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Isolated points and redundanyAlirio J. Pe~na P., Jorge VielmaAbstrat. We desribe the isolated points of an arbitrary topologial spae (X; �).If the � -speialization pre-order on X has enough maximal elements, then a pointx 2 X is an isolated point in (X; �) if and only if x is both an isolated point in thesubspaes of � -kerneled points of X and in the � -losure of fxg (a speial ase ofthis result is proved in Mehrvarz A.A., Samei K., On ommutative Gelfand rings,J. Si. Islam. Repub. Iran 10 (1999), no. 3, 193{196). This result is applied toan arbitrary subspae of the prime spetrum Spe(R) of a (ommutative withnonzero identity) ring R, and in partiular, to the spae Spe(R) and the maximaland minimal spetrum of R. Dually, a prime ideal P of R is an isolated point inits Zariski-kernel if and only if P is a minimal prime ideal. Finally, some aspetsabout the redundany of (maximal) prime ideals in the (Jaobson) prime radialof a ring are onsidered, and we haraterize when Spe(R) is a sattered spae.Keywords: maximal (minimal) spetrum of a ring, sattered spae, isolated point,prime radial, Jaobson radialClassi�ation: 54F65, 13C05IntrodutionIn Setion 1 we inlude some preliminaries. In Setion 2 we desribe the iso-lated points of an arbitrary topologial spae (Theorem 2.1). In partiular, wedesribe the isolated points in a topologial spae (X; �) suh that the pre-orderedset (X;�� ) has enough maximal elements, where �� is the � -speialization pre-order on X (Theorem 2.2), and we apply this result to the prime spetrum of aring (Corollary 2.1). In Setion 3 we haraterize the isolated points in an arbi-trary subspae of the prime spetrum Spe(R) of a ring R (Theorem 3.1) and weapply this to the maximal and minimal spetrum of R (Theorems 3.4{3.5). Also,using these results, we haraterize when eah of these subspaes is a disretespae (Corollaries 3.2{3.3). Further, we haraterize the points whih are isolatedpoints in its kernel (Theorem 3.6), as well as when Spe(R) is a sattered spae(Corollary 3.5).1. PreliminariesWe denote by N := f0; 1; 2; : : :g the set of natural numbers, a set X with atopology � will be denoted by (X; �) and we assume no separation axioms, thusa point p is isolated if it is simply an open point. For every subset Y of X , wedenote by � jY the subspae topology on Y , by Y � the � -losure of Y , by bY � the



146 A.J. Pe~na P., J. Vielma�-kernel of Y (the intersetion of the � -open subsets of X ontaining Y ), and Y issaid to be �-kerneled if Y = bY � . Also, the �-saturation of Y is the set S y2Y y � ,and we say Y is �-saturated if it oinides with its � -saturation. In partiular,x � := fxg � and bx � :=dfxg � for every x 2 X .Let R be a ring. We set I � R to indiate that I is an ideal of R and wedenote by Spe(R) (resp. Max(R), Min(R)) the family of prime (resp. maximal,minimal prime) ideals of R. Reall that every proper ideal is ontained in amaximal ideal and every prime ideal ontains a minimal prime ideal ([2℄). Weset J(R) := TMax(R) the Jaobson radial of R, for every I � R, we denote by�(I) the prime radial of I (the intersetion of the prime ideals of R ontainingI) and we say I is a radial ideal if I = �(I). In partiular, �(R) := �(0) isthe prime radial of R, and R is alled a redued ring if �(R) = f0g. Note that�(R) = TMin(R) and we set Ra := fra : r 2 Rg and (I : a) := fr 2 R : ra 2 Igfor every a 2 R.Let I be an ideal of a ring R. We denote by (I)0 the family of prime ideals ofR ontaining I and by D0(I) := Spe(R)n(I)0. Also, (a)0 := (Ra)0 and D0(a) :=D0(Ra) for every a 2 R. It is easy to see that the family f(I)0 : I � Rg satis�esthe axioms of losed sets for a topology tZ on Spe(R), the Zariski topology , andthe spae (Spe(R); tZ) is the prime spetrum of R. Note that fPg tZ = (P )0and bP � = fQ 2 Spe(R) : Q � Pg for every