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A length bound for binary equality wordsJana Hadravov�aAbstra
t. Let w be an equality word of two binary non-periodi
 morphisms g; h :fa; bg� ! �� with unique over
ows. It is known that if w 
ontains at least 25o

urren
es of ea
h of the letters a and b, then it has to have one of the followingspe
ial forms: up to the ex
hange of the letters a and b either w = (ab)ia, orw = aibj with g
d(i; j) = 1.We will generalize the result, justify this bound and prove that it 
an belowered to nine o

urren
es of ea
h of the letters a and b.Keywords: 
ombinatori
s on words, binary equality languagesClassi�
ation: 68R151. Introdu
tionEquality language Eq(g; h) of morphisms g; h : �� ! �� 
onsists of all theirsolutions, that is, of all words satisfying equality g(w) = h(w). The 
on
eptof equality language was �rst introdu
ed in [18℄ and sin
e then has been widelystudied. Equality languages a
hieved parti
ular importan
e in the representationtheory of formal languages sin
e every re
ursively enumerable language 
an bee�e
tively found as a morphi
 image of an equality language, see [1℄.It is also well known, due to [16℄, that it is unde
idable whether an equalitylanguage 
ontains a nonempty word (an algorithmi
 problem known as the PostCorresponden
e Problem, or the PCP). Nevertheless, the problem turned out to besigni�
antly di�erent in the binary 
ase. The de
idability of the binary variant ofPCP was announ
ed by Ehrenfeu
ht, Karhum�aki and Rozenberg in [3℄. However,their proof 
ontains a gap (see [7℄); a full proof based on a similar approa
h isgiven by Halava, Harju and Hirvensalo in [6℄.It should be also mentioned that the binary 
ase of the PCP is de
idable inpolynomial time (see [8, 9℄). For j�j = 3 it is already a long-standing openproblem whether the equality set has to be regular, see [13℄ and [14℄.The stru
ture of binary equality languages has been �rst studied in [2℄ and[4℄ and later in series of papers [10℄, [11℄, [12℄. It has been shown that binaryequality languages are always generated by at most two words, provided thatboth morphisms are non-periodi
 (the periodi
 
ase being rather easy). It is alsoknown that if the set Eq(g; h) is generated by two distin
t generators, then thesegenerators are of the form bai and aib.



2 J. Hadravov�aA �rst step in the 
hara
terization of single generators of binary equality lan-guage was made in [5℄. It was 
laimed there that a simple solution, that is, asolution with unique over
ows, whi
h is long enough in both letters a and b hasto be of the form w = (ab)ia or w = aibj with g
d(i; j) = 1 (up to the ex
hangeof letters). The minimal requirement for the number of the letters a and b was�xed to nine, however rigorous proof was not given. The aim of this paper is to�ll in this \white spa
e" and provide the generalization of the result.2. Basi
 
on
epts and de�nitionsThe standard terminology and basi
 fa
ts of 
ombinatori
s on words (see forexample [15℄ and [17℄) will be used a
ross the text. Parti
ularly, the reader shouldre
all that a binary morphism g : fa; bg� ! �� is 
alled non-periodi
 if g(a) andg(b) do not 
ommute. If the image words g(a) and g(b) start with di�erent letters,then we shall say that g is a marked morphism. We will use u �p v when u isa pre�x of v and u <p v when u is a nonempty proper pre�x of v. Similarly,u �s v expresses the fa
t that u is a suÆx of v and u <s v means that u is anonempty proper suÆx of u. The greatest 
ommon pre�x of two words u and vwill be denoted by u^ v. (One-way) in�nite word 
omposed from in�nite numberof 
opies of a word u will be denoted u!. It should be also mentioned that theprimitive root of a word u is the shortest word p su
h that u = pk for somepositive k.Binary morphims have the following very important property: For ea
h non-periodi
 binary morphism g there is a uniquely given marked (non-periodi
) binarymorphism gm and a word zg su
h that for all words w 2 fa; bg� we have g(w) =zggm(w)z�1g . It is not so diÆ
ult to see that zg is in fa
t equal to g(ab) ^ g(ba).Let g; h : fa; bg� ! �� be two binary non-periodi
 morphisms. A word w is asolution of g; h if g(w) = h(w). A solution w is 
alled simple if all over
ows areunique. That is, if w1, w1u, w2 and w2u0 are pre�xes of w! su
h thatg(w1)z = h(w2) and g(w1u)z = h(w2u0)for some word z, then juj = ju0j = kjwj for some k 2 N+ .A generalization of the 
on
ept of simple solution leads to the de�nition ofblo
k as a pair of two words (e; f) su
h that g(e) = h(f) and whi
h is simple inthe aforementioned sense; that is, if w1, w1u and w2, w2u0 are pre�xes of e!, f!resp. su
h that g(w1)z = h(w2) and g(w1u)z = h(w2u0)for some word z, then juj = kjej and ju0j = kjf j for some k 2 N+ .In what follows we will be interested only in simple solutions and blo
ks.Now, we are going to generalize the de�nitions given above. We will de�ne a
y
li
 solution and a 
y
li
 blo
k . First though, let us �x the notation of (one-way)in�nite words and intervals in words:



A length bound for binary equality words 3Let u = u0 : : : un�1 be a �nite word with its letters denoted by ui, 0 � i < n�1.We de�ne an in�nite word starting at the i-th position of u by:u[i;1℄ = uiui+1 : : : un�1u0u1 : : : :For two integers 0 � i < j � n� 1 we de�ne the interval u[i; j℄ by:u[i; j℄ = uiui+1 : : : uj�1:In what follows we will use the de�nition of interval in a broader sense; if i � j,then we will use u[i; j℄ instead of u[i;1℄[0; j� i+n℄. Note that ea
h letter ui 
anbe seen as u[i; i+ 1℄; and a word u[i; i℄ is a 
onjugate of u.Noti
e that the de�nition of the interval u[i; j℄ for i � j is very natural whenthe word u is seen as a 
y
li
 word. This motivates the following 
ru
ial de�nition:De�nition. Let g; h : fa; bg� ! �� be morphisms. A 
y
li
 solution of g; h isan ordered quadruple (w; 
; G;H) where w = w0w1 � � �wjwj�1 2 fa; bg+, 
 2 �+,j
j = jg(w)j = jh(w)j and G;H : Zjwj ! Zj
j are inje
tive mappings su
h that
[G(i); G(i+ 1)℄ = g(wi) and 
[H(i); H(i+ 1)℄ = h(wi);for all i 2 Zjwj.Note that in the previous de�nition 
 is a 
onjugate of g(w) (and h(w)) andthe inje
tive mappings G;H de�ne the ending and starting positions of imagewords inside the solution. Therefore, the over
ows are words 
[G(r); H(t)℄ andtheir position in the solution is uniquely given by the pair (r; t).We will see later in Example 1 that the de�nition of 
y
li
 solution indeed non-trivially generalizes the de�nition of (ordinary) solution. Moreover, the 
y
li
ityof the solution simpli�es the notion of over
ows and allows us to avoid 
ompletelythe use of the in�nite words in the de�nition of simple 
y
li
 solution:De�nition. Let (w; 
; G;H) be a 
y
li
 solution of g; h. We say that (w; 
; G;H)is simple if 
[G(r1); H(t1)℄ = 
[G(r2); H(t2)℄implies (r1; t1) = (r2; t2).A generalization of the simple 
y
li
 solution leads to the de�nition of 
y
li
blo
k :De�nition. Let g; h : fa; bg� ! �� be morphisms. A 
y
li
 blo
k of g; his an ordered pentuple (e; f; 
; G;H) where e = e0e1 � � � ejej�1 2 fa; bg+, f =f0f1 � � � fjf j�1 2 fa; bg+, 
 2 �+, j
j = jg(e)j = jh(f)j and G : Zjej ! Zj
j,H : Zjf j! Zj
j are inje
tive mappings su
h that
[G(i); G(i + 1)℄ = g(ei) and 
[H(j); H(j + 1)℄ = h(fj);



4 J. Hadravov�afor all i 2 Zjej, j 2 Zjf j. Moreover, we require that it is simple, that is, whenever
[G(r1); H(t1)℄ = 
[G(r2); H(t2)℄;ne
essarily (r1; t1) = (r2; t2).Note that a simple 
y
li
 solution (w; 
; G;H) 
an be expressed as a 
y
li
blo
k (w;w; 
; G;H).In order to further 
larify the relation between the de�nitions of a solution anda 
y
li
 solution, suppose that we are given a pair of (not ne
essarily marked)morphisms g and h, with a simple solution w. Now, w 
an be seen as a simple
y
li
 solution (w; g(w); G;H) of g and h satisfying in addition that G(0) = H(0).Consider marked versions gm and hm of g and h. Morphisms gm; hm have a 
y
li
solution (w; g(w); Gm; Hm) given byGm(j) = (G(j) + jzgj) mod jg(w)j ;Hm(j) = (H(j) + jzhj) mod jg(w)j :Noti
e that (w; g(w); Gm; Hm) is also a simple 
y
li
 solution.The following slightly te
hni
al de�nition of p-syn
hronized over
ows will playan important role in our proof.De�nition. We say that a 
y
li
 blo
k (e; f; 
; G;H) of morphisms g; h has kp-syn
hronized over
ows if p is a primitive word and there is a k-tuple((r1; t1); : : : ; (rk ; tk)) 2 (Zjej�Zjf j)kof over
ows whi
h has the following properties:1. for all i 2 f1; : : : ; k � 1g there is li 2 N+ su
h that
[G(ri); H(ti)℄ = pli
[G(ri+1); H(ti+1)℄;and 
[G(rk); H(tk)℄ is a nonempty pre�x of p!;2. ri are pairwise distin
t and ti are pairwise distin
t;3. for ea
h i 2 f1; : : : ; kg there is some 0 � m < jh(b)j su
h thatG(ri) = H(ti � 1) +m;and fti�1 = b.Informally, these are just di�erent suÆxes of h(b) (by 
ondition 3) whi
h areover
ows and at the same time are pre�xes of p! for some primitive word p (by
ondition 1). Moreover, by 
ondition 2 these over
ows 
an neither start nor endat the same position of the word 
.The following example illustrates previous de�nitions.



A length bound for binary equality words 5Example 1. Let g; h be morphisms given by:g(a) = (aab)2a; g(b) = ab;h(a) = a; h(b) = (baa)3ba:They have a simple 
y
li
 solution ((ab)2a; 
; G;H) where 
 = (aab)8a, and themappings G;H : Z5! Z25 are given by:G(0) = 0; G(1) = 7; G(2) = 9; G(3) = 16; G(4) = 18;H(0) = 1; H(1) = 2; H(2) = 13; H(3) = 14; H(4) = 0:The 
y
li
 solution is depi
ted in Figure 1.
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Figure 1: Simple 
y
li
 solution ((ab)2a; (aab)8a;G;H).It is possible to verify that g and h have no equality word. On the other hand,every equality word 
an be trivially viewed as a 
y
li
 solution. This exampletherefore shows that the 
on
ept of 
y
li
 solution generalizes nontrivially the
on
ept of equality word.



