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On evolutionary Navier-Stokes-Fouriertype systems in three spatial dimensionsMiroslav Bul���
ek, Roger Lewandowski, Josef M�alekAbstra
t. In this paper, we establish the large-data and long-time existen
e ofa suitable weak solution to an initial and boundary value problem driven by asystem of partial di�erential equations 
onsisting of the Navier-Stokes equationswith the vis
osity � polynomially in
reasing with a s
alar quantity k that evolvesa

ording to an evolutionary 
onve
tion di�usion equation with the right handside �(k)jDDD(v)j2 that is merely L1-integrable over spa
e and time. We alsoformulate a 
onje
ture 
on
erning regularity of su
h a solution.Keywords: large data existen
e, suitable weak solution, Navier-Stokes-Fourierequations, in
ompressible 
uid, the vis
osity in
reasing with a s
alar quantity,regularity, turbulent kineti
 energy modelClassi�
ation: 35Q30, 35Q35, 76F601. Introdu
tionLet 
 � R3 be an open bounded set and T 2 (0;1). Our goal is to prove theexisten
e of a triple (v; k; p) : (0; T )�
! R3�R+�R whi
h solves, in (0; T )�
,the following nonlinear system of �ve partial di�erential equationsdiv v = 0;(1.1) v;t + div(v 
 v)� div (�(k)DDD(v)) = �rp;(1.2) k;t + div(kv)� div (�(k)rk) + "(k) = �(k)jDDD(v)j2:(1.3)We 
omplete the system (1.1){(1.3) by the following initial and boundary 
ondi-tions: v(0; x) = v0(x)k(0; x) = k0(x) and k0(x) � 0 a.e. in 
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ek, R. Lewandowski, J. M�alekv � n = 0�v� + (1� �) (�(k)DDD(v)n)� = 0 on (0; T )� �
;(1.5) k = 0 on (0; T )� �
D;(1.6) rk � n = 0 on (0; T )� �
N :(1.7)Here, DDD(v) denotes the symmetri
 part of the gradient of the ve
tor �eld v, i.e.,2DDD(v) = rv + (rv)T , n = n(x) is the outer normal to the boundary lo
atedat x 2 �
, w� := w � (w � n)n denotes the proje
tion of a ve
tor w = w(x)to the tangent plane of the boundary at x, �
D and �
N are smooth subset of�
 satisfying �
D [ �
N = �
 and �
D \ �
N = ;. The parameter � 2 [0; 1℄homotopi
ally 
onne
ts a homogeneous Neumann type boundary 
ondition for� = 0 with the homogeneous Diri
hlet boundary 
ondition for � = 1. If 0 < � < 1,then (1.5)2 is 
alled Navier's slip boundary 
onditions. In this paper we assumethat � is any number from [0; 1).Con
erning the fun
tions �; �; " : R+ ! R+ , we require that they are 
ontin-uous and that for 
ertain �; �; 
 2 [0;1) and two positive 
onstants C1; C2 thefollowing inequalities hold for all k 2 R+ :C1(1 + k)� � �(k) � C2(1 + k)�;C1(1 + k)� � �(k) � C2(1 + k)� ;C1k1+
 � "(k) � C2k1+
 :(1.8)Within the framework of weak solutions the term on the right hand side of (1.3)is not easy to handle. Thus, it is more appropriate to \equivalently" reformulatethe system (1.1){(1.3) in the following way. De�ning the s
alar quantity E as(1.9) E := 12 jvj2 + k;we dedu
e the equation for E by taking the s
alar produ
t of (1.2) and v and byadding the result to (1.3). Doing so, we arrive at the equation(1.10) E;t + div (v(E + p))� div (�(k)rk) � div (�(k)DDD(v)v) + "(k) = 0:Of 
ourse, assuming that the multipli
ation of (1.2) by v is meaningful (or inother words, assuming that v is a possible test fun
tion in the weak formulationof (1.2)) the identities (1.3) and (1.10) are equivalent. However, in three spatialdimensions we usually do not know that v is an admissible test fun
tion andwe 
annot 
on
lude the equivalen
e of (1.3) and (1.10). The main mathemati
alreason why we prefer (1.10) to (1.3) is the fa
t that in (1.10) all nonlinear termsare in divergen
e form and belong to a better spa
e than L1 while in (1.3) the termon the right hand side belongs usually to L1 only. Consequently, it is easier toidentify weak limits of all nonlinear quantities in (1.10) than in (1.3). These fa
tsseem to be �rst spe
i�ed and exploited in [13℄. On the other hand, 
onsidering(1.10) we see that we have to deal with p, that 
an be usually omitted in the
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e-free test fun
tions in (1.2). Moreover,assuming that we have a weak solution to (1.1){(1.2) and (1.10) that in additionsatis�es(1.11) k;t + div(kv)� div (�(k)rk) + "(k) � �(k)jDDD(v)j2;in a weak sense, then it is natural to 
all su
h a solution a suitable weak solutionin sense of Ca�arelli, Kohn, Nirenberg, see [10℄. Indeed, subtra
ting (1.11) from(1.10), one dedu
es(1.12) jvj2;t + div �v(jvj2 + 2p)�� div (2�(k)DDD(v)v) � 0;that is the form of lo
al energy inequality as appeared in the de�nition of suitableweak solution to Navier-Stokes system, see [10℄.In this study we establish the following result.Theorem 1.1. Assume that �, � and " satisfy (1.8) with(1.13) 0 � � < 2�5 + 23 ; 0 � 
 < � + 23 :Then for any 
 2 C1;1, T > 0, v0 2 L2n;div and k0 2 L1(
), k0 � 0 a.e. in 
, thereexists a suitable weak solution (v; p; k) to Problem (1.1){(1.7), that in parti
ularful�ls (1.1){(1.2) and (1.9){(1.11) in the sense of distributions.The pre
ise de�nition of the solution and formulation of the result is given inTheorem 2.1 below, see Se
tion 2.The system (1.4){(1.7) with �, � and " of the form (1.8) is interesting from thepoint of view of mathemati
al analysis of PDEs, in parti
ular, from the point ofview of regularity theory. We shall address this point next.To simplify dis
ussion below, we assume that �, � and " are of the form(1.14) �(k) := �0k�; �(k) := �0k� and "(k) = "0k2��;where �0 and �0 are positive 
onstants and "0 � 0.We formulate the following 
onje
ture.Conje
ture 1.1. Let � 2 R, �, � and " be of the form (1.14). Then there existÆ > 0 and C� > 0 su
h that for any triple (v; p; k) solving (1.1){(1.2) and (1.10){(1.11) in the sense of distribution the following impli
ation holds:If(1.15) Z 0�1 ZB1(0) �(k)jDDD(v)j2 dx dt � Æthen(1.16) jv(t; x)j � C� in (�12 ; 0)�B 12 (0):
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onje
ture 
ertainly holds for � � 0 sin
e then the system (1.1){(1.2)redu
es to Navier-Stokes equation for whi
h Conje
ture 1.15 was proved in [10℄,see also [31℄. To our best knowledge, Conje
ture 1.15 is open for general values ofpositive �'s. In what follows, we will show how Conje
ture 1.1 implies that, for
ertain �'s, any suitable weak solution has bounded velo
ity.Indeed, assume that a triple (v; k; p) solve (1.1){(1.2) and (1.10){(1.11) onsome neighborhood of (0; 0) that 
ontains for some `0 > 0 a set (�`A0 ; 0)�B`0(0)with some A > 0 spe
i�ed below. Then we res
