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Berezin-Weyl quantization for Cartan motion groupsBenjamin CahenAbstrat. We onstrut adapted Weyl orrespondenes for the unitary irreduiblerepresentations of the Cartan motion group of a nonompat semisimple Liegroup by using the method introdued in [B. Cahen, Weyl quantization forsemidiret produts, Di�erential Geom. Appl. 25 (2007), 177{190℄.Keywords: semidiret produt, Cartan motion group, unitary representation,semisimple Lie group, sympletomorphism, oadjoint orbit, Weyl quantization,Berezin quantizationClassi�ation: 22E45, 22E46, 22E70, 22E15, 81S10, 81R051. IntrodutionIn [3℄ and [4℄, we introdued the notion of adapted Weyl orrespondene as ageneralization of the usual quantization rules [1℄, [15℄. The present paper is partof a larger program to study adapted Weyl orrespondenes for semisimple Liegroups and for semidiret produts.Let G be a onneted Lie group, g the Lie algebra of G and g� the dual spaeof g. Let � be a unitary irreduible representation of G on a Hilbert spae H.Suppose that � is assoiated with an orbit O for the oadjoint ation of G on g�by the Kostant-Kirillov method of orbits [18℄, [20℄. In [6℄, we gave the followingde�nition for the notion of adapted Weyl orrespondene.De�nition 1.1. An adapted Weyl orrespondene is an isomorphism W froma vetor spae A of omplex-valued smooth funtions on the orbit O (alledsymbols) onto a vetor spae B of (not neessarily bounded) linear operators onH satisfying the following properties:(1) the elements of B preserve a �xed dense domain D of H;(2) the onstant funtion 1 belongs to A, the identity operator I belongs toB and W (1) = I ;(3) A 2 B and B 2 B implies AB 2 B;(4) for eah f in A the omplex onjugate �f of f belongs to A and the adjointof W (f) is an extension of W ( �f);(5) the elements ofD are C1-vetors for the representation �, the funtions ~X(X 2 g) de�ned on O by ~X(�) = h�;Xi are in A and W (i ~X) v = d�(X)vfor eah X 2 g and eah v 2 D.



128 B. CahenAdapted Weyl orrespondenes were obtained in various situations, see theintrodution of [6℄. In partiular, we onstruted adapted Weyl orrespondenesfor the prinipal series representations of a nonompat semisimple Lie groupin [3℄ and [7℄. We also obtained adapted Weyl orrespondenes for the unitaryirreduible representations of the semidiret produt V o K of the real vetorspae V by a Lie group K ating linearly on V in the following situations:(1) K is a onneted nonompat semisimple Lie group and the little groupassoiated with the representation of V �K is a maximal ompat sub-group of K [6℄;(2) K is a onneted ompat semisimple Lie group and the little group isthe entralizer of a torus of K [10℄.Let us mention that adapted Weyl orrespondenes have various appliationsin Harmoni Analysis and Deformation Theory as the onstrution of ovariantstar-produts on oadjoint orbits [3℄ and the study of ontrations of Lie groupunitary representations [13℄, [5℄, [8℄, [9℄. Reently, in [11℄, we have studied a on-tration of the prinipal series of a semisimple Lie group to the unitary irreduiblerepresentations of its Cartan motion group by using the deformed Weyl alulusintrodued in [3℄.The present paper an be onsidered as a sequel of [6℄ and [10℄. Let G0 be aonneted nonompat semisimple Lie group with Lie algebra g0 and let K bea maximal ompat subgroup of G0. Then we have the Cartan deompositiong0 = k�V where k is the Lie algebra of K and V is an Ad(K)-invariant subspaeof g0. The Cartan motion group assoiated with the pair (G0;K) is the semidiretprodut V oK formed with respet to the adjoint ation of K on V .It is known for a long time that the unitary irreduible representations ofV o K are similar to the prinipal series representations of G0 [21℄. This hasbeen illustrated by means of ontrations of representations in [14℄ (see also [11℄).Here, we exploit this similarity to onstrut adapted Weyl orrespondenes forunitary irreduible representations of V o K as it was done for prinipal seriesrepresentations of G0 in [7℄. The method is essentially the same as in [6℄ and theexpliit omputations are partially based on those of [7℄.More preisely, let O be a oadjoint orbit of V oK whih is assoiated with ageneri unitary irreduible representation � of V oK. We realize � on a Hilbertspae of funtions on Rn where n = (1=2) dimO and we ompute the orre-sponding derived representation d� (Setion 3). We dequantize d� by using aombination of the usual Weyl alulus on R2n and of the Berezin alulus on thelittle group orbit O0 (Setion 4). Then we obtain an expliit sympletomorphismfrom R2n�O0 onto a dense open subset of O and an adapted Weyl orrespondeneon O (Setion 5). In the ase when G0 is a omplex Lie group, we verify that theadapted Weyl orrespondene oinide with that of [10℄.



