On Jordan ideals and derivations in rings with involution

LAHCEN OUKHTITE

Abstract. Let R be a 2-torsion free *-prime ring, d a derivation which commutes with * and J a *-Jordan ideal and a subring of R. In this paper, it is shown that if either d acts as a homomorphism or as an anti-homomorphism on J, then d = 0 or $J \subseteq Z(R)$. Furthermore, an example is given to demonstrate that the *-primeness hypothesis is not superfluous.

Keywords: *-prime rings, Jordan ideals, derivations

Classification: 16W10, 16W25, 16U80

1. Introduction

Throughout this paper, R will denote an associative ring with center Z(R). We will write for all $x, y \in R$, [x, y] = xy - yx and $x \circ y = xy + yx$ for the Lie product and Jordan product, respectively. R is 2-torsion free if whenever 2x = 0, with $x \in R$, then x = 0. R is prime if aRb = 0 implies a = 0 or b = 0. If R admits an involution *, then R is *-prime if $aRb = aRb^* = 0$ yields a = 0 or b = 0. Note that every prime ring having an involution * is *-prime but the converse is in general not true. Indeed, if R^o denotes the opposite ring of a prime ring R, then $R \times R^o$ equipped with the exchange involution $*_{ex}$, defined by $*_{ex}(x, y) = (y, x)$, is $*_{ex}$ -prime but not prime. This example shows that every prime ring can be injected in a *-prime ring and from this point of view *-prime rings constitute a more general class of prime rings.

An additive subgroup J of R is said to be a Jordan ideal of R if $u \circ r \in J$, for all $u \in J$ and $r \in R$. A Jordan ideal J which satisfies $J^* = J$ is called a *-Jordan ideal. An additive mapping $d: R \to R$ is called a derivation if d(xy) =d(x)y + xd(y) holds for all x, y in R. A derivation d commutes with an involution * if $d(r^*) = (d(r))^*$ for all $r \in R$. A derivation d acts as a homomorphism (resp. as an anti-homomorphism) on a subset S of R, if d(xy) = d(x)d(y) (resp. d(xy) = d(y)d(x)), for all $x, y \in S$. In [2], Bell and Kappe proved that if d is a derivation of a prime ring R which acts as a homomorphism or as an antihomomorphism on a nonzero right ideal I of R, then d = 0. This result was extended by Asma et al. [1] to square closed Lie ideals of 2-torsion free prime rings. Indeed, they showed that if d is a derivation of a 2-torsion free prime ring R which acts as a homomorphism or an anti-homomorphism on a nonzero square closed Lie ideal U of R, then either d = 0 or $U \subseteq Z(R)$. In the year 2007, the author et al. [3] established the analogous result for Lie ideals of *-prime rings. In this paper, our attempt is to extend the result of [2] to Jordan ideals of rings with involution.

2. The results

Throughout, (R, *) will be a 2-torsion free ring with involution and $Sa_*(R) := \{r \in R | r^* = \pm r\}$ the set of symmetric and skew symmetric elements of R.

Lemma 1 ([5, Lemma 2.4]). If R is a ring and J a nonzero Jordan ideal of R, then $2[R, R]J \subseteq J$ and $2J[R, R] \subseteq J$.

Lemma 2. Let R be a 2-torsion free *-prime ring and J a nonzero *-Jordan ideal of R. If $aJb = a^*Jb = 0$, then a = 0 or b = 0.

PROOF: Assume that $a \neq 0$. Since $2[R, R]J \subseteq J$ by Lemma 1, then 2a[r, s]jb = 0 for all $r, s \in R, j \in J$. This implies that

(1)
$$a[r,s]jb = 0 \text{ for all } r, s \in R, j \in J.$$

Replacing s by sa in (1), because of ajb = 0, we find that asarjb = 0 and thus

(2)
$$aRarjb = 0$$
 for all $r \in R, j \in J$

On the other hand, from $a^*Jb = 0$ it follows that $a^*[r, sa]jb = 0$, which leads to $a^*sarjb = 0$ for all $r, s \in R$ and therefore

(3)
$$a^*Rarjb = 0$$
 for all $r \in R, j \in J$.

From equations (2) and (3), because of $a \neq 0$, the *-primeness of R yields arjb = 0 for all $r \in R$, $j \in J$. Accordingly

(4)
$$aRjb = 0$$
 for all $j \in J$.

