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On evolutionary Navier-Stokes-Fouriertype systems in three spatial dimensionsMiroslav Bul���ek, Roger Lewandowski, Josef M�alekAbstrat. In this paper, we establish the large-data and long-time existene ofa suitable weak solution to an initial and boundary value problem driven by asystem of partial di�erential equations onsisting of the Navier-Stokes equationswith the visosity � polynomially inreasing with a salar quantity k that evolvesaording to an evolutionary onvetion di�usion equation with the right handside �(k)jDDD(v)j2 that is merely L1-integrable over spae and time. We alsoformulate a onjeture onerning regularity of suh a solution.Keywords: large data existene, suitable weak solution, Navier-Stokes-Fourierequations, inompressible uid, the visosity inreasing with a salar quantity,regularity, turbulent kineti energy modelClassi�ation: 35Q30, 35Q35, 76F601. IntrodutionLet 
 � R3 be an open bounded set and T 2 (0;1). Our goal is to prove theexistene of a triple (v; k; p) : (0; T )�
! R3�R+�R whih solves, in (0; T )�
,the following nonlinear system of �ve partial di�erential equationsdiv v = 0;(1.1) v;t + div(v 
 v)� div (�(k)DDD(v)) = �rp;(1.2) k;t + div(kv)� div (�(k)rk) + "(k) = �(k)jDDD(v)j2:(1.3)We omplete the system (1.1){(1.3) by the following initial and boundary ondi-tions: v(0; x) = v0(x)k(0; x) = k0(x) and k0(x) � 0 a.e. in 
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90 M. Bul���ek, R. Lewandowski, J. M�alekv � n = 0�v� + (1� �) (�(k)DDD(v)n)� = 0 on (0; T )� �
;(1.5) k = 0 on (0; T )� �
D;(1.6) rk � n = 0 on (0; T )� �
N :(1.7)Here, DDD(v) denotes the symmetri part of the gradient of the vetor �eld v, i.e.,2DDD(v) = rv + (rv)T , n = n(x) is the outer normal to the boundary loatedat x 2 �
, w� := w � (w � n)n denotes the projetion of a vetor w = w(x)to the tangent plane of the boundary at x, �
D and �
N are smooth subset of�
 satisfying �
D [ �
N = �
 and �
D \ �
N = ;. The parameter � 2 [0; 1℄homotopially onnets a homogeneous Neumann type boundary ondition for� = 0 with the homogeneous Dirihlet boundary ondition for � = 1. If 0 < � < 1,then (1.5)2 is alled Navier's slip boundary onditions. In this paper we assumethat � is any number from [0; 1).Conerning the funtions �; �; " : R+ ! R+ , we require that they are ontin-uous and that for ertain �; �;  2 [0;1) and two positive onstants C1; C2 thefollowing inequalities hold for all k 2 R+ :C1(1 + k)� � �(k) � C2(1 + k)�;C1(1 + k)� � �(k) � C2(1 + k)� ;C1k1+ � "(k) � C2k1+ :(1.8)Within the framework of weak solutions the term on the right hand side of (1.3)is not easy to handle. Thus, it is more appropriate to \equivalently" reformulatethe system (1.1){(1.3) in the following way. De�ning the salar quantity E as(1.9) E := 12 jvj2 + k;we dedue the equation for E by taking the salar produt of (1.2) and v and byadding the result to (1.3). Doing so, we arrive at the equation(1.10) E;t + div (v(E + p))� div (�(k)rk) � div (�(k)DDD(v)v) + "(k) = 0:Of ourse, assuming that the multipliation of (1.2) by v is meaningful (or inother words, assuming that v is a possible test funtion in the weak formulationof (1.2)) the identities (1.3) and (1.10) are equivalent. However, in three spatialdimensions we usually do not know that v is an admissible test funtion andwe annot onlude the equivalene of (1.3) and (1.10). The main mathematialreason why we prefer (1.10) to (1.3) is the fat that in (1.10) all nonlinear termsare in divergene form and belong to a better spae than L1 while in (1.3) the termon the right hand side belongs usually to L1 only. Consequently, it is easier toidentify weak limits of all nonlinear quantities in (1.10) than in (1.3). These fatsseem to be �rst spei�ed and exploited in [13℄. On the other hand, onsidering(1.10) we see that we have to deal with p, that an be usually omitted in the



Evolutionary PDEs of NSF type 91system (1.1){(1.3) by using divergene-free test funtions in (1.2). Moreover,assuming that we have a weak solution to (1.1){(1.2) and (1.10) that in additionsatis�es(1.11) k;t + div(kv)� div (�(k)rk) + "(k) � �(k)jDDD(v)j2;in a weak sense, then it is natural to all suh a solution a suitable weak solutionin sense of Ca�arelli, Kohn, Nirenberg, see [10℄. Indeed, subtrating (1.11) from(1.10), one dedues(1.12) jvj2;t + div �v(jvj2 + 2p)�� div (2�(k)DDD(v)v) � 0;that is the form of loal energy inequality as appeared in the de�nition of suitableweak solution to Navier-Stokes system, see [10℄.In this study we establish the following result.Theorem 1.1. Assume that �, � and " satisfy (1.8) with(1.13) 0 � � < 2�5 + 23 ; 0 �  < � + 23 :Then for any 
 2 C1;1, T > 0, v0 2 L2n;div and k0 2 L1(
), k0 � 0 a.e. in 
, thereexists a suitable weak solution (v; p; k) to Problem (1.1){(1.7), that in partiularful�ls (1.1){(1.2) and (1.9){(1.11) in the sense of distributions.The preise de�nition of the solution and formulation of the result is given inTheorem 2.1 below, see Setion 2.The system (1.4){(1.7) with �, � and " of the form (1.8) is interesting from thepoint of view of mathematial analysis of PDEs, in partiular, from the point ofview of regularity theory. We shall address this point next.To simplify disussion below, we assume that �, � and " are of the form(1.14) �(k) := �0k�; �(k) := �0k� and "(k) = "0k2��;where �0 and �0 are positive onstants and "0 � 0.We formulate the following onjeture.Conjeture 1.1. Let � 2 R, �, � and " be of the form (1.14). Then there existÆ > 0 and C� > 0 suh that for any triple (v; p; k) solving (1.1){(1.2) and (1.10){(1.11) in the sense of distribution the following impliation holds:If(1.15) Z 0�1 ZB1(0) �(k)jDDD(v)j2 dx dt � Æthen(1.16) jv(t; x)j � C� in (�12 ; 0)�B 12 (0):



