
Comment.Math.Univ.Carolin. 51,3 (2010) 389–395 389

On Jordan ideals and derivations in rings with involution

Lahcen Oukhtite

Abstract. Let R be a 2-torsion free ∗-prime ring, d a derivation which commutes
with ∗ and J a ∗-Jordan ideal and a subring of R. In this paper, it is shown
that if either d acts as a homomorphism or as an anti-homomorphism on J , then
d = 0 or J ⊆ Z(R). Furthermore, an example is given to demonstrate that the
∗-primeness hypothesis is not superfluous.
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1. Introduction

Throughout this paper, R will denote an associative ring with center Z(R).
We will write for all x, y ∈ R, [x, y] = xy − yx and x ◦ y = xy + yx for the Lie
product and Jordan product, respectively. R is 2-torsion free if whenever 2x = 0,
with x ∈ R, then x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. If R admits
an involution ∗, then R is ∗-prime if aRb = aRb∗ = 0 yields a = 0 or b = 0. Note
that every prime ring having an involution ∗ is ∗-prime but the converse is in
general not true. Indeed, if Ro denotes the opposite ring of a prime ring R, then
R ×Ro equipped with the exchange involution ∗ex, defined by ∗ex(x, y) = (y, x),
is ∗ex-prime but not prime. This example shows that every prime ring can be
injected in a ∗-prime ring and from this point of view ∗-prime rings constitute a
more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if u ◦ r ∈ J ,
for all u ∈ J and r ∈ R. A Jordan ideal J which satisfies J∗ = J is called a
∗-Jordan ideal. An additive mapping d : R → R is called a derivation if d(xy) =
d(x)y +xd(y) holds for all x, y in R. A derivation d commutes with an involution
∗ if d(r∗) = (d(r))∗ for all r ∈ R. A derivation d acts as a homomorphism
(resp. as an anti-homomorphism) on a subset S of R, if d(xy) = d(x)d(y) (resp.
d(xy) = d(y)d(x)), for all x, y ∈ S. In [2], Bell and Kappe proved that if d is
a derivation of a prime ring R which acts as a homomorphism or as an anti-
homomorphism on a nonzero right ideal I of R, then d = 0. This result was
extended by Asma et al. [1] to square closed Lie ideals of 2-torsion free prime
rings. Indeed, they showed that if d is a derivation of a 2-torsion free prime ring
R which acts as a homomorphism or an anti-homomorphism on a nonzero square
closed Lie ideal U of R, then either d = 0 or U ⊆ Z(R). In the year 2007, the
author et al. [3] established the analogous result for Lie ideals of ∗-prime rings.
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In this paper, our attempt is to extend the result of [2] to Jordan ideals of rings
with involution.

2. The results

Throughout, (R, ∗) will be a 2-torsion free ring with involution and Sa∗(R) :=
{r ∈ R/ r∗ = ± r} the set of symmetric and skew symmetric elements of R.

Lemma 1 ([5, Lemma 2.4]). If R is a ring and J a nonzero Jordan ideal of R,

then 2[R, R]J ⊆ J and 2J [R, R] ⊆ J .

Lemma 2. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal

of R. If aJb = a∗Jb = 0, then a = 0 or b = 0.

Proof: Assume that a 6= 0. Since 2[R, R]J ⊆ J by Lemma 1, then 2a[r, s]jb = 0
for all r, s ∈ R, j ∈ J . This implies that

(1) a[r, s]jb = 0 for all r, s ∈ R, j ∈ J.

Replacing s by sa in (1), because of ajb = 0, we find that asarjb = 0 and thus

(2) aRarjb = 0 for all r ∈ R, j ∈ J.

On the other hand, from a∗Jb = 0 it follows that a∗[r, sa]jb = 0, which leads to
a∗sarjb = 0 for all r, s ∈ R and therefore

(3) a∗Rarjb = 0 for all r ∈ R, j ∈ J.

From equations (2) and (3), because of a 6= 0, the ∗-primeness of R yields arjb = 0
for all r ∈ R, j ∈ J . Accordingly

(4) aRjb = 0 for all j ∈ J.

Writing sa∗ instead of s in (1), because of a∗Jb = 0, we get asa∗rjb = 0 so that

(5) aRa∗rjb = 0 for all r ∈ R, j ∈ J.

In view of a∗Jb = 0, we find that a∗[r, sa∗]jb = 0 and thus a∗sa∗rjb = 0 for all
r, s ∈ R, j ∈ J . Hence

(6) a∗Ra∗rjb = 0 for all r ∈ R, j ∈ J.

Using (5) and (6), because of a 6= 0, the ∗-primeness of R yields a∗rjb = 0 and
therefore

(7) a∗Rjb = 0 for all j ∈ J.

Again, because of equations (4) and (7), ∗-primeness of R assures that jb = 0 for
all j ∈ J . Whence it follows that

(8) Jb = 0.
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From (j ◦ r)b = 0, by view of (8), we get jrb = 0 for all r ∈ R, j ∈ J and thus

(9) jRb = 0 for all j ∈ J.

