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On exit laws for subordinated

semigroups by means of C!-subordinators

MoHAMED HwMissi, EZZEDINE MLIKI

Abstract. We study the integral representation of potentials by exit laws in the
framework of sub-Markovian semigroups of bounded operators acting on L?(m).
‘We mainly investigate subordinated semigroups in the Bochner sense by means of
Cl-subordinators. By considering the one-sided stable subordinators, we deduce
an integral representation for the original semigroup.
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Introduction

Let P = (P;)~0 be a sub-Markovian semigroup of bounded operators on L?(m).
A P-exit law is a family ¢ = ()10 of L3 (m) satisfying the functional equation

(0.1) Psor = psit (s,t>0).

This notion is first introduced by Dynkin [6] in the framework of potential theory
without reference measure. Since, the integral representation of potentials by exit
laws was investigated in many papers (cf. [1], [7], [8] and [10]-[15]). Now, let
B = (B¢)t>0 be a Bochner subordinator, that is, a vaguely continuous convolution
semigroup of sub-probability measures on [0, +00[. The present paper is devoted
to the representation by PA-exit laws, where PP is the subordinated semigroup of
P by means of j, i.e.

(0.2) Ptﬁf = / P f Bi(ds) (f € L*(m),t > 0).

0
More precisely, we suppose that 3 is a Cl-subordinator (cf. 2.2 below) and we
prove the following integral representation: Let h be a PP-pseudo-potential, i.e.

h >0, Ptﬁh € L% (m), Ptﬁh < h, and lim; ¢ Pfh = h. Then there exists a unique
PA-exit law ¢ = (¢4 )s>0 such that

0.3) h= /OOO e ds,
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where 9 is explicitly given by

by = — / P(PJh) Bn(ds) (¢ > 0).
0

As an application, we obtain a representation of P-potentials in terms of P-exit
laws. Namely, let u be a P-potential, that is u is a P-pseudo-potential and Pu €
D(A), the domain in L?(m) of the L?(m)-generator A of P. Then there exist a
unique P-exit law ¢ = (p;)>0 satisfying

(0.4) u:/ s ds.
0

In fact, (0.4) is obtained from (0.3) by considering the one-sided stable subordi-
nator n® of order « €]0, 1[.

A similar problem is investigated in [14] by considering subordinators with
complete Bernstein functions instead of C!-subordinators.

1. Preliminaries

Let (E,&) be a standard measurable space and let m be a o-finite positive
measure on (E, ). We denote by L?(m) the Banach space of (classes of) square
integrable functions defined on E, by || - ||2 the associated norm and by L2 (m)
the m-a.e. non-negative elements of L?(m). Moreover, in the sequel, equality and
inequality holds always m-a.e. (i.e. almost everywhere with respect to m).

In this section we summarize some known results (cf. [2], [3], [5] and [17]-[19]).

1.1 Sub-Markovian semigroup. A bounded operator N : L?(m) — L*(m) is
said to be sub-Markovian if

(0<f<1) = (0KNf<1), feL*m).

In this case, N can be extended to a pseudo-kernel on (E, ) with respect to the
class of m-negligible sets. According to a regularization theorem ([5, XIII, 43]),
we can assume that N is a sub-Markovian kernel (i.e. N1 < 1) on (E,£).

Therefore, we can apply the potential theory defined by kernels (cf. [5] for
example), for such operators.

A sub-Markovian semigroup on E is a family P := (P;);>0 of sub-Markovian
bounded operators on L?(m) such that Py = I (the identity on E),

(1) PsP, = Psyy for all s, ¢ > 0,
(2) |Pul|2 < |lull2 for all t > 0 and u € L?(m),
(3) limy_g ||Pu — ulj2 = 0, for every u € L?(m).

