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Berezin-Weyl quantization for Cartan motion groupsBenjamin CahenAbstra
t. We 
onstru
t adapted Weyl 
orresponden
es for the unitary irredu
iblerepresentations of the Cartan motion group of a non
ompa
t semisimple Liegroup by using the method introdu
ed in [B. Cahen, Weyl quantization forsemidire
t produ
ts, Di�erential Geom. Appl. 25 (2007), 177{190℄.Keywords: semidire
t produ
t, Cartan motion group, unitary representation,semisimple Lie group, symple
tomorphism, 
oadjoint orbit, Weyl quantization,Berezin quantizationClassi�
ation: 22E45, 22E46, 22E70, 22E15, 81S10, 81R051. Introdu
tionIn [3℄ and [4℄, we introdu
ed the notion of adapted Weyl 
orresponden
e as ageneralization of the usual quantization rules [1℄, [15℄. The present paper is partof a larger program to study adapted Weyl 
orresponden
es for semisimple Liegroups and for semidire
t produ
ts.Let G be a 
onne
ted Lie group, g the Lie algebra of G and g� the dual spa
eof g. Let � be a unitary irredu
ible representation of G on a Hilbert spa
e H.Suppose that � is asso
iated with an orbit O for the 
oadjoint a
tion of G on g�by the Kostant-Kirillov method of orbits [18℄, [20℄. In [6℄, we gave the followingde�nition for the notion of adapted Weyl 
orresponden
e.De�nition 1.1. An adapted Weyl 
orresponden
e is an isomorphism W froma ve
tor spa
e A of 
omplex-valued smooth fun
tions on the orbit O (
alledsymbols) onto a ve
tor spa
e B of (not ne
essarily bounded) linear operators onH satisfying the following properties:(1) the elements of B preserve a �xed dense domain D of H;(2) the 
onstant fun
tion 1 belongs to A, the identity operator I belongs toB and W (1) = I ;(3) A 2 B and B 2 B implies AB 2 B;(4) for ea
h f in A the 
omplex 
onjugate �f of f belongs to A and the adjointof W (f) is an extension of W ( �f);(5) the elements ofD are C1-ve
tors for the representation �, the fun
tions ~X(X 2 g) de�ned on O by ~X(�) = h�;Xi are in A and W (i ~X) v = d�(X)vfor ea
h X 2 g and ea
h v 2 D.



128 B. CahenAdapted Weyl 
orresponden
es were obtained in various situations, see theintrodu
tion of [6℄. In parti
ular, we 
onstru
ted adapted Weyl 
orresponden
esfor the prin
ipal series representations of a non
ompa
t semisimple Lie groupin [3℄ and [7℄. We also obtained adapted Weyl 
orresponden
es for the unitaryirredu
ible representations of the semidire
t produ
t V o K of the real ve
torspa
e V by a Lie group K a
ting linearly on V in the following situations:(1) K is a 
onne
ted non
ompa
t semisimple Lie group and the little groupasso
iated with the representation of V �K is a maximal 
ompa
t sub-group of K [6℄;(2) K is a 
onne
ted 
ompa
t semisimple Lie group and the little group isthe 
entralizer of a torus of K [10℄.Let us mention that adapted Weyl 
orresponden
es have various appli
ationsin Harmoni
 Analysis and Deformation Theory as the 
onstru
tion of 
ovariantstar-produ
ts on 
oadjoint orbits [3℄ and the study of 
ontra
tions of Lie groupunitary representations [13℄, [5℄, [8℄, [9℄. Re
ently, in [11℄, we have studied a 
on-tra
tion of the prin
ipal series of a semisimple Lie group to the unitary irredu
iblerepresentations of its Cartan motion group by using the deformed Weyl 
al
ulusintrodu
ed in [3℄.The present paper 
an be 
onsidered as a sequel of [6℄ and [10℄. Let G0 be a
onne
ted non
ompa
t semisimple Lie group with Lie algebra g0 and let K bea maximal 
ompa
t subgroup of G0. Then we have the Cartan de
ompositiong0 = k�V where k is the Lie algebra of K and V is an Ad(K)-invariant subspa
eof g0. The Cartan motion group asso
iated with the pair (G0;K) is the semidire
tprodu
t V oK formed with respe
t to the adjoint a
tion of K on V .It is known for a long time that the unitary irredu
ible representations ofV o K are similar to the prin
ipal series representations of G0 [21℄. This hasbeen illustrated by means of 
ontra
tions of representations in [14℄ (see also [11℄).Here, we exploit this similarity to 
onstru
t adapted Weyl 
orresponden
es forunitary irredu
ible representations of V o K as it was done for prin
ipal seriesrepresentations of G0 in [7℄. The method is essentially the same as in [6℄ and theexpli
it 
omputations are partially based on those of [7℄.More pre
isely, let O be a 
oadjoint orbit of V oK whi
h is asso
iated with ageneri
 unitary irredu
ible representation � of V oK. We realize � on a Hilbertspa
e of fun
tions on Rn where n = (1=2) dimO and we 
ompute the 
orre-sponding derived representation d� (Se
tion 3). We dequantize d� by using a
ombination of the usual Weyl 
al
ulus on R2n and of the Berezin 
al
ulus on thelittle group orbit O0 (Se
tion 4). Then we obtain an expli
it symple
tomorphismfrom R2n�O0 onto a dense open subset of O and an adapted Weyl 
orresponden
eon O (Se
tion 5). In the 
ase when G0 is a 
omplex Lie group, we verify that theadapted Weyl 
orresponden
e 
oin
ide with that of [10℄.