ale the triple in the following way.For any ` � `0 we de�ne for some B > 0v`(t; x) := `Bv(`At; `x);p`(t; x) := `2Bp(`At; `x);k`(t; x) := `2Bk(`At; `x):It is easy to show that if we 
hoose A, B su
h thatA := 2� 2�1� 2�; B := 11� 2�and assume that � 6= 12 then the triple (v`; p`; k`) solves (1.1){(1.2) and (1.10){(1.11) in the sense of distribution in (�1; 0)�B1(0). Next, we apply Conje
ture 1.1on the res
aled velo
ity v`. Hen
e, using the standard substitution theorem wesee that we need to show thatÆ � Z 0�1 ZB1(0) �(k`)jDDD(v`)j2 dx dt= Z 1�1 ZB1(0) `2B�+2B+2(k(`At; `x))�jDDD(v(`At; `x))j2 dx dt= Z 0�`A ZB`(0) `2B�+2B+2�A�3(k(t; x))�jDDD(v(t; x))j2 dx dt= ` 6��11�2� Z 0�`A ZB`(0) k�jDDD(v)j2 dx dt:(1.17)
Interestingly, we see that for 16 � � < 12 we 
an 
hoose ` so small that the premiseof Conje
ture 1.1 is ful�lled. As its 
onsequen
e, we 
on
lude that v` is boundedin (�1=2; 0)�B1=2(0) and v is bounded in (�(`=2)�; 0)�B`=2(0). Even more, itfollows from (1.17), Conje
ture 1.1 and the standard 
overing argument pro
edurethat, for � < 16 , the Hausdor� dimension of the set S of possible singularities of v(here, the point of singularity is de�ned su
h (t; x) that v is not bounded in anyneighborhood of (t; x)) is bounded by(1.18) d(S) < 1� 6�1� 2� ;
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h is 
onsistent with the standard estimate of possible singular set for theNavier-Stokes equations.To summarize, the system (1.4){(1.7) with �, � and " of the form (1.14) is aninteresting system from the point of view of regularity theory. Before however onestarts to study regularity property of any solution one needs to establish its exis-ten
e, and this is the subje
t of this paper. While the statement of Theorem 1.1for � = 0 was investigated in [8℄, the 
ase � > 0 is analyzed in this study. Notethat for " � 0 and � = �, Theorem 1.1 guarantees the existen
e of solution for0 � � < 109 .There are two main reasons motivating us to analyze the problem (1.1){(1.8).The �rst one 
omes from the large-data analysis of turbulent models. The se
-ond reason is 
onne
ted with the question of large-data qualitative mathemati
alproperties of 
ows of in
ompressible heat-
ondu
ting Newtonian 
uids. We shalldis
uss the both issues in what follows.(1) Kolmogorov model. The problem in 
onsideration (1.1){(1.3) is 
loselyrelated to the so-
alled turbulent kineti
 energy model; then v represents thestatisti
al mean (averaged) velo
ity of the 
uid, p is asso
iated to the statisti
almean normal stress - the averaged pressure, � stands for the vis
osity, � is theeddy di�usion and k denotes the turbulent kineti
 energy de�ned as 12P3j=1 jv0j j2,whereas v0 is the velo
ity of 
u
tuations and z stands for the averaging of thequantity z. The term on the right hand side of (1.3) represents the energy thatthe large s
ales transmit onto the small s
ales, and the last term of the left handside of (1.3) measures the energy rate returned by the small s
ales to the larges
ales. Usually, the quantities �; � and " are depending on the mixing lengths
ale ` that is a positive given fun
tion or it is driven by another evolutionaryequation.In fa
t, one of the �rst models of this type was proposed by Kolmogorov in [15℄,see also the paper No. 48 in [16℄ or Appendix in [30℄. Based on lo
al properties ofturbulen
e and in
orporating, as Kolmogorov 
learly states, (unspe
i�ed) 
rudeapproximations, he formulates a 
losed system of equations of the formdiv v = 0(1.19) v;t + div(v 
 v) = �r�p% + b�+A div�2 b! DDD(v)� ;(1.20) !;t + div(!v) = � 711!2 +A0 div� b!r!� ;(1.21) b;t + div(bv) = �b! + 43A b! jDDD(v)j2 +A00 div� b! rb� ;(1.22)where the velo
ity of the 
uid is the sum of the averaged velo
ity v and the ve-lo
ity of 
u
tuations v0, p is the averaged pressure, b := 13P3j=1 jv0j j2 is one thirdof the sum of averaged square of the 
omponents of the velo
ity of 
u
tuations,and ! is related to the length s
ale ` through the relation ! := Cpb=`, C, A,
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onstants. Equations (1.20){(1.22) 
oin
ide exa
tly1 with equa-tions (1){(3) in [15℄, [16℄, [30℄, we merely 
ompleted the system by the 
onstraintof in
ompressibility (1.19). Thus, we obtain a 
losed system of six equations for(v1; v2; v3; p; `; b).Next, assuming that ` is a given known fun
tion, equation (1.21) is redundant.Thus, setting v := v, p := p% + b and noti
ing that b! = C̀ bpb and b! = C̀pb, thesystem (1.19){(1.22) simpli�es todiv v = 0(1.23) v;t + div(v 
 v) = �rp+ div�2`AC pbDDD(v)� ;(1.24) b;t + div(bv) = � C̀ bpb+ 4`A3C pb jDDD(v)j2 + div�`A00C pbrb� :(1.25)Setting k := 32b, �(k) := 2`AC pb = 2p2`Ap3C pk, �(k) = `p2A00p3C pk and "(k) =p2Cp3` pkk we arrive at the system of the form (1.1){(1.3) that is subje
t of inves-tigation in this paper. Note that the quantity E introdu
ed in (1.9) (that playsan important role in our analysis) is the sum of the kineti
 energy asso
iated tothe averaged velo
ity and the turbulent kineti
 energy k = 12P3j=1 jv0j j2.Although the model (1.1){(1.3) des
ribes 
ompli
ated turbulent behavior ina simpli�ed manner (see for example dis
ussion in [30℄), it is quite popular andeÆ
ient in various appli
ations. It is used for instan
e in o
eanography ([5℄, [32℄,[20℄), in marine engineering ([22℄, [28℄), et
., and surprisingly gives very a

uratenumeri
al results in 
omparison with experimental data. In 
ertain appli
ations,this model thus \prevents" the 
omputational analysts from dealing with the(k � ") model (see the original work due to Launder and Spalding [17℄, and also[26℄ for more details) that is from the 
omputational point of view very 
ostly.The derivation of models su
h as (1.1){(1.3) is mainly based on dimensionalanalysis and physi
al assumptions on the turbulen
e (see [26℄ and [20℄) that leadto the following forms for � and �(1.26) �(k) = �0 + �1pk and �(k) = �0 + �1pk ;where �0 � 0, �1 � 0, �0 > 0 and �1 > 0 are 
onstants. Note that the 
ase (1.26)with �0, �1, �0, �1 positive is 
overed by Theorem 1.1. There are also workstowards the mathemati
al justi�
ation of the k-equation (1.3) from the Navier-Stokes equations ([11℄, [25℄, [12℄), but a transparent and 
onsistent derivation ofthese models is, to our best knowledge, missing. The limitations and appli
abilityof the model in 
onsideration are one of the topi
s studied in our forth
omingpaper.1In fa
t, we follow the translation given by Spalding in [30℄. There seems to be a misprint
on
erning the de�nition of � in [15℄.