6 J. Hadravov�aMarked versions of the morphisms g and h are the following:g(a) = (aba)2a; g(b) = ba;h(a) = a; h(b) = (baa)3ba:Their simple 
y
li
 solution is ((ab)2a; 
; Gm; Hm) where Hm = H , and Gm isgiven by: Gm(j) = (G(j) + 1) mod 25:Noti
e that in our graphi
al representation in Figure 1 it only means shifting theinner 
ir
le by one 
lo
kwise.The example also features two aab-syn
hronized over
ows, whi
h are empha-sized in Figure 1. They are given by pairs (2; 2) and (4; 4) sin
e
[G(2); H(2)℄ = 
[9; 13℄ = (aab)a and 
[G(4); H(4)℄ = 
[18; 0℄ = (aab)(aab)a:Noti
e that the 
y
li
ity of the solution allows to speak easily for exampleabout the over
ow (aab)2a(aab)4a, whi
h is given by 
[G(4); H(2)℄. One of themain advantage of simple 
y
li
 solutions in 
omparison with (ordinary) simplesolutions is that the de�nition of simple 
y
li
 solution does not need to employin�nite words.The 
on
ept of p-syn
hronized over
ows was introdu
ed in [5℄ and it has beenproved there that the existen
e of �ve p-syn
hronized over
ows for some primitiveword p inside the solution guarantees the spe
ial form of the solution: up to theex
hange of the letters a and b either w = (ab)ia or w = aibj where g
d(i; j) = 1.The result means a �rst signi�
ant step in the 
lassi�
ation of single generatedbinary equality languages:Lemma 1. Let g; h : fa; bg� ! �� be non-periodi
 morphisms and let w be theirsimple solution. If jwjb � 9 and jwja � 9, then, up to the ex
hange of the lettersa and b, either w = (ab)iaor w = aibjwith g
d(i; j) = 1.Although the lemma itself does not speak about p-syn
hronized over
ows, theyare used in the proof as a key ingredient to 
onne
t assumption that jwjb � 9 andjwja � 9 with the resulting stru
ture of the solution. The key part of the proofuses the fa
t that the p-syn
hronized over
ows are generated as a 
onsequen
e ofthe assumption that jwjb � 9 and jwja � 9. This is formulated in the following
laim:



A length bound for binary equality words 7Lemma 2. Let (w; 
; G;H) be a simple 
y
li
 solution of marked morphismsg; h : fa; bg� ! ��. Let h(b) be the longest of the image words g(a); g(b); h(a)and h(b). If jwjb � 9, then there is a primitive word p su
h that� (w; 
; G;H) has �ve p-syn
hronized over
ows;� h(b) is a fa
tor of p!; and� at least one of the words g(a) or g(b) is longer than p.Noti
e that in the foregoing lemma the 
ondition jwja � 9 of Lemma 1 ismissing. This is due to the fa
t that h(b) is supposed to have the maximal lengthamong the words g(a), g(b), h(a) and h(b). This distinguishes letters a and b andallows to drop the assumption on jwja.Although the proof of Lemma 2 was hinted in [5℄ for mu
h more generous boundof 25 bs inside the solution, the rigorous proof was omitted due to its 
ompli
ityand length. The aim of this paper is to �ll in this missing part in the proof ofLemma 1. Moreover, we will generalize Lemma 2 in order to be able to use itwith 
y
li
 blo
ks as well:Main Lemma. Let (e; f; 
; G;H) be a 
y
li
 blo
k of marked morphisms g; h :fa; bg� ! �� and suppose that both e and f are fa
tors of a word w su
h that(w; 
0; G0; H 0) is a 
y
li
 solution of g; h. Let h(b) be the longest of the imagewords g(a); g(b); h(a) and h(b). If jf jb � 9, then there is a primitive word p su
hthat � (e; f; 
; G;H) has �ve p-syn
hronized over
ows;� h(b) is a fa
tor of p!; and� at least one of the words g(a) or g(b) is longer than p.Noti
e that the foregoing lemma indeed generalizes Lemma 2 sin
e every simple
y
li
 solution (w; 
; G;H) of morphisms g; h is in fa
t a 
y
li
 blo
k (w;w; 
; G;H)of the same pair of morphisms.The proof of the Main Lemma will be given by 
ombinatorial analysis in thelast se
tion.We will �nish this part by two de�nitions. First, let us de�ne the g-
over:De�nition. Let (e; f; 
; G;H) be a 
y
li
 solution of morphisms g; h : fa; bg� !�� and let k; ` 2 Zj
j. An ordered pair (m;u) 2 Zjej� fa; bg+ is said to be theg-
over of an ordered pair (k; `) if u and m are su
h that the word g(u) de�nedas g(u) = 
[G(m); k℄
[k; `℄
[`;G(m+ juj)℄is the shortest possible.The last de�nition introdu
es a true h-o

urren
e of a word in a 
y
li
 blo
k:



8 J. Hadravov�aDe�nition. Given a word v we say that (k; l) 2 Zj
j�Zj
j is a true h-o

urren
eof v in (e; f; 
; G;H) if there are i; j 2 Zjf j satisfying f [i; j℄ = v and H(i) = k,H(j) = l.Example 2. In Figure 1 we have two true h-o

urren
es of b, namely (2; 13) and(14; 0). Moreover, g-
over of the �rst true h-o

urren
e of b is (0; aba); the se
ondone has the g-
over (2; aba).3. Auxiliary lemmasIn this se
tion we will present 
ombinatorial lemmas whi
h will be needed inthe proof of the Main Lemma. First, let us state without a proof the well knownPeriodi
ity Lemma:Lemma 3 (Periodi
ity Lemma). Let p, q be primitive words. If p! and q! havea 
ommon fa
tor of the length at least jpj+ jqj � 1, then p and q are 
onjugate.The Periodi
ity Lemma 
an be equally formulated in the following way: aword w with periods both n and m and longer than n+m� 1 has also a periodg
d(m;n).The reader should be also familiar with the fa
t that two words u and v 
om-mute i� they have the same primitive root.Just to re
all the properties of primitive words, we have the next easy lemma:Lemma 4. Let p be a primitive word. If there are words u and v su
h that upvis a fa
tor of p!, then u is a suÆx of the word pk and v is a pre�x of pk forsuÆ
iently large k 2 N+ .The following 
ombinatorial lemmas are mainly based on the Periodi
ity Lem-ma and explore the various periodi
ity properties of words.Lemma 5. Let u1, u2, v1, v2 be words su
h thatu1v1 = u2v2;v1u1 = v2u2;and u1 <p u2. Then the words u2u�11 and u1v2 have the same primitive root.Proof: Sin
e(u1v2)(u2u�11 ) = u1v1u1u�11 = u1v1 = (u2u�11 )(u1v2);words u1v2 and u2u�11 
ommute; therefore, they have the same primitive root. �Lemma 6. Let w be a word su
h that w = s1p1 = s2p2 = s3p3 fors3 <s s2 <s s1p1 <p p2 <p p3:



A length bound for binary equality words 9Then w has a period p = g
d(js2j � js3j ; js1j � js2j)and jwj � 2p.Proof: Obviously, the word w has periods both js2j � js3j and js1j � js2j. Sin
ejwj = js3j � js3j+ js2j � js2j+ js1j+ jp1j � js2j � js3j+ js1j � js2j ;we dedu
e from the Periodi
ity Lemma that w has a period g
d(js2j � js3j ; js1j �js2j), whi
h 
on
ludes the proof. �Lemma 7. Let w be a word su
h thatw = vt1 = r2vjt2 = r3v;j � 1, and r2 <s r3, t2 <p t1. Then w has a periodg
d(jt1j � jt2j ; jr3j � jr2j):Proof: It is easy to see that w has a periods both jt1j�jt2j and jr3j�jr2j. Noti
ethat jt1j � jt2j+ jr3j � jr2j = 2 jwj � 2 jvj � jt2j � jr2j = jwj+ (j � 2) jvj :Therefore by the Periodi
ity Lemma, in the 
ase j � 2, a period of w is g
d(jt1j�jt2j ; jr3j � jr2j). It is easy to see that lemma is satis�ed if jr2j = jt2j. Indeed, ifjr2j = jt2j, then jt1j� jt2j = jr3j� jr2j and the 
laim holds trivially. Let us dis
ussthe remaining 
ases. The 
laim obviously holds for all w su
h that jwj � 2 jvjsin
e in this 
ase j � 2. Now, we pro
eed by indu
tion on the length of the wordw. By symmetry, we 
an suppose that jr2j > jt2j. Let t01 be a pre�x of t1 su
hthat vt01 = r2v. We �rst show that t2 is both a pre�x and a suÆx of t01. Sin
ejt01j = jr2j > jt2j and t2 <p t1, we 
an see easily that t2 is a pre�x of t01. On theother hand, sin
e r2v <s r3v both t01 and t2 are suÆxes of w, and therefore suÆx
omparable.We will split the proof into the following two 
ases.Case jvt01j � ��vjt2��. We will show that w 2 p+ andg
d(jt1j � jt2j ; jr3j � jr2j) = k jpj ;k � 1, where p is the primitive root of v. Sin
e t2 is a suÆx t01 and vt01 �s vjt2,we obtain vt01t�12 �s vj . Let p be the primitive root of v. Then pt01t�12 is a suÆxof pk for some suÆ
iently large k 2 N+. By the primitivity of p, we obtain thatt01t�12 2 p�. Moreover, sin
e t2 is a proper suÆx of t01, we get t01t�12 2 p+. Sin
et01 is bordered by t2, we obtain that vt01 is a pre�x of p! longer than p. Re
allingthat p is the primitive root of v and v is a suÆx of vt01, we get that t01 2 p+ and



10 J. Hadravov�at2 2 p+. Sin
e r2v = vt01 and r3 = r2vjt2v�1, we have also r3 2 p+ and r2 2 p+.Finally, w = r2vjt2 leads to w 2 p+ andg
d(jt1j � jt2j ; jr3j � jr2j) = k jpj ;k � 1, whi
h 
ompletes the proof of this 
ase.Case jvt01j > ��vjt2��. Let w0 = vt01. Thenw0 = vt01 = r02vjt2 = r03v;where r02 = vt01(vjt2)�1 and r03 = vt01v�1. Sin
e r02 �s r2, r03 �s r3 and jr02j � jr03j,we obtain r02 �s r03. By assumption, w0 has a period� = g
d(jt01j � jt2j ; jr03j � jr02j):We will prove that � divides both jt1j � jt2j and jr3j � jr2j and � is a period of w.We havejr03j � jr02j = jr2j � jvt01j+ ��vjt2�� = jr3vj � jvt01j = jr3j � jr2j :Then � divides jr3j� jr2j and sin
e jr3j� jr2j is a period of w, � is also a period ofw. The last step is to prove that � divides jt1j�jt2j, whi
h is true due to equationjt1j � jt2j = (jt1j � jt01j) + (jt01j � jt2j) = jr3j � jr2j+ jt01j � jt2j :The proof is now 
omplete. �Lemma 8. Let w be a word su
h thatw = r1vt1 = r2vjt2 = r3vt3;j � 1, and r2 <s r3, t2 <p t1. Then w has a periodg
d(jt1j � jt2j ; jr3j � jr2j)and t3 �p vj�1t2.Proof: From Lemma 7 it follows that the word w[jr1j ; jr3vj℄ has a periodq = g
d(jt1j � jt2j ; jr3j � jr2j):The word w[0; jr3vj℄ has a period jr3j � jr2j; therefore, has a period q. Similarly,the word w[jr1j ; jwj℄ has periods both jt1j � jt2j and q. Sin
e 
ommon fa
tor ofwords w[0; jr3vj℄ and w[jr1j ; jwj℄ is the word w[jr1j ; jr3vj℄, whi
h is longer thanq, w has a period q. Word t3 is a pre�x of vj�1t2 be
ause jr3j � jr2j is a periodof w. �We will �nish this se
tion by lemmas whi
h are not stri
tly 
ombinatorial butwill be needed in the proof.