Writing sa^* instead of s in (1), because of $a^*Jb = 0$, we get $asa^*rjb = 0$ so that

(5)
$$aRa^*rjb = 0$$
 for all $r \in R, j \in J$.

In view of $a^*Jb = 0$, we find that $a^*[r, sa^*]jb = 0$ and thus $a^*sa^*rjb = 0$ for all $r, s \in R, j \in J$. Hence

(6)
$$a^*Ra^*rjb = 0$$
 for all $r \in R, j \in J$.

Using (5) and (6), because of $a \neq 0$, the *-primeness of R yields $a^*rjb = 0$ and therefore

(7)
$$a^*Rjb = 0$$
 for all $j \in J$.

Again, because of equations (4) and (7), *-primeness of R assures that jb = 0 for all $j \in J$. Whence it follows that

$$(8) Jb = 0.$$

From $(j \circ r)b = 0$, by view of (8), we get jrb = 0 for all $r \in R$, $j \in J$ and thus

(9)
$$jRb = 0$$
 for all $j \in J$.

Since J is invariant under *, from (9) it follows that

(10)
$$j^*Rb = 0$$
 for all $j \in J$.

Using the *-primeness of R, because of $J \neq 0$, equations (9) and (10) assure that b = 0.

Lemma 3. Let R be a 2-torsion free *-prime ring and J a nonzero *-Jordan ideal of R. If [J, J] = 0, then $J \subseteq Z(R)$.

PROOF: From [2x[r, s], y] = 0 it follows that [x[r, s], y] = 0 and thus x[[r, s], y] = 0 for all $r, s \in \mathbb{R}, x, y \in J$. Hence

(11)
$$J[[r,s],y] = 0 \text{ for all } r,s \in R, y \in J.$$

Since equation (11) is analogous to equation (8), arguing as in the proof of Lemma 2, we arrive at

(12)
$$[[r,s],y] = 0 \text{ for all } r,s \in R, y \in J.$$

Replacing s by sr in (12) we get

(13)
$$[r,s][r,y] = 0 \text{ for all } r,s \in R, y \in J.$$

Writing xs instead of s in (13), where $x \in J$, we obtain [r, x]s[r, y] = 0 and thus

(14)
$$[r, x]R[r, y] = 0 \text{ for all } x, y \in J, r \in R.$$

Since $J^* = J$, replacing y by y^* in (14), we get

(15)
$$[r, x]R[r, y^*] = 0 \text{ for all } x, y \in J, r \in R.$$

Let $r \in Sa_*(R)$. From equation (15) it follows that

(16)
$$[r, x]R[r, y]^* = 0 \text{ for all } x, y \in J.$$

Using (14) together with (16), the *-primeness of R forces [r, x] = 0 for all $x \in J$. Accordingly

(17)
$$[r, x] = 0 \text{ for all } r \in Sa_*(R), x \in J.$$

Let $r \in R$; since $r - r^* \in Sa_*(R)$, (17) yields $[r - r^*, x] = 0$ for all $x \in J$ and therefore

(18)
$$[r, x] = [r^*, x] \text{ for all } r \in R, x \in J.$$

Substituting r^* for r in (15) and using (18) we obtain $[r, x]R[r^*, y^*] = 0$ for all $x, y \in J, r \in R$, which leads to

(19)
$$[r, x]R[r, y]^* = 0$$
 for all $x, y \in J, r \in R$.

Using the *-primeness of R, equations (14) and (19) assure that [r, x] = 0 for all $r \in R, x \in J$, proving that $J \subseteq Z(R)$.

Lemma 4. Let R be a 2-torsion free *-prime ring and J a nonzero *-Jordan ideal of R. If d is a derivation of R such that d(J) = 0, then d = 0 or $J \subseteq Z(R)$.

PROOF: From $d(j \circ r) = 0$ it follows that

(20)
$$jd(r) + d(r)j = 0$$
 for all $j \in J, r \in R$.

Substituting rs for r in (20) and using (20) we find that

(21)
$$d(r)[s,j] + [j,r]d(s) = 0$$
 for all $r, s \in R, j \in J$.

