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A length bound for binary equality wordsJana Hadravov�aAbstrat. Let w be an equality word of two binary non-periodi morphisms g; h :fa; bg� ! �� with unique overows. It is known that if w ontains at least 25ourrenes of eah of the letters a and b, then it has to have one of the followingspeial forms: up to the exhange of the letters a and b either w = (ab)ia, orw = aibj with gd(i; j) = 1.We will generalize the result, justify this bound and prove that it an belowered to nine ourrenes of eah of the letters a and b.Keywords: ombinatoris on words, binary equality languagesClassi�ation: 68R151. IntrodutionEquality language Eq(g; h) of morphisms g; h : �� ! �� onsists of all theirsolutions, that is, of all words satisfying equality g(w) = h(w). The oneptof equality language was �rst introdued in [18℄ and sine then has been widelystudied. Equality languages ahieved partiular importane in the representationtheory of formal languages sine every reursively enumerable language an bee�etively found as a morphi image of an equality language, see [1℄.It is also well known, due to [16℄, that it is undeidable whether an equalitylanguage ontains a nonempty word (an algorithmi problem known as the PostCorrespondene Problem, or the PCP). Nevertheless, the problem turned out to besigni�antly di�erent in the binary ase. The deidability of the binary variant ofPCP was announed by Ehrenfeuht, Karhum�aki and Rozenberg in [3℄. However,their proof ontains a gap (see [7℄); a full proof based on a similar approah isgiven by Halava, Harju and Hirvensalo in [6℄.It should be also mentioned that the binary ase of the PCP is deidable inpolynomial time (see [8, 9℄). For j�j = 3 it is already a long-standing openproblem whether the equality set has to be regular, see [13℄ and [14℄.The struture of binary equality languages has been �rst studied in [2℄ and[4℄ and later in series of papers [10℄, [11℄, [12℄. It has been shown that binaryequality languages are always generated by at most two words, provided thatboth morphisms are non-periodi (the periodi ase being rather easy). It is alsoknown that if the set Eq(g; h) is generated by two distint generators, then thesegenerators are of the form bai and aib.



2 J. Hadravov�aA �rst step in the haraterization of single generators of binary equality lan-guage was made in [5℄. It was laimed there that a simple solution, that is, asolution with unique overows, whih is long enough in both letters a and b hasto be of the form w = (ab)ia or w = aibj with gd(i; j) = 1 (up to the exhangeof letters). The minimal requirement for the number of the letters a and b was�xed to nine, however rigorous proof was not given. The aim of this paper is to�ll in this \white spae" and provide the generalization of the result.2. Basi onepts and de�nitionsThe standard terminology and basi fats of ombinatoris on words (see forexample [15℄ and [17℄) will be used aross the text. Partiularly, the reader shouldreall that a binary morphism g : fa; bg� ! �� is alled non-periodi if g(a) andg(b) do not ommute. If the image words g(a) and g(b) start with di�erent letters,then we shall say that g is a marked morphism. We will use u �p v when u isa pre�x of v and u <p v when u is a nonempty proper pre�x of v. Similarly,u �s v expresses the fat that u is a suÆx of v and u <s v means that u is anonempty proper suÆx of u. The greatest ommon pre�x of two words u and vwill be denoted by u^ v. (One-way) in�nite word omposed from in�nite numberof opies of a word u will be denoted u!. It should be also mentioned that theprimitive root of a word u is the shortest word p suh that u = pk for somepositive k.Binary morphims have the following very important property: For eah non-periodi binary morphism g there is a uniquely given marked (non-periodi) binarymorphism gm and a word zg suh that for all words w 2 fa; bg� we have g(w) =zggm(w)z�1g . It is not so diÆult to see that zg is in fat equal to g(ab) ^ g(ba).Let g; h : fa; bg� ! �� be two binary non-periodi morphisms. A word w is asolution of g; h if g(w) = h(w). A solution w is alled simple if all overows areunique. That is, if w1, w1u, w2 and w2u0 are pre�xes of w! suh thatg(w1)z = h(w2) and g(w1u)z = h(w2u0)for some word z, then juj = ju0j = kjwj for some k 2 N+ .A generalization of the onept of simple solution leads to the de�nition ofblok as a pair of two words (e; f) suh that g(e) = h(f) and whih is simple inthe aforementioned sense; that is, if w1, w1u and w2, w2u0 are pre�xes of e!, f!resp. suh that g(w1)z = h(w2) and g(w1u)z = h(w2u0)for some word z, then juj = kjej and ju0j = kjf j for some k 2 N+ .In what follows we will be interested only in simple solutions and bloks.Now, we are going to generalize the de�nitions given above. We will de�ne ayli solution and a yli blok . First though, let us �x the notation of (one-way)in�nite words and intervals in words:



A length bound for binary equality words 3Let u = u0 : : : un�1 be a �nite word with its letters denoted by ui, 0 � i < n�1.We de�ne an in�nite word starting at the i-th position of u by:u[i;1℄ = uiui+1 : : : un�1u0u1 : : : :For two integers 0 � i < j � n� 1 we de�ne the interval u[i; j℄ by:u[i; j℄ = uiui+1 : : : uj�1:In what follows we will use the de�nition of interval in a broader sense; if i � j,then we will use u[i; j℄ instead of u[i;1℄[0; j� i+n℄. Note that eah letter ui anbe seen as u[i; i+ 1℄; and a word u[i; i℄ is a onjugate of u.Notie that the de�nition of the interval u[i; j℄ for i � j is very natural whenthe word u is seen as a yli word. This motivates the following ruial de�nition:De�nition. Let g; h : fa; bg� ! �� be morphisms. A yli solution of g; h isan ordered quadruple (w; ; G;H) where w = w0w1 � � �wjwj�1 2 fa; bg+,  2 �+,jj = jg(w)j = jh(w)j and G;H : Zjwj ! Zjj are injetive mappings suh that[G(i); G(i+ 1)℄ = g(wi) and [H(i); H(i+ 1)℄ = h(wi);for all i 2 Zjwj.Note that in the previous de�nition  is a onjugate of g(w) (and h(w)) andthe injetive mappings G;H de�ne the ending and starting positions of imagewords inside the solution. Therefore, the overows are words [G(r); H(t)℄ andtheir position in the solution is uniquely given by the pair (r; t).We will see later in Example 1 that the de�nition of yli solution indeed non-trivially generalizes the de�nition of (ordinary) solution. Moreover, the yliityof the solution simpli�es the notion of overows and allows us to avoid ompletelythe use of the in�nite words in the de�nition of simple yli solution:De�nition. Let (w; ; G;H) be a yli solution of g; h. We say that (w; ; G;H)is simple if [G(r1); H(t1)℄ = [G(r2); H(t2)℄implies (r1; t1) = (r2; t2).A generalization of the simple yli solution leads to the de�nition of yliblok :De�nition. Let g; h : fa; bg� ! �� be morphisms. A yli blok of g; his an ordered pentuple (e; f; ; G;H) where e = e0e1 � � � ejej�1 2 fa; bg+, f =f0f1 � � � fjf j�1 2 fa; bg+,  2 �+, jj = jg(e)j = jh(f)j and G : Zjej ! Zjj,H : Zjf j! Zjj are injetive mappings suh that[G(i); G(i + 1)℄ = g(ei) and [H(j); H(j + 1)℄ = h(fj);



4 J. Hadravov�afor all i 2 Zjej, j 2 Zjf j. Moreover, we require that it is simple, that is, whenever[G(r1); H(t1)℄ = [G(r2); H(t2)℄;neessarily (r1; t1) = (r2; t2).Note that a simple yli solution (w; ; G;H) an be expressed as a yliblok (w;w; ; G;H).In order to further larify the relation between the de�nitions of a solution anda yli solution, suppose that we are given a pair of (not neessarily marked)morphisms g and h, with a simple solution w. Now, w an be seen as a simpleyli solution (w; g(w); G;H) of g and h satisfying in addition that G(0) = H(0).Consider marked versions gm and hm of g and h. Morphisms gm; hm have a ylisolution (w; g(w); Gm; Hm) given byGm(j) = (G(j) + jzgj) mod jg(w)j ;Hm(j) = (H(j) + jzhj) mod jg(w)j :Notie that (w; g(w); Gm; Hm) is also a simple yli solution.The following slightly tehnial de�nition of p-synhronized overows will playan important role in our proof.De�nition. We say that a yli blok (e; f; ; G;H) of morphisms g; h has kp-synhronized overows if p is a primitive word and there is a k-tuple((r1; t1); : : : ; (rk ; tk)) 2 (Zjej�Zjf j)kof overows whih has the following properties:1. for all i 2 f1; : : : ; k � 1g there is li 2 N+ suh that[G(ri); H(ti)℄ = pli[G(ri+1); H(ti+1)℄;and [G(rk); H(tk)℄ is a nonempty pre�x of p!;2. ri are pairwise distint and ti are pairwise distint;3. for eah i 2 f1; : : : ; kg there is some 0 � m < jh(b)j suh thatG(ri) = H(ti � 1) +m;and fti�1 = b.Informally, these are just di�erent suÆxes of h(b) (by ondition 3) whih areoverows and at the same time are pre�xes of p! for some primitive word p (byondition 1). Moreover, by ondition 2 these overows an neither start nor endat the same position of the word .The following example illustrates previous de�nitions.



A length bound for binary equality words 5Example 1. Let g; h be morphisms given by:g(a) = (aab)2a; g(b) = ab;h(a) = a; h(b) = (baa)3ba:They have a simple yli solution ((ab)2a; ; G;H) where  = (aab)8a, and themappings G;H : Z5! Z25 are given by:G(0) = 0; G(1) = 7; G(2) = 9; G(3) = 16; G(4) = 18;H(0) = 1; H(1) = 2; H(2) = 13; H(3) = 14; H(4) = 0:The yli solution is depited in Figure 1.
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Figure 1: Simple yli solution ((ab)2a; (aab)8a;G;H).It is possible to verify that g and h have no equality word. On the other hand,every equality word an be trivially viewed as a yli solution. This exampletherefore shows that the onept of yli solution generalizes nontrivially theonept of equality word.



6 J. Hadravov�aMarked versions of the morphisms g and h are the following:g(a) = (aba)2a; g(b) = ba;h(a) = a; h(b) = (baa)3ba:Their simple yli solution is ((ab)2a; ; Gm; Hm) where Hm = H , and Gm isgiven by: Gm(j) = (G(j) + 1) mod 25:Notie that in our graphial representation in Figure 1 it only means shifting theinner irle by one lokwise.The example also features two aab-synhronized overows, whih are empha-sized in Figure 1. They are given by pairs (2; 2) and (4; 4) sine[G(2); H(2)℄ = [9; 13℄ = (aab)a and [G(4); H(4)℄ = [18; 0℄ = (aab)(aab)a:Notie that the yliity of the solution allows to speak easily for exampleabout the overow (aab)2a(aab)4a, whih is given by [G(4); H(2)℄. One of themain advantage of simple yli solutions in omparison with (ordinary) simplesolutions is that the de�nition of simple yli solution does not need to employin�nite words.The onept of p-synhronized overows was introdued in [5℄ and it has beenproved there that the existene of �ve p-synhronized overows for some primitiveword p inside the solution guarantees the speial form of the solution: up to theexhange of the letters a and b either w = (ab)ia or w = aibj where gd(i; j) = 1.The result means a �rst signi�ant step in the lassi�ation of single generatedbinary equality languages:Lemma 1. Let g; h : fa; bg� ! �� be non-periodi morphisms and let w be theirsimple solution. If jwjb � 9 and jwja � 9, then, up to the exhange of the lettersa and b, either w = (ab)iaor w = aibjwith gd(i; j) = 1.Although the lemma itself does not speak about p-synhronized overows, theyare used in the proof as a key ingredient to onnet assumption that jwjb � 9 andjwja � 9 with the resulting struture of the solution. The key part of the proofuses the fat that the p-synhronized overows are generated as a onsequene ofthe assumption that jwjb � 9 and jwja � 9. This is formulated in the followinglaim:



A length bound for binary equality words 7Lemma 2. Let (w; ; G;H) be a simple yli solution of marked morphismsg; h : fa; bg� ! ��. Let h(b) be the longest of the image words g(a); g(b); h(a)and h(b). If jwjb � 9, then there is a primitive word p suh that� (w; ; G;H) has �ve p-synhronized overows;� h(b) is a fator of p!; and� at least one of the words g(a) or g(b) is longer than p.Notie that in the foregoing lemma the ondition jwja � 9 of Lemma 1 ismissing. This is due to the fat that h(b) is supposed to have the maximal lengthamong the words g(a), g(b), h(a) and h(b). This distinguishes letters a and b andallows to drop the assumption on jwja.Although the proof of Lemma 2 was hinted in [5℄ for muh more generous boundof 25 bs inside the solution, the rigorous proof was omitted due to its ompliityand length. The aim of this paper is to �ll in this missing part in the proof ofLemma 1. Moreover, we will generalize Lemma 2 in order to be able to use itwith yli bloks as well:Main Lemma. Let (e; f; ; G;H) be a yli blok of marked morphisms g; h :fa; bg� ! �� and suppose that both e and f are fators of a word w suh that(w; 0; G0; H 0) is a yli solution of g; h. Let h(b) be the longest of the imagewords g(a); g(b); h(a) and h(b). If jf jb � 9, then there is a primitive word p suhthat � (e; f; ; G;H) has �ve p-synhronized overows;� h(b) is a fator of p!; and� at least one of the words g(a) or g(b) is longer than p.Notie that the foregoing lemma indeed generalizes Lemma 2 sine every simpleyli solution (w; ; G;H) of morphisms g; h is in fat a yli blok (w;w; ; G;H)of the same pair of morphisms.The proof of the Main Lemma will be given by ombinatorial analysis in thelast setion.We will �nish this part by two de�nitions. First, let us de�ne the g-over:De�nition. Let (e; f; ; G;H) be a yli solution of morphisms g; h : fa; bg� !�� and let k; ` 2 Zjj. An ordered pair (m;u) 2 Zjej� fa; bg+ is said to be theg-over of an ordered pair (k; `) if u and m are suh that the word g(u) de�nedas g(u) = [G(m); k℄[k; `℄[`;G(m+ juj)℄is the shortest possible.The last de�nition introdues a true h-ourrene of a word in a yli blok:



8 J. Hadravov�aDe�nition. Given a word v we say that (k; l) 2 Zjj�Zjj is a true h-ourreneof v in (e; f; ; G;H) if there are i; j 2 Zjf j satisfying f [i; j℄ = v and H(i) = k,H(j) = l.Example 2. In Figure 1 we have two true h-ourrenes of b, namely (2; 13) and(14; 0). Moreover, g-over of the �rst true h-ourrene of b is (0; aba); the seondone has the g-over (2; aba).3. Auxiliary lemmasIn this setion we will present ombinatorial lemmas whih will be needed inthe proof of the Main Lemma. First, let us state without a proof the well knownPeriodiity Lemma:Lemma 3 (Periodiity Lemma). Let p, q be primitive words. If p! and q! havea ommon fator of the length at least jpj+ jqj � 1, then p and q are onjugate.The Periodiity Lemma an be equally formulated in the following way: aword w with periods both n and m and longer than n+m� 1 has also a periodgd(m;n).The reader should be also familiar with the fat that two words u and v om-mute i� they have the same primitive root.Just to reall the properties of primitive words, we have the next easy lemma:Lemma 4. Let p be a primitive word. If there are words u and v suh that upvis a fator of p!, then u is a suÆx of the word pk and v is a pre�x of pk forsuÆiently large k 2 N+ .The following ombinatorial lemmas are mainly based on the Periodiity Lem-ma and explore the various periodiity properties of words.Lemma 5. Let u1, u2, v1, v2 be words suh thatu1v1 = u2v2;v1u1 = v2u2;and u1 <p u2. Then the words u2u�11 and u1v2 have the same primitive root.Proof: Sine(u1v2)(u2u�11 ) = u1v1u1u�11 = u1v1 = (u2u�11 )(u1v2);words u1v2 and u2u�11 ommute; therefore, they have the same primitive root. �Lemma 6. Let w be a word suh that w = s1p1 = s2p2 = s3p3 fors3 <s s2 <s s1p1 <p p2 <p p3:



A length bound for binary equality words 9Then w has a period p = gd(js2j � js3j ; js1j � js2j)and jwj � 2p.Proof: Obviously, the word w has periods both js2j � js3j and js1j � js2j. Sinejwj = js3j � js3j+ js2j � js2j+ js1j+ jp1j � js2j � js3j+ js1j � js2j ;we dedue from the Periodiity Lemma that w has a period gd(js2j � js3j ; js1j �js2j), whih onludes the proof. �Lemma 7. Let w be a word suh thatw = vt1 = r2vjt2 = r3v;j � 1, and r2 <s r3, t2 <p t1. Then w has a periodgd(jt1j � jt2j ; jr3j � jr2j):Proof: It is easy to see that w has a periods both jt1j�jt2j and jr3j�jr2j. Notiethat jt1j � jt2j+ jr3j � jr2j = 2 jwj � 2 jvj � jt2j � jr2j = jwj+ (j � 2) jvj :Therefore by the Periodiity Lemma, in the ase j � 2, a period of w is gd(jt1j�jt2j ; jr3j � jr2j). It is easy to see that lemma is satis�ed if jr2j = jt2j. Indeed, ifjr2j = jt2j, then jt1j� jt2j = jr3j� jr2j and the laim holds trivially. Let us disussthe remaining ases. The laim obviously holds for all w suh that jwj � 2 jvjsine in this ase j � 2. Now, we proeed by indution on the length of the wordw. By symmetry, we an suppose that jr2j > jt2j. Let t01 be a pre�x of t1 suhthat vt01 = r2v. We �rst show that t2 is both a pre�x and a suÆx of t01. Sinejt01j = jr2j > jt2j and t2 <p t1, we an see easily that t2 is a pre�x of t01. On theother hand, sine r2v <s r3v both t01 and t2 are suÆxes of w, and therefore suÆxomparable.We will split the proof into the following two ases.Case jvt01j � ��vjt2��. We will show that w 2 p+ andgd(jt1j � jt2j ; jr3j � jr2j) = k jpj ;k � 1, where p is the primitive root of v. Sine t2 is a suÆx t01 and vt01 �s vjt2,we obtain vt01t�12 �s vj . Let p be the primitive root of v. Then pt01t�12 is a suÆxof pk for some suÆiently large k 2 N+. By the primitivity of p, we obtain thatt01t�12 2 p�. Moreover, sine t2 is a proper suÆx of t01, we get t01t�12 2 p+. Sinet01 is bordered by t2, we obtain that vt01 is a pre�x of p! longer than p. Reallingthat p is the primitive root of v and v is a suÆx of vt01, we get that t01 2 p+ and



10 J. Hadravov�at2 2 p+. Sine r2v = vt01 and r3 = r2vjt2v�1, we have also r3 2 p+ and r2 2 p+.Finally, w = r2vjt2 leads to w 2 p+ andgd(jt1j � jt2j ; jr3j � jr2j) = k jpj ;k � 1, whih ompletes the proof of this ase.Case jvt01j > ��vjt2��. Let w0 = vt01. Thenw0 = vt01 = r02vjt2 = r03v;where r02 = vt01(vjt2)�1 and r03 = vt01v�1. Sine r02 �s r2, r03 �s r3 and jr02j � jr03j,we obtain r02 �s r03. By assumption, w0 has a period� = gd(jt01j � jt2j ; jr03j � jr02j):We will prove that � divides both jt1j � jt2j and jr3j � jr2j and � is a period of w.We havejr03j � jr02j = jr2j � jvt01j+ ��vjt2�� = jr3vj � jvt01j = jr3j � jr2j :Then � divides jr3j� jr2j and sine jr3j� jr2j is a period of w, � is also a period ofw. The last step is to prove that � divides jt1j�jt2j, whih is true due to equationjt1j � jt2j = (jt1j � jt01j) + (jt01j � jt2j) = jr3j � jr2j+ jt01j � jt2j :The proof is now omplete. �Lemma 8. Let w be a word suh thatw = r1vt1 = r2vjt2 = r3vt3;j � 1, and r2 <s r3, t2 <p t1. Then w has a periodgd(jt1j � jt2j ; jr3j � jr2j)and t3 �p vj�1t2.Proof: From Lemma 7 it follows that the word w[jr1j ; jr3vj℄ has a periodq = gd(jt1j � jt2j ; jr3j � jr2j):The word w[0; jr3vj℄ has a period jr3j � jr2j; therefore, has a period q. Similarly,the word w[jr1j ; jwj℄ has periods both jt1j � jt2j and q. Sine ommon fator ofwords w[0; jr3vj℄ and w[jr1j ; jwj℄ is the word w[jr1j ; jr3vj℄, whih is longer thanq, w has a period q. Word t3 is a pre�x of vj�1t2 beause jr3j � jr2j is a periodof w. �We will �nish this setion by lemmas whih are not stritly ombinatorial butwill be needed in the proof.



A length bound for binary equality words 11Lemma 9. Let g be a marked morphism and u, v, w be words satisfyingg(u) ^ w <p g(v) ^ w:Then g(u) ^ w = g(u ^ v).Proof: It is easy to hek that if u^w <p v ^w for arbitrary three words, thenu ^ v = u ^ w. This and the fat that marked morphisms satisfyg(u) ^ g(v) = g(u ^ v)ompletes the proof. �Lemma 10. Let (e; f; ; G;H) be a yli blok for marked morphisms g; h :fa; bg� ! �� and let (k1; l1); (k2; l2) be two p-synhronized overows where p isthe primitive root of g(a). Then either e 2 a+ or there exists a pair of indies(r1; q1) suh that G(r1) = H(q1) and e[r1 � 1; r1℄ = a.Proof: Suppose that e =2 a+. Theng(e[k1;1℄) ^ p! = [G(k1);1℄ ^ p! <p g(a)! ^ p!g(e[k2;1℄) ^ p! = [G(k2);1℄ ^ p! <p g(a)! ^ p!:By Lemma 9 we obtain the existene of r1; r2 suh that e[k1; r1℄ 2 a+ ande[k2; r2℄ 2 a+. Notie that from the de�nition of p-synhronized overows weknow that [G(ki); H(li)℄ is a pre�x of p! for both i 2 f1; 2g. Moreover, by thesame de�nition [G(k1); H(l1)℄ = pl[G(k2); H(l2)℄:Therefore, [G(k2); H(l2)℄�1p! = [G(k1); H(l1)℄�1p!:Now, we know that:[H(l1); G(r1)℄ = [H(l1);1℄ ^ [G(k1); H(l1)℄�1p!;[H(l2); G(r2)℄ = [H(l2);1℄ ^ [G(k2); H(l2)℄�1p!:Sine every yli blok is simple, we have up to the order of indies:[H(l1);1℄ ^ [G(k1); H(l1)℄�1p! <p [H(l2);1℄ ^ [G(k2); H(l2)℄�1p!:Sine [H(l1);1℄ = h(f [l1;1℄) and [H(l2);1℄ = h(f [l2;1℄);we �nally obtain an inequalityh(f [l1;1℄) ^ [G(k1); H(l1)℄�1p! <p h(f [l2;1℄) ^ [G(k1); H(l1)℄�1p!:(*)



