the product of some elements in S is nonzero. Further, suppose that R =
{(5Y):z,yeStand J = {(J¥):yeS}. Consider x : R — R defined by
(§ o) = (7" Zy); it is easy to verify that * is an involution. Moreover, if we
set 7 = (§Y), where s # 0, then using sus = 0 for all v € S we find that
aRa = 0 = aRa* proving that R is a non *-prime ring. Furthermore, the map
d: R — R defined by d(g¥%) = (39) is a derivation which commutes with
*. Moreover, J is a *-Jordan ideal and a subring of R such that d acts as a
homomorphism as well as an anti-homomorphism on J; but neither d = 0 nor J
is central. Indeed, if r = (§9) and j = (J ), with sw # 0, then [j,7] # 0. Hence,

the hypothesis of *-primeness in Theorem 1 is crucial.

Using the fact that a #-prime ring which admits a nonzero central *-ideal must
be commutative (see [4], proof of Theorem 1.1), Theorem 1 yields the following
result.

Theorem 2. Let R be a 2-torsion free x-prime ring, d a nonzero derivation com-
muting with x and I a nonzero x-ideal of R. If either d acts as a homomorphism
or as an anti-homomorphism on I, then R is commutative.
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