92 M. Bul���ek, R. Lewandowski, J. M�alekThis onjeture ertainly holds for � � 0 sine then the system (1.1){(1.2)redues to Navier-Stokes equation for whih Conjeture 1.15 was proved in [10℄,see also [31℄. To our best knowledge, Conjeture 1.15 is open for general values ofpositive �'s. In what follows, we will show how Conjeture 1.1 implies that, forertain �'s, any suitable weak solution has bounded veloity.Indeed, assume that a triple (v; k; p) solve (1.1){(1.2) and (1.10){(1.11) onsome neighborhood of (0; 0) that ontains for some `0 > 0 a set (�`A0 ; 0)�B`0(0)with some A > 0 spei�ed below. Then we resale the triple in the following way.For any ` � `0 we de�ne for some B > 0v`(t; x) := `Bv(`At; `x);p`(t; x) := `2Bp(`At; `x);k`(t; x) := `2Bk(`At; `x):It is easy to show that if we hoose A, B suh thatA := 2� 2�1� 2�; B := 11� 2�and assume that � 6= 12 then the triple (v`; p`; k`) solves (1.1){(1.2) and (1.10){(1.11) in the sense of distribution in (�1; 0)�B1(0). Next, we apply Conjeture 1.1on the resaled veloity v`. Hene, using the standard substitution theorem wesee that we need to show thatÆ � Z 0�1 ZB1(0) �(k`)jDDD(v`)j2 dx dt= Z 1�1 ZB1(0) `2B�+2B+2(k(`At; `x))�jDDD(v(`At; `x))j2 dx dt= Z 0�`A ZB`(0) `2B�+2B+2�A�3(k(t; x))�jDDD(v(t; x))j2 dx dt= ` 6��11�2� Z 0�`A ZB`(0) k�jDDD(v)j2 dx dt:(1.17)
Interestingly, we see that for 16 � � < 12 we an hoose ` so small that the premiseof Conjeture 1.1 is ful�lled. As its onsequene, we onlude that v` is boundedin (�1=2; 0)�B1=2(0) and v is bounded in (�(`=2)�; 0)�B`=2(0). Even more, itfollows from (1.17), Conjeture 1.1 and the standard overing argument proedurethat, for � < 16 , the Hausdor� dimension of the set S of possible singularities of v(here, the point of singularity is de�ned suh (t; x) that v is not bounded in anyneighborhood of (t; x)) is bounded by(1.18) d(S) < 1� 6�1� 2� ;



Evolutionary PDEs of NSF type 93whih is onsistent with the standard estimate of possible singular set for theNavier-Stokes equations.To summarize, the system (1.4){(1.7) with �, � and " of the form (1.14) is aninteresting system from the point of view of regularity theory. Before however onestarts to study regularity property of any solution one needs to establish its exis-tene, and this is the subjet of this paper. While the statement of Theorem 1.1for � = 0 was investigated in [8℄, the ase � > 0 is analyzed in this study. Notethat for " � 0 and � = �, Theorem 1.1 guarantees the existene of solution for0 � � < 109 .There are two main reasons motivating us to analyze the problem (1.1){(1.8).The �rst one omes from the large-data analysis of turbulent models. The se-ond reason is onneted with the question of large-data qualitative mathematialproperties of ows of inompressible heat-onduting Newtonian uids. We shalldisuss the both issues in what follows.(1) Kolmogorov model. The problem in onsideration (1.1){(1.3) is loselyrelated to the so-alled turbulent kineti energy model; then v represents thestatistial mean (averaged) veloity of the uid, p is assoiated to the statistialmean normal stress - the averaged pressure, � stands for the visosity, � is theeddy di�usion and k denotes the turbulent kineti energy de�ned as 12P3j=1 jv0j j2,whereas v0 is the veloity of utuations and z stands for the averaging of thequantity z. The term on the right hand side of (1.3) represents the energy thatthe large sales transmit onto the small sales, and the last term of the left handside of (1.3) measures the energy rate returned by the small sales to the largesales. Usually, the quantities �; � and " are depending on the mixing lengthsale ` that is a positive given funtion or it is driven by another evolutionaryequation.In fat, one of the �rst models of this type was proposed by Kolmogorov in [15℄,see also the paper No. 48 in [16℄ or Appendix in [30℄. Based on loal properties ofturbulene and inorporating, as Kolmogorov learly states, (unspei�ed) rudeapproximations, he formulates a losed system of equations of the formdiv v = 0(1.19) v;t + div(v 
 v) = �r�p% + b�+A div�2 b! DDD(v)� ;(1.20) !;t + div(!v) = � 711!2 +A0 div� b!r!� ;(1.21) b;t + div(bv) = �b! + 43A b! jDDD(v)j2 +A00 div� b! rb� ;(1.22)where the veloity of the uid is the sum of the averaged veloity v and the ve-loity of utuations v0, p is the averaged pressure, b := 13P3j=1 jv0j j2 is one thirdof the sum of averaged square of the omponents of the veloity of utuations,and ! is related to the length sale ` through the relation ! := Cpb=`, C, A,



94 M. Bul���ek, R. Lewandowski, J. M�alekA0 and A00 are onstants. Equations (1.20){(1.22) oinide exatly1 with equa-tions (1){(3) in [15℄, [16℄, [30℄, we merely ompleted the system by the onstraintof inompressibility (1.19). Thus, we obtain a losed system of six equations for(v1; v2; v3; p; `; b).Next, assuming that ` is a given known funtion, equation (1.21) is redundant.Thus, setting v := v, p := p% + b and notiing that b! = C̀ bpb and b! = C̀pb, thesystem (1.19){(1.22) simpli�es todiv v = 0(1.23) v;t + div(v 
 v) = �rp+ div�2`AC pbDDD(v)� ;(1.24) b;t + div(bv) = � C̀ bpb+ 4`A3C pb jDDD(v)j2 + div�`A00C pbrb� :(1.25)Setting k := 32b, �(k) := 2`AC pb = 2p2`Ap3C pk, �(k) = `p2A00p3C pk and "(k) =p2Cp3` pkk we arrive at the system of the form (1.1){(1.3) that is subjet of inves-tigation in this paper. Note that the quantity E introdued in (1.9) (that playsan important role in our analysis) is the sum of the kineti energy assoiated tothe averaged veloity and the turbulent kineti energy k = 12P3j=1 jv0j j2.Although the model (1.1){(1.3) desribes ompliated turbulent behavior ina simpli�ed manner (see for example disussion in [30℄), it is quite popular andeÆient in various appliations. It is used for instane in oeanography ([5℄, [32℄,[20℄), in marine engineering ([22℄, [28℄), et., and surprisingly gives very auratenumerial results in omparison with experimental data. In ertain appliations,this model thus \prevents" the omputational analysts from dealing with the(k � ") model (see the original work due to Launder and Spalding [17℄, and also[26℄ for more details) that is from the omputational point of view very ostly.The derivation of models suh as (1.1){(1.3) is mainly based on dimensionalanalysis and physial assumptions on the turbulene (see [26℄ and [20℄) that leadto the following forms for � and �(1.26) �(k) = �0 + �1pk and �(k) = �0 + �1pk ;where �0 � 0, �1 � 0, �0 > 0 and �1 > 0 are onstants. Note that the ase (1.26)with �0, �1, �0, �1 positive is overed by Theorem 1.1. There are also workstowards the mathematial justi�ation of the k-equation (1.3) from the Navier-Stokes equations ([11℄, [25℄, [12℄), but a transparent and onsistent derivation ofthese models is, to our best knowledge, missing. The limitations and appliabilityof the model in onsideration are one of the topis studied in our forthomingpaper.1In fat, we follow the translation given by Spalding in [30℄. There seems to be a misprintonerning the de�nition of � in [15℄.