12 J. Hadravov�aNow, we an again apply Lemma 9 on (*) and obtain an index q1 suh that[H(l1); H(q1)℄ = h(f [l1; q1℄)= h(f [l1;1℄) ^ [G(k1); H(l1)℄�1p! = [H(l1); G(r1)℄:Then H(q1) = G(r1), whih is what we wanted to prove. From e[k1; r1℄ 2 a+follows the rest. �4. Proof of Main LemmaWe shall assume that h(b) is the longest of all four image words, that is,jg(a)j � jh(b)j; jg(b)j � jh(b)j and jh(a)j � jh(b)j:The aim of this setion is to show that �ve p-synhronized overows are reatedby umulating bs in f . We will provide an upper bound b for number of bs in fsuh that unless jf jb < b, a yli blok (e; f; ; G;H) neessarily has to have �vep-synhronized overows. This part will show that this bound an be lowered to9 ourrenes of b.We will have a look at possible forms of g-overs of true h-ourrenes of b in f .It has been shown in [5℄ that possible forms of g-overs of true h-ourrenes of binside a solution are quite restrited:Lemma 11. Let (w; ; G;H) be a yli solution for morphisms g, h suh thatmorphism g is marked. Let (k; `) be a true h-ourrene of b and let (m;u) be itsg-over. Then u belongs to the one of the following sets:a+ b+ a+b+ b+a+ a+b+a+ b+a+b+:Sine e and f are fators of some yli solution (w; 0; G0; H 0), we an use thisfat and restrit ourselves only to these six types of g-overs.We now proeed to prove that either a yli blok (e; f; ; G;H) has �ve p-synhronized overows for some primitive word p or jf jb < 9.Before the proof is given we will �x the notation and prove few auxiliary laims.First, notie that sine h(b) is of the maximal length, every g-over (m;u) ofa true h-ourrene of b an be rewritten as u = u1u2, for some nonempty wordsu1, u2. Beause of this property we an apply ombinatorial lemmas mentionedin the previous setion.As we have already seen in Lemma 11, every true h-ourrene of b has topossess exatly one of the six variants of over. Thus, we will divide true h-ourrenes of b into six lasses depending on the variant of their over. Tosimplify things slightly, we shall use the notation aording to the following table,whih features variables representing the number of true h-ourrenes of b withthe spei� over variant:



A length bound for binary equality words 13# of true h-ourrenes of b over variantx1 a+x2 a+b+a+x3 b+a+y1 b+y2 b+a+b+y3 a+b+The following lemma presents the way how the g-over of a true h-ourrenean be ombined with n p-synhronized overows in order to reate n + 1 p-synhronized overows. In this way we an inrease the number of p-synhronizedoverows.Lemma 12. Let (e; f; ; G;H) be a yli blok and let (m;uv) be the g-over of(k; l), where (k; l) is a true h-ourrene of b. Suppose that u, v are nonemptywords and there is a primitive word p suh that(1) h(b) is a fator of p!,(2) there are p-synhronized overows (r1; t1); : : : ; (rn; tn), n � 2, suh thatri 6= m+ juj and ti 6= H�1(l) for all i 2 f1; : : : ; ng,(3) p �s [k;G(m+ juj)℄ or p �p [G(m+ juj); l℄.Then (r1; t1); : : : ; (rn; tn); (m + juj ; H�1(l)) are up to the order p-synhronizedoverows.Proof: First reall that aording to the de�nition of true h-ourrene of b wehave that [k; l℄ = h(b) and moreover, k = H�1(l)�1. Sine (m;uv) is the g-overof (k; l), we obtain from its de�nition thatG(m+ juj) = k + j;where 0 < j < jh(b)j. Therefore, [G(m + juj ; l℄ is a suÆx of h(b) and the thirdondition in the de�nition of p-synhronized overows is satis�ed.Notie also that by the seond assumption of this lemma, starting and end-ing positions of overows (r1; t1); : : : ; (rn; tn) are di�erent than those of (m +juj ; H�1(l)).It remains to show that the overows (r1; t1); : : : ; (rn; tn); (m + juj ; H�1(l))are indeed p-synhronized and satisfy (up to their order) the �rst ondition of thede�nition of p-synhronized overows. But, sine h(b) is a fator of p!, this fateasily follows from the third assumption of this lemma together with Lemma 4. �Notie that the third ondition of the previous lemma has a partiular impor-tane, sine it \�xes" the overow [G(m+ juj); l℄ in aordane with distributionof ps over h(b).