Let P be a sub-Markovian semigroup on E. The associated L?(m)-generator A
is defined by

Af = lm 2(Puf ~ f)
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on its domain D(A) which is the set of all functions u € L?(m) for which this
limit exists in L2(m). It is known that

(1) D(A) is dense in L?(m) and A is closed,
(2) if uw € D(A) then Pou € D(A) and A(Pyu) = P, Au, for each ¢ > 0.

1.2 Potentials and exit laws. Let P be a sub-Markovian semigroup on L?(m).

A non-negative measurable function u is said to be P-excessive if
(i) P < wu for each t > 0,
(ii) lim;—o Piu = u, m-a.e.
A P-excessive function u is called a P-pseudo-potential if
(iii) Pu € L?(m) for every t > 0.
A P-excessive function u is called a P-potential if
(iv) Py € D(A) for every t > 0.

A P-ezit law is a family ¢ := (¢;)¢>0 of elements of L3 (m) satisfying the exit
equation:

(11) PSQDt = Qs+t (S,t > O)
In what follows, we consider P-exit laws satisfying
o0
(1.2) / ¢sds € L*(m) (t>0).
t
As it is discussed in our paper [16], condition (1.2) is in fact not restrictive.

The following general result gives a first relation between potentials and exit
laws.

Proposition 1.1. Let P be a sub-Markovian semigroup on L?(m) and let ¢ be
a P-exit law such that (1.2) holds. Then the function

oo
(1.3) u ::/ s ds
0
is a P-potential. Moreover, we have

PRrROOF: By Fubini’s Theorem and (1.1) we get

Ptuz/ PtstdSZ/ 90s+td3:/ s ds.
0 0 t

Therefore, P,u € L?*(m) by (1.2) and

(1.5) P = /00 s ds (t>0).

607
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Now from (1.5), we easily deduce that u is P-excessive. Moreover, by (1.5) again
we have, for r,t > 0

1 1 T+t
—(PT+tU*PtU):*—/ QDSdS
r T Jt

Hence Pyu € D(A) and AP,u = —p; for each ¢ > 0. O

Remarks 1.2. (1) In this paper, we will prove the converse of Proposi-
tion 1.1. Namely, each P-potential u admits an integral representation
by some P-exit law ¢ (i.e. such that (1.3) holds).

(2) From (1.4), we deduce immediately the unicity of the P-exit in the integral
representation (1.3).

(3) The representation by exit laws plays a fundamental role in the framework
of potential theory without Green function (cf. [6]-[8] and [10]).

(4) Under some regularity hypothesis on P, the condition P,u € D(A) for
t > 0, is always fulfilled (cf. [7], [8], [10]).

(5) In the next paragraph, we want first to investigate such representation
for subordinated semigroups by C!-subordinators.

(6) The proof of the following useful lemma is given in [16].

Lemma 1.3. Let P be a sub-Markovian semigroup on L?*(m) and let u be a
P-potential. For t > 0, let ¢; be defined by (1.4). Then ¢ = (¢¢)t>0 is a P-exit
law.

2. Representation for subordinated semigroup

2.1 Bochner subordination. For the following classical notions, we refer the
reader to [2], [3] and [16]-[18].

We consider R endowed with its Borel field, we denote by A the Lebesgue
measure on [0,00[ and by &; the Dirac measure at point ¢t. Moreover, for each
bounded measure 4 on [0,00[, £ denotes its Laplace transform, i.e. £(u)(r) :=

Iy~ exp(—rs) p(ds) for r > 0.

A Bochner subordinator is a family § := (8;)i>0 of sub-probability measures
on R such that

(1) for each t > 0, the measure [3; # €¢ and f; is supported by [0, oo,
(2) B * i = Buse for all s,¢ > 0,
(3) lim;—o B¢ = €0, vaguely.
In this case the associated potential measure is given by x := fooo Bsds. Tt is
known that  is a Borel measure (cf. [2, Proposition 14.1]).
Let P be a sub-Markovian semigroup and let 3 be a Bochner subordinator. For
every t > 0 and for every f € L?(m), we may define

(2.1) PPy = /OOO P.f Bi(ds) (¢t >0).
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Let Py = I, then P? := (P/),;~ is a sub-Markovian semigroup on L2(m). It is
said to be subordinated to P in the sense of Bochner by means of 5. We denote
by AP the associated generator.

