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Berezin-Weyl quantization for Cartan motion groups

BENJAMIN CAHEN

Abstract. We construct adapted Weyl correspondences for the unitary irreducible
representations of the Cartan motion group of a noncompact semisimple Lie
group by using the method introduced in [B. Cahen, Weyl quantization for
semidirect products, Differential Geom. Appl. 25 (2007), 177-190].
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1. Introduction

In [3] and [4], we introduced the notion of adapted Weyl correspondence as a
generalization of the usual quantization rules [1], [15]. The present paper is part
of a larger program to study adapted Weyl correspondences for semisimple Lie
groups and for semidirect products.

Let G be a connected Lie group, g the Lie algebra of G and g* the dual space
of g. Let m be a unitary irreducible representation of G on a Hilbert space H.
Suppose that 7 is associated with an orbit O for the coadjoint action of G on g*
by the Kostant-Kirillov method of orbits [18], [20]. In [6], we gave the following
definition for the notion of adapted Weyl correspondence.

Definition 1.1. An adapted Weyl correspondence is an isomorphism W from
a vector space A of complex-valued smooth functions on the orbit O (called
symbols) onto a vector space B of (not necessarily bounded) linear operators on
‘H satisfying the following properties:

(1) the elements of B preserve a fixed dense domain D of H;

(2) the constant function 1 belongs to A, the identity operator I belongs to
B and W (1) = I;

(3) A€ Band B € B implies AB € B;

(4) for each f in A the complex conjugate f of f belongs to A and the adjoint
of W(f) is an extension of W (f);

(5) the elements of D are C™-vectors for the representation , the functions X
(X € g) defined on O by X(¢) = (¢, X) are in A and W (iX)v = dn(X)v
for each X € g and each v € D.
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Adapted Weyl correspondences were obtained in various situations, see the
introduction of [6]. In particular, we constructed adapted Weyl correspondences
for the principal series representations of a noncompact semisimple Lie group
in [3] and [7]. We also obtained adapted Weyl correspondences for the unitary
irreducible representations of the semidirect product V x K of the real vector
space V by a Lie group K acting linearly on V in the following situations:

(1) K is a connected noncompact semisimple Lie group and the little group
associated with the representation of V' x K is a maximal compact sub-
group of K [6];

(2) K is a connected compact semisimple Lie group and the little group is
the centralizer of a torus of K [10].

Let us mention that adapted Weyl correspondences have various applications
in Harmonic Analysis and Deformation Theory as the construction of covariant
star-products on coadjoint orbits [3] and the study of contractions of Lie group
unitary representations [13], [5], [8], [9]. Recently, in [11], we have studied a con-
traction of the principal series of a semisimple Lie group to the unitary irreducible
representations of its Cartan motion group by using the deformed Weyl calculus
introduced in [3].

The present paper can be considered as a sequel of [6] and [10]. Let G be a
connected noncompact semisimple Lie group with Lie algebra g and let K be
a maximal compact subgroup of Gy. Then we have the Cartan decomposition
go = E® V where € is the Lie algebra of K and V is an Ad(K)-invariant subspace
of gg. The Cartan motion group associated with the pair (Gg, K) is the semidirect
product V x K formed with respect to the adjoint action of K on V.

It is known for a long time that the unitary irreducible representations of
V % K are similar to the principal series representations of Gy [21]. This has
been illustrated by means of contractions of representations in [14] (see also [11]).
Here, we exploit this similarity to construct adapted Weyl correspondences for
unitary irreducible representations of V x K as it was done for principal series
representations of Gy in [7]. The method is essentially the same as in [6] and the
explicit computations are partially based on those of [7].

More precisely, let O be a coadjoint orbit of V' x K which is associated with a
generic unitary irreducible representation 7 of V' x K. We realize 7 on a Hilbert
space of functions on R® where n = (1/2)dim O and we compute the corre-
sponding derived representation dm (Section 3). We dequantize dr by using a
combination of the usual Weyl calculus on R?” and of the Berezin calculus on the
little group orbit O’ (Section 4). Then we obtain an explicit symplectomorphism
from R?" x O’ onto a dense open subset of O and an adapted Weyl correspondence
on O (Section 5). In the case when Gy is a complex Lie group, we verify that the
adapted Weyl correspondence coincide with that of [10].
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2. Preliminaries

In this section, we introduce some general facts on noncompact semisimple Lie
groups and Cartan motion groups. Our main references are [16, Chapter VI], [19,
Chapter V] and [22].