14 J. Hadravov�aThe next laim presents key ideas involved in ombining g-overs of the samekind into p-synhronized overows.Claim 1. Let (e; f; ; G;H) be a yli blok of morphisms g, h. Then thefollowing ombinatorial properties hold.(I.) If x1 � 2, then (e; f; ; G;H) has x1 p-synhronized overows, g(a) = pi,i � 2 and h(b) is a fator of p! longer than 2 jpj.(II.) If x2 � 3, then (e; f; ; G;H) has x2 p-synhronized overows, p �p g(a)and h(b) is a fator of p! longer than 2 jpj.(III.) If x3 � 3, then (e; f; ; G;H) has x3 p-synhronized overows, p �p g(a),p �s g(b) and h(b) is a fator of p! longer than 2 jpj.Proof: (I.) We will use Lemma 5. Let (k1; l1), (k2; l2) be true h-ourrenes ofb and let (m1; aaj1), (m2; aaj2) be their respetive g-overs. Letu1 = [G(m1); k1℄ v1 = [k1; G(m1 + 1)℄u2 = [G(m2); k2℄ v2 = [k2; G(m2 + 1)℄:Sine we are in a yli blok, whih is simple, we an suppose that u2 <p u1.Notie that from the de�nition of g-over we haveu1v1 = u2v2 = g(a);v1u1 = v2u2 �p h(b):It follows from Lemma 5 that the words u1u�12 and u2v1 have the same primitiveroot p. Then g(a) = u1v1 = u1u�12 u2v1 = pi;for some i � 2. Sine h(b) is a fator of g(a)!, it is obviously fator of p! as well.We shall prove that (m1 + 1; H�1(l1)) and (m2 + 1; H�1(l2)) are p-synhronizedoverows. Obviously, m1 6= m2 and l1 6= l2. Sine[m1 + 1; H�1(l1)℄ = v�11 h(b);[m2 + 1; H�1(l2)℄ = v�12 h(b);we obtain that[m1 + 1; H�1(l1)℄[m2 + 1; H�1(l2)℄�1 = v�11 v2 = u1u�12 2 p+;and (m1 + 1; H�1(l1)) and (m2 + 1; H�1(l2)) are p-synhronized overows. It iseasy to see that eah g-over of the type a+ of another true h-ourrene of bsatis�es ondition of Lemma 12 and therefore we an add these g-overs one byone to the already found p-synhronized overows.(II.) and (III.) Remaining two laims an be proved in a similar way usingLemma 8 and Lemma 6 respetively. �



A length bound for binary equality words 15Notie that beause of symmetry of xs and ys (the overs are the same up tothe exhange of letters a and b) the foregoing lemma an be reformulated with ysinstead of xs. In what follows we will all this \reformulated" version of Claim 1its dual form.In partiular, Claim 1 means that if xi � 5 or yi � 5 for any i 2 f1; 2; 3g,then the onlusion of the Main Lemma holds. Notie that under the previousobservation if now jf jb � 25, then the onlusion of the Main Lemma holds simplyby the pigeonhole priniple. The rest of the setion is dediated to lowering thisbound.Claim 2. Let (e; f; ; G;H) be a yli blok of marked morphisms g; h. Thefollowing properties hold.(I.) If x1 6= 0, then y2 = 0.(II.) If x1 � 2, then y3 � 1.(III.) If x1 � 2, then y1 � 1.Proof: (I.) Suppose that y2 � 1. Thenh(b) = s2g(a)ip2;where i � 1 and p2 �p g(b)!. Sine x1 6= 0, the word h(b) is a fator of p!, wherep is the primitive root of g(a). By Lemma 4, we obtain that p2 �p p!. We havea ontradition with g being marked.(II.) Sine x1 � 2, by Claim 1(I.) there is a primitive word p suh that g(a) = pi,i � 2 and h(b) is longer than 2jpj with a period jpj. If y3 � 2, thenh(b) = s1p1 = s2p2;where s1 <s s2 2 Suf(g(a)+) = Suf(p+) and p2 <p p1 2 Pref(g(b)+). First notiethat js2j� js1j is a period of h(b). Sine p is a primitive word and jh(b)j > 2jpj, bythe Periodiity Lemma this period has to be longer or equal to jpj. Then p �s s2and h(b) = upp2, where up = s2. By Lemma 4 we have that p2 �p p!, whih is aontradition with g being marked.(III.) Suppose that x1 � 2 and y1 � 2. Then by Claim 1(I.) (and its dualform for ys) there are two p-synhronized overows (k1; l1); (k2; l2) and two s-synhronized overows (m1; n1); (m2; n2), where p is the primitive root of g(a)and s is the primitive root of g(b). From Lemma 10 it follows that there arer1; r2; q1; q2 2 Zjwj suh that G(r1) = H(q1), G(r2) = H(q2) and b = e[r1 � 1; r1℄,a = e[r2 � 1; r2℄. Sine (e; f; ; G;H) is a yli blok, whih is simple, we haver1 = r2 and a = e[r2 � 1; r2℄ = e[r1 � 1; r1℄ = b is a ontradition. �In a view of previous laim we an now without diÆulty see that if jf jb � 17,then we get the desired onlusion of the Main Lemma.Last part of this setion investigates possible ombination of g-overs of di�er-ent kind. Again, as the previous laim, this laim has its dual version obtainedby exhanging xs by ys (and vie versa).