Since J is invariant under ∗, from (9) it follows that

(10) j∗Rb = 0 for all j ∈ J.

Using the ∗-primeness of R, because of J 6= 0, equations (9) and (10) assure that
b = 0. �

Lemma 3. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal

of R. If [J, J ] = 0, then J ⊆ Z(R).

Proof: From [2x[r, s], y] = 0 it follows that [x[r, s], y] = 0 and thus x[[r, s], y] = 0
for all r, s ∈ R, x, y ∈ J . Hence

(11) J [[r, s], y] = 0 for all r, s ∈ R, y ∈ J.

Since equation (11) is analogous to equation (8), arguing as in the proof of
Lemma 2, we arrive at

(12) [[r, s], y] = 0 for all r, s ∈ R, y ∈ J.

Replacing s by sr in (12) we get

(13) [r, s][r, y] = 0 for all r, s ∈ R, y ∈ J.

Writing xs instead of s in (13), where x ∈ J , we obtain [r, x]s[r, y] = 0 and thus

(14) [r, x]R[r, y] = 0 for all x, y ∈ J, r ∈ R.

Since J∗ = J , replacing y by y∗ in (14), we get

(15) [r, x]R[r, y∗] = 0 for all x, y ∈ J, r ∈ R.

Let r ∈ Sa∗(R). From equation (15) it follows that

(16) [r, x]R[r, y]∗ = 0 for all x, y ∈ J.

Using (14) together with (16), the ∗-primeness of R forces [r, x] = 0 for all x ∈ J .
Accordingly

(17) [r, x] = 0 for all r ∈ Sa∗(R), x ∈ J.

Let r ∈ R; since r − r∗ ∈ Sa∗(R), (17) yields [r − r∗, x] = 0 for all x ∈ J and
therefore

(18) [r, x] = [r∗, x] for all r ∈ R, x ∈ J.
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Substituting r∗ for r in (15) and using (18) we obtain [r, x]R[r∗, y∗] = 0 for all
x, y ∈ J , r ∈ R, which leads to

(19) [r, x]R[r, y]∗ = 0 for all x, y ∈ J, r ∈ R.

Using the ∗-primeness of R, equations (14) and (19) assure that [r, x] = 0 for all
r ∈ R, x ∈ J , proving that J ⊆ Z(R). �

Lemma 4. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal

of R. If d is a derivation of R such that d(J) = 0, then d = 0 or J ⊆ Z(R).

Proof: From d(j ◦ r) = 0 it follows that

(20) jd(r) + d(r)j = 0 for all j ∈ J, r ∈ R.

Substituting rs for r in (20) and using (20) we find that

(21) d(r)[s, j] + [j, r]d(s) = 0 for all r, s ∈ R, j ∈ J.

Replacing s by g in (21), where g ∈ J , the fact that d(g) = 0 yields

(22) d(r)[g, j] = 0 for all g, j ∈ J, r ∈ R.

Writing rt instead of r in (22), where t ∈ R, we obtain d(r)t[g, j] = 0 and thus

(23) d(r)R[g, j] = 0 for all g, j ∈ J, r ∈ R.

Since J∗ = J , from (23) it follows that

(24) d(r)R[g, j]∗ = 0 for all g, j ∈ J, r ∈ R.

Applying the ∗-primeness of R, because of equations (23) and (24), we conclude
that d(r) = 0 for all r ∈ R or [g, j] = 0 for all g, j ∈ J . Hence either d = 0 or
[J, J ] = 0 and therefore J ⊆ Z(R) by Lemma 3. �

Theorem 1. Let R be a 2-torsion free ∗-prime ring, d a derivation which com-

mutes with ∗ and J a nonzero ∗-Jordan ideal and a subring of R. If d acts as a

homomorphism or as an anti-homomorphism on J , then d = 0 or J ⊆ Z(R).

Proof: Assume that d(xy) = d(x)d(y) for all x, y ∈ J . Then

(25) d(x)y + xd(y) = d(x)d(y) for all x, y ∈ J.

Replacing y by yz in (25) and using (25) we obtain (d(x) − x)yd(z) = 0 for all
x, y, z ∈ J and thus

(26) (d(x) − x)Jd(z) = 0 for all x, z ∈ J.

Since d commutes with ∗ and J∗ = J , (26) yields

(27) (d(x) − x)Jd(z)∗ = 0 for all x, z ∈ J.



On Jordan ideals and derivations in rings with involution 393

Applying Lemma 2, from (26) and (27) it follows that d(z) = 0 for all z ∈ J or
d(x) = x for all x ∈ J .

If d(x) = x for all x ∈ J , then from d(xy) = xy we find, because of 2-torsion
freeness, that xy = 0 for all x, y ∈ J . Since x(r ◦ y) = 0, we get xry = 0 for all
x, y ∈ J , r ∈ R, whence it follows that

(28) xRy = 0 = xRy∗ for all x, y ∈ J.