Let G be a connected noncompact semisimple real Lie group with finite center.
Let gg be the Lie algebra of Gg. We denote by 8 the Killing form of gg defined by
B(X,Y)=Tr(ad X adY) for X and Y in go. Let 8 be a Cartan involution of go
and let gg = € & V be the corresponding Cartan decomposition of go. Let K be
the connected compact (maximal) subgroup of G¢ with Lie algebra €. Let a be a
maximal abelian subalgebra of V' and let M be the centralizer of a in K. Let m
denote the Lie algebra of M. Let A := A(a, go) be the set of restricted roots and
let

go=admo Z 1)
AEA

be the root space decomposition of gg. We fix a Weyl chamber in a and we
denote by AT the corresponding set of positive roots. We set n = ZA6A+ g, and
=3 ca+0-x Then i =6(n). Let A, N and N denote the analytic subgroups
of G with algebras a, n and n, respectively.

Recall that NM AN is a open dense subset of G. We denote by
g = i(g)m(g)a(g)n(g) the decomposition of g € NMAN. Also, recall that we
have the Iwasawa decomposition G = KAN. We denote by g = k(g)a(g)i(g) the
decomposition of g € G.

The Cartan motion group associated with the pair (Go, K) is the semidirect
product G :=V x K. The group law of GG is given by

(v, k).(v", k") = (v+ Ad(k)v', kk')

for v, v' in V and k, k' € K. The Lie algebra g of G is the space V' x £ endowed
with the Lie bracket

[(w: U), (w,: U,)] = ([U: wl]o - [U,: w]07 [U: U,]O)

where [-, -]o denotes the Lie bracket of gg.

Recall that § is positive defined on V' and negative defined on ¢ [16, p. 184].
Then, by using 3, we can identify V* with V and ¢* with €, hence g* ~ V* x ¢*
with V x €. Under this identification, the coadjoint action of G on g* ~ V x £ is
given by

(0, k) - (w,U) = (Ad(k)w, Ad(k)U + [v, Ad(k)w]o)

for v, win V, k in K and U in €. This is a particular case of the general formula
for the coadjoint action of a semidirect product, see for instance [22].

Let p; and p§, be the projections of go on € and V' associated with the de-
composition gg = € & V. Recall that an element & of a is said to be regular if
A(&) # 0 for each A € A. We shall need the following lemma.
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Lemma 2.1. For each regular element &; of a, the space ad&; (V') is the orthog-
onal complement of m in &.

PrOOF: For each A € AT, let E) # 0 be in gy. Note that the space pg(n) = p§ (i)
is generated by the elements F) + 6(E)) and hence orthogonal to m. Now, by
applying successively pg and p§, to the decomposition gg = m 4+ a + n +n we get
the decompositions € = m+p§(n) and V' = a+p$ (n). This shows that p§(n) is the
orthogonal complement of m in &. On the other hand, since p§, (n) is generated
by the elements Ey — 8(E)), we see that the space ad & (V) is generated by the
elements

ad &1 (Ex — 0(Ey)) = M&)(Ex +0(Ey))

where A(&) # 0 for A € A. Hence ad & (V') = pg(n) is the orthogonal complement
of min €. O

The coadjoint orbits of the semidirect product of a Lie group by a vector space
were described in [22]. For each (w,U) € g* ~ g, we denote by O(w,U) the
orbit of (w,U) under the coadjoint action of G. The following lemma shows that,
for almost all (w,U), the orbit O(w,U) is of the form O(&;, &) with & € a and
& em.

Lemma 2.2. (1) Let O be a coadjoint orbit for the coadjoint action of G on
g* ~ g. Then there exists an element of O of the form (&;,U) with & € a.
Moreover, if &; is regular then there exists £&; € m such that (&,&) € O.

(2) Let & be a regular element of a. Then M is the stabilizer of & in K.

Proor: (1) Let (w,U) € O. For each k € K we have
(0,k) - (w,U) = (Ad(k)w, Ad(k)U).