P 2 Spe(R), and in this work weonsider the family Spe(R) as a spae with the Zariski topology.2. Isolated pointsLet (X; �) be a spae. A point x 2 X is alled a kerneled (resp. isolated ,Alexandro� ) point of (X; �) if fxg = bx � (resp. fxg 2 � , bx � 2 �). The kerneledpoints of (X; �) are the maximal elements in the pre-ordered set (X;�� ), where�� is the �-speialization pre-order on X , this is, x �� y in X if x 2 y � , orequivalently, y 2 bx � . Note that (X; �) is a T0-spae if and only if �� is a partialorder on X .Let (X;�) be a pre-ordered set. We denote by Max(X;�) the set of maximalelements in (X;�), and we say (X;�) has enough maximal elements if for everyx 2 X , there exists y 2 Max(X;�) suh that x � y. Dually, we de�ne the setMin(X;�).The following result is well known, but we present it here for further referenein this paper.Theorem 2.1. Let (X; �) be a spae and x 2 X . Then, the following onditionsare equivalent.(a) x is an isolated point of (X; �).(b) Whenever A � X with x 2 A � , we have x 2 A.() x is both an Alexandro� point of (X; �) and a maximal element in (X;�� ).Proof: It is lear that (a))(b) and sine Max(X;�� ) is the set of kerneled pointsof (X; �), we have ())(a). To prove that (b))(), let y 2 bx � . Then, x 2 y � and



Isolated points and redundany 147thus, x = y. Hene, bx � = fxg and by hypothesis, the set A = Xnfxg is � -losed(otherwise, A is � -dense and x 2 A whih is a ontradition). Therefore, fxg 2 �and () holds. �Theorem 2.2. Let (X; �) be a spae suh that (X;�� ) has enough maximalelements and x 2 X . Then, x is an isolated point of (X; �) if and only if x isboth an isolated point in Max(X;�� ) and in x � .Proof: The neessary ondition is lear. Suppose the suÆieny ondition andlet Y = Max(X;�� ) and Z = x � . Then, fxg = Y \ U = Z \ V for some pairU; V 2 � . Note that Y \ Z = fxg, sine if y 2 Y \ Z then y �� x and bymaximality, we have y = x. Hene, fxg = W \ fxg where W = U \ V 2 � . Wewill show that fxg = W , for if y 2 W then, by hypothesis, there exists z 2 Ysuh that y �� z and thus, y 2 z � and sine y 2 U , we have z 2 U \ Y = fxgand thus, z = x and y �� x. Hene, y 2 Z \ V = fxg and y = x. �Corollary 2.1. A prime ideal P of a ring R is an isolated point of the primespetrum of R if and only if P is an isolated point in Min(R) and in the Zariski-losure of fPg.Proof: Use Theorem 2.2, sine Min(R) = Max(Spe(R);�tZ ) and �tZ= �. �Note that Corollary 2.1 is part (2) of Proposition 3 in [4℄, and in the nextsetion we study eah of the two suÆient onditions in Corollary 2.1.3. Redundany and sattered spetral spaesLet Y be a nonempty family of prime ideals of a ring R and P 2 Y . An idealI of R is absolutely Y -irreduible if whenever F � Y with TF � I , there existsQ 2 F suh that Q � I . If Y = Min(R) then I is said to be absolutely minimal-irreduible, and if Y = Max(R) then I is said to be absolutely maximal-irreduible([5℄). Let I(Y ) := TY be the radial ideal of Y and IP (Y ) := T fQ 2 Y : Q 6=Pg. Then, Y tZ = (I(Y ))0 and we say P is Y -redundant if I(Y ) = IP (Y ). Inpartiular, if Y = Spe(R) we have the weak �-redundany studied in [5℄. Also,if Y = Min(R) we speak of �-redundany and if Y = Max(R) we speak of J-redundany . We now give a desription of the isolated points in an arbitrarysubspae of Spe(R) with at least two points. We denote by Min(Y;�) the set ofminimal elements in the poset (Y;�).Theorem 3.1. Let R be a ring, Y a non-empty subset of Spe(R), I = TY theradial ideal of Y and P 2 Y . Then, the following onditions are equivalent.(a) P is an isolated point of Y (as subspae of Spe(R)).(b) P is an absolutely Y -irreduible ideal of R and P 2 Min(Y;�).() Whenever F � Y with TF � P , we have P 2 F .(d) There exists a 2 IP (Y )nP suh that P = (I : a).(e) P is not Y -redundant.Further, in suh a ase, P = (I : a) for every a 2 IP (Y )nP .