A length bound for binary equality words 11Lemma 9. Let g be a marked morphism and u, v, w be words satisfyingg(u) ^ w <p g(v) ^ w:Then g(u) ^ w = g(u ^ v).Proof: It is easy to 
he
k that if u^w <p v ^w for arbitrary three words, thenu ^ v = u ^ w. This and the fa
t that marked morphisms satisfyg(u) ^ g(v) = g(u ^ v)
ompletes the proof. �Lemma 10. Let (e; f; 
; G;H) be a 
y
li
 blo
k for marked morphisms g; h :fa; bg� ! �� and let (k1; l1); (k2; l2) be two p-syn
hronized over
ows where p isthe primitive root of g(a). Then either e 2 a+ or there exists a pair of indi
es(r1; q1) su
h that G(r1) = H(q1) and e[r1 � 1; r1℄ = a.Proof: Suppose that e =2 a+. Theng(e[k1;1℄) ^ p! = 
[G(k1);1℄ ^ p! <p g(a)! ^ p!g(e[k2;1℄) ^ p! = 
[G(k2);1℄ ^ p! <p g(a)! ^ p!:By Lemma 9 we obtain the existen
e of r1; r2 su
h that e[k1; r1℄ 2 a+ ande[k2; r2℄ 2 a+. Noti
e that from the de�nition of p-syn
hronized over
ows weknow that 
[G(ki); H(li)℄ is a pre�x of p! for both i 2 f1; 2g. Moreover, by thesame de�nition 
[G(k1); H(l1)℄ = pl
[G(k2); H(l2)℄:Therefore, 
[G(k2); H(l2)℄�1p! = 
[G(k1); H(l1)℄�1p!:Now, we know that:
[H(l1); G(r1)℄ = 
[H(l1);1℄ ^ 
[G(k1); H(l1)℄�1p!;
[H(l2); G(r2)℄ = 
[H(l2);1℄ ^ 
[G(k2); H(l2)℄�1p!:Sin
e every 
y
li
 blo
k is simple, we have up to the order of indi
es:
[H(l1);1℄ ^ 
[G(k1); H(l1)℄�1p! <p 
[H(l2);1℄ ^ 
[G(k2); H(l2)℄�1p!:Sin
e 
[H(l1);1℄ = h(f [l1;1℄) and 
[H(l2);1℄ = h(f [l2;1℄);we �nally obtain an inequalityh(f [l1;1℄) ^ 
[G(k1); H(l1)℄�1p! <p h(f [l2;1℄) ^ 
[G(k1); H(l1)℄�1p!:(*)



12 J. Hadravov�aNow, we 
an again apply Lemma 9 on (*) and obtain an index q1 su
h that
[H(l1); H(q1)℄ = h(f [l1; q1℄)= h(f [l1;1℄) ^ 
[G(k1); H(l1)℄�1p! = 
[H(l1); G(r1)℄:Then H(q1) = G(r1), whi
h is what we wanted to prove. From e[k1; r1℄ 2 a+follows the rest. �4. Proof of Main LemmaWe shall assume that h(b) is the longest of all four image words, that is,jg(a)j � jh(b)j; jg(b)j � jh(b)j and jh(a)j � jh(b)j:The aim of this se
tion is to show that �ve p-syn
hronized over
ows are 
reatedby 
umulating bs in f . We will provide an upper bound 
b for number of bs in fsu
h that unless jf jb < 
b, a 
y
li
 blo
k (e; f; 
; G;H) ne
essarily has to have �vep-syn
hronized over
ows. This part will show that this bound 
an be lowered to9 o

urren
es of b.We will have a look at possible forms of g-
overs of true h-o

urren
es of b in f .It has been shown in [5℄ that possible forms of g-
overs of true h-o

urren
es of binside a solution are quite restri
ted:Lemma 11. Let (w; 
; G;H) be a 
y
li
 solution for morphisms g, h su
h thatmorphism g is marked. Let (k; `) be a true h-o

urren
e of b and let (m;u) be itsg-
over. Then u belongs to the one of the following sets:a+ b+ a+b+ b+a+ a+b+a+ b+a+b+:Sin
e e and f are fa
tors of some 
y
li
 solution (w; 
0; G0; H 0), we 
an use thisfa
t and restri
t ourselves only to these six types of g-
overs.We now pro
eed to prove that either a 
y
li
 blo
k (e; f; 
; G;H) has �ve p-syn
hronized over
ows for some primitive word p or jf jb < 9.Before the proof is given we will �x the notation and prove few auxiliary 
laims.First, noti
e that sin
e h(b) is of the maximal length, every g-
over (m;u) ofa true h-o

urren
e of b 
an be rewritten as u = u1u2, for some nonempty wordsu1, u2. Be
ause of this property we 
an apply 
ombinatorial lemmas mentionedin the previous se
tion.As we have already seen in Lemma 11, every true h-o

urren
e of b has topossess exa
tly one of the six variants of 
over. Thus, we will divide true h-o

urren
es of b into six 
lasses depending on the variant of their 
over. Tosimplify things slightly, we shall use the notation a

ording to the following table,whi
h features variables representing the number of true h-o

urren
es of b withthe spe
i�
 
over variant:



A length bound for binary equality words 13# of true h-o

urren
es of b 
over variantx1 a+x2 a+b+a+x3 b+a+y1 b+y2 b+a+b+y3 a+b+The following lemma presents the way how the g-
over of a true h-o

urren
e
an be 
ombined with n p-syn
hronized over
ows in order to 
reate n + 1 p-syn
hronized over
ows. In this way we 
an in
rease the number of p-syn
hronizedover
ows.Lemma 12. Let (e; f; 
; G;H) be a 
y
li
 blo
k and let (m;uv) be the g-
over of(k; l), where (k; l) is a true h-o

urren
e of b. Suppose that u, v are nonemptywords and there is a primitive word p su
h that(1) h(b) is a fa
tor of p!,(2) there are p-syn
hronized over
ows (r1; t1); : : : ; (rn; tn), n � 2, su
h thatri 6= m+ juj and ti 6= H�1(l) for all i 2 f1; : : : ; ng,(3) p �s 
[k;G(m+ juj)℄ or p �p 
[G(m+ juj); l℄.Then (r1; t1); : : : ; (rn; tn); (m + juj ; H�1(l)) are up to the order p-syn
hronizedover
ows.Proof: First re
all that a