Replacing s by g in (21), where $g \in J$, the fact that d(g) = 0 yields

(22)
$$d(r)[g,j] = 0 \text{ for all } g, j \in J, r \in R.$$

Writing rt instead of r in (22), where $t \in R$, we obtain d(r)t[g, j] = 0 and thus

(23)
$$d(r)R[g,j] = 0 \text{ for all } g, j \in J, r \in R.$$

Since $J^* = J$, from (23) it follows that

(24)
$$d(r)R[g,j]^* = 0 \text{ for all } g,j \in J, r \in R.$$

Applying the *-primeness of R, because of equations (23) and (24), we conclude that d(r) = 0 for all $r \in R$ or [g, j] = 0 for all $g, j \in J$. Hence either d = 0 or [J, J] = 0 and therefore $J \subseteq Z(R)$ by Lemma 3.

Theorem 1. Let R be a 2-torsion free *-prime ring, d a derivation which commutes with * and J a nonzero *-Jordan ideal and a subring of R. If d acts as a homomorphism or as an anti-homomorphism on J, then d = 0 or $J \subseteq Z(R)$.

PROOF: Assume that d(xy) = d(x)d(y) for all $x, y \in J$. Then

(25)
$$d(x)y + xd(y) = d(x)d(y) \text{ for all } x, y \in J.$$

Replacing y by yz in (25) and using (25) we obtain (d(x) - x)yd(z) = 0 for all $x, y, z \in J$ and thus

(26)
$$(d(x) - x)Jd(z) = 0 \text{ for all } x, z \in J.$$

Since d commutes with * and $J^* = J$, (26) yields

(27)
$$(d(x) - x)Jd(z)^* = 0 \text{ for all } x, z \in J.$$

Applying Lemma 2, from (26) and (27) it follows that d(z) = 0 for all $z \in J$ or d(x) = x for all $x \in J$.

If d(x) = x for all $x \in J$, then from d(xy) = xy we find, because of 2-torsion freeness, that xy = 0 for all $x, y \in J$. Since $x(r \circ y) = 0$, we get xry = 0 for all $x, y \in J$, $r \in R$, whence it follows that

(28)
$$xRy = 0 = xRy^*$$
 for all $x, y \in J$.

Applying Lemma 2, equation (28) contradicts the fact that $0 \neq J$. Hence, d(z) = 0 for all $z \in J$ so that d(J) = 0 and, by Lemma 4, d = 0 or $J \subseteq Z(R)$.

Let us now assume that d acts as an anti-homomorphism on J. Then

(29)
$$d(y)d(x) = d(x)y + xd(y) \text{ for all } x, y \in J.$$

Replacing x by xy in (29) we arrive at

(30)
$$d(y)xd(y) = xyd(y) \text{ for all } x, y \in J.$$

Substituting zx for x in (30) and using (30) we get [d(y), z]xd(y) = 0 in such a way that

$$[d(y), z]Jd(y) = 0 \text{ for all } y, z \in J.$$

Since d commutes with *, because of Lemma 2, equation (31) implies that

for all
$$y \in J \cap Sa_*(R)$$
 either $d(y) = 0$ or $[d(y), z] = 0$ for all $z \in J$.

Let $y \in J$. Since $y^* - y \in J \cap Sa_*(R)$, we have $d(y^* - y) = 0$ or $[d(y^* - y), J] = 0$. If $d(y^* - y) = 0$, as d commutes with *, then $d(y) \in Sa_*(R)$ and equation (31)

implies that d(y) = 0 or [d(y), J] = 0.

If $[d(y^* - y), J] = 0$, then $[d(y^*), z] = [d(y), z]$ for all $z \in J$. Substituting y^* for y in (31) we arrive at

(32)
$$[d(y), z]Jd(y^*) = 0 \text{ for all } z \in J.$$

Since d commutes with *, (32) becomes

$$[d(y), z]J(d(y))^* = 0 \text{ for all } z \in J.$$

In view of equations (31) and (33), Lemma 2 yields d(y) = 0 or [d(y), J] = 0. In conclusion, we have d(y) = 0 or [d(y), J] = 0 for all $y \in J$.