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 energy models the resultpresented in this paper 
an be 
onsidered as a natural 
ontinuation of Theorem 4in [21℄ sin
e it solves the problem formulated in [21℄ that has been left open.Also, Theorem 4 in [21℄ that 
on
erns the 
ase when both � and � are boundedfun
tion of k proves that in three spatial dimensions the limit equation for kdedu
ed from approximated solutions satis�es a variational inequality. This papergives two essential novel 
ontributions to the analysis of (1.1){(1.3). First, theunknown k is shown to ful�ll the equation for E (see (1.10) above) rather thanequation (1.3), and se
ond, it investigates three-dimensional 
ows with � and kthat are unbounded fun
tions of k. The pri
e we pay for dealing with (1.10) ratherthan with (1.3) is that we need to introdu
e globally integrable pressure and thisis the reason why we are not able to extend, at the 
urrent state, the theory toDiri
hlet boundary 
ondition for the velo
ity (the 
ase � = 1 in (1.5)2).We �nish this part by re
alling several related results and approa
hes. Thesystem (1.1){(1.3) was �rst studied in [19℄ and [21℄. Assuming that the eddyvis
osity is a bounded fun
tion of k, the author establishes the existen
e of weak(distributional) solutions in the steady-state 
ase and in the evolutionary 2D 
aseif both k and v satisfy homogeneous Diri
hlet boundary 
onditions. These resultshave been generalized in many ways and for other boundary 
onditions, as forinstan
e to 
ows of two intera
ting 
uids su
h as the O
ean and the Atmosphere([3℄, [4℄, [1℄). There are very few uniqueness results that are mainly obtainedunder smallness assumptions on the total variation of the eddy vis
osity or thesour
e term, and they 
on
ern steady-state 
ows ([2℄, [6℄). In order to analyzemodels with unbounded eddy vis
osities (that are important, see (1.26)) severaldi�erent tools were developed, mostly for some simpli�ed models (su
h as steady-state models, models without 
onve
tive terms, and even without the pressure).We refer the interested reader to Lewandowski and Murat [20, Chapter 5℄ fordetails 
on
erning renormalized solutions, or to [14℄ (energy solutions in spe
ialfun
tion spa
es) or to [18℄ (energy solutions with periodi
 boundary 
onditions).(2) Navier-Stokes-Fourier system. Asso
iating k with the internal energy(or temperature) and setting " � 0, the system (1.1){(1.3) des
ribes unsteady
ows of in
ompressible heat-
ondu
ting 
uids in whi
h the Cau
hy stress TTT andthe heat 
ux q are given by the 
onstitutive equations of the form(1.27) TTT := �pIII+ �(k)DDD(v) and q := �(k)rk:The system of equations (1.1){(1.3) together with (1.27) is 
alled the in
ompress-ible Navier-Stokes-Fourier system, where � denotes the kinemati
al vis
osity ofthe 
uid and � is the heat 
ondu
tivity. In most liquids, that are well approx-imated as in
ompressible materials, the internal energy is proportional to thetemperature and the vis
osity de
reases with in
reasing temperature. This is justopposite s
enario than that des
ribed by the assumptions (1.8). Although theNavier-Stokes-Fourier system with the vis
osity satisfying (1.8) is not re
e
tingexperimental observations it would be de�nitely of interest to know that there
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ows of a 
lass of Newtonian 
uids that exist for large data and thevelo
ity is bounded.The large data existen
e result presented here 
an be viewed as the extensionof the approa
h (that is based on the appropriate form of the balan
e of energy)originally developed in [13℄ and [8℄ where the Navier-Stokes-Fourier system withthe bounded vis
osity and the heat 
ondu
tivity is treated; the spatially-periodi
problem is analyzed in [13℄ while 
ows in bounded domains satisfying the Navier'sslip boundary 
onditions are studied in [8℄. Naumann [27℄ studied the model withthe temperature dependent vis
osity and the heat 
ondu
tivity, he however usesequation (1.3) instead of (1.10); due to diÆ
ulties to identify the limit the dissipa-tive term at the right-hand side of (1.3) his 
on
ept of solution is weaker than thatintrodu
ed in [13℄, [8℄ and used in this paper as well. For the sake of 
omplete-ness, we remark that Lions [23, Se
tion 3.4℄ studies the 
ase where the vis
osityand the heat 
ondu
tivity are positive 
onstants (temperature independent) andprovides two approa
hes (di�erent from that presented here) how the problem 
anbe investigated in order to establish long-time and large-data existen
e results.The paper is organized as follows. After introdu
ing relevant fun
tion spa
es,we establish, in Se
tion 2, the main result that in
ludes the pre
ise de�nition ofsuitable weak solutions to (1.1){(1.3). Then, in Se
tion 3, we introdu
e two-levelapproximations depending on parameters n and m and prove the main result.Sin
e the existen
e of solutions to the (m;n)-approximation, for a �xed n andm, is given in [8, Appendix℄ we fo
us on the analysis of the limit behavior of thesolutions (vm;n; pm;n; km;n) �rst as n!1 and then as m!1.2. Main resultIn order to state the main result with all details we need to 
larify the notationof relevant fun
tion spa
es. For the velo
ity �eld, we de�neW 1;pn := �v 2 W 1;p(
)3 : v � n = 0 on �
	 ;W 1;pn;div := �v 2 W 1;pn : div v = 0 in 
	 ;W�1;p0n := �W 1;pn �� ; W�1;p0n;div := �W 1;pn;div�� ;L2n;div :=W 1;2n;divk k2 :We also introdu
e the natural spa
e for k; for some �xed � 2 R+ we setE� :=nk 2 L1(0; T ;L1(
)) : k � 0 a.e.;((1 + k)s � 1) 2 L2(0; T ;W 1;2D (
)) for all s < � + 12 o;where W 1;2D (
) := fk 2W 1;2(
); k = 0 on �
Dg.