Berezin-Weyl quantization for Cartan motion groups 1292. PreliminariesIn this se
tion, we introdu
e some general fa
ts on non
ompa
t semisimple Liegroups and Cartan motion groups. Our main referen
es are [16, Chapter VI℄, [19,Chapter V℄ and [22℄.Let G0 be a 
onne
ted non
ompa
t semisimple real Lie group with �nite 
enter.Let g0 be the Lie algebra of G0. We denote by � the Killing form of g0 de�ned by�(X;Y ) = Tr(adX adY ) for X and Y in g0. Let � be a Cartan involution of g0and let g0 = k � V be the 
orresponding Cartan de
omposition of g0. Let K bethe 
onne
ted 
ompa
t (maximal) subgroup of G0 with Lie algebra k. Let a be amaximal abelian subalgebra of V and let M be the 
entralizer of a in K. Let mdenote the Lie algebra of M . Let � := �(a; g0) be the set of restri
ted roots andlet g0 = a�m�X�2� g�be the root spa
e de
omposition of g0. We �x a Weyl 
hamber in a and wedenote by �+ the 
orresponding set of positive roots. We set n =P�2�+ g� and�n =P�2�+ g��. Then �n = �(n). Let A, N and �N denote the analyti
 subgroupsof G with algebras a, n and �n, respe
tively.Re
all that �NMAN is a open dense subset of G. We denote byg = �n(g)m(g)a(g)n(g) the de
omposition of g 2 �NMAN . Also, re
all that wehave the Iwasawa de
omposition G = KAN . We denote by g = ~k(g)~a(g)~n(g) thede
omposition of g 2 G.The Cartan motion group asso
iated with the pair (G0;K) is the semidire
tprodu
t G := V oK. The group law of G is given by(v; k):(v0; k0) = (v +Ad(k)v0; kk0)for v, v0 in V and k; k0 2 K. The Lie algebra g of G is the spa
e V � k endowedwith the Lie bra
ket[(w;U); (w0; U 0)℄ = ([U;w0℄0 � [U 0; w℄0; [U;U 0℄0)where [�; �℄0 denotes the Lie bra
ket of g0.Re
all that � is positive de�ned on V and negative de�ned on k [16, p. 184℄.Then, by using �, we 
an identify V � with V and k� with k, hen
e g� ' V � � k�with V � k. Under this identi�
ation, the 
oadjoint a
tion of G on g� ' V � k isgiven by (v; k) � (w;U) = (Ad(k)w;Ad(k)U + [v;Ad(k)w℄0)for v, w in V , k in K and U in k. This is a parti
ular 
ase of the general formulafor the 
oadjoint a
tion of a semidire
t produ
t, see for instan
e [22℄.Let p
k and p
V be the proje
tions of g0 on k and V asso
iated with the de-
omposition g0 = k � V . Re
all that an element �1 of a is said to be regular if�(�1) 6= 0 for ea
h � 2 �. We shall need the following lemma.