148 A.J. Pe~na P., J. VielmaProof: Let t = tZ jY . To show that (a))(b), let Q 2 Y with Q � P . Then,Q 2 bP tZ \ Y = bP t = fPg and thus, Q = P and P 2 Min(Y;�). Now, let F � Ywith TF � P . Then, P 2 F tZ TY = F t and by hypothesis, fPgTF 6= ;.Hene, P 2 F . The impliation (b))() is lear. Let us show that ())(e), andlet F = Y nfPg. Then I(Y ) 6= IP (Y ) (otherwise, we will have P 2 F whih is aontradition). Hene, P is not Y -redundant. Let us show that (e))(a), and letH = IP (Y ). Then fPg = D0(H)TY 2 t. In fat, by hypothesis, P 2 D0(H)TYand if Q 2 D0(H)TY then Q = P (otherwise, H � Q whih is a ontradition).Let us see (e))(d), and let a 2 IP (Y )nP . Let us show that P = (I : a). Infat it is lear that (I : a) � P and if x 2 P suh that ax =2 I then there existsQ 2 Y with ax =2 Q. But then, Q 6= P (sine x 2 P ) and thus, a 2 Q whihis a ontradition. Finally, (d))(a) sine if a 2 IP (Y )nP with P = (I : a) thenfPg = Y TD0(a) 2 t. �Corollary 3.1. A prime ideal P of a ring R is an isolated point of the Zariski-losure of fPg if and only if P is not the intersetion of the prime ideals whihstritly ontain it.Corollary 3.1 is part (2) of Proposition 3 in [4℄ under the assumption that R isa redued ring. Reall that a prime ideal P of a ring R is a minimal prime idealif and only if P = S a2RnP (�(R) : a) ([2, Lemma 1.1℄). Thus it is natural to askwhen this last property holds for a non-empty family of prime ideals of R.Theorem 3.2. Let Y be a nonempty family of prime ideals of a ring R, I = TYand P 2 Y . If P = S a2RnP (I : a) then P 2 Min(Y;�). Further, the onverseholds in any one of the following ases: (a) if Y is a Zariski-kerneled set; (b) theZariski-losure of Y oinides with its Zariski-saturation.Proof: Suppose P = S a2RnP (I : a) and that P =2 Min(Y;�). Then, there existsQ 2 Y suh that Q $ P . Let x 2 PnQ and a 2 RnP suh that x 2 (I : a). Then,ax 2 I � Q whih is a ontradition. Conversely, suppose P 2 Min(Y;�) andeither (a) or (b) holds. It is lear that S a2RnP (I : a) � P . Now, suppose x 2 Psuh that ax =2 I for every a 2 RnP . Let S = RnP and T = Sn2N Sxn. Then,S $ T and T is a multipliatively losed subset of R suh that 1 2 T . Note that0 =2 T (otherwise, sxn = 0 2 I for some s 2 S and n 2 N and sine I is radialand s =2 I , we will have xm 2 I for some integer m � 2 and thus, x 2 I whih is aontradition). Hene, 0 =2 T and I \T = ;, and by Krull's Lemma (Theorem 2.2in Chapter VIII of [3℄), there exists a prime ideal Q of R suh that I � Q andT \ Q = ;. But then, Q 2 Y tZ and Q � P . Now, if (a) holds then Y a lowersegment of (Spe(R);�) and thus Q 2 Y and by minimality, P = Q whih is aontradition (sine x 2 P and x =2 Q). On the other hand, if (b) holds thenQ 2 Y tZ = SH2Y (H)0 and there exists H 2 Y suh that H � Q and as above,P = H = Q obtaining a ontradition. �



Isolated points and redundany 149Note that ondition (b) in Theorem 3.2 is satis�ed if Y is either Zariski-losedor dense with respet to the Alexandro� losure of the Zariski topology, denotedby tZ . Also, ondition (b) is equivalent to the following: for every prime ideal Pof R suh that TY � P , there exists Q 2 Y suh that Q � P . In partiular, any�nite subset of Spe(R) satis�es this property. Moreover, the onditions (a) and(b) are independent. In fat, if R is a zero-dimensional ring with in�nite primeideals then Spe(R) is not a disrete