Evolutionary PDEs of NSF type 97Note that by using standard interpolation te
hnique the following 
ontinuousembedding holds (we show it in the proof of the main theorem) for � 2 [0; 1℄E� ,! Lr(0; T ;Lr(
)3) \ Lq(0; T ;W 1;qD (
)3) for all r < 3� + 53 and q < 3� + 54 :If � > 1 then q = 2 in the above embedding.Moreover, in what follows we use the abbreviation (a; b)A := RA ab wheneverab 2 L1(A). In 
ase that A = 
 we also omit writing the subs
ript 
. The samenotation is used for ve
tor- and tensor-valued fun
tions as well.We formulate the main result of this paper.Theorem 2.1. Let 
 2 C1;1, T > 0, v0 2 L2n;div and k0 2 L1(
), k0 � 0 a.e.in 
, be given arbitrarily. Assume that �; � and " satisfy (1.8) with �; � and 
ful�lling(2.1) 0 � � < 2�5 + 23 ; 0 � 
 < � + 23 :Then there exist a triple (v; p; k) and E given asE = 12 jvj2 + k;satisfying v 2 Cweak(0; T ;L2n;div) \ L2(0; T ;W 1;2n;div);(2.2) v;t 2 Lq0(0; T ;W�1;q0n ) for all q < min�53 ; 2� 2��+ � + 53 � ;(2.3) k 2 E� ;(2.4) k;t 2M(0; T ;W�1;1+Æ) for 
ertain Æ > 0 small;(2.5) p 2 Lq(0; T ;Lq(
)) for all q < min�53 ; 2� 2��+ � + 53 � ;(2.6) p�(k)DDD(v) 2 L2(0; T ;L2(
)3�3);(2.7) E;t 2 L1+Æ(0; T ;W�1;1+ÆD (
)) for 
ertain Æ > 0 small;(2.8)and ful�llingZ T0 hv;t;wi � (v 
 v;rw) + �1� � (v;w)�
 + (�(k)DDD(v);DDD(w)) dt= Z T0 (p; divw) dt for all w 2 L1(0; T ;W 1;1n );(2.9)
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));(2.10)and Z T0 hk;t; wi � (kv;rw) + (�(k)rk;rw) + ("(k); w) dt� Z T0 (�(k)jDDD(v)j2; w) dt for all w 2 C(0; T ;W 1;1D (
)):(2.11)Moreover, the initial 
onditions are attained in the following sense(2.12) limt!0+ �kv(t)� v0k22 + kk(t)� k0k1� = 0:It is worth of noti
ing that Theorem 2.1 
overs the interesting 
ase � = � = 
for 0 � � < 10=9. In parti
ular, the 
ase (1.26) is in
luded.We also remark that all terms in (2.9){(2.11) are meaningful; the most 
riti
alterm is the last term in (2.10) and the L1-integrability of this term leads tothe restri
tion (2.1)1. Indeed, noti
ing that �(k)DDD(v)v = p�(k)DDD(v)vp�(k)and p�(k)DDD(v) 2 L2(0; T ;L2(
)3�3), v 2 L10=3(0; T ;L10=3(
)3) and p�(k) 2L 3�+53 �s(0; T ;L 3�+53 �s(
)) we observe, by applying the H�older inequality that�(k)DDD(v)v 2 L1(0; T ;L1(
)) () 0 � � < 2�5 + 23 ;whi
h is the �rst 
ondition in (2.1). The se
ond 
ondition (2.1)2 is required inorder to know that "(k) belongs to a better spa
e than L1(0; T ;L1(
)), whi
h isneeded to establish the 
ompa
tness of the terms involving "(k).3. Proof of Theorem 2.1First we introdu
e a notation of various trun
ated fun
tions. For any m 2 R+ ,we de�ne the fun
tion Tm through(3.1) Tm(y) := ( y if jyj � m;m sgn (y) if jyj > m;and we use the symbol �m to denote the primitive fun
tion to Tm, i.e.,(3.2) �m(y) := Z y0 Tm(�) d�:
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ed in (1.8)2 and for arbitrary s � 0, we also introdu
e the fun
tion�s by the formula(3.3) �s(y) := Z y0 (1 + �) ��s�12 d� = 2� � s+ 1 h(1 + y) ��s+12 � 1i :Finally, we 
onsider a smooth non-in
reasing fun
tion G su
h that G(y) = 1 wheny 2 [0; 1℄ and G(y) = 0 for y � 2, and de�ne Gm as(3.4) Gm(y) := G� ym� :The primitive fun
tion to Gm is then de�ned through(3.5) �m(y) := Z y0 Gm(�) d�:The �rst part of the proof takes inspiration in the method developed in [8℄.We start with a \semi"-Galerkin approximation. Let fwkg1k=1 be a basis ofW 1;2n;div \W 2;4(
)d, whi
h exists due to the separability of this spa
e. We look for(vn;m; kn;m), wherevn;m := nXi=1 
n;mi (t)wi(x); and kn;m � 0 a:e:ful�ll the equations(vn;m;t ;wi)� �Gm(jvn;mj2)vn;m 
 vn;m;rwi�+ �1� � (vn;m;wi)�
+ (�(Tm(kn;m))DDD(vn;m);DDD(wi)) = 0 for all i = 1; : : : ; n;(3.6) Z T0 hkn;m;t ; wi � (vn;mkn;m;rw) + (�(kn;m)rkn;m;rw) + ("(kn;m); w) dt= Z T0 (�(Tm(kn;m))jDDD(vn;m)j2; w) dt for all w 2 L2(0; T ;W 1;2D (
));(3.7)as well as the initial 
onditions of the formvn;m(0; x) := vn0 (x) := nXi=1 
0iwi with 
0i := (v0;wi);limt!0 kkn;m(t)� kn0 k22 = 0 with kn0 := k0 � � 1n ;(3.8)where � 1n is the standard regularizing kernel of radii 1n and k0 is extended by 0outside of 
. Note that vn0 ! v0 strongly in L2(
) and that kn0 ! k0 strongly inL1(
).