130 B. CahenLemma 2.1. For ea
h regular element �1 of a, the spa
e ad �1 (V ) is the orthog-onal 
omplement of m in k.Proof: For ea
h � 2 �+, let E� 6= 0 be in g�. Note that the spa
e p
k(n) = p
k(�n)is generated by the elements E� + �(E�) and hen
e orthogonal to m. Now, byapplying su

essively p
k and p
V to the de
omposition g0 = m+ a+ n+ �n we getthe de
ompositions k = m+p
k(n) and V = a+p
V (n). This shows that p
k(n) is theorthogonal 
omplement of m in k. On the other hand, sin
e p
V (n) is generatedby the elements E� � �(E�), we see that the spa
e ad �1 (V ) is generated by theelements ad �1 (E� � �(E�)) = �(�1)(E� + �(E�))where �(�1) 6= 0 for � 2 �. Hen
e ad �1 (V ) = p
k(n) is the orthogonal 
omplementof m in k. �The 
oadjoint orbits of the semidire
t produ
t of a Lie group by a ve
tor spa
ewere des
ribed in [22℄. For ea
h (w;U) 2 g� ' g, we denote by O(w;U) theorbit of (w;U) under the 
oadjoint a
tion of G. The following lemma shows that,for almost all (w;U), the orbit O(w;U) is of the form O(�1; �2) with �1 2 a and�2 2 m.Lemma 2.2. (1) Let O be a 
oadjoint orbit for the 
oadjoint a
tion of G ong� ' g. Then there exists an element of O of the form (�1; U) with �1 2 a.Moreover, if �1 is regular then there exists �2 2 m su
h that (�1; �2) 2 O.(2) Let �1 be a regular element of a. Then M is the stabilizer of �1 in K.Proof: (1) Let (w;U) 2 O. For ea
h k 2 K we have(0; k) � (w;U) = (Ad(k)w;Ad(k)U):By [19, p. 120℄, we have Ad(K)a = V and then one 
an 
hoose k 2 K so thatAd(k)w 2 a. We set �1 := Ad(k)w. If we assume that �1 is regular then, byLemma 2.1, we 
an write U = �2 + [�1; v℄ where �2 2 m and v 2 V . Then(�1; U) = (v; e) � (�1; �2). Hen
e O = O(�1; �2).(2) By [7, Lemma 4.2℄, the stabilizer of �1 in g0 is MA. Then, the stabilizer of�1 in K is MA \K =M . �Let �1 2 a be a regular element. Denote by OV (�1) the orbit of �1 in V underthe a
tion of K. In the next se
tion, we shall need the 
hart on OV (�1) ' K=Mwhi
h is given by the following lemma.Lemma 2.3 ([26, Lemma 7.6.8℄). The map � : y ! Ad(~k(y))�1 is a di�eomor-phism from �N onto a dense open subset of OV (�1). Let us 
onsider the a
tion ofk 2 K on y 2 �N de�ned by �(k �y) = Ad(k)�(y) or, equivalently, by k �y = �n(ky).Then the K-invariant measure on �N is given by e�2�(log ~a(y))dy where dy is a Haarmeasure on �N .In the rest of the paper, we �x the normalization of dy as follows. Let (Ei)1�i�nbe an orthonormal basis of �n with respe
t to the s
alar produ
t de�ned by



Berezin-Weyl quantization for Cartan motion groups 131(Y; Z) := ��(Y; �(Z)). Denote by (y1; y2; : : : ; yn) the 
oordinates of Y 2 �n in thisbasis and let dY = dy1dy2 : : : dyn be the Eu
lidean measure on �n. The exponentialmap exp is a di�eomorphism from �n onto �N and we set dy := (exp�1)�(dY ).We shall also denote by k � Y the a
tion of k 2 K on Y 2 �n de�ned byexp(k � Y ) = k � exp(Y ).3. RepresentationsWe retain the notation of Se
tion 2. Let �1 2 a be a regular element and let�2 2 m. We denote by o(�2) the orbit of �2 under the adjoint a
tion ofM onm. Let� be a unitary irredu
ible representation of M on a 
omplex (�nite-dimensional)ve
tor spa
e E. In the rest of the paper, we assume that � is asso
iated with theorbit o(�2) in the following sense, see [27, Se