Berezin-Weyl quantization for Cartan motion groups 1292. PreliminariesIn this setion, we introdue some general fats on nonompat semisimple Liegroups and Cartan motion groups. Our main referenes are [16, Chapter VI℄, [19,Chapter V℄ and [22℄.Let G0 be a onneted nonompat semisimple real Lie group with �nite enter.Let g0 be the Lie algebra of G0. We denote by � the Killing form of g0 de�ned by�(X;Y ) = Tr(adX adY ) for X and Y in g0. Let � be a Cartan involution of g0and let g0 = k � V be the orresponding Cartan deomposition of g0. Let K bethe onneted ompat (maximal) subgroup of G0 with Lie algebra k. Let a be amaximal abelian subalgebra of V and let M be the entralizer of a in K. Let mdenote the Lie algebra of M . Let � := �(a; g0) be the set of restrited roots andlet g0 = a�m�X�2� g�be the root spae deomposition of g0. We �x a Weyl hamber in a and wedenote by �+ the orresponding set of positive roots. We set n =P�2�+ g� and�n =P�2�+ g��. Then �n = �(n). Let A, N and �N denote the analyti subgroupsof G with algebras a, n and �n, respetively.Reall that �NMAN is a open dense subset of G. We denote byg = �n(g)m(g)a(g)n(g) the deomposition of g 2 �NMAN . Also, reall that wehave the Iwasawa deomposition G = KAN . We denote by g = ~k(g)~a(g)~n(g) thedeomposition of g 2 G.The Cartan motion group assoiated with the pair (G0;K) is the semidiretprodut G := V oK. The group law of G is given by(v; k):(v0; k0) = (v +Ad(k)v0; kk0)for v, v0 in V and k; k0 2 K. The Lie algebra g of G is the spae V � k endowedwith the Lie braket[(w;U); (w0; U 0)℄ = ([U;w0℄0 � [U 0; w℄0; [U;U 0℄0)where [�; �℄0 denotes the Lie braket of g0.Reall that � is positive de�ned on V and negative de�ned on k [16, p. 184℄.Then, by using �, we an identify V � with V and k� with k, hene g� ' V � � k�with V � k. Under this identi�ation, the oadjoint ation of G on g� ' V � k isgiven by (v; k) � (w;U) = (Ad(k)w;Ad(k)U + [v;Ad(k)w℄0)for v, w in V , k in K and U in k. This is a partiular ase of the general formulafor the oadjoint ation of a semidiret produt, see for instane [22℄.Let pk and pV be the projetions of g0 on k and V assoiated with the de-omposition g0 = k � V . Reall that an element �1 of a is said to be regular if�(�1) 6= 0 for eah � 2 �. We shall need the following lemma.



