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Boundedness of one-sided fractional integrals

in the one-sided Calderén-Hardy spaces

ALEJANDRA PERINI

Abstract. In this paper we study the mapping properties of the one-sided frac-
tional integrals in the Calderén-Hardy spaces ’Hg’ji(w) for0<p<1,0<a<
and 1 < ¢ < oo. Specifically, we show that, for suitable values of p,q,vy,a and s,
if w € AT (Sawyer’s classes of weights) then the one-sided fractional integral I,'Yi'
can be extended to a bounded operator from Hg:j:(w) to Hg:;'+7 (w). The result
is a consequence of the pointwise inequality

+ . .
N iy (If Fiz) < Cay N, (Fiz),

where Nj", (F;x) denotes the Calderén maximal function.
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1. Introduction

The purpose of this paper is to show that we can extend the fractional integral
to a bounded operator between Calderén-Hardy spaces. For 0 < v < 1, we denote
by I, f the fractional integral defined by

_ fy)
hite) = /R -y

when this integral exists. The classical results of boundedness of the fractional
integral are well known. One of them ensures that if 0 < vy <n, 1 <qg<r < oo,
1= % — v and f € LY(R") then

r

(1.1) Iy fllor@ny < CrgllfllLan)-

A proof can be found e.g. in [3] or [13]. Another classical result affirms that if
feA, 0<a<l,then I,f € Ag, § = a+~. A more general version of this
result can be seen in [4].

We will study the behaviour of the operator I;L, 0 < v < 1, defined by

tr = [T

_ w)l—'y
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in the one-sided Calderén-Hardy spaces that we will define below. In 1982, Gatto,
Jiménez and Segovia studied in [2], the Calderén-Hardy spaces in order to cha-
racterize the solutions of A™F = f, m € N, for distributions f in the Hardy
spaces HP. They proved that the operator A™ is a bijective mapping from the
Calder6n-Hardy spaces to HP. Later, in 2001, Ombrosi studied in [7] a more gene-
ral weighted version of these spaces. Ombrosi proved that the fractional integral
Ij can be extended to a bounded operator from the one-sided Hardy spaces into
the Calderén-Hardy spaces. To generalize these spaces Ombrosi used a one-sided
version of the Calderén maximal function, denoted by N, (F,z). To obtain our
result, the key will be to prove a pointwise estimate for N;:a(ljF,a:). Further-
more, this estimate will allow us to give another proof of the classical result of
boundedness of Ii between Lipschitz spaces.

A weight w is a measurable and non-negative function If E C Ris a Lebesgue
measurable set, we denote its w-measure by w( fE t)dt. A function f(z)
belongs to LP(w), 0 < p < oo, if || f||Le(w) f_ z)[Pw( )da:)l/p is finite.

The classes Af, 1 < s < oo, were deﬁned by E Sawyer in [12] (see also [6]).
A weight w belongs to the class AT, 1 < s < oo, if there exists a constant C' such
that

(1.2) <% /;_hw(t) dt) (% /:+hw(t)sll dt) B <c,

for almost all real numbers z.

In the limit case of s = 1 we say that w belongs to the class A if M~ w(zx) <
Cw(z) a.e. € R, where M~ f(z) = supysq = [; , |f(t)|dt. In a similar way,
Sawyer defined that a weight w belongs to the class A7, 1 < s < oo, if there
exists a constant C' such that

(1.3) (% /;le(t) dt) (% /:hw(t)—ﬁ dt>s_1 <C,

for almost all numbers z. For s = 1 we say that w belongs to the class A; if
Mtw(z) < Cw(z) ae. z € R, where M f(z) = sup,s, hfm+h|f( t)|dt. The
properties of one-sided weights which we will use in this paper can be seen in [5],
[8] and [12].