ording to the de�nition of true h-o

urren
e of b wehave that 
[k; l℄ = h(b) and moreover, k = H�1(l)�1. Sin
e (m;uv) is the g-
overof (k; l), we obtain from its de�nition thatG(m+ juj) = k + j;where 0 < j < jh(b)j. Therefore, 
[G(m + juj ; l℄ is a suÆx of h(b) and the third
ondition in the de�nition of p-syn
hronized over
ows is satis�ed.Noti
e also that by the se
ond assumption of this lemma, starting and end-ing positions of over
ows (r1; t1); : : : ; (rn; tn) are di�erent than those of (m +juj ; H�1(l)).It remains to show that the over
ows (r1; t1); : : : ; (rn; tn); (m + juj ; H�1(l))are indeed p-syn
hronized and satisfy (up to their order) the �rst 
ondition of thede�nition of p-syn
hronized over
ows. But, sin
e h(b) is a fa
tor of p!, this fa
teasily follows from the third assumption of this lemma together with Lemma 4. �Noti
e that the third 
ondition of the previous lemma has a parti
ular impor-tan
e, sin
e it \�xes" the over
ow 
[G(m+ juj); l℄ in a

ordan
e with distributionof ps over h(b).



14 J. Hadravov�aThe next 
laim presents key ideas involved in 
ombining g-
overs of the samekind into p-syn
hronized over
ows.Claim 1. Let (e; f; 
; G;H) be a 
y
li
 blo
k of morphisms g, h. Then thefollowing 
ombinatorial properties hold.(I.) If x1 � 2, then (e; f; 
; G;H) has x1 p-syn
hronized over
ows, g(a) = pi,i � 2 and h(b) is a fa
tor of p! longer than 2 jpj.(II.) If x2 � 3, then (e; f; 
; G;H) has x2 p-syn
hronized over
ows, p �p g(a)and h(b) is a fa
tor of p! longer than 2 jpj.(III.) If x3 � 3, then (e; f; 
; G;H) has x3 p-syn
hronized over
ows, p �p g(a),p �s g(b) and h(b) is a fa
tor of p! longer than 2 jpj.Proof: (I.) We will use Lemma 5. Let (k1; l1), (k2; l2) be true h-o

urren
es ofb and let (m1; aaj1), (m2; aaj2) be their respe
tive g-
overs. Letu1 = 
[G(m1); k1℄ v1 = 
[k1; G(m1 + 1)℄u2 = 
[G(m2); k2℄ v2 = 
[k2; G(m2 + 1)℄:Sin
e we are in a 
y
li
 blo
k, whi
h is simple, we 
an suppose that u2 <p u1.Noti
e that from the de�nition of g-
over we haveu1v1 = u2v2 = g(a);v1u1 = v2u2 �p h(b):It follows from Lemma 5 that the words u1u�12 and u2v1 have the same primitiveroot p. Then g(a) = u1v1 = u1u�12 u2v1 = pi;for some i � 2. Sin
e h(b) is a fa
tor of g(a)!, it is obviously fa
tor of p! as well.We shall prove that (m1 + 1; H�1(l1)) and (m2 + 1; H�1(l2)) are p-syn
hronizedover
ows. Obviously, m1 6= m2 and l1 6= l2. Sin
e
[m1 + 1; H�1(l1)℄ = v�11 h(b);
[m2 + 1; H�1(l2)℄ = v�12 h(b);we obtain that
[m1 + 1; H�1(l1)℄
[m2 + 1; H�1(l2)℄�1 = v�11 v2 = u1u�12 2 p+;and (m1 + 1; H�1(l1)) and (m2 + 1; H�1(l2)) are p-syn
hronized over
ows. It iseasy to see that ea
h g-
over of the type a+ of another true h-o

urren
e of bsatis�es 
ondition of Lemma 12 and therefore we 
an add these g-
overs one byone to the already found p-syn
hronized over
ows.(II.) and (III.) Remaining two 
laims 
an be proved in a similar way usingLemma 8 and Lemma 6 respe
tively. �



A length bound for binary equality words 15Noti
e that be
ause of symmetry of xs and ys (the 
overs are the same up tothe ex
hange of letters a and b) the foregoing lemma 
an be reformulated with ysinstead of xs. In what follows we will 
all this \reformulated" version of Claim 1its dual form.In parti
ular, Claim 1 means that if xi � 5 or yi � 5 for any i 2 f1; 2; 3g,then the 
on
lusion of the Main Lemma holds. Noti
e that under the previousobservation if now jf jb � 25, then the 
on
lusion of the Main Lemma holds simplyby the pigeonhole prin
iple. The rest of the se
tion is dedi
ated to lowering thisbound.Claim 2. Let (e; f; 
; G;H) be a 
y
li
 blo
k of marked morphisms g; h. Thefollowing properties hold.(I.) If x1 6= 0, then y2 = 0.(II.) If x1 � 2, then y3 � 1.(III.) If x1 � 2, then y1 � 1.Proof: (I.) Suppose that y2 � 1. Thenh(b) = s2g(a)ip2;where i � 1 and p2 �p g(b)!. Sin
e x1 6= 0, the word h(b) is a fa
tor of p!, wherep is the primitive root of g(a). By Lemma 4, we obtain that p2 �p p!. We havea 
ontradi
tion with g being marked.(II.) Sin
e x1 � 2, by Claim 1(I.) there is a primitive word p su
h that g(a) = pi,i � 2 and h(b) is longer than 2jpj with a period jpj. If y3 � 2, thenh(b) = s1p1 = s2p2;where s1 <s s2 2 Suf(g(a)+) = Suf(p+) and p2 <p p1 2 Pref(g(b)+). First noti
ethat js2j� js1j is a period of h(b). Sin
e p is a primitive word and jh(b)j > 2jpj, bythe Periodi
ity Lemma this period has to be longer or equal to jpj. Then p �s s2and h(b) = upp2, where up = s2. By Lemma 4 we have that p2 �p p!, whi
h is a
ontradi
tion with g being marked.(III.) Suppose that x1 � 2 and y1 � 2. Then by Claim 1(I.) (and its dualform for ys) there are two p-syn
hronized over
ows (k1; l1); (k2; l2) and two s-syn
hronized over
ows (m1; n1); (m2; n2), where p is the primitive root of g(a)and s is the primitive root of g(b). From Lemma 10 it follows that there arer1; r2; q1; q2 2 Zjwj su
h that G(r1) = H(q1), G(r2) = H(q2) and b = e[r1 � 1; r1℄,a = e[r2 � 1; r2℄. Sin
e (e; f; 
; G;H) is a 
y
li
 blo
k, whi
h is simple, we haver1 = r2 and a = e[r2 � 1; r2℄ = e[r1 � 1; r1℄ = b is a 
ontradi
tion. �In a view of previous 
laim we 
an now without diÆ
ulty see that if jf jb � 17,then we get the desired 
on
lusion of the Main Lemma.Last part of this se
tion investigates possible 
ombination of g-
overs of di�er-ent kind. Again, as the previous 
laim, this 
laim has its dual version obtainedby ex
hanging xs by ys (and vi
e versa).