130 B. CahenLemma 2.1. For eah regular element �1 of a, the spae ad �1 (V ) is the orthog-onal omplement of m in k.Proof: For eah � 2 �+, let E� 6= 0 be in g�. Note that the spae pk(n) = pk(�n)is generated by the elements E� + �(E�) and hene orthogonal to m. Now, byapplying suessively pk and pV to the deomposition g0 = m+ a+ n+ �n we getthe deompositions k = m+pk(n) and V = a+pV (n). This shows that pk(n) is theorthogonal omplement of m in k. On the other hand, sine pV (n) is generatedby the elements E� � �(E�), we see that the spae ad �1 (V ) is generated by theelements ad �1 (E� � �(E�)) = �(�1)(E� + �(E�))where �(�1) 6= 0 for � 2 �. Hene ad �1 (V ) = pk(n) is the orthogonal omplementof m in k. �The oadjoint orbits of the semidiret produt of a Lie group by a vetor spaewere desribed in [22℄. For eah (w;U) 2 g� ' g, we denote by O(w;U) theorbit of (w;U) under the oadjoint ation of G. The following lemma shows that,for almost all (w;U), the orbit O(w;U) is of the form O(�1; �2) with �1 2 a and�2 2 m.Lemma 2.2. (1) Let O be a oadjoint orbit for the oadjoint ation of G ong� ' g. Then there exists an element of O of the form (�1; U) with �1 2 a.Moreover, if �1 is regular then there exists �2 2 m suh that (�1; �2) 2 O.(2) Let �1 be a regular element of a. Then M is the stabilizer of �1 in K.Proof: (1) Let (w;U) 2 O. For eah k 2 K we have(0; k) � (w;U) = (Ad(k)w;Ad(k)U):By [19, p. 120℄, we have Ad(K)a = V and then one an hoose k 2 K so thatAd(k)w 2 a. We set �1 := Ad(k)w. If we assume that �1 is regular then, byLemma 2.1, we an write U = �2 + [�1; v℄ where �2 2 m and v 2 V . Then(�1; U) = (v; e) � (�1; �2). Hene O = O(�1; �2).(2) By [7, Lemma 4.2℄, the stabilizer of �1 in g0 is MA. Then, the stabilizer of�1 in K is MA \K =M . �Let �1 2 a be a regular element. Denote by OV (�1) the orbit of �1 in V underthe ation of K. In the next setion, we shall need the hart on OV (�1) ' K=Mwhih is given by the following lemma.Lemma 2.3 ([26, Lemma 7.6.8℄). The map � : y ! Ad(~k(y))�1 is a di�eomor-phism from �N onto a dense open subset of OV (�1). Let us onsider the ation ofk 2 K on y 2 �N de�ned by �(k �y) = Ad(k)�(y) or, equivalently, by k �y = �n(ky).Then the K-invariant measure on �N is given by e�2�(log ~a(y))dy where dy is a Haarmeasure on �N .In the rest of the paper, we �x the normalization of dy as follows. Let (Ei)1�i�nbe an orthonormal basis of �n with respet to the salar produt de�ned by



Berezin-Weyl quantization for Cartan motion groups 131(Y; Z) := ��(Y; �(Z)). Denote by (y1; y2; : : : ; yn) the oordinates of Y 2 �n in thisbasis and let dY = dy1dy2 : : : dyn be the Eulidean measure on �n. The exponentialmap exp is a di�eomorphism from �n onto �N and we set dy := (exp�1)�(dY ).We shall also denote by k � Y the ation of k 2 K on Y 2 �n de�ned byexp(k � Y ) = k � exp(Y ).3. RepresentationsWe retain the notation of Setion 2. Let �1 2 a be a regular element and let�2 2 m. We denote by o(�2) the orbit of �2 under the adjoint ation ofM onm. Let� be a unitary irreduible representation of M on a omplex (�nite-dimensional)vetor spae E. In the rest of the paper, we assume that � is assoiated with theorbit o(�2) in the following sense, see [27, Setion 4℄. Given a maximal torus T ofM with Lie algebra t and a set of positive roots in �(tC ;mC ), the element i�(�2; �)of it� is the highest weight of �. Under these assumptions, the orbit O(�1; �2) isassoiated with the unitarily indued representation�̂ = IndGV�M �ei�(�1;�) 
