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Functional separability

R. Levy, M. Matveev

Abstract. A space X is functionally countable (FC) if for every continuous f :

X → R, |f(X)| ≤ ω. The class of FC spaces includes ordinals, some trees,
compact scattered spaces, Lindelöf P-spaces, σ-products in 2κ, and some L-
spaces. We consider the following three versions of functional separability: X

is 1-FS if it has a dense FC subspace; X is 2-FS if there is a dense subspace
Y ⊂ X such that for every continuous f : X → R, |f(Y )| ≤ ω; X is 3-FS if
for every continuous f : X → R, there is a dense subspace Y ⊂ X such that
|f(Y )| ≤ ω. We give examples distinguishing 1-FS, 2-FS, and 3-FS and discuss
some properties of functionally separable spaces.
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1. Introduction

By a space we mean a Tychonoff topological space. A space is called func-

tionally countable (FC ) ([14], [17]) iff for every continuous function f : X → R,
f(X) is at most countable. It is not difficult to see that X is FC iff every second
countable continuous image of X is countable (A.V. Arhangel’skii calls spaces
with this property ω-simple, see [1], [2]). Moreover, X is FC iff every metrizable
image of X is countable. All functionally countable spaces are zero dimensional
and DCCC. (DCCC is the Discrete Countable Chain Condition. This means that
every discrete family of non empty open sets is at most countable. The other name
for this property is pseudo-ℵ1-compactness.) The class of FC spaces includes in
particular:

• all scattered compact spaces;
• all ordinals;
• all Lindelöf P-spaces (moreover, a P-space, i.e. a space in which all Gδ-

sets are open, is FC iff it is DCCC ([2, 2.7.7], or attributed to A.W. Hager
in [9, Proposition 3.2]));

• all trees without uncountable antichains [18];
• σ-products in 2κ;
• some L-spaces ([11], [12]).

Functional countability plays an important role in Cp-theory ([1], [2]) and in the
theory of rings of continuous functions ([3], [4], [5], [8], [14], [15], [17]).
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It is natural to ask which spaces have dense FC subspaces.

Definition 1. Say that X is:
1-FS if X has a dense FC subspace;
2-FS if there is a dense Y ⊂ X such that for every continuous f : X → R,

|f(Y )| ≤ ω;
3-FS if for every continuous f : X → R there is a dense Y ⊂ X such that

|f(Y )| ≤ ω.

We use FS as an abbreviation for Functionally Separable. The following impli-
cations are obvious:

separable

FC

��*
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-
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-
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-
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The term “functional separability” is already used in Mathematical Physics
(pointed out by the referee) and in DNA sequencing. However, we do not see a
more natural name for the group of properties we consider here. We believe that
using the same term in so distant areas will not lead to confusion.

In the next section we give examples distinguishing 1-FS, 2-FS and 3-FS. Then
we discuss some properties of functionally separable spaces.

2. Distinguishing examples

All examples are constructed as subspaces in 2κ for appropriate κ. The follow-
ing remark was made by John Kulesza after the second author’s talk on the topic
of [10]. It is included here with his kind permission.

Proposition 2 (J. Kulesza). Let κ be any cardinal and X a dense pseudocompact

subspace in 2κ. Then X is 3-FS.

Proof: Let f : X → R be continuous. We must find a dense D ⊂ X such that
f(D) is countable. Since X is a dense subspace in the product of second countable
spaces, there is a countable C ⊂ κ and a continuous function fC : πC(X) → R

such that f = fC ◦ πC . (Here πC : 2κ → 2C is the projection.) Pick a dense
countable DC ⊂ πC(X) and put D = π−1

C (DC) ∩ X . Then f(D) = fC(DC) is
countable. It remains to show that D is dense in X . Let ϕ be a finite partial
function from κ to 2. Put Cϕ = C ∪ dom(ϕ). DC is dense in πC(X) and thus in
2C there is ϕ̃ : Cϕ → 2 such that ϕ̃|dom(ϕ) = ϕ and ϕ̃|C ∈ D. Since X is dense
in 2κ and pseudocompact, there is xϕ ∈ X such that xϕ|Cϕ

= ϕ̃; in particular,
xϕ|dom(ϕ) = ϕ which proves that D is dense in 2κ and thus in X . �

Remark. The result is true if 2κ is replaced with a product of metrizable com-
pacta.
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It is worth mentioning here the following result from [10]: Every dense pseu-
docompact subspace of 2ω1 is 1-FS.