The following two remarks will be used later.

(1) D(A) is a subset of D(A?) (cf. [17, p. 269] for example).
(2) Each P-potential is a PA-potential (for the proof, we can adapt those of
[3, p. 185]).

2.2 C!-subordinator. Let S be the Banach algebra of complex Borel measures
on [0, 00, with convolution as multiplication, and normed by the total variation
|- lls- A Bochner subordinator 8 = (3;)¢>0 is said to be a C'-subordinator pro-
vided

t — [ is continuously differentiable from ]0, oo[ to S and ||5;||s < oo for each
t>0.

This class of subordinators, is considered in [4]. For the following examples,
we will refer also to this paper.

(1) One-sided stable subordinator: For each o €]0,1[ and ¢ > 0, let n* be the
unique probability measure on [0, co[ such that £ (n)(r) = exp(—tr®) for

r > 0. Then n* := (9{)¢>0 is a convolution semigroup on [0, oo called
the one-sided stable subordinator of index o. n® is a C'-subordinator for
each a €]0,1][.

(2) Gamma subordinator: For t > 0, let g;(s) := 1jg oo[(s)(1/T(t)) s*~ exp(—s)
and B¢ := gt - A. Then v := (v%)t>0 is a subordinator, called the T'-
subordinator. Moreover 7 is a C!-subordinator.

(3) Compound Poisson subordinator: Let g be an arbitrary probability measure
on [0,00[ and let ¢ > 0. Put

- (ct)!
By i=e Z 5 4 (t>0),
§=0

where qo := g9 and ¢; := {q}*7. Then j is a C'-subordinator, called the
compound Poisson subordinator. Moreover, the Bernstein function of 3
is given by

k(r) = cL(eo — q)(r) (r>0).

This construction includes many explicitly known Bochner subordinators.
Thus, for ¢ = 1, we obtain the Poisson subordinator with jump c. Simi-
larly, for ¢ = Y57 (a-b)’ ¢j where 0 < b < 1 and ¢ = —log(b), we obtain

J=1" ¢
the negative Binomial subordinator.
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(4) Let (by)n>0 and (an)n>0 be any two sequences satisfying

o0
0<b,<1 ap,>0; lm b,=1; Zan < 0,
n—oo
n=0
and define k(r) = >°°7 ja,r’, r > 0. Then k is the Bernstein function
of some Bochner subordinator which is not a C!-subordinator.
(5) (g4 * Bt)i>0 is not a Cl-subordinator, even when f3 is a C!'-subordinator.
(6) If B, B2 are C!-subordinators then so is 3! * 32.

(7) Let 3 be a Cl-subordinator with Bernstein function f. Suppose that
I1B:|ls < ¢/t for some constant ¢ > 0 when ¢ | 0. f is bounded if and only
if 4 is a compound Poisson family.

Lemma 2.1. Let 8 be a C'-subordinator. Then

(2.2) Bare = 0. % By (s,t>0)
and
(2.3) Bi=—B, %k (t>0),

where 3, := 26, and r = [, B, dt.
PROOF: Let 8 be a Cl-subordinator. Since £(G;)(r) = exp(—tf(r)), by differen-

tiation with respect to ¢ under the integral sign, we obtain

04) L) = LB = ~fE)ep(—t]r) (> 0)

Let s,t,r > 0, using (2.4), we get

/

LB*Be)(r) = LB)T)LB)(T)

= —f(r)exp(=sf(r)) exp(~tf(r))
—f(r)e=(sTDFm)
= L(Buy)r)-

Similarly, we have

—L(B,)(r)L (k) (r)
f(r) exp(=sf(r)
= LB,

We deduce (2.2) and (2.3) by the injectivity of Laplace transform. O

L(=0, * K)(r)