 ��(see [20℄, [22℄ and [23℄). By a result of Makey, �̂ is irreduible sine � is irreduible[24, p. 149℄. Moreover, in the terminology of [22℄ and [23℄, the group M is alledthe little group and the orbit o(�2) the little orbit.The representation �̂ is usually realized on the spae of square-integrable se-tions of a Hermitian vetor bundle over OV (�1), see [10℄, [22℄. Following [23℄ andusing Lemma 2.3 and the setion y ! ~k(y) from �N to K, we immediately obtainthe realization �0 of �̂ de�ned by(�0(v; k) )(y) = ei�(Ad(~k(y))�1;v) ��~k(y)�1k~k(k�1 � y)� (k�1 � y)on the Hilbert spae H0 whih is the ompletion of the spae of ompatly sup-ported smooth funtions  : �N ! E with respet to the normk k20 = Z �N h (y);  (y)iE e�2�(log ~a(y)) dy:For the Weyl alulus, it is more onvenient to realize �̂ on the Hilbert spae H :=L2(�n; E) whih is the ompletion of the spae C0(�n; E) of ompatly supportedsmooth funtions � : �n! E with respet to the normk�k2 = Z�nh�(Y ); �(Y )iE dY:To this end, we use the unitary isomorphism B from H onto H0 de�ned byB(�)(exp Y ) = e�(log ~a(y))�(Y ) and we set �(g) := B�1�0(g)B for g 2 G. Weimmediately obtain, for (v; k) 2 G,(�(v; k)�)(Y ) = ei�(Ad(~k(y))�1;v)+�(log ~a(k�1�y)�log ~a(y)) �(m(k; y))�(k�1 � Y )



132 B. Cahenwhere we have set y = expY and m(k; y) := ~k(y)�1k~k(k�1 � y) 2 M . Thisformula an be simpli�ed as follows. Let k 2 K and y 2 �N . Write k�1y =�n(k�1y)m(k�1y)a(k�1y)n(k�1y). Then k�1~k(y) = ~k(�n(k�1y))m(k�1y). Thusm(k; y) = m(k�1y)�1. Also, we have that~a(y) = ~a(k�1y) = ~a(�n(k�1y))a(k�1y) = ~a(k�1 � y)a(k�1y):This gives(�(v; k)�)(Y ) = e��(log a(k�1 expY ))+i�(Ad(~k(expY ))�1;v) �(m(k�1 expY ))�1� �(log �n(k�1 expY )):Now, we ompute the derived representation d�. Let pa, pm and p�n be theprojetions of g0 onto a, m and �n assoiated with the diret deomposition g0 =a+m+ n+ �n. For X 2 �n we denote by X+ the right invariant vetor �eld on �Ngenerated by X , that is, X+(y) = ddt(exp tX)y��t=0 for y 2 �N .Lemma 3.1 ([7℄). (1) For eah X 2 �n and eah Y 2 �n, we haved log(expY ) �X+(expY )� = adYeadY � 1 (X):(2) For eah X 2 g0 and eah y 2 �N , we haveddta(exp(tX)y)���t=0 = pa(Ad(y�1)X)ddtm(exp(tX)y)���t=0 = pm(Ad(y�1)X)ddt �n(exp(tX)y)���t=0 = �Ad(y) p�n(Ad(y�1)X)�+(y):From this lemma, we immediately dedue the following proposition.Proposition 3.2. For eah (w;U) 2 g, � 2 C0(�n; E) and Y 2 �n, we have(d�(w;U)�)(Y ) = i��Ad(~k(expY ))�1; w��(Y )+ ��pa(Ad(exp(�Y ))U)��(Y ) + d��pm(Ad(exp(�Y ))U)��(Y )� d�(Y )� adY1� e� adY p�n(Ad(exp(�Y ))U)� :4. DequantizationIn this setion,we �rst introdue the Berezin-Weyl alulus on �n2�o(�2). Reallthat the Berezin alulus on o(�2) assoiates with eah operator B on the �nite-dimensional omplex vetor spae E a omplex-valued funtion s(B) on the orbito(�2) alled the symbol of the operator B (see [2℄). The following properties ofthe Berezin alulus are well-known, see [12℄, [3℄, [10℄.