16 J. Hadravov�aClaim 3. Let (e; f; ; G;H) be a yli blok of marked morphisms g; h. If oneof the following properties is satis�ed, then the onlusion of the Main Lemmaholds.(I.) x1 + x3 � 6.(II.) x1 � 2 and (x2 � 3 or x3 � 3).(III.) x2 + x3 � 5.(IV.) x3 � 3 and y3 � 3 and x1 + x3 � 5.(V.) x3 � 3 and x3 + y2 + x2 � 5.Proof: (I.) Suppose that x1 + x3 � 6. If x3 � 5 or x1 � 5, then we shall useClaim 1(III.) or Claim 1(I.). Therefore, 4 � x1 � 2 and 4 � x3 � 2. It followsfrom Claim 1(I.) that there are x1 p-synhronized overows suh that p is theprimitive root of g(a), both g(a) and h(b) are longer than 2 jpj and h(b) is fatorp!. Let (m1; bi1aj1); : : : ; (mx3 ; bix3ajx3 ) be the g-overs of (r1; t1); : : : ; (rx3 ; tx3),pairwise di�erent true h-ourrenes of b in (e; f; ; G;H). We will show that theinequality j[G(mn + in); tn℄j � jpjholds for at least x3 � 1 di�erent g-overs of true h-ourrenes of b. Then fromthe primitivity of p we obtain p �p [G(mn + in); tn℄ for x3 � 1 g-overs and wean gradually apply Lemma 12 and inrease the number p-synhronized overowsup to the number x1 + x3 � 1 � 5, whih ompletes the proof.For ontradition, suppose that for two di�erent indies n1; n2, it holds:j[G(mn1 + in1); tn1 ℄j < jpjj[G(mn2 + in2); tn2 ℄j < jpj :Then h(b) has a period q suh that q < jpj. Sine jh(b)j > jpj+ q we obtain fromthe Periodiity Lemma a ontradition with the primitivity of p.(II.) Suppose that x1 � 2 and x2 � 3. Then by Claim 1(I.) and Claim 1(II.),there are x1 p-synhronized overows and x2 s-synhronized overows suh thatg(a) = pi, i � 2, and s is a pre�x of g(a). Moreover, h(b) is a fator of both p!and s! whih is longer than max(2 jpj ; 2jsj). From the Periodiity Lemma and theprimitivity of both words p and s follows that p and s are onjugates. Therefore,p = s. Sine p is primitive and h(b) is a fator of p!, we get from Lemma 12 that(e; f; ; G;H) posses x1 + x2 p-synhronized overows and the onlusion of theMain Lemma holds. Case x1 � 2 and x3 � 3 is similar.(III.) Obviously, either x2 � 3 or x3 � 3. Suppose that both x2 6= 0 and x3 6= 0otherwise onlusion holds aording to Claim 1. Let x2 � 3. From Claim 1(II.)we obtain the existene of x2 p-synhronized overows suh that p is a pre�x ofg(a) and h(b) is a fator of p! longer than 2 jpj. Let (n; aibjak) be the g-over of(r1; t1), a true h-ourrene of b in (e; f; ; G;H), suh that j[G(n+i+j); t1℄j > jpj.Let (m; bsal) be the g-over of (r2; t2), a true h-ourrene of b in (e; f; ; G;H).Notie, that suh g-overs indeed exist sine x2 � 3 and x3 6= 0.



A length bound for binary equality words 17If j[G(m + s); t℄j < jpj, then by looking at a pre�x of h(b), we obtain anequality: [r2; G(m+ s)℄ = [r1; G(n+ i+ j)℄ufor some nonempty word u �p g(a)! . Sine g(b) �s [r1; G(n + i + j)℄ and[r2; G(m + s)℄ �s g(b)s, we an apply Lemma 4 and obtain that u is pre�xomparable with the primitive root of g(b). This gives us a ontradition with gbeing marked. Therefore, p �p [G(m + s); t℄, and we an again gradually applyLemma 12 ending with x2 + x3 � 5 p-synhronized overows.Now, let x3 � 3. Using again Claim 1(III.) leads to the existene of x3 p-synhronized overows suh that p �p g(a), p �s g(b) and h(b) is a fator ofp! longer than 2 jpj. Let (m; aibjak) be the g-over of (r; t), a true h-ourreneof b in (e; f; ; G;H). Sine p �s g(b) we obtain from the primitivity of p thatp �s [r;G(m + i + j)℄. Proeeding by the appliation of Lemma 12 eventuallyleads to x2 + x3 � 5 p-synhronized overows.(IV.) Suppose that x3 � 3, y3 � 3 and x1 + x3 � 5. Applying Claim 1(III.)on both x3 � 3 and y3 � 3 leads to x3 p-synhronized overows and y3 s-synhronized overows where p and s are primitive words given by Claim 1(III.);that is, p �p g(a), p �s g(b) and s �p g(b), s �s g(a) with h(b) being a fator ofboth p! and s! longer than max (2jpj; 2jsj). Notie that we have used the dualityof xs and ys and have applied dual form of Claim 1 as well.From the Periodiity Lemma it follows that p and s are onjugates; thereforeof the same length. Let (m; aiaj) be the g-over of (r; t), a true h-ourrene of bin (e; f; ; G;H). Sine jh(b)j > 2 jpj we an see that either j[r;G(m+ i)℄j � jpjor j[G(m + i); t℄j � jpj. If j[r;G(m+ i)℄j � jpj, then from s �s g(a) we have aswell s �s [r;G(m + i)℄. From Lemma 4 it follows that [G(m + i); t℄ is pre�xomparable with s; therefore, g(a) is pre�x omparable with s. Sine also s �pg(b), we have obtained a ontradition with g being marked. Therefore, neessarilyp �p [G(m + i); t℄ and we an apply Lemma 12 and �nally get x3 + x1 � 5 p-synhronized overows inside (e; f; ; G;H).(V.) Suppose that x3 � 3. Then from Claim 1(III.) we get the existene ofx3 p-synhronized overows suh that p is a suÆx of g(b), a pre�x of g(a) andh(b) is a fator of p! longer than 2 jpj. We have already seen in the third partof this proof that in this ase we an gradually add x2 p-synhronized overowsresulting from g-overs of the type a+b+a+. Suppose now that y2 � 1 and let(m; biajbk) be the g-over of (r; t), a true h-ourrene of b in (e; f; ; G;H). Fromthe primitivity of p it follows that p �p [G(m+i); t℄ and we an apply Lemma 12.We have proved that (e; f; ; G;H) has x3 + y2+x2 � 5 p-synhronized overowsand the proof is omplete. �Now, we have everything prepared to �nally present the proof of the MainLemma.