Let us fix w € Af. Then there exists x_, such that w(z) = 0if z < z_o
and w(z) > 0 if > x_ (see [§] for details). We denote by L] (z_,00), with
1 < ¢ < o0, the space of the real valued functions f(z) on R that belong locally to
L? for compact subsets of (z_oc,00). We endow L. (2_o,00) with the topology
generated by the seminorms

1/q
Flar = (1-1 / f(y)l"dy> |
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where I = (a,b) is an interval in (z_o,0) and |I| = b — a.
Let f € L] (#_o,00) and let a be a real positive number. We define the
maximal function n} (f;z) by

nt o (fi2) = sup p~ | flo(,utp-
p>0
Let N be a non-negative integer and Py the subspace of L] (z_+, o) formed
by all the polynomials of degree at most /N. This subspace is of finite dimension
and therefore a closed subspace of Lloc(x w0, 00). We denote by E% the quotient
space of L] (z_s,00) by Py. If F € E};, we define the seminorms

The family of all such seminorms induces on E}; the quotient topology.

Given a positive real number a, we can write it as a« = N + §, where N is
a non-negative integer and 0 < § < 1. We fix a > 0 and its decomposition
a = N + 3 in the previous conditions.

For F € EY;, we define the maximal function N\, (F;z) as

Nfo(Fia) = inf {n},(fi)}

This type of maximal function was introduced by Calderén in [1].

Now we are ready to present the one-sided Calderén-Hardy spaces, Hg’:z(w),
defined by S. Ombrosi in [7]. The case w = 1 and a € N has been studied by
A. Gatto, J. Jiménez and C. Segovia in [2]. If F € EY;, we say that F belongs
to "ot (w), 0 <p <1, 1< ¢ < oo, if the maximal function N (F;z) € LP(w).
This means

/ (P a)Pw(e) de < oo

The norm of F' in H?F(w) is given by IE N2zt () = NS o (F52) |1 nv ()
We say that a class A € EY is a p-atom in ¥ (w) if there exists a represen-
tative a(y) of A and an interval I such that

(i) supp(a) C I C (a:_of,oo), w(I) < oo,
(i) NS, (4;2) < w(I)7 forall 2 € (z_o,00).

From the definition of a p-atom, the condition w(I) < oc, w € A} does not
assure that I is bounded, nevertheless, given the properties of one-sided weights
(see Lemma 1.1.7 and page 9 in [8]), I cannot be of type (a, c0); thus, if I is not
bounded we have that z_., = —oco and so I = (—o0,b), b < oc.

As before, let « = N + 8 where 0 < § < 1. The class F' € Eév belongs to
Ao (2_o0,00) if f € F is such that f € CN(2_4,0), and there exists a constant
C such that the derivative DV f satisfies for every z,z' € (z_4,00) the Lipschitz
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condition
DN f(2) - DN f(z')| < C |& —2'|” .
We observe that to say F' € Ay (-0, 0c) is equivalent to saying that all their

representatives belong to A, (z_~,00). To simplify notation, we write A, instead
of Ay (200, 00).

With the notation and definitions given above we can state the main results of
this paper.

Theorem 1.1. Let 0 < p < 1,0 < 8 < 1, a = N + 8 with N an integer,
O<’y+6<1,1<q<%andw€Aj‘ Where(a+%)p25>1or(a+%)p>1if

s =1. Let E be the extension of the one-sided fractional integral given by (3.17).

Then E can be extended to a bounded operator from H2T (w) into Hf;”i'ﬂ(w).

This theorem is a consequence of the following key result.

Theorem 1.2. Let F € Ay, @« = N + 3 with N an integer, 0 < 8 < 1,
0<y+B8<landl < q < % Let I be the extension of the one-sided
fractional integral given by (3.17). Then

N+

q7a+’y(I’j_F;x) S Ca,’Yqua(F;x) T e (1‘700,00),

where C, ~ does not depend on F.

The paper is organized as follows. In Section 2 we will present some auxiliary
lemmas that we will need later in Section 3 and Section 4. In Section 3, we will
prove the existence of the extension of the one-sided fractional integral to the
classes HP' ¥ (w) N Ay. In Section 4, we will prove the main results of this work,
Theorem 1.1 and Theorem 1.2. In the last section we will give some remarks
about the extension defined in Section 3.

2. Auxiliary lemmas

The following results establish some properties of the maximal function
N/}, (F,z) and the spaces H?' (w).