Evolutionary PDEs of NSF type 95From the point of view of analysis of turbulent kineti energy models the resultpresented in this paper an be onsidered as a natural ontinuation of Theorem 4in [21℄ sine it solves the problem formulated in [21℄ that has been left open.Also, Theorem 4 in [21℄ that onerns the ase when both � and � are boundedfuntion of k proves that in three spatial dimensions the limit equation for kdedued from approximated solutions satis�es a variational inequality. This papergives two essential novel ontributions to the analysis of (1.1){(1.3). First, theunknown k is shown to ful�ll the equation for E (see (1.10) above) rather thanequation (1.3), and seond, it investigates three-dimensional ows with � and kthat are unbounded funtions of k. The prie we pay for dealing with (1.10) ratherthan with (1.3) is that we need to introdue globally integrable pressure and thisis the reason why we are not able to extend, at the urrent state, the theory toDirihlet boundary ondition for the veloity (the ase � = 1 in (1.5)2).We �nish this part by realling several related results and approahes. Thesystem (1.1){(1.3) was �rst studied in [19℄ and [21℄. Assuming that the eddyvisosity is a bounded funtion of k, the author establishes the existene of weak(distributional) solutions in the steady-state ase and in the evolutionary 2D aseif both k and v satisfy homogeneous Dirihlet boundary onditions. These resultshave been generalized in many ways and for other boundary onditions, as forinstane to ows of two interating uids suh as the Oean and the Atmosphere([3℄, [4℄, [1℄). There are very few uniqueness results that are mainly obtainedunder smallness assumptions on the total variation of the eddy visosity or thesoure term, and they onern steady-state ows ([2℄, [6℄). In order to analyzemodels with unbounded eddy visosities (that are important, see (1.26)) severaldi�erent tools were developed, mostly for some simpli�ed models (suh as steady-state models, models without onvetive terms, and even without the pressure).We refer the interested reader to Lewandowski and Murat [20, Chapter 5℄ fordetails onerning renormalized solutions, or to [14℄ (energy solutions in speialfuntion spaes) or to [18℄ (energy solutions with periodi boundary onditions).(2) Navier-Stokes-Fourier system. Assoiating k with the internal energy(or temperature) and setting " � 0, the system (1.1){(1.3) desribes unsteadyows of inompressible heat-onduting uids in whih the Cauhy stress TTT andthe heat ux q are given by the onstitutive equations of the form(1.27) TTT := �pIII+ �(k)DDD(v) and q := �(k)rk:The system of equations (1.1){(1.3) together with (1.27) is alled the inompress-ible Navier-Stokes-Fourier system, where � denotes the kinematial visosity ofthe uid and � is the heat ondutivity. In most liquids, that are well approx-imated as inompressible materials, the internal energy is proportional to thetemperature and the visosity dereases with inreasing temperature. This is justopposite senario than that desribed by the assumptions (1.8). Although theNavier-Stokes-Fourier system with the visosity satisfying (1.8) is not reetingexperimental observations it would be de�nitely of interest to know that there



96 M. Bul���ek, R. Lewandowski, J. M�alekare unsteady ows of a lass of Newtonian uids that exist for large data and theveloity is bounded.The large data existene result presented here an be viewed as the extensionof the approah (that is based on the appropriate form of the balane of energy)originally developed in [13℄ and [8℄ where the Navier-Stokes-Fourier system withthe bounded visosity and the heat ondutivity is treated; the spatially-periodiproblem is analyzed in [13℄ while ows in bounded domains satisfying the Navier'sslip boundary onditions are studied in [8℄. Naumann [27℄ studied the model withthe temperature dependent visosity and the heat ondutivity, he however usesequation (1.3) instead of (1.10); due to diÆulties to identify the limit the dissipa-tive term at the right-hand side of (1.3) his onept of solution is weaker than thatintrodued in [13℄, [8℄ and used in this paper as well. For the sake of omplete-ness, we remark that Lions [23, Setion 3.4℄ studies the ase where the visosityand the heat ondutivity are positive onstants (temperature independent) andprovides two approahes (di�erent from that presented here) how the problem anbe investigated in order to establish long-time and large-data existene results.The paper is organized as follows. After introduing relevant funtion spaes,we establish, in Setion 2, the main result that inludes the preise de�nition ofsuitable weak solutions to (1.1){(1.3). Then, in Setion 3, we introdue two-levelapproximations depending on parameters n and m and prove the main result.Sine the existene of solutions to the (m;n)-approximation, for a �xed n andm, is given in [8, Appendix℄ we fous on the analysis of the limit behavior of thesolutions (vm;n; pm;n; km;n) �rst as n!1 and then as m!1.2. Main resultIn order to state the main result with all details we need to larify the notationof relevant funtion spaes. For the veloity �eld, we de�neW 1;pn := �v 2 W 1;p(
)3 : v � n = 0 on �
	 ;W 1;pn;div := �v 2 W 1;pn : div v = 0 in 
	 ;W�1;p0n := �W 1;pn �� ; W�1;p0n;div := �W 1;pn;div�� ;L2n;div :=W 1;2n;divk k2 :We also introdue the natural spae for k; for some �xed � 2 R+ we setE� :=nk 2 L1(0; T ;L1(
)) : k � 0 a.e.;((1 + k)s � 1) 2 L2(0; T ;W 1;2D (
)) for all s < � + 12 o;where W 1;2D (
) := fk 2W 1;2(
); k = 0 on �
Dg.