1
f(r)
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Proposition 2.2. Let P be a sub-Markovian semigroup on L?(m), let 3 be a
C'-subordinator and let P? be the subordinated semigroup of P by means of 3.
Then P(L%(m)) C D(AP) and

(2.5) AP Py — / PufB(ds)  (t>0,ue L2(m)).
0
PROOF: Let 3 be a C'-subordinator. For each u € L?(m), we have
| [ Pusia)], < putelss >0

Therefore the function z — [;° Psu B;(ds), is well defined and lies in L2(m).
Moreover, following [4, Theorem 4], the differentiation with respect to ¢t under the
integral sign is justified in P’u and by (2.1) we have

/0 Pou Bi(ds) = %Pfu =A°PPu (t>0,ue L*(m)).

O

Theorem 2.3. Let P be a sub-Markovian semigroup on L?(m), let 3 be a C'-
subordinator and let P? be the subordinated semigroup of P by means of (3. For
each PP-pseudo-potential h, there exists a unique PP-exit law 1) = (1;)¢>0 such
that

(2.6) h= /OOO Vs ds,

where ) is explicitly given by

P = —/O Py(P[),h) B)5(ds) (¢ >0).

Moreover, if h € L% (m), then v is on the form

(2.7) by = — /Ooo P.hBi(ds)  (t>0).

PROOF: Let 8 be a Cl-subordinator and let & be a P?-pseudo-potential.
Step 1: We prove that h is a PP-potential. Indeed, for all s, > 0 we have

P&‘B-i-th = Psﬂ(Ptﬁh) € P(L*(m))

by hypothesis. Hence P” ".+h € D(AP) by Proposition 2.2. We conclude that for

all £ > 0 we have Pfh = Pt€2+t/2h € D(AP) and therefore h is a P?-potential.
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Step 2: From the first step we may define
(2.8) Y= —AP(PPR) (¢t >0).

If we apply Lemma 1.3 for P? instead of P, we deduce that 1 = (¢¢);~0 is a
PB-exit law.

Step 3: We prove the representation (2.6): For s,t > 0,

P2 h ::l/ (P h) By(dr)

<£>7/mawﬁMmMMW>

0

= [ Peatein )

0

- —AWAW P (PPR) B.(dr) B,(d0) dg

2.5 e
@5 _ / AP (Pﬁqpfh) dg
0

~ s
_ _A AP (Pfygy.h) dg

(2.8) e
= / Vitstqdq
0

o0

wq dg.
t+s

Therefore, we obtain the representation
(2.9) P’h = / Yods  (t>0)
t

in L?(m). Now, by letting ¢ | 0 in (2.9), we obtain (2.6).
Moreover if h € L2 (m), then (2.7) is immediate from (2.5) and (2.8). O
Remarks 2.4. Let P be a sub-Markovian semigroup on L?(m).

(1) Let 3 be a Cl-subordinator. From (2.9) and Proposition 1.1, we deduce
that each PP-pseudo-potential is a P?-potential.
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(2) Let h € L3 (m). By application of (2.7), we obtain the following formulas:
1
(1) If h is a P"7* -potential then

I Al s 2s° —s*
h=—— Pohr (1 —— — | drds.
el e () e () e

(ii) If h is a P7-potential then

= OOL h wfor " Lexp(—r)drds
h/o I‘(s)/o PJL(F(T) 1g> p(—r) drds.