First we observe that if x7(z) is the characteristic function of the interval
I = (a,b) and we denote I~ = (a — |I|,a), it is not difficult to prove that

(2.1) M*x(z) >

Lemma 2.1. Let F € E},.
(1) Let f1, fo be two representatives of F and P = f; — fa. Then there exists

a constant ¢ such that for every z1, 2 and y in (x_,,00) the inequality

(4) o

—k
<ep (ngo(friz) +nf (fos22)) (Joy =yl + 22 — y))*
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holds.

(2) If N,f,(F,x0) is finite for some xq then there exists a unique f € F such
that n} ,(f;x0) < oo and, therefore, N\, (F;x0) = n/ ,(f;20).

(3) If qua(F;x) is finite, f is a representative of F and we denote by
P(z,y) the unique polynomial of degree at most N such that nal(f(y) —
P(z,y);z) = N,f,(F;z), then f(x) = P(x,x) for almost every x such
that N, (F;z) is finite.

(4) Assume that N, (F,z) <t for all x belonging to a set E C (Z_x,00).
Let f be a representative of F' and let P(x,y) be the unique polynomial
in Py, such that Nt (F;z) = nf ,(f(y) — P(y,z);z). Then there exists
¢ > 0 such that

1 —\i — —ja—k

00) = X e = s < et lo -
for all x and T in E, where Ay (x) = D’;P(a:,y)|y:x.

(5) F belongs to A, if and only if there exists a finite constant C such that
N} (Fox) < C for all € (2o, 00).

(6) If F € Ay, 1 € (T_c0,00) and f is the representative of F such that
N} (Fyx1) =n},(f,x1), then

D' W)] < ClINga(F5 )l ly = 21”7
holds for i = 0,1,...,N and y € (—s, 00).

The proof of (1) can be found in [7]. The proof of (2) is similar to the one of

Lemma 3 in [2]. The proof of (3) can be seen in [8]. Proceeding as in the proof
of Lemma 5 in [1] we obtain the proof of (4), also we can find a complete proof
in [8]. Part (5) is Lemma 3.10 in [7]. The details of the proof of (6) can be seen
in [8].
Remark 2.2. Given a representative f € F', if for each  we have N;:a(F; z) < 00
by Lemma 2.1(2), there exists a unique representative of F' that realizes the
maximal function N (F;z) < co. We denote this representative by f(y) —
P(z,y), where P(z,y) is a polynomial of degree less than or equal to N.

Lemma 2.3. Let 0 < p <1 and w € A} where (a+%)p >s>1lor (a+%)p >1
if s = 1. The space H?"F(w) is complete.
The proof of this result is similar to that of Corollary 2 in [2], see also [8].

The following result is fundamental for the proof of Theorem 1.1 in Section 4.

Theorem 2.4. Let 0 < p < 1 andw € A} where (a-l—%)p >s>1lor (a+%)p >1
if s = 1. The set of classes H? 1 (w) N A, is dense in H F (w).

The proof of this result is due to Ombrosi [8], who used to prove it a one-sided
version of the Calderén-Zygmund decomposition.
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3. Extension of the one-sided fractional integral to the classes
HEF (w) N Ag

Let 0 < v < 1. Given a measurable function in R, the one-sided fractional
integral of order «y is defined by

= [ LBl ae @)

provided the integral exists.

Remark 3.1. If we consider the kernel K (z) = X(—oo,0)||7 !, we can write the
one-sided fractional integral as a convolution product as follows

I f(z) = (K * f) ().
It is simple to prove that K (z) € L{ (R — {0}) and K satisfies for 1 <i < n,

loc

(3.1) DK (z)| < Oy lz|""'74 2 € (—0,0).

From the definition it is trivial to prove that, for f > 0,

(3.2) I f(x) <L f(x),2 € (& o, 00)
and
(33) I 0 I f(2) = I (&), 2 € (2_nc, 0).

In what follows we suppose that w € A} where (a+ %)p >s>1lor (a+%)p >1
if s = 1. Furthermore we consider the number x_., associated with w € A} such
that r_. <0.