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ek, R. Lewandowski, J. M�alekThe existen
e of the solution to (3.6){(3.8) is established in [8, Appendix℄ andhere we merely state the result 
on
erning large-data and long-time existen
eproved therein.Theorem 3.1. Let arbitrary n;m 2 N be �xed. Assume that all assumptions ofTheorem 2.1 hold. Then there exist (
n;m; kn;m) solving (3.6){(3.8) su
h that
n;m 2 W 1;2(0; T )n;(3.9) kn;m 2 L1(0; T ;L1(
)) \ L2(0; T ;W 1;2D (
));(3.10) kn;m;t 2 L2(0; T ;W�1;20 (
)):(3.11)3.1 Limit n ! 1. Sin
e m 2 N is �xed in this subse
tion, we write (vn; kn)instead of (vn;m; kn;m), where (vn;m; kn;m) denotes a solution to (3.6){(3.8). Ourgoal is to study the 
onvergen
e in equations (3.6){(3.7) if n ! 1. We willfollow the pro
edure developed in [8℄ that we have to modify in order to treatunbounded 
oeÆ
ients � and �. This is why we investigate this limiting pro
esshere rigorously and in detail.3.1.1 Uniform estimates on vn. Multiplying the i-th equation in (3.6) by 
niand then summing over i = 1; : : : n we get12 ddtkvnk22 � 12(Gm(jvnj2)vn;rjvnj2) + �1� �kvnk2�
;2+ Z
 �(Tm(kn))jDDD(vn)j2 dx = 0:(3.12)Next, using the fa
t that vn � n = 0 on �
 and div vn = 0 in 
 we dedu
e that12(Gm(jvnj2)vn;rjvnj2) = 12(vn;r�m(jvnj2)) = �12(div vn;�m(jvnj2)) = 0:Thus, we 
on
lude from (3.12) that(3.13)supt2(0;T ) kvn(t)k22 + 2 Z T0 Z
 �(Tm(kn))jDDD(vn)j2 dx dt � kvn0k22 � C(v0) <1:It then follows from (1.8)1 and the Korn inequality that(3.14) Z T0 kvn(t)k21;2 dt � C(C�11 ;v0) <1:Moreover, using the standard interpolation inequality, (3.13){(3.14) implies that(3.15) Z T0 kvnk 103103 dt � C:



Evolutionary PDEs of NSF type 101Note �nally that it follows from (3.6) and (3.13){(3.14) that(3.16) Z T0 kvn;tk2W�1;2n;div � C(m):3.1.2 Estimates on kn uniform w.r.t. both m and n. Setting w := T1(kn)in (3.7) (note that T1(kn) is a possible test fun
tion) we obtain the identityddt Z
�1(kn) dx� (vn;r�1(kn)) + (�(kn)rkn; T 01(kn)rkn)+("(kn); T1(kn)) = (�(Tm(kn))jDDD(vn)j2; T1(kn)):(3.17)Sin
e div vn = 0 in 
 and vn �n = 0 on �
, the se
ond term on the left hand sidevanishes. Moreover, using (1.8), we see that the third term on the left hand sideis nonnegative. Thus, integrating (3.17) over time, using (1.8)3 to estimate thelast term on the left hand side from below and using (3.13) to bound the righthand side of (3.17), we 
on
lude that(3.18) supt2(0;T ) k�1(kn(t))k1 + C Z T0 kknk
+1
+1 dt � C + k�1(kn0 )k1:Finally, using the simple estimate for the growth of �1 we get that(3.19) supt2(0;T ) kkn(t)k1 + C Z T0 kknk
+1
+1 dt � C + kk0k1 <1:Next, re
alling that kn � 0 a.e. in 
 we 
onsider w = (1 + kn)�s � 1 with s > 0small and observe that su
h w is an admissible test fun
tion in (3.7), in parti
ularkwk1 � 2 and w 2 L2(0; T ;W 1;2D (
)) for ea
h n 2 N. Inserting su
h w into (3.7),using the fa
t that div vn = 0 and the estimates established in (3.13) and (3.19),we get Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt � C(s�1):(3.20)Consequently, using the assumption (1.8)2 and re
alling the de�nition of �s, see(3.3), we 
on
lude that (using the fa
t that �s has zero tra
e on 
D)Z T0 k�s(kn)k21;2 dt � C Z T0 kr�s(kn)k22 dt� C Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt � C(s�1):(3.21)Using the �rst inequality in(3.22) 
�1((1 + x) ��s+12 � 1) � �s(x) � 
(1 + x) ��s+12 ; (x � 0)
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ek, R. Lewandowski, J. M�alekthe embedding W 1;2D (
) ,! L6(
) and (3.21)1 we observe that(3.23)Z T0 kknk��s+13(��s+1) dt � C(1 + Z T0 k�s(kn)k21;2 dt) � C(s�1) for all s > 0 small:Then, referring to the standard interpolation inequality(3.24) kuk��s+ 53 � kuk1�a1 kuka3(��s+1) with a := � � s+ 1� � s+ 53 ;applied onto kn we 
on
lude from (3.19) and (3.23) thatZ T0 kknk��s+ 53��s+ 53 dt � Z T0 kknk 231 kknk��s+13(��s+1) dt (3.20)�(3.23) C(s�1) for all s > 0 small:(3.25)Noti
e that the estimate (3.25) is better than the se
ond estimate in (3.19) sin
ewe assume that 
 < � + 23 , see (2.1)2. Moreover, using the H�older inequality andthe estimates (3.15) and (3.25), it is easy to dedu
e that (note that the spe
i�
value of a small parameter s di�ers from s in (3.25))(3.26) Z T0 kvnknk 109 3�+5�+5 �s109 3�+5�+5 �s dt � C(s�1) for all s > 0 small:Con
erning the estimate on the gradient of kn, we 
onsider �rst the 
ase � 2 [0; 1℄and we set q := 3��3s+54 . Combining the estimates stated in (3.20) and (3.25),we 
on
lude thatZ T0 krknkqq � C Z T0 Z
 ��(kn)(1 + kn)�s�1jrknj2� q2 (1 + kn) q(s+1��)2 dx dt� C  Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt! q2  Z T0 k1 + knk�+ 53�s�+ 53�s dt! 2�q2� C(s�1):If � > 1 we 
an always �nd s > 0 small enough so that � � s � 1 > 0. Conse-quently2, Z T0 krknk 3�+5�s43�+5�s4 � C(s�1) for all s > 0 small for � 2 [0; 1℄;Z T0 krknk22 � C for � > 1:(3.27)2Note that the estimates (3.27) and (3.25) are better than those derived in [14℄ and [21℄.