3. Application to the original semigroup
For each a €]0, 1] let n* be the one-sided stable subordinator. Following [19,
p. 263], the measure 7{* has a density, denoted by p¢, with respect to A where
1 o0
pi(s) = — / r® exp(rscos@ — tr® cos af) sin(srsinf — tr sinaf + 0) dr
™ Jo
for all s,¢ > 0 and for some ¢ € [, 7].
Let g*(s) = 2p%(s) we have

oo
g (s) == — / exp(srcosf — tr* cosal) sin(srsinf — tr* sinabd + ab + 0)r dr
™ Jo

For all s,t > 0, we denote

Let u be a P-potential. Then u is a P?-potential and therefore Theorem 2.3 may
be applied for such function. In particular, if we take 8; = ny*, the one-sided
stable subordinator of index « €]0, 1], we obtain the following result:

Corollary 3.1. Let u be a P-potential. Then

(3.1) Ptuz/ Yhdr  (t>0),
0
where

(3.2) Pl = — /00 Psiiu g (s)ds (r>0).
0
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PROOF: Let u be a P-potential and let ¢t > 0 be fixed. Then P,u is a P-potential

and therefore a P"" -potential. Using Theorem 2.3, there exists a unique P -exit
law 9t = (%) s=0 such that

(3.3) P P :/ Ytdr (s> 0),

where 9. is given by (3.2). Letting s | 0 in (3.3), we obtain (3.1). O

Lemma 3.2. Let a €]0,1[. For eacht > 0, s — T%(s) is an increasing bounded
continuous function from 0, co| to [0,1]. Moreover for all s > 0, we have

(3.4) tlirgo T¢(s)=0
and
(3.5) }ir% T¢(s) = 1.

PROOF: The proof is adapted from [19, p. 263].
Since for all ¢ > 0, 7 is a probability measure on |0, co[, it follows that

5 o T3(s) = /Osn?(dr)

is an increasing bounded continuous function from ]0, oo[ into [0, 1].
On the other hand by the change of variables r = t~ /%, z = t'/%y, we get

1206) = [ s

L[ [ o . . :
— peerzcosftirteosal gin (hrsin @ — tr sin ab + ) dr dz
m™Jo Jo

1 %[ 2L Ot cos ol e s =
- vt @ vaeosbrtrtcosal g (14 g sin @ — v cosaf + 6) dv dz
m™Jo Jo

—1
1 st a 0o
@ . .
— / / p ety cos 0+vT cosad sin(uvsing — v cos af + 0) dv du
T Jo 0
—1

st a
| =150t 7).
0

Therefore (3.4) and (3.5) hold. O
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Lemma 3.3. Let a €]0,1[. Foreachs > 0,t — Y(s) is a differentiable function
on 10, co[. Moreover for all s > 0, we have

(3.6) AZ(s) = D0 (),
(3.7) /mAﬂgﬁ:—L
0
(3.8) lim A7 (s) = lim A7(s) =0 (t>0).

PROOF: Since t — p¢(s) is differentiable on [0, 0o[, using a derivation theorem
under the integral sign with respect to ¢, the function ¢ — Y(s) is differentiable

and
%Tﬁ@:%(ﬁ%ﬁ@@)=élﬂ@w=Aﬁﬂ

Hence (3.6) holds. Moreover by Lemma 3.2, we have
* 0 . ra e
| A (s)dt = | &Tt (s)dt = tlggo Ti(s) — }51(1) TH(s).

Therefore (3.7) holds.
If we take 0, = H—La’ then by the derivation theorem under the integral sign
with respect to ¢, we obtain

1 o
qi(s) = - /O rexp ((rs 4+ tr®) cosf,) sin ((sr — tr) sinby,) dr.

It follows that s — g¢*(s) is integrable on ]0,00[. Hence by differentiation of
S (ds) = [ p*(s) ds = 1 with respect to ¢, we obtain (3.8). O

Theorem 3.4. Let P be a sub-Markovian semigroup on L?(m). Then, for each
P-potential u there exists a unique P-exit law ¢ such that

(1.3) u:/ Vs ds.
0

PROOF: Let u be a P-potential. By Lemma 1.3, the family ¢ := (¢;)i>0 defined
by (1.4), i.e.

is a P-exit law.
On the other hand, there exists by Corollary 3.1, a unique P""-exit law 1t
(given by (3.2)) such that (3.1) holds. Using an integration by parts we obtain

o [%0 .
U= P A2+ [ Pt (5> 0)
0
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and by Lemma 3.2 we get

(3.9) Pl = _/0 Orpt AS (1) dr (s >0).