Proposition 3. There is a dense pseudocompact subspace X in 2c
+

such that

|X | = c
+, and for every uncountable Z ⊂ X there is a countable C ⊂ c

+ such

that πC(Z) is uncountable.

Proof: As in the well known Reznichenko construction [16], let Q =
⋃

{2B : B ⊂
c
+ and |B| ≤ ω}, and enumerate Q = {qα : c ≤ α < c

+}. Let c
+ =

⋃

{Cγ : c ≤
γ < c

+} be a partition such that each Cγ is countably infinite. For each γ with
c ≤ γ < c

+, well enumerate the points of 2Cγ as {yγ,α : α < γ}. For c ≤ α < c
+,

define xα ∈ 2c
+

by

xα(a) =











qα(a) if a ∈ dom(qα),

yγ,α(a) if a ∈ Cγ \ dom(qα) and α ≤ γ,

0 otherwise

(where a < c
+). Put X = {xα : α < c

+}. It follows from the first line in the
definition of the xα’s that for every countable B ⊂ c

+, πB(X) = 2B. Therefore,

X is dense in 2c
+

and pseudocompact.
Now let Z ⊂ X be uncountable. Pick Z0 ⊂ Z with |Z0| = ω1. Put E =

⋃

{dom(qα) : xα ∈ Z0} and α∗ = sup{α : xα ∈ Z0}. Then E ⊂ c
+, |E| = ω1, and

α∗ < c
+. Since there are c

+ many Cγ ’s, there is γ∗ < c
+ such that γ∗ ≥ α∗, and

E does not meet Cγ∗ . Then for all xα ∈ Z0 and all a ∈ Cγ∗ , xα(a) is calculated
following the second line in the definition of the xα’s. It follows that the projection
of Z0 to 2Cγ∗ is one to one and thus πCγ∗

(Z) is uncountable. �

Example 4. There is a 3-FS space which is not 2-FS.

Indeed, X from Proposition 3 is 3-FS by Proposition 2. On the other hand,

if D is a dense subspace of X then D is dense in 2c
+

and thus uncountable.
By Proposition 3, there is a countable C ⊂ c

+ such that πC(D) is uncountable.
This means that D continuously maps onto an uncountable subset of a second
countable space 2C . So X is not 2-FS. �

Example 5. There is a 2-FS space which is not 1-FS.

Let X ⊂ 2c
+

be from Example 4 and let S be a σ-product in 2c
+

disjoint from
X . Let L(ω1) be ω1 + 1 with the one-point Lindelöfication topology (all points
other than ω1 are isolated; a basic neighborhood of ω1 takes the form L(ω1) \ C
where C is arbitrary countable subset of ω1). Put Y = (X × {ω1}) ∪ (S × ω1)

(considered as a subspace of 2c
+

× L(ω1).)

Then Y is not 1-FS. Indeed, Let D be a dense subspace of Y . Then D̃ =
D ∩ (X × {ω1}) is at most countable (because every uncountable subset of X

has uncountable projection to some countable face in 2c
+

). It follows that D̃

is nowhere dense in 2c
+

× {ω1}. Therefore, there is a basic open set K in 2c
+
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such that K × {ω1} does not meet D̃. Put DK = D ∩ (K × L(ω1)). If D were
functionally countable, then so would be its clopen subspace DK . However, since

DK ∩ (2c
+

×{ω1}) = ∅, DK is the discrete union of uncountably many non empty

subsets DK ∩ (2c
+

× {α}) where 0 ≤ α < ω1. So DK cannot be functionally
countable and neither is D.