Applying Lemma 2, equation (28) contradicts the fact that 0 6= J . Hence, d(z) = 0
for all z ∈ J so that d(J) = 0 and, by Lemma 4, d = 0 or J ⊆ Z(R).

Let us now assume that d acts as an anti-homomorphism on J . Then

(29) d(y)d(x) = d(x)y + xd(y) for all x, y ∈ J.

Replacing x by xy in (29) we arrive at

(30) d(y)xd(y) = xyd(y) for all x, y ∈ J.

Substituting zx for x in (30) and using (30) we get [d(y), z]xd(y) = 0 in such a
way that

(31) [d(y), z]Jd(y) = 0 for all y, z ∈ J.

Since d commutes with ∗, because of Lemma 2, equation (31) implies that

for all y ∈ J ∩ Sa∗(R) either d(y) = 0 or [d(y), z] = 0 for all z ∈ J.

Let y ∈ J . Since y∗− y ∈ J ∩Sa∗(R), we have d(y∗− y) = 0 or [d(y∗ − y), J ] = 0.
If d(y∗ − y) = 0, as d commutes with ∗, then d(y) ∈ Sa∗(R) and equation (31)

implies that d(y) = 0 or [d(y), J ] = 0.
If [d(y∗ − y), J ] = 0, then [d(y∗), z] = [d(y), z] for all z ∈ J . Substituting y∗ for

y in (31) we arrive at

(32) [d(y), z]Jd(y∗) = 0 for all z ∈ J.

Since d commutes with ∗, (32) becomes

(33) [d(y), z]J(d(y))∗ = 0 for all z ∈ J.

In view of equations (31) and (33), Lemma 2 yields d(y) = 0 or [d(y), J ] = 0. In
conclusion, we have d(y) = 0 or [d(y), J ] = 0 for all y ∈ J .

Let us consider J1 = {y ∈ J / d(y) = 0} and J2 = {y ∈ J / [d(y), J ] = 0}; it is
clear that J1 and J2 are additive subgroups of J such that J = J1 ∪ J2. But a
group cannot be a union of two of its proper subgroups so that J = J1 or J = J2.
If J = J1, then d(J) = 0 and Lemma 4 forces d = 0 or J ⊆ Z(R).
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Suppose that J = J2. Then

(34) [d(x), y] = 0 for all x, y ∈ J.

Replacing x in (34) by xy we get

(35) x[d(y), y] + [x, y]d(y) = 0 for all x, y ∈ J.

Substituting zx for x in (35) we obtain [z, y]xd(y) = 0 and thus

(36) [z, y]Jd(y) = 0 for all y, z ∈ J.

Reasoning as above, equation (36) leads to d(y) = 0 or [y, J ] = 0 for all y ∈ J .
Consider U1 = {y ∈ J / d(y) = 0} and U2 = {y ∈ J / [y, J ] = 0}; clearly U1 and
U2 are additive subgroups of J such that J = U1 ∪ U2 and therefore J = U1 or
J = U2. If J = U1, then d(J) = 0 and Lemma 4 forces d = 0 or J ⊆ Z(R). If
J = U2, then [J, J ] = 0 and Lemma 3 yields J ⊆ Z(R). �

The following example proves the necessity of the ∗-primeness hypothesis in
Theorem 1.

Example 1. Let S be a ring such that the square of each element in S is zero,
but the product of some elements in S is nonzero. Further, suppose that R =
{( x y

0 x
) : x, y ∈ S} and J =

{(

0 y

0 0

)

: y ∈ S
}

. Consider ∗ : R −→ R defined by

( u v

0 u )
∗

=
(

−u −v

0 −u

)

; it is easy to verify that ∗ is an involution. Moreover, if we
set r = ( s 0

0 s
), where s 6= 0, then using sus = 0 for all u ∈ S we find that

aRa = 0 = aRa∗ proving that R is a non ∗-prime ring. Furthermore, the map
d : R −→ R defined by d ( x y

0 x
) =

(

0 y

0 0

)

is a derivation which commutes with
∗. Moreover, J is a ∗-Jordan ideal and a subring of R such that d acts as a
homomorphism as well as an anti-homomorphism on J ; but neither d = 0 nor J
is central. Indeed, if r = ( s 0

0 s
) and j = ( 0 w

0 0
), with sw 6= 0, then [j, r] 6= 0. Hence,

the hypothesis of ∗-primeness in Theorem 1 is crucial.

Using the fact that a ∗-prime ring which admits a nonzero central ∗-ideal must
be commutative (see [4], proof of Theorem 1.1), Theorem 1 yields the following
result.

Theorem 2. Let R be a 2-torsion free ∗-prime ring, d a nonzero derivation com-

muting with ∗ and I a nonzero ∗-ideal of R. If either d acts as a homomorphism

or as an anti-homomorphism on I, then R is commutative.
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