spae and there exists a Zariski-open set Ywhih is not Zariski-losed (otherwise, the Zariski topology will be an Alexandro�T1-topology whih is disrete). On the other hand, if R is not a zero-dimensionalring then there exists a maximal nonminimal ideal P of R and thus, the setY = fPg satis�es trivially ondition (b) but not ondition (a).Theorem 3.3. Let Y be a nonempty family of prime ideals of a ring R, P 2 Yand a 2 RnP . If P = (I(Y ) : a) then fPg = Min(Y;�)TD0(a) and the onverseholds if the poset (Y;�) has enough minimal elements.Proof: If Q 2 Y with Q � P then Pa � I(Y ) � Q and sine a =2 Q, wehave P � Q and P = Q. Hene, fPg � Min(Y;�)TD0(a). Conversely, ifQ 2 Min(Y;�)TD0(a) then Pa � I(Y ) � Q and thus, P � Q and P = Q. Onthe other hand, suppose that the poset (Y;�) has enough minimal elements andfPg = Min(Y;�)TD0(a). It is lear that (I(Y ) : a) � P and if x 2 P withax =2 I(Y ) then there exists Q 2 Y suh that ax =2 Q. Now, if Q0 2 Min(Y;�)suh that Q0 � Q then ax =2 Q0 and P = Q0 whih is a ontradition. Hene,P = (I(Y ) : a). �We now prove some more onsequenes of Theorems 3.1 and 3.3.Theorem 3.4. Let R be a ring and P a prime ideal of R. Then, the followingonditions are equivalent.(a) P is an isolated point of Min(R).(b) P is both an absolutely minimal-irreduible and minimal prime ideal of R.() There exists a 2 RnP suh that P � Q for every Q 2 D0(a).(d) There exists a 2 RnP suh that P = (�(R) : a).(e) P is not �-redundant.(f) P is a minimal prime ideal of R and there exists a 2 RnP suh that(�(R) : x) � (�(R) : a) for every x 2 RnP .Proof: By Theorems 3.1 and 3.3, we have (a),(b),(d),(e). Let us show that(d))(). Suppose a 2 RnP with P = (�(R) : a) and let Q 2 D0(a). Then a =2 Qand if x 2 P then ax 2 �(R) � Q and thus, x 2 Q and P � Q. We see ())(b).Suppose a 2 RnP suh that P � Q for every Q 2 D0(a), and let Q0 2 Min(R)with Q0 � P . If Q0 6= P then a 2 Q0 (otherwise P � Q0 and thus P = Q0 whihis a ontradition). Hene, P 2 Min(R). Now, let F � Min(R) with TF � P .Then a =2 TF and there exists Q 2 F with a =2 Q and by hypothesis, P � Qand by minimality, P = Q. Finally, for (f),(d) use that P = S a2RnP (�(R) : a)([2℄). �



150 A.J. Pe~na P., J. VielmaCorollary 3.2. Let R be a ring. Then, Min(R) is a disrete spae if and only ifevery minimal prime ideal of R is not �-redundant if and only if the prime radialof R is the irredundant intersetion of the minimal prime ideals of R.Condition (d) in Theorem 3.4 is an extension of part (3) of Proposition 4 in [4℄.Dually, we have the following two results.Theorem 3.5. Let R be a ring and P a maximal ideal of R. Then, the followingonditions are equivalent.(a) P is an isolated point of Max(R).(b) P is an absolutely maximal-irreduible ideal of R.() If F �Max(R) suh that TF � P then P 2 F .(d) There exists a 2 IP (Max(R))nP suh that P = (J(R) : a).(e) There exists a 2 RnP suh that P = (J(R) : a).(f) P is not J-redundant.Corollary 3.3. Let R be a ring. Then, Max(R) is a disrete spae if and only ifevery maximal ideal of R is not J-redundant if and only if the Jaobson radialof R is the irredundant intersetion of the maximal ideals of R.Every maximal ideal of a ring R generated by an idempotent element of R is anisolated point in Max(R) and the onverse holds if R is a semiprimitive ring , thisis, J(R) = f0g (Lemma 2.1 in [4℄). Note that if J = J(R) then the quotient ringR=J is semiprimitive and the spaes Max(R) and Max(R=J) are homeomorphi.Hene, in general, the isolated points of the spae Max(R) are the maximal idealsP of R for whih P=J is an ideal of R=J generated by an idempotent element ofR=J .Theorem 3.6. Let P be a prime ideal of a ring R and Y = bP tZ . Then, thefollowing onditions are equivalent.