Now we show that Y is 2-FS. The subspace D = S × ω1 is dense in Y . Let
f : Y → R be continuous. We will show that f(D) is at most countable. Put

Ỹ = Y ∪ (S × {ω1}) = (X × {ω1}) ∪ (S × A(ω1)). Since X is dense in 2c
+

and pseudocompact, every continuous function from X to R continuously extends

to 2c
+

. It follows that f |X×{ω1} extends to a continuous function f ′ : (X ∪ S) ×

{ω1} → R. Define f̃ : Ỹ → R by

f̃(x) =

{

f(x) if x ∈ Y,

f ′(x) if x ∈ (X ∪ S) × {ω1}.

We claim that f̃ is continuous. We have to show that (*) for every x ∈ Ỹ and

every ε > 0 there is a neighborhood U of x in Ỹ such that for every y ∈ U ,
|f(y) − f(x)| < ε. For x ∈ X × {ω1}, (*) follows from the fact that both f and
f ′ are continuous and agree at x. For x ∈ S × ω1, (*) follows from the fact that

S × ω1 is open in Ỹ and f̃ |S×ω1
= f |S×ω1

. Now consider x ∈ S × {ω1}. Since
f ′ is continuous at x, there is a neighborhood W of x in (X ∪ S) × {ω1} such
that |f ′(y) − f ′(x)| < ε/3 for all y ∈ W . For every y = 〈y0, ω1〉 ∈ W ∩ (X × ω1)

there are a neighborhood Vy of y0 in 2c
+

and an ordinal αy < ω1 such that
(Vy ∩ (X ∪S))×{ω1} ⊂ W and for every z ∈ (Vy × (αy, ω1))∩ Y , |f(z)− f(y)| <
ε/3. Since X ∪ S is CCC, there is a countable T ⊂ W ∩ (X × ω1) such that
(∪y∈T Vy) ∩ (X × ω1) is dense in W ∩ (X × ω1). Put α∗ = supy∈T αy. Then

α∗ < ω1. Put U = {〈z, α〉 ∈ Ỹ : 〈z, ω1〉 ∈ W and α∗ < α ≤ ω1}. Then U is a

neighborhood of x in Ỹ . It is easy to see that U satisfies (*). So f̃ is continuous.

Being a σ-product in 2c
+

, S is a countable union of scattered compact spaces.
L(ω1) is a scattered Lindelöf space. So S×L(ω1) is a countable union of scattered

Lindelöf spaces, and hence functionally countable [9]. So f(D) = f̃(D) ⊂ f̃(S ×
L(ω1)) is at most countable. �

For completeness, we shall give one more simple example.

Example 6. For every κ ≥ ω1, there is a dense subspace X ⊂ 2κ which is not
3-FS.

Let Y = {yα : ω ≤ α < ω1} be a subspace of 2ω such that all yα’s are distinct,
and every basic open set in 2ω contains uncountably many yα’s. For each α with
ω ≤ α < ω1, put Xα = {x ∈ 2κ : x(γ) = yα(γ) for γ < ω and x(γ) = 0 for
α < γ < ω1}. Put X =

⋃

{Xα : ω ≤ α < ω1}. It is easy to see that X is dense
in 2κ.
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We claim that X is not 3-FS. Consider the projection πω : X → 2ω. Then for
any countable C ⊂ πω(X), π−1

ω (C) is not dense in 2κ and thus not dense in X .
Indeed, put α∗ = sup{α : yα ∈ C} + 1. Then x(α∗) = 0 for all x ∈ π−1

ω (C). �

3. Which spaces are functionally separable?

Here we give only some partial answers to this many-faceted question. It is
not difficult to see that a σ-product in any product of countable spaces can be
represented as a countable union of scattered compact spaces. Since scattered
compact spaces are FC, and FC is obviously preserved by countable unions and
continuous images, we get the following:

Theorem 7. Every product of separable spaces is 1-FS.

Corollary 8. Every dyadic compactum is 1-FS.

In the case κ ≤ c, Proposition 2 can be generalized in the following way. Recall
that a space has a σ-centered base iff it is homeomorphic to a dense subspace of
a separable space; moreover, X has a σ-centered base iff βX is separable [6].