Now by (3.2), (3.10), (3.1) and Fubini’s Theorem we get

Pu = / / —prat AS(r) dr ds
o Jo
= / — Ot (/ A% (r) dr> ds
0 0
/ Prqt dr
0
= / ordr.
¢

We conclude as in the proof of Proposition 1.1. ([

Remark 3.5. In this paper, we have used a representation for the subordinated
structure (Theorem 2.3), in order to obtain a representation for the original one
(Theorem 3.4). A similar idea is already investigated in [9, Theorem 2].

REFERENCES

Bachar 1., On ezit laws for semigroups in weak duality, Comment. Math. Univ. Carolin.
42 (2001), no. 4, 711-719.

Berg C., Forst G., Potential Theory on Locally Compact Abelian Groups, Springer, Berlin-
Heidelberg-New York, 1975.

Bliedtner J., Hansen W., Potential Theory. An Analytic and Probabilistic Approach to
Balayage, Universitext, Springer, Berlin-Heidelberg-New York, 1986.

Carasso J., Kato T., On subordinated holomorphic semigroups, Trans. Amer. Math. Soc.
327 (1991), 867-878.

Dellacherie C., Meyer P.A., Probabilités et potentiel, Chapter XII-XVI, Hermann, Paris,
1987.

Dynkin E.B., Green’s and Dirichlet spaces associated with fine Markov process, J. Funct.
Anal. 47 (1982), 381-418.

Fitzsimmons P.J., Getoor R.K., On the potential theory of symmetric Markov processes,
Math. Ann. 281 (1988), 495-512.

Fitzsimmons P.J., Markov processes and nonsymmetric Markov processes without regular-
ity, J. Funct. Anal. 85 (1989), 287-306.

Glover M., Rao H., Sikic H., Song R., I'-potentials, classical and modern potential theory
and applications, Nato ASI Series, Series C Vol. 430, Kluwer Academic Publ., Dordrecht-
Boston-London, 1994, pp. 217-232.

Hmissi F., On energy formulas for symmetric semigroups, Ann. Math. Sil. 19 (2005), 7-18.
Hmissi M., Lois de sortie et semi-groupes basiques, Manuscripta Math. 75 (1992), 293-302.
Hmissi M., Sur la représentation par les lois de sortie, Math. Z. 213 (1993), 647-656.
Hmissi M., On the functional equation of exit laws for lattice semigroups, Rocznik Nauk.-
Dydakt. Prace Mat. No. 15 (1998), 63—71.



[14]
[15]
[16]
17]
18]

[19]

On exit laws for subordinated semigroups by means of C!-subordinators

Hmissi M., Mejri H., On representation by exit laws for some Bochner subordinated semi-
groups, Ann. Math. Sil. 22 (2008), 7-26.

Hmissi M., Mejri H., Mliki E., On the fractional powers of semidynamical systems, Grazer
Math. Ber. 351 (2007), 66-78.

Hmissi M., Mejri H., Mliki E., On the abstract exit equation, Grazer Math. Ber. 354 (2009),
84-98.

Jacob N., Pseudo Differential Operators and Markov Processes, Vol. 2: Generators and
their semigroups, Imperial College Press, London, 2003.

Sato K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Studies in Ad-
vanced Mathematics, 68, Cambridge University Press, Cambridge, 1999.

Yosida K., Functional Analysis, Springer, Heidelberg-New York, 1965.

DEPARTEMENT DE MATHEMATIQUES, FACULTE DES SCIENCES DE TUNIS, UNIVERSITE
DE TunNis EL MANAR, TN-2092 EL. MANAR TUNIS, TUNISIA

E-mail: Med.Hmissi@fst.rnu.tn

Ezzedine.Mliki@fst.rnu.tn

(Received December 10,2008, revised June 30,2010)

617