Let us consider $J_1 = \{y \in J / d(y) = 0\}$ and $J_2 = \{y \in J / [d(y), J] = 0\}$; it is clear that J_1 and J_2 are additive subgroups of J such that $J = J_1 \cup J_2$. But a group cannot be a union of two of its proper subgroups so that $J = J_1$ or $J = J_2$. If $J = J_1$, then d(J) = 0 and Lemma 4 forces d = 0 or $J \subseteq Z(R)$. Suppose that $J = J_2$. Then

(34) $[d(x), y] = 0 \text{ for all } x, y \in J.$

Replacing x in (34) by xy we get

(35)
$$x[d(y), y] + [x, y]d(y) = 0$$
 for all $x, y \in J$.

Substituting zx for x in (35) we obtain [z, y]xd(y) = 0 and thus

(36)
$$[z, y]Jd(y) = 0 \text{ for all } y, z \in J.$$

Reasoning as above, equation (36) leads to d(y) = 0 or [y, J] = 0 for all $y \in J$. Consider $U_1 = \{y \in J / d(y) = 0\}$ and $U_2 = \{y \in J / [y, J] = 0\}$; clearly U_1 and U_2 are additive subgroups of J such that $J = U_1 \cup U_2$ and therefore $J = U_1$ or $J = U_2$. If $J = U_1$, then d(J) = 0 and Lemma 4 forces d = 0 or $J \subseteq Z(R)$. If $J = U_2$, then [J, J] = 0 and Lemma 3 yields $J \subseteq Z(R)$.

The following example proves the necessity of the *-primeness hypothesis in Theorem 1.

Example 1. Let S be a ring such that the square of each element in S is zero, but the product of some elements in S is nonzero. Further, suppose that $R = \{\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} : x, y \in S\}$ and $J = \{\begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix} : y \in S\}$. Consider $* : R \longrightarrow R$ defined by $\begin{pmatrix} u & v \\ 0 & u \end{pmatrix}^* = \begin{pmatrix} -u & -v \\ 0 & -u \end{pmatrix}$; it is easy to verify that * is an involution. Moreover, if we set $r = \begin{pmatrix} s & 0 \\ 0 & -u \end{pmatrix}$; where $s \neq 0$, then using sus = 0 for all $u \in S$ we find that $aRa = 0 = aRa^*$ proving that R is a non *-prime ring. Furthermore, the map $d : R \longrightarrow R$ defined by $d\begin{pmatrix} x & y \\ 0 & x \end{pmatrix} = \begin{pmatrix} 0 & y \\ 0 & 0 \end{pmatrix}$ is a derivation which commutes with *. Moreover, J is a *-Jordan ideal and a subring of R such that d acts as a homomorphism as well as an anti-homomorphism on J; but neither d = 0 nor J is central. Indeed, if $r = \begin{pmatrix} s & 0 \\ 0 & s \end{pmatrix}$ and $j = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, with $sw \neq 0$, then $[j, r] \neq 0$. Hence, the hypothesis of *-primeness in Theorem 1 is crucial.

Using the fact that a *-prime ring which admits a nonzero central *-ideal must be commutative (see [4], proof of Theorem 1.1), Theorem 1 yields the following result.

Theorem 2. Let R be a 2-torsion free *-prime ring, d a nonzero derivation commuting with * and I a nonzero *-ideal of R. If either d acts as a homomorphism or as an anti-homomorphism on I, then R is commutative.

References

- Ashraf M., Ali A., Rehman N., On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Math. Hungar. 101 (2003), 79–82.
- Bell H.E., Kappe L.C., Rings in which derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), 339–346.
- [3] Oukhtite L., Salhi S., Taoufiq L., σ-Lie ideals with derivations as homomorphisms and anti-homomorphisms, Int. J. Algebra 1 (2007), no. 5, 235–239.

- [4] Oukhtite L., Salhi S., On generalized derivations of σ -prime rings, Afr. Diaspora J. Math. 5 (2007), no. 1, 21–25.
- [5] Zaidi S.M.A., Ashraf M., Ali S., On Jordan ideals and left (θ, θ)-derivations in prime rings, Int. J. Math. Math. Sci. 2004 (2004), no. 37–40, 1957–1964.
- [6] Posner E.C., Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093–1100.

Université Moulay Ismaïl, Faculté des Sciences et Techniques, Département de Mathématiques, Groupe d'Algèbre et Applications, B.P. 509 Boutalamine, Errachidia; Maroc

E-mail: oukhtitel@hotmail.com

(Received January 31, 2010, revised March 25, 2010)