Evolutionary PDEs of NSF type 103Similarly, the estimates (3.21){(3.25) together with (1.8)2 imply that(3.28) Z T0 k�(kn)rknk 3�+53�+4�s3�+53�+4�s � C(s�1) for all s > 0 small:Finally, using the above established estimates it is not diÆ
ult to observe (see [7℄for details) that(3.29) Z T0 kkn;tk�1;r�s dt � C(s�1) for all s > 0 smallwith r given by(3.30) r := min�3� + 53� + 4 ; 109 3� + 5� + 5 � :3.1.3 Limit n!1. Letting n!1 and using (3.13), (3.15), (3.16), (3.25) and(3.27), and using the 
onvention that a sele
ted sequen
e is denoted again as theoriginal one, we 
an �nd a subsequen
e su
h that3vn *� v weakly� in L1(0; T ;L2n;div);(3.31) vn * v weakly in L2(0; T ;W 1;2n;div) \ L 103 (0; T ;L 103 (
)3);(3.32) vn;t * v;t weakly in L2(0; T ;W�1;2n;div);(3.33) kn * k weakly in Lq(0; T ;W 1;qD (
)) for all q < min�3� + 54 ; 2� ;(3.34) kn * k weakly in L!(0; T ;L!(
)) for all 1 � ! < 3� + 53 ;(3.35) vn * v weakly in L 83 (0; T ;L 83 (�
)3):(3.36)In addition, using the generalized version of the Aubin-Lions 
ompa
tness lemma(see [29℄) together with (3.33) and (3.29) leads to the 
on
lusions thatvn ! v strongly in Lq(0; T ;Lq(
)3) for all q < 103 ;(3.37) vn ! v strongly in Lq(0; T ;Lq(�
)3) for all q < 83 ;(3.38) kn ! k strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53 ;(3.39)and 
onsequently we show that (at least for a suitable subsequen
e)vn ! v a.e. in (0; T )� 
;(3.40) kn ! k a.e. in (0; T )� 
;(3.41)3For the proof of (3.36) and (3.38) see [7℄.
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ek, R. Lewandowski, J. M�alek�s(kn)* �s(k) weakly in L2(0; T ;W 1;2D (
)) for all s > 0 small:(3.42)Moreover, using the Fatou lemma, (3.19) and (3.41) we 
an 
on
lude that(3.43) supt2(0;T ) kk(t)k1 � C:Con
erning limits in the nonlinear terms in (3.6) and (3.7) we �rst easily observe(re
all that �(Tm(kn)) is a bounded a.e. 
onvergent sequen
e as n!1) thatp�(Tm(kn))DDD(vn) *p�(Tm(k))DDD(v) weakly in L2(0; T ;L2(
)3�3);(3.44) �(Tm(kn))DDD(vn) * �(Tm(k))DDD(v) weakly in L2(0; T ;L2(
)3�3):(3.45)Next, having the assumption on 
, see (1.8)3, one 
an also obtain by using (3.34),(3.39) and the Vitali theorem that"(kn)! "(k) strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53(
 + 1) :(3.46)Also, it is a 
onsequen
e of (3.28) that there is some q su
h that�(kn)rkn * q weakly in Lq(0; T ;Lq(
)3) for all q < 3� + 53� + 4 :(3.47)In order to identify q, we �rst remark that it is enough to show thatlimn!1 Z T0 (�(kn)rkn;') dt = Z T0 (�(k)rk;') dt for all ' 2 D((0; T )�
):However, using the assumption (1.8)2 
on
erning � and the 
onvergen
e results(3.39) and (3.42) we observe thatZ T0 (�(kn)rkn;') dt = Z T0 (�(kn)(1 + kn)� ��s�12| {z }strongly in L2 r�s(kn)| {z }weakly in L2;') dtn!1! Z T0 (�(k)(1 + k)� ��s�12 r�s(k);') dt = Z T0 (�(k)rk;') dt:Consequently, q = �(k)rk.All above established 
onvergen
e results are not suÆ
ient to take the limit inthe nonlinear term at the right hand side of (3.7). However, sin
e m is �xed andv = vm is an admissible test fun
tion in (3.6) we 
an use energy equality method
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e that it follows from (3.31){(3.33), (3.37) and (3.45) thatZ T0 hv;t;wi � �Gm(jvj2)v 
 v;rw� dt+ Z T0 (�(Tm(k))DDD(v);DDD(w)) dt+ �1� � Z T0 (v;w)�
 dt = 0 for all w 2 L2(0; T ;W 1;2n;div):(3.48)Moreover, using (3.31){(3.33) and (3.44) it is standard to dedu
e (see for example[24℄) that v 2 C([0; T ℄;L2n;div) and v(0) = v0 :Next, we shall show that we 
an repla
e the weak 
onvergen
e in (3.45) by thestrong one. For this purpose, we �rst integrate (3.12) w.r.t. time t 2 (0; T ) andobtainZ T0 kp�(Tm(kn))DDD(vn)k22 dt = �12kvn(T )k22 + 12kvn0k22 � Z T0 �1� �kvnk22;�
 dt= �12kvn(T )� v(T )k22 + 12kvn0 � v0k22 � Z T0 hv;t;vn � vi+ hvn;t;vi dt� Z T0 �1� �kvnk22;�
 dt:Therefore, letting n!1 we dedu
e from (3.32), (3.33), (3.38) and (3.8) thatlim supn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt � � Z T0 hv;t;vi dt� Z T0 �1� �kvk22;�
 dt:(3.49)Next, setting w := v in (3.48) and using (3.49) we obtainlim supn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt � Z T0 kp�(Tm(k))DDD(v)k22 dt:(3.50)Consequently, as (3.44) implies thatZ T0 kp�(Tm(k))DDD(v)k22 dt � lim infn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt(3.51)we �nally 
on
lude thatp�(Tm(kn))DDD(vn)!p�(Tm(k))DDD(v) strongly in L2(0; T ;L2(
)3�3);(3.52)or saying di�erently�(Tm(kn))jDDD(vn)j2 ! �(Tm(k))jDDD(v)j2 strongly in L1(0; T ;L1(
)):(3.53)
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ek, R. Lewandowski, J. M�alekFinally, using (3.7), (3.29) and (3.53) we observe thatkn;t * k;t weakly in L1(0; T ;W�1;r�sD (
)) for all s > 0 small;(3.54)with r given by (3.30). At this point, it is easy to take the limit in (3.7) andarrive at Z T0 hk;t; wi � (vk;rw) + (�(k)rk;rw) + ("(k); w) dt= Z T0 (�(Tm(k))jDDD(v)j2; w) dt for all w 2 L1(0; T ;W 1;1D (
)):(3.55)3.1.4 Attainment of initial data k0. We �rst integrate (3.17) w.r.t. time over(0; t) and obtain (note that the se
ond term vanishes and the third and fourthterms are nonnegative)k�1(kn(t))k1 � Z t0 �(Tm(kn))jDDD(vn)j2 dx d� + k�1(kn0 )k1:Next, we let n ! 1. Using the nonnegativity of �1, the point-wise 
onvergen
eof kn, see (3.41), and the Fatou lemma we are able to take limit in the term atthe left hand side with 