By [19, p.120], we have Ad(K)a = V and then one can choose k € K so that
Ad(k)w € a. We set & = Ad(k)w. If we assume that & is regular then, by
Lemma 2.1, we can write U = & + [£1,v] where & € m and v € V. Then
(fl,U) = (v,e) ’ (€1=£2)' Hence O = 0(5152)

(2) By [7, Lemma 4.2], the stabilizer of £ in go is M A. Then, the stabilizer of
&L inKis MANK =M. d

Let &1 € a be a regular element. Denote by Oy (&) the orbit of & in V' under
the action of K. In the next section, we shall need the chart on Oy (§;) ~ K/M
which is given by the following lemma.

Lemma 2.3 ([26, Lemma 7.6.8]). The map 7 : y — Ad(k(y))¢& is a diffeomor-
phism from N onto a dense open subset of Oy (£1). Let us consider the action of
k€ K ony € N defined by 7(k-y) = Ad(k)7(y) or, equivalently, by k-y = n(ky).
Then the K -invariant measure on N is given by e‘Qp(lOg () dy where dy is a Haar
measure on N.

In the rest of the paper, we fix the normalization of dy as follows. Let (F;)1<i<n
be an orthonormal basis of n with respect to the scalar product defined by
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(Y,Z) := =B(Y,0(Z)). Denote by (y1,ys2, .. .,yn) the coordinates of Y € fi in this
basis and let dY = dy;dy- .. . dy, be the Euclidean measure on nn. The exponential
map exp is a diffeomorphism from n onto N and we set dy := (exp~!)*(dY).

We shall also denote by k- Y the action of £k € K on Y € n defined by
exp(k-Y) =k exp(Y).

3. Representations

We retain the notation of Section 2. Let & € a be a regular element and let
& € m. We denote by o(&2) the orbit of & under the adjoint action of M on m. Let
o be a unitary irreducible representation of M on a complex (finite-dimensional)
vector space E. In the rest of the paper, we assume that o is associated with the
orbit o(£2) in the following sense, see [27, Section 4]. Given a maximal torus T' of
M with Lie algebra t and a set of positive roots in A(t€, m®), the element i3(&,, -)
of it* is the highest weight of 0. Under these assumptions, the orbit O(&;, &) is
associated with the unitarily induced representation

#=nd%, (ew(g“) ® 0’)

(see [20], [22] and [23]). By aresult of Mackey, # is irreducible since o is irreducible
[24, p.149]. Moreover, in the terminology of [22] and [23], the group M is called
the little group and the orbit o(&;) the little orbit.

The representation 7 is usually realized on the space of square-integrable sec-
tions of a Hermitian vector bundle over Oy (&), see [10], [22]. Following [23] and
using Lemma 2.3 and the section y — I;(y) from N to K, we immediately obtain
the realization 7wy of 7 defined by

(o (v, k)) (y) = ePAAEWDED) o (k)" Rk(k™" - y)) (k™" - y)

on the Hilbert space Ho which is the completion of the space of compactly sup-
ported smooth functions ¢ : N — E with respect to the norm

e R

For the Weyl calculus, it is more convenient to realize 7 on the Hilbert space H :=
L?(n, E) which is the completion of the space Cq(n, E) of compactly supported
smooth functions ¢ : n — E with respect to the norm

16|12 = / (G(Y), $(¥))5 Y.

To this end, we use the unitary isomorphism B from H onto H, defined by
B(¢)(expY) = eP1o82) (V) and we set 7(g) := B 'mo(g)B for g € G. We
immediately obtain, for (v,k) € G,

(7(0, K))(Y) = e BAAEIE 0 o083~ )08 30) 3k, y)) L - V)
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where we have set y = expY and m(k,y) = l;(y)’lkfc(k’li- y) € M. This
formula can be simplified as follows. Let k € K and y € N. Write k~ly =
n(k~'y)m(k~'y)a(k~'y)n(k~'y). Then k~'k(y) = k(n(k~'y))m(k~'y). Thus

m(k,y) = m(k~'y)~!. Also, we have that
a(y) = a(k™'y) = a(a(k~'y))a(k~"y) = ak™" - y)ak~'y).
This gives
(r(v,k)p)(Y) = o—plog a(k™YexpV))+iB(Ad(k(exp Y))E1,v) U(m(k_l exp Y))—l
x ¢p(logn(k 'expY)).

Now, we compute the derived representation dr. Let p,, pm and ps be the
projections of gg onto a, m and n associated with the direct decomposition gy =
a+m+n+i. For X € it we denote by X+ the right invariant vector field on N
generated by X, that is, Xt (y) = %(exp tX)y‘tZO for y € N.