Evolutionary PDEs of NSF type 97Note that by using standard interpolation tehnique the following ontinuousembedding holds (we show it in the proof of the main theorem) for � 2 [0; 1℄E� ,! Lr(0; T ;Lr(
)3) \ Lq(0; T ;W 1;qD (
)3) for all r < 3� + 53 and q < 3� + 54 :If � > 1 then q = 2 in the above embedding.Moreover, in what follows we use the abbreviation (a; b)A := RA ab wheneverab 2 L1(A). In ase that A = 
 we also omit writing the subsript 
. The samenotation is used for vetor- and tensor-valued funtions as well.We formulate the main result of this paper.Theorem 2.1. Let 
 2 C1;1, T > 0, v0 2 L2n;div and k0 2 L1(
), k0 � 0 a.e.in 
, be given arbitrarily. Assume that �; � and " satisfy (1.8) with �; � and ful�lling(2.1) 0 � � < 2�5 + 23 ; 0 �  < � + 23 :Then there exist a triple (v; p; k) and E given asE = 12 jvj2 + k;satisfying v 2 Cweak(0; T ;L2n;div) \ L2(0; T ;W 1;2n;div);(2.2) v;t 2 Lq0(0; T ;W�1;q0n ) for all q < min�53 ; 2� 2��+ � + 53 � ;(2.3) k 2 E� ;(2.4) k;t 2M(0; T ;W�1;1+Æ) for ertain Æ > 0 small;(2.5) p 2 Lq(0; T ;Lq(
)) for all q < min�53 ; 2� 2��+ � + 53 � ;(2.6) p�(k)DDD(v) 2 L2(0; T ;L2(
)3�3);(2.7) E;t 2 L1+Æ(0; T ;W�1;1+ÆD (
)) for ertain Æ > 0 small;(2.8)and ful�llingZ T0 hv;t;wi � (v 
 v;rw) + �1� � (v;w)�
 + (�(k)DDD(v);DDD(w)) dt= Z T0 (p; divw) dt for all w 2 L1(0; T ;W 1;1n );(2.9)



98 M. Bul���ek, R. Lewandowski, J. M�alekZ T0 hE;t; wi � (v(E + p);rw) + (�(k)rk;rw) + ("(k); w) dt= � Z T0 (�(k)DDD(v)v;rw) dt for all w 2 L1(0; T ;W 1;1D (
));(2.10)and Z T0 hk;t; wi � (kv;rw) + (�(k)rk;rw) + ("(k); w) dt� Z T0 (�(k)jDDD(v)j2; w) dt for all w 2 C(0; T ;W 1;1D (
)):(2.11)Moreover, the initial onditions are attained in the following sense(2.12) limt!0+ �kv(t)� v0k22 + kk(t)� k0k1� = 0:It is worth of notiing that Theorem 2.1 overs the interesting ase � = � = for 0 � � < 10=9. In partiular, the ase (1.26) is inluded.We also remark that all terms in (2.9){(2.11) are meaningful; the most ritialterm is the last term in (2.10) and the L1-integrability of this term leads tothe restrition (2.1)1. Indeed, notiing that �(k)DDD(v)v = p�(k)DDD(v)vp�(k)and p�(k)DDD(v) 2 L2(0; T ;L2(
)3�3), v 2 L10=3(0; T ;L10=3(
)3) and p�(k) 2L 3�+53 �s(0; T ;L 3�+53 �s(
)) we observe, by applying the H�older inequality that�(k)DDD(v)v 2 L1(0; T ;L1(
)) () 0 � � < 2�5 + 23 ;whih is the �rst ondition in (2.1). The seond ondition (2.1)2 is required inorder to know that "(k) belongs to a better spae than L1(0; T ;L1(
)), whih isneeded to establish the ompatness of the terms involving "(k).3. Proof of Theorem 2.1First we introdue a notation of various trunated funtions. For any m 2 R+ ,we de�ne the funtion Tm through(3.1) Tm(y) := ( y if jyj � m;m sgn (y) if jyj > m;and we use the symbol �m to denote the primitive funtion to Tm, i.e.,(3.2) �m(y) := Z y0 Tm(�) d�:



Evolutionary PDEs of NSF type 99For � introdued in (1.8)2 and for arbitrary s � 0, we also introdue the funtion�s by the formula(3.3) �s(y) := Z y0 (1 + �) ��s�12 d� = 2� � s+ 1 h(1 + y) ��s+12 � 1i :Finally, we onsider a smooth non-inreasing funtion G suh that G(y) = 1 wheny 2 [0; 1℄ and G(y) = 0 for y � 2, and de�ne Gm as(3.4) Gm(y) := G� ym� :The primitive funtion to Gm is then de�ned through(3.5) �m(y) := Z y0 Gm(�) d�:The �rst part of the proof takes inspiration in the method developed in [8℄.We start with a \semi"-Galerkin approximation. Let fwkg1k=1 be a basis ofW 1;2n;div \W 2;4(
)d, whih exists due to the separability of this spae. We look for(vn;m; kn;m), wherevn;m := nXi=1 n;mi (t)wi(x); and kn;m � 0 a:e:ful�ll the equations(vn;m;t ;wi)� �Gm(jvn;mj2)vn;m 
 vn;m;rwi�+ �1� � (vn;m;wi)�
+ (�(Tm(kn;m))DDD(vn;m);DDD(wi)) = 0 for all i = 1; : : : ; n;(3.6) Z T0 hkn;m;t ; wi � (vn;mkn;m;rw) + (�(kn;m)rkn;m;rw) + ("(kn;m); w) dt= Z T0 (�(Tm(kn;m))jDDD(vn;m)j2; w) dt for all w 2 L2(0; T ;W 1;2D (
));(3.7)as well as the initial onditions of the formvn;m(0; x) := vn0 (x) := nXi=1 0iwi with 0i := (v0;wi);limt!0 kkn;m(t)� kn0 k22 = 0 with kn0 := k0 � � 1n ;(3.8)where � 1n is the standard regularizing kernel of radii 1n and k0 is extended by 0outside of 
. Note that vn0 ! v0 strongly in L2(
) and that kn0 ! k0 strongly inL1(
).