tion 4℄. Given a maximal torus T ofM with Lie algebra t and a set of positive roots in �(tC ;mC ), the element i�(�2; �)of it� is the highest weight of �. Under these assumptions, the orbit O(�1; �2) isasso
iated with the unitarily indu
ed representation�̂ = IndGV�M �ei�(�1;�) 
 ��(see [20℄, [22℄ and [23℄). By a result of Ma
key, �̂ is irredu
ible sin
e � is irredu
ible[24, p. 149℄. Moreover, in the terminology of [22℄ and [23℄, the group M is 
alledthe little group and the orbit o(�2) the little orbit.The representation �̂ is usually realized on the spa
e of square-integrable se
-tions of a Hermitian ve
tor bundle over OV (�1), see [10℄, [22℄. Following [23℄ andusing Lemma 2.3 and the se
tion y ! ~k(y) from �N to K, we immediately obtainthe realization �0 of �̂ de�ned by(�0(v; k) )(y) = ei�(Ad(~k(y))�1;v) ��~k(y)�1k~k(k�1 � y)� (k�1 � y)on the Hilbert spa
e H0 whi
h is the 
ompletion of the spa
e of 
ompa
tly sup-ported smooth fun
tions  : �N ! E with respe
t to the normk k20 = Z �N h (y);  (y)iE e�2�(log ~a(y)) dy:For the Weyl 
al
ulus, it is more 
onvenient to realize �̂ on the Hilbert spa
e H :=L2(�n; E) whi
h is the 
ompletion of the spa
e C0(�n; E) of 
ompa
tly supportedsmooth fun
tions � : �n! E with respe
t to the normk�k2 = Z�nh�(Y ); �(Y )iE dY:To this end, we use the unitary isomorphism B from H onto H0 de�ned byB(�)(exp Y ) = e�(log ~a(y))�(Y ) and we set �(g) := B�1�0(g)B for g 2 G. Weimmediately obtain, for (v; k) 2 G,(�(v; k)�)(Y ) = ei�(Ad(~k(y))�1;v)+�(log ~a(k�1�y)�log ~a(y)) �(m(k; y))�(k�1 � Y )



132 B. Cahenwhere we have set y = expY and m(k; y) := ~k(y)�1k~k(k�1 � y) 2 M . Thisformula 
an be simpli�ed as follows. Let k 2 K and y 2 �N . Write k�1y =�n(k�1y)m(k�1y)a(k�1y)n(k�1y). Then k�1~k(y) = ~k(�n(k�1y))m(k�1y). Thusm(k; y) = m(k�1y)�1. Also, we have that~a(y) = ~a(k�1y) = ~a(�n(k�1y))a(k�1y) = ~a(k�1 � y)a(k�1y):This gives(�(v; k)�)(Y ) = e��(log a(k�1 expY ))+i�(Ad(~k(expY ))�1;v) �(m(k�1 expY ))�1� �(log �n(k�1 expY )):Now, we 
ompute the derived representation d�. Let pa, pm and p�n be theproje
tions of g0 onto a, m and �n asso
iated with the dire
t de
omposition g0 =a+m+ n+ �n. For X 2 �n we denote by X+ the right invariant ve
tor �eld on �Ngenerated by X , that is, X+(y) = ddt(exp tX)y��t=0 for y 2 �N .Lemma 3.1 ([7℄). (1) For ea
h X 2 �n and ea
h Y 2 �n, we haved log(expY ) �X+(expY )� = adYeadY � 1 (X):(2) For ea
h X 2 g0 and ea
h y 2 �N , we haveddta(exp(tX)y)���t=0 = pa(Ad(y�1)X)ddtm(exp(tX)y)���t=0 = pm(Ad(y�1)X)ddt �n(exp(tX)y)���t=0 = �Ad(y) p�n(Ad(y�1)X)�+(y):From this lemma, we immediately dedu
e the following proposition.Proposition 3.2. For ea
h (w;U) 2 g, � 2 C0(�n; E) and Y 2 �n, we have(d�(w;U)�)(Y ) = i��Ad(~k(expY ))�1; w��(Y )+ ��pa(Ad(exp(�Y ))U)��(Y ) + d��pm(Ad(exp(�Y ))U)��(Y )� d�(Y )� adY1� e� adY p�n(Ad(exp(�Y ))U)� :4. DequantizationIn this se
tion,we �rst introdu
e the Berezin-Weyl 
al
ulus on �n2�o(�2). Re
allthat the Berezin 
al
ulus on o(�2) asso
iates with ea
h operator B on the �nite-dimensional 
omplex ve
tor spa
e E a 
omplex-valued fun
tion s(B) on the orbito(�2) 
alled the symbol of the operator B (see [2℄). The following properties ofthe Berezin 
al
ulus are well-known, see [12℄, [3℄, [10℄.