Lemma 3.1 ([7]). (1) For each X € n and each Y € n, we have
adY
dlog(expY) (X *(expY)) = av 1 (X).
(2) For each X € go and eachy € N, we have

d _ —1
Zalexp(tX)y)| _ = pa(Ad(y H)X)

d _
Zm(exp(tX)y)| = p(Ad(y™)X)

t=0

d _
Zilexp(tX)y)| = (Ad@) pa(Ady™) X)) ().

From this lemma, we immediately deduce the following proposition.

Proposition 3.2. For each (w,U) € g, ¢ € Co(n, E) and Y € n, we have

(dr(w,U)¢)(Y) = iB(Ad(k(exp Y))&r, w) p(Y)
+ p(pa(Ad(exp(=Y))U))$(Y) + do (pm(Ad(exp(=Y))U)) p(Y)

- ao) (12 Ad(e (1) D))

4. Dequantization

In this section,we first introduce the Berezin-Weyl calculus on 7% x o(£2). Recall
that the Berezin calculus on o(£2) associates with each operator B on the finite-
dimensional complex vector space E a complex-valued function s(B) on the orbit
o(&2) called the symbol of the operator B (see [2]). The following properties of
the Berezin calculus are well-known, see [12], [3], [10].
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Proposition 4.1. (1) The map B — s(B) is injective.
(2) For each operator B on E, we have s(B*) = s(B).
(3) For each operator B on E, each m € M and each ¢ € o(&;), we have

s(B)(Ad(m)y) = s(a(m)~" Bo(m))(y).

(4) For X € m and ¢ € 0(&;), we have s(do(X))(¢) = if(p, X).

lis an adapted Weyl transform on o(&;)

In particular, we see that the map s~
in the sense of Definition 1.1.

We say that a complex-valued smooth function f : (Y, Z, ) — f(Y,Z,¢) is a
symbol on n? x o(&) if for each (Y, Z) € n? the function ¢ — f(V, Z,¢) is the
symbol in the Berezin calculus on o(&) of an operator on E denoted by f(Y, 7).
A symbol f on 2 x 0(&) is called an S-symbol if the function f belongs to
the Schwartz space of rapidly decreasing smooth functions on @2 with values in
End(E). The Weyl calculus for End(E)-valued functions is a slight refinement of
the usual Weyl calculus for complex-valued functions [17], [15]. For each S-symbol
on 02 x o(&), we define the operator W(f) on the Hilbert space L?(n, E) by

41 WHAHE) = 2n)" /

n2

e(T2) f (Y + %T, Z> (Y +T)dT dZ

for ¢ € Co(n, E).

It is well-known that the Weyl calculus can be extended to much larger classes
of symbols (see for instance [17]). Here we only consider a class of polynomial
symbols. We say that a symbol f on 2 x0(&) is a P-symbol if the function f(Y, Z)
is polynomial in the variable Z. Let f be the P-symbol defined by f(Y,Z,¢) =
u(Y)Z* where u € C*®(n) and Z® := 20" z3? ... 2% for each multi-index o =
(a1, @2, ...,ay,). Then, by [25], we have

4 v = (i) (w3260 +2)]|
In particular, if f(Y,Z,¢) = w(Y) then W(f)$)(Y) = u(Y)¢(Y) and if
f(Y: Z7 90) = U(Y)Zk then

(43) VDA =i (50¥) 60) + u(¥)uo(r)

where J; denotes partial derivative with respect to the variable yy.
We need the following lemma. The trace of an endomorphism u of n is denoted
by Trz u.

Lemma 4.2. For U € ¢ let ¢y : n — n be the map defined by

cy(Y) = s(adY)ps(Ad(exp(-Y)) U)
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where s is the function defined by s(z) =
have

for z # 0 and s(0) = 1. Then we

T—e—=
Tradey(Y) = —2p (pa(Ad(exp(=Y)) X)) .
Proor: This is a particular case of [7, Lemma 3.3]. O

Then we get the following proposition.

Proposition 4.3. For each (w,U) € g, the Berezin-Weyl symbol of the operator
—idr(w,U) is the P-symbol f(,,u) on n* x o(&2) defined by

Fw (Vs Z,9) = B(Ad(k(exp Y)) &1, w) + B (pm(Ad(exp(=Y))U), )
+ (cv(Y), Z).