100 M. Bul���ek, R. Lewandowski, J. M�alekThe existene of the solution to (3.6){(3.8) is established in [8, Appendix℄ andhere we merely state the result onerning large-data and long-time existeneproved therein.Theorem 3.1. Let arbitrary n;m 2 N be �xed. Assume that all assumptions ofTheorem 2.1 hold. Then there exist (n;m; kn;m) solving (3.6){(3.8) suh thatn;m 2 W 1;2(0; T )n;(3.9) kn;m 2 L1(0; T ;L1(
)) \ L2(0; T ;W 1;2D (
));(3.10) kn;m;t 2 L2(0; T ;W�1;20 (
)):(3.11)3.1 Limit n ! 1. Sine m 2 N is �xed in this subsetion, we write (vn; kn)instead of (vn;m; kn;m), where (vn;m; kn;m) denotes a solution to (3.6){(3.8). Ourgoal is to study the onvergene in equations (3.6){(3.7) if n ! 1. We willfollow the proedure developed in [8℄ that we have to modify in order to treatunbounded oeÆients � and �. This is why we investigate this limiting proesshere rigorously and in detail.3.1.1 Uniform estimates on vn. Multiplying the i-th equation in (3.6) by niand then summing over i = 1; : : : n we get12 ddtkvnk22 � 12(Gm(jvnj2)vn;rjvnj2) + �1� �kvnk2�
;2+ Z
 �(Tm(kn))jDDD(vn)j2 dx = 0:(3.12)Next, using the fat that vn � n = 0 on �
 and div vn = 0 in 
 we dedue that12(Gm(jvnj2)vn;rjvnj2) = 12(vn;r�m(jvnj2)) = �12(div vn;�m(jvnj2)) = 0:Thus, we onlude from (3.12) that(3.13)supt2(0;T ) kvn(t)k22 + 2 Z T0 Z
 �(Tm(kn))jDDD(vn)j2 dx dt � kvn0k22 � C(v0) <1:It then follows from (1.8)1 and the Korn inequality that(3.14) Z T0 kvn(t)k21;2 dt � C(C�11 ;v0) <1:Moreover, using the standard interpolation inequality, (3.13){(3.14) implies that(3.15) Z T0 kvnk 103103 dt � C:



Evolutionary PDEs of NSF type 101Note �nally that it follows from (3.6) and (3.13){(3.14) that(3.16) Z T0 kvn;tk2W�1;2n;div � C(m):3.1.2 Estimates on kn uniform w.r.t. both m and n. Setting w := T1(kn)in (3.7) (note that T1(kn) is a possible test funtion) we obtain the identityddt Z
�1(kn) dx� (vn;r�1(kn)) + (�(kn)rkn; T 01(kn)rkn)+("(kn); T1(kn)) = (�(Tm(kn))jDDD(vn)j2; T1(kn)):(3.17)Sine div vn = 0 in 
 and vn �n = 0 on �
, the seond term on the left hand sidevanishes. Moreover, using (1.8), we see that the third term on the left hand sideis nonnegative. Thus, integrating (3.17) over time, using (1.8)3 to estimate thelast term on the left hand side from below and using (3.13) to bound the righthand side of (3.17), we onlude that(3.18) supt2(0;T ) k�1(kn(t))k1 + C Z T0 kknk+1+1 dt � C + k�1(kn0 )k1:Finally, using the simple estimate for the growth of �1 we get that(3.19) supt2(0;T ) kkn(t)k1 + C Z T0 kknk+1+1 dt � C + kk0k1 <1:Next, realling that kn � 0 a.e. in 
 we onsider w = (1 + kn)�s � 1 with s > 0small and observe that suh w is an admissible test funtion in (3.7), in partiularkwk1 � 2 and w 2 L2(0; T ;W 1;2D (
)) for eah n 2 N. Inserting suh w into (3.7),using the fat that div vn = 0 and the estimates established in (3.13) and (3.19),we get Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt � C(s�1):(3.20)Consequently, using the assumption (1.8)2 and realling the de�nition of �s, see(3.3), we onlude that (using the fat that �s has zero trae on 
D)Z T0 k�s(kn)k21;2 dt � C Z T0 kr�s(kn)k22 dt� C Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt � C(s�1):(3.21)Using the �rst inequality in(3.22) �1((1 + x) ��s+12 � 1) � �s(x) � (1 + x) ��s+12 ; (x � 0)



102 M. Bul���ek, R. Lewandowski, J. M�alekthe embedding W 1;2D (
) ,! L6(
) and (3.21)1 we observe that(3.23)Z T0 kknk��s+13(��s+1) dt � C(1 + Z T0 k�s(kn)k21;2 dt) � C(s�1) for all s > 0 small:Then, referring to the standard interpolation inequality(3.24) kuk��s+ 53 � kuk1�a1 kuka3(��s+1) with a := � � s+ 1� � s+ 53 ;applied onto kn we onlude from (3.19) and (3.23) thatZ T0 kknk��s+ 53��s+ 53 dt � Z T0 kknk 231 kknk��s+13(��s+1) dt (3.20)�(3.23) C(s�1) for all s > 0 small:(3.25)Notie that the estimate (3.25) is better than the seond estimate in (3.19) sinewe assume that  < � + 23 , see (2.1)2. Moreover, using the H�older inequality andthe estimates (3.15) and (3.25), it is easy to dedue that (note that the spei�value of a small parameter s di�ers from s in (3.25))(3.26) Z T0 kvnknk 109 3�+5�+5 �s109 3�+5�+5 �s dt � C(s�1) for all s > 0 small:Conerning the estimate on the gradient of kn, we onsider �rst the ase � 2 [0; 1℄and we set q := 3��3s+54 . Combining the estimates stated in (3.20) and (3.25),we onlude thatZ T0 krknkqq � C Z T0 Z
 ��(kn)(1 + kn)�s�1jrknj2� q2 (1 + kn) q(s+1��)2 dx dt� C  Z T0 Z
 �(kn)(1 + kn)�s�1jrknj2 dx dt! q2  Z T0 k1 + knk�+ 53�s�+ 53�s dt! 2�q2� C(s�1):If � > 1 we an always �nd s > 0 small enough so that � � s � 1 > 0. Conse-quently2, Z T0 krknk 3�+5�s43�+5�s4 � C(s�1) for all s > 0 small for � 2 [0; 1℄;Z T0 krknk22 � C for � > 1:(3.27)2Note that the estimates (3.27) and (3.25) are better than those derived in [14℄ and [21℄.



Evolutionary PDEs of NSF type 103Similarly, the estimates (3.21){(3.25) together with (1.8)2 imply that(3.28) Z T0 k�(kn)rknk 3�+53�+4�s3�+53�+4�s � C(s�1) for all s > 0 small:Finally, using the above established estimates it is not diÆult to observe (see [7℄for details) that(3.29) Z T0 kkn;tk�1;r�s dt � C(s�1) for all s > 0 smallwith r given by(3.30) r := min�3� + 53� + 4 ; 109 3� + 5� + 5 � :3.1.3 Limit n!1. Letting n!1 and using (3.13), (3.15), (3.16), (3.25) and(3.27), and using the onvention that a seleted sequene is denoted again as theoriginal one, we an �nd a subsequene suh that3vn *� v weakly� in L1(0; T ;L2n;div);(3.31) vn * v weakly in L2(0; T ;W 1;2n;div) \ L 103 (0; T ;L 103 (
)3);(3.32) vn;t * v;t weakly in L2(0; T ;W�1;2n;div);(3.33) kn * k weakly in Lq(0; T ;W 1;qD (
)) for all q < min�3� + 54 ; 2� ;(3.34) kn * k weakly in L!(0; T ;L!(
)) for all 1 � ! < 3� + 53 ;(3.35) vn * v weakly in L 83 (0; T ;L 83 (�
)3):(3.36)In addition, using the generalized version of the Aubin-Lions ompatness lemma(see [29℄) together with (3.33) and (3.29) leads to the onlusions thatvn ! v strongly in Lq(0; T ;Lq(
)3) for all q < 103 ;(3.37) vn ! v strongly in Lq(0; T ;Lq(�
)3) for all q < 83 ;(3.38) kn ! k strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53 ;(3.39)and onsequently we show that (at least for a suitable subsequene)vn ! v a.e. in (0; T )� 
;(3.40) kn ! k a.e. in (0; T )� 
;(3.41)3For the proof of (3.36) and (3.38) see [7℄.