18 J. Hadravov�aProof of Main Lemma: From the assumption jf jb � 9 we obtain3Xi=1 xi + 3Xi=1 yi � 9:We will proeed by ase analysis based on Claim 1, Claim 2 and Claim 3.Case x1 � 2 or y1 � 2. Suppose that x1 � 2, the other ase an be dealt within a similar way. From Claim 2 we neessarily have y2 = 0, y3 � 1 and y1 � 1. Ifx1 + x3 � 6, then the Main Lemma holds aording to Claim 3(I.). On the otherhand if x1 + x3 � 5 we obtain an inequalityx1 + x3| {z }�5 +x2 + y1|{z}�1 + y2 + y3| {z }�1 � 9:Then x2 � 2 and it follows from dual form of Claim 2(I.) that y1 = 0. Therefore,x2 � 3. Sine x1 � 2, the Main Lemma holds aording to Claim 3(II.).Case x1 � 1 and y1 � 1. If x1 = y1 = 1, then by Claim 2(I.) we have x2 = y2 = 0.Notie that for y1 we have used dual form of Claim 2. Thenx1 + y1| {z }=2 +x2 + y2| {z }=0 +x3 + y3 � 9and x3 + y3 � 7. Therefore, x3 � 4 or y3 � 4. Suppose that x3 � 4. In ase thatx3 � 5, we an apply Claim 1(III.) and obtain desired onlusion. If x3 = 4, theny3 � 3 and the Main Lemma holds by Claim 3(IV.). Similarly, we an deal withthe possibility y3 � 4; notie that in this ase we would use dual forms of Claim 1and Claim 3.Suppose now that x1 � 1 and y1 = 0. If x2 + x3 � 5 or y2 + y3 � 5, then theproof is omplete due to Claim 3(III.) (and its dual form). In ase that x2+x3 � 4and y2 + y3 � 4, we havex1|{z}�1 + y1|{z}=0 +x2 + x3| {z }�4 + y2 + y3| {z }�4 � 9:Therefore, x1 = 1, x2 + x3 = 4 and y2 + y3 = 4. From x1 = 1 it follows byClaim 2(I.) that y2 = 0; therefore y3 = 4. Now, if x2 � 1, then the Main Lemmaholds due to dual form of Claim 3(V.). On the other hand, if x2 = 0, then we anapply the fourth part of the same laim, whih ompletes the proof. �5. Towards the lassi�ation of non-simple solutionsWe have seen that many ourrenes of b inside a yli blok lead to theexistene of �ve p-synhronized overows for some primitive word p and moreover,partially reveal the struture of image words h(b) and g(b) or g(a).



A length bound for binary equality words 19We know that when dealing with a simple yli solution instead of a yliblok, these assumptions give us already very strong knowledge about the solutionitself; it is either (ab)ia or ajbi, with gd(i; j) = 1.However, sine the Main Lemma is formulated more generally, we have thepossibility to go even a little bit further and look at the struture of non-simplesolutions as well. Taking an advantage of the fat that non-simple solutions ofmarked morphisms are omposed from bloks, we an also apply the Main Lemmato a suÆiently \long" blok inside a solution, and get the existene of �ve p-synhronized overows for some primitive word p inside the blok. An impatof the existene of �ve p-synhronized overows inside one of the bloks on thestruture of the whole solution is the question for further researh.Referenes[1℄ Culik K. II, A purely homomorphi haraterization of reursively enumerable sets, J.Asso. Comput. Mah. 26 (1979), no. 2, 345{350.[2℄ Culik K. II, Karhum�aki J., On the equality sets for homomorphisms on free monoids withtwo generators, RAIRO Inform. Th�eor. 14 (1980), no. 4, 349{369.[3℄ Ehrenfeuht A., Karhum�aki J., Rozenberg G., The (generalized) post orrespondene prob-lem with lists onsisting of two words is deidable, Theor. Comput. Si. 21 (1982), 119{144.[4℄ Ehrenfeuht A., Karhum�aki J., Rozenberg G., On binary equality sets and a solution tothe test set onjeture in the binary ase, J. Algebra 85 (1983), 76{85.[5℄ Hadravov�a J., Holub �S., Large simple binary equality words, Developments in LanguageTheory, Leture Notes in Comput. Si, 5257, Springer, Berlin, 2008, pp. 396{407.[6℄ Halava V., Harju T., Hirvensalo M., Binary (generalized) post orrespondene problem,Theor. Comput. Si. 276 (2002), no. 1{2, 183{204.[7℄ Halava V., Holub �S., Redution tree of the binary generalized post orrespondene problem,Internat. J. Found. Comput. Si., to appear.[8℄ Halava V., Holub �S., Binary (generalized) post orrespondene problem is in P , TurkuCentre for Computer Siene, 785, 2006.[9℄ Holub �S., Binary morphisms with stable suÆx omplexity, Internat. J. Found. Comput.Si., to appear.[10℄ Holub �S., Binary equality sets are generated by two words, J. Algebra 259 (2003), no. 1,1{42.[11℄ Holub �S., A unique struture of two-generated binary equality sets, Developments in Lan-guage Theory, Leture Notes in Comput. Si., 2450, Springer, Berlin, 2003, pp. 245{257.[12℄ Holub �S., Binary equality languages for periodi morphisms, Algebrai Systems, FormalLanguages and Conventional and Unonventional Computation Theory, RIMS Kokyuroku,vol. 1366, Kyoto University, Kyoto, 2004.[13℄ Karhum�aki J., On reent trends in formal language theory, 14th International Collo-quium on Automata, languages and programming (Karlsruhe, 1987), Springer, Berlin, 1987,pp. 136{162.[14℄ Karhum�aki J., Open problems and exerises on words and languages (invited talk), inProeedings of Conferene on Algebrai Information, Aristotle University of Thessaloniki,2005, pp. 295{305.[15℄ Lothaire M., Combinatoris on Words, Addison-Wesley, Reading, Mass., 1983.[16℄ Post E.L., A variant of a reursively unsolvable problem, Bull. Amer. Math. So. 52 (1946)264{268.
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