Berezin-Weyl quantization for Cartan motion groups 133Proposition 4.1. (1) The map B ! s(B) is inje
tive.(2) For ea
h operator B on E, we have s(B�) = s(B).(3) For ea
h operator B on E, ea
h m 2M and ea
h ' 2 o(�2), we haves(B)(Ad(m)') = s(�(m)�1B�(m))('):(4) For X 2 m and ' 2 o(�2), we have s(d�(X))(') = i�(';X).In parti
ular, we see that the map s�1 is an adapted Weyl transform on o(�2)in the sense of De�nition 1.1.We say that a 
omplex-valued smooth fun
tion f : (Y; Z; ') ! f(Y; Z; ') is asymbol on �n2 � o(�2) if for ea
h (Y; Z) 2 �n2 the fun
tion ' ! f(Y; Z; ') is thesymbol in the Berezin 
al
ulus on o(�2) of an operator on E denoted by f̂(Y; Z).A symbol f on �n2 � o(�2) is 
alled an S-symbol if the fun
tion f̂ belongs tothe S
hwartz spa
e of rapidly de
reasing smooth fun
tions on �n2 with values inEnd(E). The Weyl 
al
ulus for End(E)-valued fun
tions is a slight re�nement ofthe usual Weyl 
al
ulus for 
omplex-valued fun
tions [17℄, [15℄. For ea
h S-symbolon �n2 � o(�2), we de�ne the operator W(f) on the Hilbert spa
e L2(�n; E) by(4.1) (W(f)�)(Y ) = (2�)�n Z�n2 ei( T;Z )f̂ �Y + 12T; Z� �(Y + T ) dT dZfor � 2 C0(�n; E).It is well-known that the Weyl 
al
ulus 
an be extended to mu
h larger 
lassesof symbols (see for instan
e [17℄). Here we only 
onsider a 
lass of polynomialsymbols. We say that a symbol f on �n2�o(�2) is a P-symbol if the fun
tion f̂(Y; Z)is polynomial in the variable Z. Let f be the P-symbol de�ned by f(Y; Z; ') =u(Y )Z� where u 2 C1(�n) and Z� := z�11 z�22 : : : z�nn for ea
h multi-index � =(�1; �2; : : : ; �n). Then, by [25℄, we have(4.2) (W(f)�)(Y ) = �i ��Z���u(Y + 12Z)�(Y + Z)� ���Z=0:In parti
ular, if f(Y; Z; ') = u(Y ) then (W(f)�)(Y ) = u(Y )�(Y ) and iff(Y; Z; ') = u(Y )zk then(4.3) (W(f)�)(Y ) = i�12�ku(Y )�(Y ) + u(Y )�k�(Y )�where �k denotes partial derivative with respe
t to the variable yk.We need the following lemma. The tra
e of an endomorphism u of �n is denotedby Tr�n u.Lemma 4.2. For U 2 k let 
U : �n! �n be the map de�ned by
U (Y ) = s(adY )p�n(Ad(exp(�Y ))U)



134 B. Cahenwhere s is the fun
tion de�ned by s(z) = ez1�e�z for z 6= 0 and s(0) = 1. Then wehave Tr�n d
U (Y ) = �2� (pa(Ad(exp(�Y ))X)) :Proof: This is a parti
ular 
ase of [7, Lemma 3.3℄. �Then we get the following proposition.Proposition 4.3. For ea
h (w;U) 2 g, the Berezin-Weyl symbol of the operator�id�(w;U) is the P-symbol f(w;U) on �n2 � o(�2) de�ned byf(w;U)(Y; Z; ') = ��Ad(~k(expY )) �1; w�+ ��pm(Ad(exp(�Y ))U); '�+ (
U (Y ); Z):Proof: Set 
kU (Y ) = (
U (Y ); Ek) for ea
h k = 1; 2; : : : ; n. By using (4) of Propo-sition 4.1 and Formula (4.3), we immediately see that the symbol of �id�(w;U)is f(w;U)(Y; Z; ') = �i� (pa(Ad(exp(�Y ))U)) + � �Ad(~k(expY ))�1; w�+ � (pm(Ad(exp(�Y ))U); ') + nXk=1 
kU (Y )zk � i2 nXk=1 �k
kU (Y ):But by Lemma 4.2, we have� i2 nXk=1 �k
kU (Y ) = � i2 Tr�n (d
U (Y )) = i� (pa(Ad(exp(�Y ))U)) :The result follows. �5. Adapted Weyl 
orresponden
eIn this se
tion, we use the dequantization pro
edure of Se
tion 4 in order toobtain an expli