Berezin-Weyl quantization for Cartan motion groups 133Proposition 4.1. (1) The map B ! s(B) is injetive.(2) For eah operator B on E, we have s(B�) = s(B).(3) For eah operator B on E, eah m 2M and eah ' 2 o(�2), we haves(B)(Ad(m)') = s(�(m)�1B�(m))('):(4) For X 2 m and ' 2 o(�2), we have s(d�(X))(') = i�(';X).In partiular, we see that the map s�1 is an adapted Weyl transform on o(�2)in the sense of De�nition 1.1.We say that a omplex-valued smooth funtion f : (Y; Z; ') ! f(Y; Z; ') is asymbol on �n2 � o(�2) if for eah (Y; Z) 2 �n2 the funtion ' ! f(Y; Z; ') is thesymbol in the Berezin alulus on o(�2) of an operator on E denoted by f̂(Y; Z).A symbol f on �n2 � o(�2) is alled an S-symbol if the funtion f̂ belongs tothe Shwartz spae of rapidly dereasing smooth funtions on �n2 with values inEnd(E). The Weyl alulus for End(E)-valued funtions is a slight re�nement ofthe usual Weyl alulus for omplex-valued funtions [17℄, [15℄. For eah S-symbolon �n2 � o(�2), we de�ne the operator W(f) on the Hilbert spae L2(�n; E) by(4.1) (W(f)�)(Y ) = (2�)�n Z�n2 ei( T;Z )f̂ �Y + 12T; Z� �(Y + T ) dT dZfor � 2 C0(�n; E).It is well-known that the Weyl alulus an be extended to muh larger lassesof symbols (see for instane [17℄). Here we only onsider a lass of polynomialsymbols. We say that a symbol f on �n2�o(�2) is a P-symbol if the funtion f̂(Y; Z)is polynomial in the variable Z. Let f be the P-symbol de�ned by f(Y; Z; ') =u(Y )Z� where u 2 C1(�n) and Z� := z�11 z�22 : : : z�nn for eah multi-index � =(�1; �2; : : : ; �n). Then, by [25℄, we have(4.2) (W(f)�)(Y ) = �i ��Z���u(Y + 12Z)�(Y + Z)� ���Z=0:In partiular, if f(Y; Z; ') = u(Y ) then (W(f)�)(Y ) = u(Y )�(Y ) and iff(Y; Z; ') = u(Y )zk then(4.3) (W(f)�)(Y ) = i�12�ku(Y )�(Y ) + u(Y )�k�(Y )�where �k denotes partial derivative with respet to the variable yk.We need the following lemma. The trae of an endomorphism u of �n is denotedby Tr�n u.Lemma 4.2. For U 2 k let U : �n! �n be the map de�ned byU (Y ) = s(adY )p�n(Ad(exp(�Y ))U)



134 B. Cahenwhere s is the funtion de�ned by s(z) = ez1�e�z for z 6= 0 and s(0) = 1. Then wehave Tr�n dU (Y ) = �2� (pa(Ad(exp(�Y ))X)) :Proof: This is a partiular ase of [7, Lemma 3.3℄. �Then we get the following proposition.Proposition 4.3. For eah (w;U) 2 g, the Berezin-Weyl symbol of the operator�id�(w;U) is the P-symbol f(w;U) on �n2 � o(�2) de�ned byf(w;U)(Y; Z; ') = ��Ad(~k(expY )) �1; w�+ ��pm(Ad(exp(�Y ))U); '�+ (U (Y ); Z):Proof: Set kU (Y ) = (U (Y ); Ek) for eah k = 1; 2; : : : ; n. By using (4) of Propo-sition 4.1 and Formula (4.3), we immediately see that the symbol of �id�(w;U)is f(w;U)(Y; Z; ') = �i� (pa(Ad(exp(�Y ))U)) + � �Ad(~k(expY ))�1; w�+ � (pm(Ad(exp(�Y ))U); ') + nXk=1 