104 M. Bul���ek, R. Lewandowski, J. M�alek�s(kn)* �s(k) weakly in L2(0; T ;W 1;2D (
)) for all s > 0 small:(3.42)Moreover, using the Fatou lemma, (3.19) and (3.41) we an onlude that(3.43) supt2(0;T ) kk(t)k1 � C:Conerning limits in the nonlinear terms in (3.6) and (3.7) we �rst easily observe(reall that �(Tm(kn)) is a bounded a.e. onvergent sequene as n!1) thatp�(Tm(kn))DDD(vn) *p�(Tm(k))DDD(v) weakly in L2(0; T ;L2(
)3�3);(3.44) �(Tm(kn))DDD(vn) * �(Tm(k))DDD(v) weakly in L2(0; T ;L2(
)3�3):(3.45)Next, having the assumption on , see (1.8)3, one an also obtain by using (3.34),(3.39) and the Vitali theorem that"(kn)! "(k) strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53( + 1) :(3.46)Also, it is a onsequene of (3.28) that there is some q suh that�(kn)rkn * q weakly in Lq(0; T ;Lq(
)3) for all q < 3� + 53� + 4 :(3.47)In order to identify q, we �rst remark that it is enough to show thatlimn!1 Z T0 (�(kn)rkn;') dt = Z T0 (�(k)rk;') dt for all ' 2 D((0; T )�
):However, using the assumption (1.8)2 onerning � and the onvergene results(3.39) and (3.42) we observe thatZ T0 (�(kn)rkn;') dt = Z T0 (�(kn)(1 + kn)� ��s�12| {z }strongly in L2 r�s(kn)| {z }weakly in L2;') dtn!1! Z T0 (�(k)(1 + k)� ��s�12 r�s(k);') dt = Z T0 (�(k)rk;') dt:Consequently, q = �(k)rk.All above established onvergene results are not suÆient to take the limit inthe nonlinear term at the right hand side of (3.7). However, sine m is �xed andv = vm is an admissible test funtion in (3.6) we an use energy equality method



Evolutionary PDEs of NSF type 105here. First, we notie that it follows from (3.31){(3.33), (3.37) and (3.45) thatZ T0 hv;t;wi � �Gm(jvj2)v 
 v;rw� dt+ Z T0 (�(Tm(k))DDD(v);DDD(w)) dt+ �1� � Z T0 (v;w)�
 dt = 0 for all w 2 L2(0; T ;W 1;2n;div):(3.48)Moreover, using (3.31){(3.33) and (3.44) it is standard to dedue (see for example[24℄) that v 2 C([0; T ℄;L2n;div) and v(0) = v0 :Next, we shall show that we an replae the weak onvergene in (3.45) by thestrong one. For this purpose, we �rst integrate (3.12) w.r.t. time t 2 (0; T ) andobtainZ T0 kp�(Tm(kn))DDD(vn)k22 dt = �12kvn(T )k22 + 12kvn0k22 � Z T0 �1� �kvnk22;�
 dt= �12kvn(T )� v(T )k22 + 12kvn0 � v0k22 � Z T0 hv;t;vn � vi+ hvn;t;vi dt� Z T0 �1� �kvnk22;�
 dt:Therefore, letting n!1 we dedue from (3.32), (3.33), (3.38) and (3.8) thatlim supn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt � � Z T0 hv;t;vi dt� Z T0 �1� �kvk22;�
 dt:(3.49)Next, setting w := v in (3.48) and using (3.49) we obtainlim supn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt � Z T0 kp�(Tm(k))DDD(v)k22 dt:(3.50)Consequently, as (3.44) implies thatZ T0 kp�(Tm(k))DDD(v)k22 dt � lim infn!1 Z T0 kp�(Tm(kn))DDD(vn)k22 dt(3.51)we �nally onlude thatp�(Tm(kn))DDD(vn)!p�(Tm(k))DDD(v) strongly in L2(0; T ;L2(
)3�3);(3.52)or saying di�erently�(Tm(kn))jDDD(vn)j2 ! �(Tm(k))jDDD(v)j2 strongly in L1(0; T ;L1(
)):(3.53)



106 M. Bul���ek, R. Lewandowski, J. M�alekFinally, using (3.7), (3.29) and (3.53) we observe thatkn;t * k;t weakly in L1(0; T ;W�1;r�sD (
)) for all s > 0 small;(3.54)with r given by (3.30). At this point, it is easy to take the limit in (3.7) andarrive at Z T0 hk;t; wi � (vk;rw) + (�(k)rk;rw) + ("(k); w) dt= Z T0 (�(Tm(k))jDDD(v)j2; w) dt for all w 2 L1(0; T ;W 1;1D (
)):(3.55)3.1.4 Attainment of initial data k0. We �rst integrate (3.17) w.r.t. time over(0; t) and obtain (note that the seond term vanishes and the third and fourthterms are nonnegative)k�1(kn(t))k1 � Z t0 �(Tm(kn))jDDD(vn)j2 dx d� + k�1(kn0 )k1:Next, we let n ! 1. Using the nonnegativity of �1, the point-wise onvergeneof kn, see (3.41), and the Fatou lemma we are able to take limit in the term atthe left hand side with orresponding inequality sign. On the other hand, using(3.53) we are able to identify limit of the �rst term on the right hand side andtherefore we obtain for almost all time t 2 (0; T )(3.56) k�1(k(t))k1 � Z t0 �(Tm(k))jDDD(v)j2 dx d� + k�1(k0)k1;whih implies that(3.57) lim supt!0+ k�1(k(t))k1 � k�1(k0)k1:Next, setting in (3.55) w := T1(kn)(�1(kn))� 12'�[0;t℄ where ' 2 D(
), ' � 0, weobtain (note that w is an admissible test funtion)2(p�1(kn(t)); ')� 2 Z t0 (vnp�1(kn);r') d�+ Z t0 Z
 �(kn)�T 01(kn)(�1(kn))� 12 � 12(T1(kn))2(�1(kn))� 32� jrknj2' dx d�+ Z t0 (�(kn)T1(kn)(�1(kn))� 12rkn;r') d�+ Z t0 ("(kn); T1(kn)(�1(kn))� 12') d�= Z t0 (�(Tm(kn))jDDD(vn)j2; T1(kn)(�1(kn))� 12 ') d� + 2(q�1(kn0 ); '):