16 J. Hadravov�aClaim 3. Let (e; f; 
; G;H) be a 
y
li
 blo
k of marked morphisms g; h. If oneof the following properties is satis�ed, then the 
on
lusion of the Main Lemmaholds.(I.) x1 + x3 � 6.(II.) x1 � 2 and (x2 � 3 or x3 � 3).(III.) x2 + x3 � 5.(IV.) x3 � 3 and y3 � 3 and x1 + x3 � 5.(V.) x3 � 3 and x3 + y2 + x2 � 5.Proof: (I.) Suppose that x1 + x3 � 6. If x3 � 5 or x1 � 5, then we shall useClaim 1(III.) or Claim 1(I.). Therefore, 4 � x1 � 2 and 4 � x3 � 2. It followsfrom Claim 1(I.) that there are x1 p-syn
hronized over
ows su
h that p is theprimitive root of g(a), both g(a) and h(b) are longer than 2 jpj and h(b) is fa
torp!. Let (m1; bi1aj1); : : : ; (mx3 ; bix3ajx3 ) be the g-
overs of (r1; t1); : : : ; (rx3 ; tx3),pairwise di�erent true h-o

urren
es of b in (e; f; 
; G;H). We will show that theinequality j
[G(mn + in); tn℄j � jpjholds for at least x3 � 1 di�erent g-
overs of true h-o

urren
es of b. Then fromthe primitivity of p we obtain p �p 
[G(mn + in); tn℄ for x3 � 1 g-
overs and we
an gradually apply Lemma 12 and in
rease the number p-syn
hronized over
owsup to the number x1 + x3 � 1 � 5, whi
h 
ompletes the proof.For 
ontradi
tion, suppose that for two di�erent indi
es n1; n2, it holds:j
[G(mn1 + in1); tn1 ℄j < jpjj
[G(mn2 + in2); tn2 ℄j < jpj :Then h(b) has a period q su
h that q < jpj. Sin
e jh(b)j > jpj+ q we obtain fromthe Periodi
ity Lemma a 
ontradi
tion with the primitivity of p.(II.) Suppose that x1 � 2 and x2 � 3. Then by Claim 1(I.) and Claim 1(II.),there are x1 p-syn
hronized over
ows and x2 s-syn
hronized over
ows su
h thatg(a) = pi, i � 2, and s is a pre�x of g(a). Moreover, h(b) is a fa
tor of both p!and s! whi
h is longer than max(2 jpj ; 2jsj). From the Periodi
ity Lemma and theprimitivity of both words p and s follows that p and s are 
onjugates. Therefore,p = s. Sin
e p is primitive and h(b) is a fa
tor of p!, we get from Lemma 12 that(e; f; 
; G;H) posses x1 + x2 p-syn
hronized over
ows and the 
on
lusion of theMain Lemma holds. Case x1 � 2 and x3 � 3 is similar.(III.) Obviously, either x2 � 3 or x3 � 3. Suppose that both x2 6= 0 and x3 6= 0otherwise 
on
lusion holds a

ording to Claim 1. Let x2 � 3. From Claim 1(II.)we obtain the existen
e of x2 p-syn
hronized over
ows su
h that p is a pre�x ofg(a) and h(b) is a fa
tor of p! longer than 2 jpj. Let (n; aibjak) be the g-
over of(r1; t1), a true h-o

urren
e of b in (e; f; 
; G;H), su
h that j
[G(n+i+j); t1℄j > jpj.Let (m; bsal) be the g-
over of (r2; t2), a true h-o

urren
e of b in (e; f; 
; G;H).Noti
e, that su
h g-
overs indeed exist sin
e x2 � 3 and x3 6= 0.



A length bound for binary equality words 17If j
[G(m + s); t℄j < jpj, then by looking at a pre�x of h(b), we obtain anequality: 
[r2; G(m+ s)℄ = 
[r1; G(n+ i+ j)℄ufor some nonempty word u �p g(a)! . Sin
e g(b) �s 
[r1; G(n + i + j)℄ and
[r2; G(m + s)℄ �s g(b)s, we 
an apply Lemma 4 and obtain that u is pre�x
omparable with the primitive root of g(b). This gives us a 
ontradi
tion with gbeing marked. Therefore, p �p 
[G(m + s); t℄, and we 
an again gradually applyLemma 12 ending with x2 + x3 � 5 p-syn
hronized over
ows.Now, let x3 � 3. Using again Claim 1(III.) leads to the existen
e of x3 p-syn
hronized over
ows su
h that p �p g(a), p �s g(b) and h(b) is a fa
tor ofp! longer than 2 jpj. Let (m; aibjak) be the g-
over of (r; t), a true h-o