Proposition 9. A pseudocompact space with a σ-centered base is 3-FS.

Proof: Let X be a pseudocompact space with a σ-centered base, and let f : X →
R be continuous. Since X is pseudocompact, f is bounded and thus extends to a
continuous function βf : βX → R. Let C be a dense countable subspace of βX .
Put Y = (βf)−1(βf(C)) ∩ X . Then Y ⊂ X , and f(Y ) is at most countable.
That Y is dense in X follows from a simple lemma which may be considered
folklore. �

Lemma 10. Let X be a dense pseudocompact subspace of Z and let g : Z → R

be continuous. Then for every z ∈ Z, z ∈ g−1(g(z)) ∩ X.

Pseudocompactness cannot be omitted in Proposition 9: see Example 6.
Recall that by a theorem of Noble and Ulmer [13], if in the product X =

∏

{Xα : α ∈ A} all finite subproducts are DCCC, then X is DCCC, and every
continuous function from X to R depends on countably many coordinates. It
is easy to see that if all finite subproducts are 3-FS then so are all countable
subproducts. So we get

Proposition 11. If in the product X =
∏

{Xα : α ∈ A} all finite subproducts

are 3-FS, then X is 3-FS.

Further, since the Lindelöf P-property is finitely productive and implies FC we
get

Proposition 12. Every product of Lindelöf P-spaces is 3-FS.

In contrast with the generality of Theorem 7 and other results above, it is worth
noting that functional separability is not preserved by finite products. Let X be
ω1 with the order topology and Y the one-point Lindelöfication of the discrete
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space of cardinality ω1. Then both X and Y are FC while the product X × Y
contains an uncountable discrete space as a clopen subset (hence X × Y is not
even 3-FS). This example was mentioned in American Mathematical Monthly [7]
as the answer to the problem whether FC is finitely productive.

We conclude the section with two special cases: LOTS, and pseudocompact
spaces.

Proposition 13. A CCC LOTS is 3-FS.

Proof: Let X be a CCC LOTS and let f : X → R be continuous. Put T =
{r ∈ R : Int(f−1({r})) 6= ∅}. Then |T | ≤ ω. Put Y = f−1(T ). Let B be a
countable base for R. For every B ∈ B fix a countable family UB of closed intervals
such that f−1(B) =

⋃

UB (this is possible because CCC LOTS are hereditarily
Lindelöf). So if B ∈ B and U ∈ UB, then U = [lU , rU ] for some lU , rU ∈ X . Put
Z = {lU , rU : U ∈ UB, B ∈ B} and D = Y ∪ Z. Then |f(D)| ≤ ω.

We claim that D is dense in X . Let O ⊂ X be a nonempty open set. If O∩Y 6=
∅ then we are done, so assume O ∩ Y = ∅. Pick x ∈ O. Let {Bn : n ∈ ω} ⊂ B
be a decreasing base of neighborhoods of r = f(x). For each n pick Un so that
x ∈ Un ∈ UBn

. Then H = ∩{Un : n ∈ ω} is a nowhere dense convex set, so
1 ≤ |H | ≤ 2. Then either {lUn

: n ∈ ω} or {rUn
: n ∈ ω} is a sequence of elements

of D converging to x. �

Proposition 14. Let X be pseudocompact. Then the following conditions are

equivalent:

(1) X is 3-FS;

(2) βX is 3-FS;

(3) every compactification of X is 3-FS;

(4) some compactification of X is 3-FS.

Proof: (1)⇒(2)⇒(3)⇒(4) is obvious. (4)⇒(1) follows from Lemma 10. �

Not all compact spaces are functionally separable: βω \ ω is not 3-FS. Indeed,
let f be a continuous mapping from βω \ω onto [0, 1]. Since all Gδ-sets in βω \ω
have nonempty interior, any dense subset Y ⊂ βω \ ω must intersect all fibers of
X and thus f(Y ) = [0, 1] is uncountable. This fact can be generalized. Recall
that X is a P′-space if all non empty Gδ-sets in X have non empty interior.

Proposition 15. If a P′-space X is 3-FS, then X is FC.
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