Evolutionary PDEs of NSF type 107Observing that the integrand in the third integral is non-positive and the �rstintegral on the right hand side is nonnegative, we an neglet both of them byreplaing the equality sign by the inequality4. Then we let n!1. Applying allonvergene results established above, it is standard to onlude that for almostall times t 2 (0; T )(p�1(k(t)); ')� Z t0 (vp�1(k);r') d� + 12 Z t0 (�(k)T1(k)(�1(k))� 12rk;r') d�+ 12 Z t0 ("(k); T1(k)(�1(k))� 12') d� � 2(p�1(k0); '):Finally, letting t! 0+ we observe thatlim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 D(
); ' � 0:Thus, using the density argument, (3.43) and the fat that �1(k) has at mostlinear growth in k, we �nally dedue that(3.58)lim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 L2(
); ' � 0 a.e. in 
:Consequently, it is then easy to observe thatlimt!0+ kp�1(k(t))�p�1(k0)k22= limt!0+�k�1(k(t))k1 + k�1(k0)k1 � 2(p�1(k(t));p�1(k0))�(3.57);(3.58)� k�1(k0)k1 + k�1(k0)k1 � 2(p�1(k0);p�1(k0)) = 0;whih �nally leads to(3.59) limt!0+ kk(t)� k0k1 = 0:3.2 Limit m ! 1. In the previous subsetion, we established the existene of(vm; km) ful�lling, for everym 2 N �xed, the weak formulations (3.48) and (3.55).Before summarizing the estimates for (vm; km) that are uniform with respet tom, we take the advantage of onsidered slip boundary onditions (0 � � < 1 in(1.5)) and introdue the integrable pressure.For anyw 2 W 1;2n we observe that the Helmholtz deompositionw = wdiv+r'with ' having zero mean over 
 and solving ��' = divw in 
 and homogeneousNeumann problem on �
 is ompatible with (1.5) for 0 � � < 1. Indeed, notiing4At this level of approximation, we even do not need this simpli�ation beause we are ableto identify the limit of orresponding quantities. However, it will not be the ase in the �nalpassage to the limit and we will be fored to use suh proedure.



108 M. Bul���ek, R. Lewandowski, J. M�alekthat(3.60) Z T0 hvm;t ;wi dt = Z T0 hvm;t ;wdivi dt;we an extend the de�nition domain for vm;t and observe that vm;t 2L2(0; T ;W�1;2n ).Let us introdue pm as the solution of the following problem(pm;4') = (�(Tm(km))DDD(vm);r(2)') + �1� � (vm;r')�
� (Gm(jvj2)vm 
 vm;r2') for all ' 2W 2;2(
); r' 2 W 1;2n :(3.61)Taking w 2 L2(0; T;W 1;2n ) arbitrarily, applying the Helmholtz deomposition onsuh w, taking the sum of (3.48) with the test funtion wdiv and (3.61) and using(3.60) we obtain the following identityZ T0 hvm;t ;wi � �Gm(jvmj2)vm 
 vm;rw�+ (�(Tm(km))DDD(vm);DDD(w)) dt+ �1� � Z T0 (vm;w)�
 dt = Z T0 (pm; divw) dt for all w 2 L2(0; T ;W 1;2n ):(3.62)
It is easy to hek from (3.62) that suh normalized pm is uniquely determinedby a given solution (vn; kn).We also reall that the m-approximation satis�es (3.55) that we repeat forbrevity. It reads asZ T0 hkm;t ; wi � (vmkm;rw) + (�(km)rkm;rw) + ("(km); w) dt= Z T0 (�(Tm(km))jDDD(vm)j2; w) dt for all w 2 L1(0; T ;W 1;1D (
)):(3.63)Next, we reall the uniform bound on (vm; pm) and derive the uniform boundon the pressure pm that will be needed in what follows. First, referring to lowersemiontinuity of the norms and the Fatou lemma we get from (3.13) and (3.19)supt2(0;T ) �kvm(t)k22 + kkm(t)k1�+ Z T0 Z
 �(Tm(km))jDDD(vm)j2 dx dt+ Z T0 kkmk+1+1 dt � C:(3.64)



Evolutionary PDEs of NSF type 109Moreover, using (3.64) and the standard embedding of Sobolev funtions to thespae of traes together with the standard interpolation inequalities one an de-due, see [9, Lemma 1.12℄ for details, that(3.65) Z T0 Z�
 jvmj 83 dS dt+ Z T0 kvmk 103103 dt � C:In addition, referring again to the lower semiontinuity of the norms we obtainfrom (3.21) and (3.25){(3.28)Z T0 k�s(km)k21;2 + kvmkmk 109 3�+5�+5 �s109 3�+5�+5 �s + kkmk�+ 53�s�+ 53�s + krkmkmin(2; 3�+54 )�smin(2; 3�+54 )�s dt+ Z T0 k�(km)rkmk 3�+53�+4�s3�+53�+4�s dt � C(s�1) for all s > 0 small:(3.66)
Next, observing that�(Tm(km))DDD(vm) =p�(Tm(km))DDD(vm)p�(Tm(km)) ;and realling that aording to (3.64)p�(Tm(km))DDD(vm) is uniformly bounded inL2(0; T ;L2(
)3�3) and aording to (3.66) p�(Tm(km)), whih grows as(1 + km)�=2, is bounded uniformly in L 2� (�+ 53�s)(0; T ;L 2� (�+ 53�s)(
)), we on-lude that Z T0 k�(Tm(km))DDD(vm)kq0�sq0�s dt � C(s�1) for all s > 0 small;with q0 := 2(3� + 5)3�+ 3� + 5 :(3.67)Similarly, inorporating also the seond estimate in (3.65), we observe thatZ T0 k�(Tm(km))DDD(vm)vmkw0�sw0�s dt � C(s�1) for all s > 0 small;with w0 := 10(3� + 5)15�+ 24� + 40 :(3.68)Note that the assumption (2.1)1 guarantees that w0 > 1.At this point, we an dedue from (3.61) the estimates for fpmg that will beuniform with respet to m. We onsider ' with zero mean over 
 solving thehomogeneous Neumann problem �4' = jpmjq�2pm � 1j
j R
 jpmjq�2pm dx andinserting it into (3.61). Using the estimates on fvmg and the H�older inequality