(a) P is an isolated point of Y .(b) P is a minimal element in the poset (Y;�).() P is a minimal prime ideal of R.(d) P = (I(Y ) : a) for some a 2 RnP .Proof: By Theorem 3.1, (a),(b),() and (a))(d). To show that (d))(), letQ 2 Min(R) suh that Q � P . Sine Q 2 Y and a =2 Q, we have Pa � I(Y ) � Qand thus, P � Q and P = Q. �By Corollary 3.1, the property (a) in Theorem 3.6 is not dual. Also, for everyprime ideal P of a ring R, the family Y = bP tZ has enough minimal elementsand the radial ideal I(Y ) is the intersetion of the minimal prime ideals of Rontained in P (see Theorem 3.3).



Isolated points and redundany 151Theorem 3.7. Let P and Q be prime ideals of a ring R. Then P is an isolatedpoint of Q tZ if and only if P = Q and P is not the intersetion of the primeideals whih stritly ontain it.Proof: The suÆieny ondition is a onsequene of Corollary 3.1. Conversely,suppose P is an isolated point ofQ tZ = (Q)0. By Theorem 3.1, for everyF � (Q)0with TF � P , we have P 2 F . In partiular, if F = fQg then P = Q. For thelast part, use Corollary 3.1. �Corollary 3.4. Let P be a prime ideal of a ring R. If the (irreduible Zariski-losed) set (P )0 has an isolated point then this point is P .Reall that (X; �) is a sattered spae if every nonempty subset of X ontainsa point that is isolated in the relative topology. By Corollary 3.4, if Spe(R) is asattered spae and P 2 Spe(R) then P is the unique isolated point of (P )0. ByTheorem 2.8 in [1℄, if R is a zero-dimensional ring then Spe(R) is a sattered spaeif and only if every radial ideal of R is an irredundant intersetion of (maximal)prime ideals of R. Compare this last result with Corollary 3.2. Further, byTheorem 3.1, we have the following result.Corollary 3.5. Let R be a ring. Then, the following onditions are equivalent.(a) Spe(R) is a sattered spae.(b) For every nonempty family Y of prime ideals of R, there is an absolutelyY -irreduible ideal of R whih is a minimal element in (Y;�).() For every nonempty family Y of prime ideals of R, there exists P 2 Ysuh that if F � Y with TF � P , then P 2 F .(d) For every nonempty family Y of prime ideals of R, there are P 2 Y anda 2 IY (P )nP with P = (I(Y ) : a).(e) For every nonempty family Y of prime ideals of R, there exists P 2 Ywhih is not Y -redundant.Aknowledgment. The authors would like to thank the referee for the arefulreading of the manusript and all the suggestions that improved the paper.The �rst author would like to thank the seond author for his guidane in thedevelopment of this paper whih is part of his dotoral thesis.Referenes[1℄ Heinzer W., Olberding B., Unique irredundant intersetions of ompletely irreduible ideals,J. Algebra 287 (2005), 432{448.[2℄ Henriksen M., Jerison M., The spae of minimal prime ideals of a ommutative ring, Trans.Amer. Math. So. 115 (1965), 110{130.[3℄ Hungerford T.W., Algebra, Reprint of the 1974 original, Graduate Texts in Mathematis,73, Springer, New York-Berlin, 1980.
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