urren
eof b in (e; f; 
; G;H). Sin
e p �s g(b) we obtain from the primitivity of p thatp �s 
[r;G(m + i + j)℄. Pro
eeding by the appli
ation of Lemma 12 eventuallyleads to x2 + x3 � 5 p-syn
hronized over
ows.(IV.) Suppose that x3 � 3, y3 � 3 and x1 + x3 � 5. Applying Claim 1(III.)on both x3 � 3 and y3 � 3 leads to x3 p-syn
hronized over
ows and y3 s-syn
hronized over
ows where p and s are primitive words given by Claim 1(III.);that is, p �p g(a), p �s g(b) and s �p g(b), s �s g(a) with h(b) being a fa
tor ofboth p! and s! longer than max (2jpj; 2jsj). Noti
e that we have used the dualityof xs and ys and have applied dual form of Claim 1 as well.From the Periodi
ity Lemma it follows that p and s are 
onjugates; thereforeof the same length. Let (m; aiaj) be the g-
over of (r; t), a true h-o

urren
e of bin (e; f; 
; G;H). Sin
e jh(b)j > 2 jpj we 
an see that either j
[r;G(m+ i)℄j � jpjor j
[G(m + i); t℄j � jpj. If j
[r;G(m+ i)℄j � jpj, then from s �s g(a) we have aswell s �s 
[r;G(m + i)℄. From Lemma 4 it follows that 
[G(m + i); t℄ is pre�x
omparable with s; therefore, g(a) is pre�x 
omparable with s. Sin
e also s �pg(b), we have obtained a 
ontradi
tion with g being marked. Therefore, ne
essarilyp �p 
[G(m + i); t℄ and we 
an apply Lemma 12 and �nally get x3 + x1 � 5 p-syn
hronized over
ows inside (e; f; 
; G;H).(V.) Suppose that x3 � 3. Then from Claim 1(III.) we get the existen
e ofx3 p-syn
hronized over
ows su
h that p is a suÆx of g(b), a pre�x of g(a) andh(b) is a fa
tor of p! longer than 2 jpj. We have already seen in the third partof this proof that in this 
ase we 
an gradually add x2 p-syn
hronized over
owsresulting from g-
overs of the type a+b+a+. Suppose now that y2 � 1 and let(m; biajbk) be the g-
over of (r; t), a true h-o

urren
e of b in (e; f; 
; G;H). Fromthe primitivity of p it follows that p �p 
[G(m+i); t℄ and we 
an apply Lemma 12.We have proved that (e; f; 
; G;H) has x3 + y2+x2 � 5 p-syn
hronized over
owsand the proof is 
omplete. �Now, we have everything prepared to �nally present the proof of the MainLemma.



18 J. Hadravov�aProof of Main Lemma: From the assumption jf jb � 9 we obtain3Xi=1 xi + 3Xi=1 yi � 9:We will pro
eed by 
ase analysis based on Claim 1, Claim 2 and Claim 3.Case x1 � 2 or y1 � 2. Suppose that x1 � 2, the other 
ase 
an be dealt within a similar way. From Claim 2 we ne
essarily have y2 = 0, y3 � 1 and y1 � 1. Ifx1 + x3 � 6, then the Main Lemma holds a

ording to Claim 3(I.). On the otherhand if x1 + x3 � 5 we obtain an inequalityx1 + x3| {z }�5 +x2 + y1|{z}�1 + y2 + y3| {z }�1 � 9:Then x2 � 2 and it follows from dual form of Claim 2(I.) that y1 = 0. Therefore,x2 � 3. Sin
e x1 � 2, the Main Lemma holds a

ording to Claim 3(II.).Case x1 � 1 and y1 � 1. If x1 = y1 = 1, then by Claim 2(I.) we have x2 = y2 = 0.Noti
e that for y1 we have used dual form of Claim 2. Thenx1 + y1| {z }=2 +x2 + y2| {z }=0 +x3 + y3 � 9and x3 + y3 � 7. Therefore, x3 � 4 or y3 � 4. Suppose that x3 � 4. In 
ase thatx3 � 5, we 
an apply Claim 1(III.) and obtain desired 
on
lusion. If x3 = 4, theny3 � 3 and the Main Lemma holds by Claim 3(IV.). Similarly, we 
an deal withthe possibility y3 � 4; noti
e that in this 
ase we would use dual forms of Claim 1and Claim 3.Suppose now that x1 � 1 and y1 = 0. If x2 + x3 � 5 or y2 + y3 � 5, then theproof is 
omplete due to Claim 3(III.) (and its dual form). In 
ase that x2+x3 � 4and y2 + y3 � 4, we havex1|{z}�1 + y1|{z}=0 +x2 + x3| {z }�4 + y2 + y3| {z }�4 � 9:Therefore, x1 = 1, x2 + x3 = 4 and y2 + y3 = 4. From x1 = 1 it follows byClaim 2(I.) that y2 = 0; therefore y3 = 4. Now, if x2 � 1, then the Main Lemmaholds due to dual form of Claim 3(V.). On the other hand, if x2 = 0, then we 
anapply the fourth part of the same 
laim, whi
h 
ompletes the proof. �5. Towards the 
lassi�
ation of non-simple solutionsWe have seen that many o

urren
es of b inside a 
y
li
 blo
k lead to theexisten
e of �ve p-syn
hronized over
ows for some primitive word p and moreover,partially reveal the stru
ture of image words h(b) and g(b) or g(a).



A length bound for binary equality words 19We know that when dealing with a simple 
y
li
 solution instead of a 
y
li
blo
k, these assumptions give us already very strong knowledge about the solutionitself; it is either (ab)ia or ajbi, with g
d(i; j) = 1.However, sin
e the Main Lemma is formulated more generally, we have thepossibility to go even a little bit further and look at the stru
ture of non-simplesolutions as well. Taking an advantage of the fa
t that non-simple solutions ofmarked morphisms are 
omposed from blo
ks, we 
an also apply the Main Lemmato a suÆ
iently \long" blo
k inside a solution, and get the existen
e of �ve p-syn
hronized over
ows for some primitive word p inside the blo
k. An impa
tof the existen
e of �ve p-syn
hronized over
ows inside one of the blo
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