orresponding inequality sign. On the other hand, using(3.53) we are able to identify limit of the �rst term on the right hand side andtherefore we obtain for almost all time t 2 (0; T )(3.56) k�1(k(t))k1 � Z t0 �(Tm(k))jDDD(v)j2 dx d� + k�1(k0)k1;whi
h implies that(3.57) lim supt!0+ k�1(k(t))k1 � k�1(k0)k1:Next, setting in (3.55) w := T1(kn)(�1(kn))� 12'�[0;t℄ where ' 2 D(
), ' � 0, weobtain (note that w is an admissible test fun
tion)2(p�1(kn(t)); ')� 2 Z t0 (vnp�1(kn);r') d�+ Z t0 Z
 �(kn)�T 01(kn)(�1(kn))� 12 � 12(T1(kn))2(�1(kn))� 32� jrknj2' dx d�+ Z t0 (�(kn)T1(kn)(�1(kn))� 12rkn;r') d�+ Z t0 ("(kn); T1(kn)(�1(kn))� 12') d�= Z t0 (�(Tm(kn))jDDD(vn)j2; T1(kn)(�1(kn))� 12 ') d� + 2(q�1(kn0 ); '):



Evolutionary PDEs of NSF type 107Observing that the integrand in the third integral is non-positive and the �rstintegral on the right hand side is nonnegative, we 
an negle
t both of them byrepla
ing the equality sign by the inequality4. Then we let n!1. Applying all
onvergen
e results established above, it is standard to 
on
lude that for almostall times t 2 (0; T )(p�1(k(t)); ')� Z t0 (vp�1(k);r') d� + 12 Z t0 (�(k)T1(k)(�1(k))� 12rk;r') d�+ 12 Z t0 ("(k); T1(k)(�1(k))� 12') d� � 2(p�1(k0); '):Finally, letting t! 0+ we observe thatlim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 D(
); ' � 0:Thus, using the density argument, (3.43) and the fa
t that �1(k) has at mostlinear growth in k, we �nally dedu
e that(3.58)lim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 L2(
); ' � 0 a.e. in 
:Consequently, it is then easy to observe thatlimt!0+ kp�1(k(t))�p�1(k0)k22= limt!0+�k�1(k(t))k1 + k�1(k0)k1 � 2(p�1(k(t));p�1(k0))�(3.57);(3.58)� k�1(k0)k1 + k�1(k0)k1 � 2(p�1(k0);p�1(k0)) = 0;whi
h �nally leads to(3.59) limt!0+ kk(t)� k0k1 = 0:3.2 Limit m ! 1. In the previous subse
tion, we established the existen
e of(vm; km) ful�lling, for everym 2 N �xed, the weak formulations (3.48) and (3.55).Before summarizing the estimates for (vm; km) that are uniform with respe
t tom, we take the advantage of 
onsidered slip boundary 
onditions (0 � � < 1 in(1.5)) and introdu
e the integrable pressure.For anyw 2 W 1;2n we observe that the Helmholtz de
ompositionw = wdiv+r'with ' having zero mean over 
 and solving ��' = divw in 
 and homogeneousNeumann problem on �
 is 
ompatible with (1.5) for 0 � � < 1. Indeed, noti
ing4At this level of approximation, we even do not need this simpli�
ation be
ause we are ableto identify the limit of 
orresponding quantities. However, it will not be the 
ase in the �nalpassage to the limit and we will be for
ed to use su
h pro
edure.
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ek, R. Lewandowski, J. M�alekthat(3.60) Z T0 hvm;t ;wi dt = Z T0 hvm;t ;wdivi dt;we 
an extend the de�nition domain for vm;t and observe that vm;t 2L2(0; T ;W�1;2n ).Let us introdu
e pm as the solution of the following problem(pm;4') = (�(Tm(km))DDD(vm);r(2)') + �1� � (vm;r')�
� (Gm(jvj2)vm 
 vm;r2') for all ' 2W 2;2(
); r' 2 W 1;2n :(3.61)Taking w 2 L2(0; T;W 1;2n ) arbitrarily, applying the Helmholtz de
omposition onsu
h w, taking the sum of (3.48) with the test fun
tion wdiv and (3.61) and using(3.60) we obtain the following identityZ T0 hvm;t ;wi � �Gm(jvmj2)vm 
 vm;rw�+ (�(Tm(km))DDD(vm);DDD(w)) dt+ �1� � Z T0 (vm;w)�
 dt = Z T0 (pm; divw) dt for all w 2 L2(0; T ;W 1;2n ):(3.62)
It is easy to 
he
k from (3.62) that su
h normalized pm is uniquely determinedby a given solution (vn; kn).We also re
all that the m-approximation satis�es (3.55) that we repeat forbrevity. It reads asZ T0 hkm;t ; wi � (vmkm;rw) + (�(km)rkm;rw) + ("(km); w) dt= Z T0 (�(Tm(km))jDDD(vm)j2; w) dt for all w 2 L1(0; T ;W 1;1D (
)):(3.63)Next, we re
all the uniform bound on (vm; pm) and derive the uniform boundon the pressure pm that will be needed in what follows. First, referring to lowersemi
ontinuity of the norms and the Fatou lemma we get from (3.13) and (3.19)supt2(0;T ) �kvm(t)k22 + kkm(t)k1�+ Z T0 Z
 �(Tm(km))jDDD(vm)j2 dx dt+ Z T0 kkmk
+1
+1 dt � C:(3.64)



Evolutionary PDEs of NSF type 109Moreover, using (3.64) and the standard embedding of Sobolev fun
tions to thespa
e of tra
es together with the standard interpolation inequalities one 
an de-du
e, see [9, Lemma 1.12℄ for details, that(3.65) Z T0 Z�
 jvmj 83 dS dt+ Z T0 kvmk 103103 dt � C:In addition, referring again to the lower semi
ontinuity of the norms we obtainfrom (3.21) and (3.25){(3.28)Z T0 k�s(km)k21;2 + kvmkmk 109 3�+5�+5 �s109 3�+5�+5 �s + kkmk�+ 53�s�+ 53�s + krkmkmin(2; 3�+54 )�smin(2; 3�+54 )�s dt+ Z T0 k�(km)rkmk 3�+53�+4�s3�+53�+4�s dt � C(s�1) for all s > 0 small:(3.66)
Next, observing that�(Tm(km))DDD(vm) =p�(Tm(km))DDD(vm)p�(Tm(km)) ;and re
alling that a

ording to (3.64)p�(Tm(km))DDD(vm) is uniformly bounded inL2(0; T ;L2(
)3�3) and a

ording to (3.66) p�(Tm(km)), whi
h grows as(1 + km)�=2, is bounded uniformly in L 2� (�+ 53�s)(0; T ;L 2� (�+ 53�s)(
)), we 
on-
lude that Z T0 k�(Tm(km))DDD(vm)kq0�sq0�s dt � C(s�1) for all s > 0 small;with q0 := 2(3� + 5)3�+ 3� + 5 :(3.67)Similarly, in
orporating also the se
ond estimate in (3.65), we observe thatZ T0 k�(Tm(km))DDD(vm)vmkw0�sw0�s dt � C(s�1) for all s > 0 small;with w0 := 10(3� + 5)15�+ 24� + 40 :(3.68)Note that the assumption (2.1)1 guarantees that w0 > 1.At this point, we 
an dedu
e from (3.61) the estimates for fpmg that will beuniform with respe