110 M. Bul���ek, R. Lewandowski, J. M�alekwe obtain Z T0 kpmkz0�sz0�s dt � C(s�1) for all s > 0 small;with z0 := min�53 ; 2(3� + 5)3�+ 3� + 5� :(3.69)Finally, using equation (3.62) and the above estimates we onlude that(3.70) Z T0 kvm;t kz0�sW�1;z0�sn dt � C(s�1) for all s > 0 small:Similarly as in the previous subsetion, using (3.55), (3.64) and (3.66) we deduethat(3.71) Z T0 kkm;t kW�1;r�sD dt � C(s�1) for all s > 0 small and r de�ned in (3.30):Having all uniform estimates (3.64), (3.65), (3.66), (3.69), (3.70) and (3.71), andusing the generalized version of the Aubin-Lions ompatness lemma we �ndsubsequenes that we again label in the same way as the original sequenes suhthat (we use the onvention that s > 0 is small but arbitrary)vm *� v weakly� in L1(0; T ;L2n;div);(3.72) vm * v weakly in L2(0; T ;W 1;2n;div) \ L 103 (0; T ;L 103 (
)3);(3.73) vm;t * v;t weakly in Lz0�s(0; T ;W�1;z0�sn ) for z0 from (3.69);(3.74) pm * p weakly in Lz0�s(0; T ;Lz0�s(
)) for z0 from (3.69);(3.75) km * k weakly in Lq(0; T ;W 1;qD (
)) for all q < min(2; 3� + 54 );(3.76) km;t *� k;t weakly� in M(0; T ;W�1;r�sD (
)) for r from (3.30);(3.77) vm * v weakly in L 83 (0; T ;L 83 (�
)3);(3.78) vm ! v strongly in Lq(0; T ;Lq(
)3) for all q < 103 ;(3.79) vm ! v strongly in Lq(0; T ;Lq(�
)3) for all q < 83 ;(3.80) km ! k strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53 ;(3.81) vm ! v a.e. in 
� (0; T );(3.82) km ! k a.e. in 
� (0; T );(3.83)�s(km) * �s(k) weakly in L2(0; T ;W 1;2D (
)):(3.84)



Evolutionary PDEs of NSF type 111Moreover, using the same proedure as in the previous subsetion we an onludethat(3.85) supt2(0;T ) kk(t)k1 � C:Similarly, as in the previous subsetion, see (3.47), we an verify that�(km)rkm * �(k)rk weakly in Lq(0; T ;Lq(
)3) for all q < 3� + 53� + 4 :(3.86)Moreover, it follows from (3.64) that there is an SSS 2 L2(0; T ;L2(
)3�3) suh thatp�(Tm(km))DDD(vm)* SSS weakly in L2(0; T ;L2(
)3�3):(3.87)To identify SSS we �rst observe that (3.83), the growth assumption (1.8)1, (3.66)and Vitali's theorem imply that�(Tm(km))! �(k) strongly in Lq(0; T ;Lq(
)) for all q < 3� + 53� :(3.88)Sine the assumption (2.1) guarantees that 3�+53� > 2, it follows from (3.73) and(3.88) that(3.89) SSS =p�(k)DDD(v) a.e. in (0; T )�
:Similarly, using (3.67), we an dedue that(3.90) �(Tm(km))DDD(vm)* SSS2 weakly in Lq(0; T ;Lq(
)3�3) for all q < q0 :To identify SSS2 it is then enough to ombine (3.87), (3.89) and (3.88) to obtainthat SSS2 = �(k)DDD(v) a.e. in (0; T )�
:At this point, we an omplete the proof of Theorem 2.1. First note that(3.72){(3.88) implies that the triple (v; k; p) satis�es (2.2){(2.7). Next, the aboveestablished onvergenes (3.72){(3.90) suÆe to prove (2.9) by letting m!1 in(3.62). Similarly, letting m!1 in (3.63) we dedue (2.11), using the weak lowersemiontinuity of the last term in (3.63).Then, setting in (3.62) w := vmw with arbitrary w 2 L1(0; T ;W 1;1D (
)) andadding the result to (3.63) we arrive atZ T0 hEm;t ; wi � (vm(pm + km);rw) � (Gm(jvmj2)vm 
 vm;r(vmw)) dt+ Z T0 (�(Tm(km))DDD(vm)vm;rw) + (�(km)rkm;rw) + ("(km); w) dt = 0;(3.91)



112 M. Bul���ek, R. Lewandowski, J. M�alekwhere we set Em := 12 jvmj2 + km:Notiing that the third term in (3.91) an be simpli�ed by using integration byparts and also the fat that div vm = 0 in 
, we get(Gm(jvmj2)vm 
 vm;r(vmw))= 12(wvm;r�m(jvmj2) + (Gm(jvmj2)jvmj2vm;rw))= ((Gm(jvmj2)jvmj2 � 12�m(jvmj2))vm;rw):From (3.91) we an obtain the estimate on the time derivative of Em and byseleting a subsequene observe that(3.92) Em;t * E;t weakly in Lq(0; T ;W�1;qD (
)); where E := 12 jvj2 + k;for all 1 < q < minn 109 ; w0; 3�+53�+4o; w0 is introdued in (3.68).Finally, setting m!1 in (3.91) it is standard to obtain (2.10).3.2.1 Attainment of initial ondition. We aim to prove (2.12). The �rstpart, i.e., the attainment of the initial veloity v0 is standard and we refer thereader to [24℄. To establish the seond part we use the similar proedure as inthe previous subsetion with only one essential hange. First part follows theproedure from the preeding subsetion and we dedue that(3.93)lim inft!0+ (p�1(k(t)); ') � (p�1(k0); ') for all ' 2 L2(
); ' � 0 a.e. in 
:To �nish the proof of (2.12) it is then enough to obtain(3.94) lim supt!0+ k�1(k(t))k1 � k�1(k0)k1and the same arguments as in preeding subsetion then leads to (2.12). To prove(3.94) we have to proeed di�erently. Rewriting (3.56) again as(3.95) k�1(km(t))k1 � Z t0 Z
 �(Tm(km))jDDD(vm)j2 dx dt+ k�1(k0)k1;we an replae the �rst term on the right hand side by using w := vn�[0;t℄ as atest funtion in (3.62). Hene, after negleting the boundary integral, beause oforret sign, we get(3.96) k�1(km(t))k1 � �kvm(t)k22 + kv0k22 + k�1(k0)k1:
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