PROOF: Set ci(Y) = (cy(Y), Ey) for each k = 1,2,...,n. By using (4) of Propo-
sition 4.1 and Formula (4.3), we immediately see that the symbol of —idmr(w, U)
is
fawn (Vs Z,9) = =ip (pa(Ad(exp(=V))U) + 8 (Ad((exp))é1, w)
n ’L' n
48 (pm(Ad(exp(-YNU), ) + 3 ch (V)2 — £ 3 ek (v
k=1 k=1
But by Lemma 4.2, we have

-5 Z ey (Y Trn (dey (Y)) = ip (pa(Ad(exp(=Y))U)).

The result follows. O

5. Adapted Weyl correspondence

In this section, we use the dequantization procedure of Section 4 in order to
obtain an explicit diffeomorphism from n? x o({;) onto the dense open subset

O(&1,&) of O£y, &) defined by
O(&1,&) = {(v,k) - (&1,&) v €V, k€ KNNMAN}
and then to construct an adapted Weyl correspondence on O(&;, &2).

Proposition 5.1. Let ¥ be the map from 1% x o(&;) to g defined by

VY, Z,¢) = (Ad(k(expY))& . pi (Ad(exp ) (0 + pa (8550(2))) ) ).
Then, for each (w,U) € g, we have

f(w,U)(Y7 Z, ¢) = <\I’(Ya Z, 90); (waU)>
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ProoF: We use Proposition 4.3. Note that we have B(a +mn+0n) = (0),
B(n,n) = (0) and B(#,n) = (0). Then for (Y,Z,¢) € 22 x o(&) and (w,U) € g,
we can write

Similarly, we have
B, pm(Ad(exp(=Y))U)) = B(p, Ad(exp(=Y))U) = B(Ad(expY)p,U).
The result then follows from Proposition 4.3. O

Let w and wq be the Kirillov 2-forms on O(&;, &) and o(&), respectively. We
endow 7i? with the symplectic form dY AdZ := )", _, dyi A dzy.

Proposition 5.2. The map ¥ is a symplectomorphism from the symplectic prod-
uct (8% x o(€2), (dY A dZ) @ wp) onto (O(&1,&),wloe, c):

PRrOOF: The proof is similar to that of Proposition 6.2 in [10]. O

Now, we obtain an adapted Weyl transform on O(£;, &) by transferring to
O(&1, &) the Berezin-Weyl calculus on 02 x o(&). We say that a smooth function
fon O(&1,&) is a symbol on O(&1, &) (respectively a P-symbol, an S-symbol) if
f o ¥ is a symbol (respectively a P-symbol, an S-symbol) for the Berezin-Weyl
calculus on n? x o(&).

Proposition 5.3. Let A be the space of P-symbols on O(&;, &) and let B be the
space of differential operators on ft with coefficients in C*°(#i, E). Then the map
W : A — B that assigns to each f € A the operator W(f o ¥) on L*(n, E) is an
adapted Weyl correspondence in the sense of Definition 1.1.

PRrOOF: Properties (1), (2) and (3) of the definition of an adapted Weyl corre-
spondence are clearly satisfied with D = Cy(n, E). Property (4) follows from (2)
of Proposition 4.1 and from the similar result for the usual Weyl calculus, see [17].
Finally, Property (5) is an immediate consequence of Proposition 4.1. O

Finally, let us consider the case when G is a complex Lie group. In this case,
we have V =it and M is the maximal torus exp(ia) of K [19, p. 143 and p. 468].
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Moreover, o(&;) reduces to the point &, o is a character of M and E = C. So,
the map W is just the usual Weyl calculus.
Note that the construction of [10] can also be applied in this case. In [10], we

have defined a symplectomorphism ¥, from n? onto O(&;,&) and an adapted
Weyl correspondence Wy on O(&1,&). We can easily verify that ¥(Y,Z) =
Uy (8(Y),0(2)) for each (Y, Z) € n x 1 and that the spaces of symbols for W and

for Wy ai‘e the same. Moreover, choosing the orthonormal basis for 1 in Section 2
and for n in [10] in compatible ways, we have that Wy (f)(¢p 0o 8) = (W(f)¢) o6

for each S-symbol f on O(&1, &) and for each ¢ € Cy(n).
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