t to m. We 
onsider ' with zero mean over 
 solving thehomogeneous Neumann problem �4' = jpmjq�2pm � 1j
j R
 jpmjq�2pm dx andinserting it into (3.61). Using the estimates on fvmg and the H�older inequality
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ek, R. Lewandowski, J. M�alekwe obtain Z T0 kpmkz0�sz0�s dt � C(s�1) for all s > 0 small;with z0 := min�53 ; 2(3� + 5)3�+ 3� + 5� :(3.69)Finally, using equation (3.62) and the above estimates we 
on
lude that(3.70) Z T0 kvm;t kz0�sW�1;z0�sn dt � C(s�1) for all s > 0 small:Similarly as in the previous subse
tion, using (3.55), (3.64) and (3.66) we dedu
ethat(3.71) Z T0 kkm;t kW�1;r�sD dt � C(s�1) for all s > 0 small and r de�ned in (3.30):Having all uniform estimates (3.64), (3.65), (3.66), (3.69), (3.70) and (3.71), andusing the generalized version of the Aubin-Lions 
ompa
tness lemma we �ndsubsequen
es that we again label in the same way as the original sequen
es su
hthat (we use the 
onvention that s > 0 is small but arbitrary)vm *� v weakly� in L1(0; T ;L2n;div);(3.72) vm * v weakly in L2(0; T ;W 1;2n;div) \ L 103 (0; T ;L 103 (
)3);(3.73) vm;t * v;t weakly in Lz0�s(0; T ;W�1;z0�sn ) for z0 from (3.69);(3.74) pm * p weakly in Lz0�s(0; T ;Lz0�s(
)) for z0 from (3.69);(3.75) km * k weakly in Lq(0; T ;W 1;qD (
)) for all q < min(2; 3� + 54 );(3.76) km;t *� k;t weakly� in M(0; T ;W�1;r�sD (
)) for r from (3.30);(3.77) vm * v weakly in L 83 (0; T ;L 83 (�
)3);(3.78) vm ! v strongly in Lq(0; T ;Lq(
)3) for all q < 103 ;(3.79) vm ! v strongly in Lq(0; T ;Lq(�
)3) for all q < 83 ;(3.80) km ! k strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53 ;(3.81) vm ! v a.e. in 
� (0; T );(3.82) km ! k a.e. in 
� (0; T );(3.83)�s(km) * �s(k) weakly in L2(0; T ;W 1;2D (
)):(3.84)
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edure as in the previous subse
tion we 
an 
on
ludethat(3.85) supt2(0;T ) kk(t)k1 � C:Similarly, as in the previous subse
tion, see (3.47), we 
an verify that�(km)rkm * �(k)rk weakly in Lq(0; T ;Lq(
)3) for all q < 3� + 53� + 4 :(3.86)Moreover, it follows from (3.64) that there is an SSS 2 L2(0; T ;L2(
)3�3) su
h thatp�(Tm(km))DDD(vm)* SSS weakly in L2(0; T ;L2(
)3�3):(3.87)To identify SSS we �rst observe that (3.83), the growth assumption (1.8)1, (3.66)and Vitali's theorem imply that�(Tm(km))! �(k) strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53� :(3.88)Sin
e the assumption (2.1) guarantees that 3�+53� > 2, it follows from (3.73) and(3.88) that(3.89) SSS =p�(k)DDD(v) a.e. in (0; T )�
:Similarly, using (3.67), we 
an dedu
e that(3.90) �(Tm(km))DDD(vm)* SSS2 weakly in Lq(0; T ;Lq(
)3�3) for all q < q0 :To identify SSS2 it is then enough to 
ombine (3.87), (3.89) and (3.88) to obtainthat SSS2 = �(k)DDD(v) a.e. in (0; T )�
:At this point, we 
an 
omplete the proof of Theorem 2.1. First note that(3.72){(3.88) implies that the triple (v; k; p) satis�es (2.2){(2.7). Next, the aboveestablished 
onvergen
es (3.72){(3.90) suÆ
e to prove (2.9) by letting m!1 in(3.62). Similarly, letting m!1 in (3.63) we dedu
e (2.11), using the weak lowersemi
ontinuity of the last term in (3.63).Then, setting in (3.62) w := vmw with arbitrary w 2 L1(0; T ;W 1;1D (
)) andadding the result to (3.63) we arrive atZ T0 hEm;t ; wi � (vm(pm + km);rw) � (Gm(jvmj2)vm 
 vm;r(vmw)) dt+ Z T0 (�(Tm(km))DDD(vm)vm;rw) + (�(km)rkm;rw) + ("(km); w) dt = 0;(3.91)
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ing that the third term in (3.91) 
an be simpli�ed by using integration byparts and also the fa
t that div vm = 0 in 
, we get(Gm(jvmj2)vm 
 vm;r(vmw))= 12(wvm;r�m(jvmj2) + (Gm(jvmj2)jvmj2vm;rw))= ((Gm(jvmj2)jvmj2 � 12�m(jvmj2))vm;rw):From (3.91) we 
an obtain the estimate on the time derivative of Em and bysele
ting a subsequen
e observe that(3.92) Em;t * E;t weakly in Lq(0; T ;W�1;qD (
)); where E := 12 jvj2 + k;for all 1 < q < minn 109 ; w0; 3�+53�+4o; w0 is introdu
ed in (3.68).Finally, setting m!1 in (3.91) it is standard to obtain (2.10).3.2.1 Attainment of initial 
ondition. We aim to prove (2.12). The �rstpart, i.e., the attainment of the initial velo
ity v0 is standard and we refer thereader to [24℄. To establish the se
ond part we use the similar pro
edure as inthe previous subse
tion with only one essential 
hange. First part follows thepro
edure from the pre
eding subse
tion and we dedu
e that(3.93)lim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 L2(
); ' � 0 a.e. in 
:To �nish the proof of (2.12) it is then enough to obtain(3.94) lim supt!0+ k�1(k(t))k1 � k�1(k0)k1and the same arguments as in pre
eding subse
tion then leads to (2.12). To prove(3.94) we have to pro
eed di�erently. Rewriting (3.56) again as(3.95) k�1(km(t))k1 � Z t0 Z
 �(Tm(km))jDDD(vm)j2 dx dt+ k�1(k0)k1;we 
an repla
e the �rst term on the right hand side by using w := vn�[0;t℄ as atest fun
tion in (3.62). Hen
e, after negle
ting the boundary integral, be
ause of
orre
t sign, we get(3.96) k�1(km(t))k1 � �kvm(t)k22 + kv0k22 + k�1(k0)k1:



Evolutionary PDEs of NSF type 113Therefore, passing to the limit w.r.t. m we get after using the Fatou lemma andweak lower semi
ontinuity of norm that(3.97) k�1(k(t))k1 � �kv(t)k22 + kv0k22 + k�1(k0)k1:Consequently, using also the �rst part of (2.12) then leads to (3.94). Thus, theproof is 
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