kU (Y )zk � i2 nXk=1 �kkU (Y ):But by Lemma 4.2, we have� i2 nXk=1 �kkU (Y ) = � i2 Tr�n (dU (Y )) = i� (pa(Ad(exp(�Y ))U)) :The result follows. �5. Adapted Weyl orrespondeneIn this setion, we use the dequantization proedure of Setion 4 in order toobtain an expliit di�eomorphism from �n2 � o(�2) onto the dense open subset~O(�1; �2) of O(�1; �2) de�ned by~O(�1; �2) = f(v; k) � (�1; �2) : v 2 V; k 2 K \ �NMANgand then to onstrut an adapted Weyl orrespondene on O(�1; �2).Proposition 5.1. Let 	 be the map from �n2 � o(�2) to g de�ned by	(Y; Z; ') = �Ad(~k(expY ))�1 ; pk�Ad(expY )�'+ pn� adYead Y �1�(Z)����:Then, for eah (w;U) 2 g, we havef(w;U)(Y; Z; �) = h	(Y; Z; '); (w;U)i:



Berezin-Weyl quantization for Cartan motion groups 135Proof: We use Proposition 4.3. Note that we have �(a + m; n + �n) = (0),�(n; n) = (0) and �(�n; �n) = (0). Then for (Y; Z; ') 2 �n2 � o(�2) and (w;U) 2 g,we an write (U (Y ); Z) = ��(U (Y ); Z)= ��� adY1� e� adY p�n(Ad(exp(�Y ))U); �(Z)�= � �p�n(Ad(exp(�Y ))U); adYeadY � 1 �(Z)�= � �Ad(exp(�Y ))U; pn� adYeadY � 1 �(Z)��= � �U; pk�Ad(expY ) pn� adYeadY � 1 �(Z)��� :Similarly, we have�('; pm(Ad(exp(�Y ))U)) = �(';Ad(exp(�Y ))U) = �(Ad(expY )';U):The result then follows from Proposition 4.3. �Let ! and !0 be the Kirillov 2-forms on O(�1; �2) and o(�2), respetively. Weendow �n2 with the sympleti form dY ^ dZ :=Pnk=1 dyk ^ dzk.Proposition 5.2. The map 	 is a sympletomorphism from the sympleti prod-ut (�n2 � o(�2); (dY ^ dZ)
 !0) onto ( ~O(�1; �2); !j ~O(�1;�2)).Proof: The proof is similar to that of Proposition 6.2 in [10℄. �Now, we obtain an adapted Weyl transform on O(�1; �2) by transferring toO(�1; �2) the Berezin-Weyl alulus on �n2� o(�2). We say that a smooth funtionf on O(�1; �2) is a symbol on O(�1; �2) (respetively a P-symbol, an S-symbol) iff Æ 	 is a symbol (respetively a P-symbol, an S-symbol) for the Berezin-Weylalulus on �n2 � o(�2).Proposition 5.3. Let A be the spae of P-symbols on O(�1; �2) and let B be thespae of di�erential operators on �n with oeÆients in C1(�n; E). Then the mapW : A ! B that assigns to eah f 2 A the operator W(f Æ	) on L2(�n; E) is anadapted Weyl orrespondene in the sense of De�nition 1:1.Proof: Properties (1), (2) and (3) of the de�nition of an adapted Weyl orre-spondene are learly satis�ed with D = C0(�n; E). Property (4) follows from (2)of Proposition 4.1 and from the similar result for the usual Weyl alulus, see [17℄.Finally, Property (5) is an immediate onsequene of Proposition 4.1. �Finally, let us onsider the ase when G0 is a omplex Lie group. In this ase,we have V = ik and M is the maximal torus exp(ia) of K [19, p. 143 and p. 468℄.
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