it di�eomorphism from �n2 � o(�2) onto the dense open subset~O(�1; �2) of O(�1; �2) de�ned by~O(�1; �2) = f(v; k) � (�1; �2) : v 2 V; k 2 K \ �NMANgand then to 
onstru
t an adapted Weyl 
orresponden
e on O(�1; �2).Proposition 5.1. Let 	 be the map from �n2 � o(�2) to g de�ned by	(Y; Z; ') = �Ad(~k(expY ))�1 ; p
k�Ad(expY )�'+ pn� adYead Y �1�(Z)����:Then, for ea
h (w;U) 2 g, we havef(w;U)(Y; Z; �) = h	(Y; Z; '); (w;U)i:



Berezin-Weyl quantization for Cartan motion groups 135Proof: We use Proposition 4.3. Note that we have �(a + m; n + �n) = (0),�(n; n) = (0) and �(�n; �n) = (0). Then for (Y; Z; ') 2 �n2 � o(�2) and (w;U) 2 g,we 
an write (
U (Y ); Z) = ��(
U (Y ); Z)= ��� adY1� e� adY p�n(Ad(exp(�Y ))U); �(Z)�= � �p�n(Ad(exp(�Y ))U); adYeadY � 1 �(Z)�= � �Ad(exp(�Y ))U; pn� adYeadY � 1 �(Z)��= � �U; p
k�Ad(expY ) pn� adYeadY � 1 �(Z)��� :Similarly, we have�('; pm(Ad(exp(�Y ))U)) = �(';Ad(exp(�Y ))U) = �(Ad(expY )';U):The result then follows from Proposition 4.3. �Let ! and !0 be the Kirillov 2-forms on O(�1; �2) and o(�2), respe
tively. Weendow �n2 with the symple
ti
 form dY ^ dZ :=Pnk=1 dyk ^ dzk.Proposition 5.2. The map 	 is a symple
tomorphism from the symple
ti
 prod-u
t (�n2 � o(�2); (dY ^ dZ)
 !0) onto ( ~O(�1; �2); !j ~O(�1;�2)).Proof: The proof is similar to that of Proposition 6.2 in [10℄. �Now, we obtain an adapted Weyl transform on O(�1; �2) by transferring toO(�1; �2) the Berezin-Weyl 
al
ulus on �n2� o(�2). We say that a smooth fun
tionf on O(�1; �2) is a symbol on O(�1; �2) (respe
tively a P-symbol, an S-symbol) iff Æ 	 is a symbol (respe
tively a P-symbol, an S-symbol) for the Berezin-Weyl
al
ulus on �n2 � o(�2).Proposition 5.3. Let A be the spa
e of P-symbols on O(�1; �2) and let B be thespa
e of di�erential operators on �n with 
oeÆ
ients in C1(�n; E). Then the mapW : A ! B that assigns to ea
h f 2 A the operator W(f Æ	) on L2(�n; E) is anadapted Weyl 
orresponden
e in the sense of De�nition 1:1.Proof: Properties (1), (2) and (3) of the de�nition of an adapted Weyl 
orre-sponden
e are 
learly satis�ed with D = C0(�n; E). Property (4) follows from (2)of Proposition 4.1 and from the similar result for the usual Weyl 
al
ulus, see [17℄.Finally, Property (5) is an immediate 
onsequen
e of Proposition 4.1. �Finally, let us 
onsider the 
ase when G0 is a 
omplex Lie group. In this 
ase,we have V = ik and M is the maximal torus exp(ia) of K [19, p. 143 and p. 468℄.



136 B. CahenMoreover, o(�2) redu
es to the point �2, � is a 
hara
ter of M and E = C . So,the map W is just the usual Weyl 
al
ulus.Note that the 
onstru
tion of [10℄ 
an also be applied in this 
ase. In [10℄, wehave de�ned a symple
tomorphism 	0 from n2 onto ~O(�1; �2) and an adaptedWeyl 
orresponden
e W0 on O(�1; �2). We 
an easily verify that 	(Y; Z) =	0(�(Y ); �(Z)) for ea
h (Y; Z) 2 �n� �n and that the spa
es of symbols for W andfor W0 are the same. Moreover, 
hoosing the orthonormal basis for �n in Se
tion 2and for n in [10℄ in 
ompatible ways, we have that W0(f)(� Æ �) = (W (f)�) Æ �for ea
h S-symbol f on O(�1; �2) and for ea
h � 2 C0(�n).Referen
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