Let us fix a function ¢ € C§°, 0 < ¢(y) < 1, supp(¢p) C [-2,2], and such that
¢(y) =1in [-1,1]. Let r > 0 and z; € R. We denote

r

(3.4 benrlr) =6 (L2

Then the support of ¢z, »(y) is contained in [z; — 27,21 + 2r] and ¢(y) = 1 in
[€1 — r,21 + r]. Moreover, we have that

(3.5) |Di(¢w1,r)(y)‘ < Cir Y,

for every non-negative integer i, where C; is || D'¢||oc. If 21 = 0, we denote ¢q .- (y)

by ¢, (y).

Unless we state something different, we consider a > 0, a ¢ N where a can be
represented by a = N + f with 0 < 5 < 1.
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Lemma 3.2. Let F € A, and let f(y) be the representative of F such that
nt,(f;0) = N (F;0). If we define

gi(x) = /°° (y%asj(y) dy

_ l‘)l 0%
(3.6)

i

—ZL D’( e 7)(O)f(y)(@(y)—@(y))dyj—!,

where ¢;(y) and ¢1(y) are given as in (3.4), then there exists lim; o g; In
L (2_s0,00).

ProOF: We fix I = [a,b] C R, and we consider a natural number / such that
C [=1/2,1/2]. Then for all z € I and j > I we can write g;(z) as

N

< F0) (&) — o) dy.

Now we prove that there exists the limit of the second term of (3.7) when j — oo.
Since ¢;(y) — ¢1(y) < 1 — ¢(y) and supp(l — ¢) C {|y| > 1} it follows that

supp (¢; — é1) C supp (1 — ¢) C {|y| > 1}

and so the second term of (3.7) can be estimated as

N

u— (L N\ o

/z W_;D <|-—y|1‘7>(0)i! [F@W)l 16 (y) — di(y)| dy
(3.8) : N 1 ;
: /{y>l}ﬁ(x7oo) (y—z)=7 _Z;D (W) (O)z_'

< [FWI1 = di(y))] dy.

We observe that if € T C [-1/2,1/2], and y € A = {|ly| > I} N (z,00), for
0 < ¢ <1 we have [£z —y|| > |y|/2. In effect,

! ! vl _
—yl =y —&x| > |y| - >yl = €= >yl — = > |y - 2 =2,
€z —y| = |y — x| > [y| — [€x] > |y IE\2 > |yl 5 2 ly| 5 =9
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Then by the Taylor’s Formula and Lemma 2.1(6), we have

/{y>l}ﬁ(z,oo) (Z/ ZDZ( y|'- v) (O)Z_I
x| f)I(1 = duly ))

(3.9) SCw /{ 51} )|f$ —y[" N f(y)| dy [N
y|>liN(x,00

< Oy n2NF) / "~ N2 f(y) | dy [N
{ly/>13(a,00)

< Con 2™ [Ny () | [y~ N dy [N
{ly[>13n(2,00)
and since the last integral is convergent for 0 < v+ 8 < 1, it follows

/{y>z}m(z,oo) (y—=o)'— ZDZ( y|1= 7) (O)j_!i

< Cp N [[Ngo(F ,-)IIOO < 0.

W) (1= du(y)) dy

Therefore,

N i
(ﬁ Y0 (=) <0>“”§—!> FW)(1 = 91(9)) € L' (2-oc,0)

i=0

and by the Dominated Convergence Theorem, the second term of (3.7) converges
i

to
/;’ sz ( ik 7) (0)%1 F@) A = duly)) dy

Then there exists lim;_, g;(2) in L. (200, 00), and, consequently, pointwise
and in L] (z_o,00). O

(y—=z)=7

Taking into account the notation of Lemma 3.2 we define
I;L’Of(x) = lim g;(z)
j—oo

[ W)
(3.10) imeo Jy  (y— )7

—Z/ D' (== ) 006500 - n(0) o’y

where the limit is taken in the sense of LY. (z_, 00).
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In Lemma 3.2 we have proved that for z € I = [a,b] C [-1/2,1/2],

I f(z) = lim g;(z)

j—o0
N

(3.11) =g(z) + /DO lm — ZDi <$) (O)f—:]
x f(y)(1—au(y))dy,

where

i

—Z/ P (=) 0160 - o)y 5

Summarizing, if F' € A, we have chosen a representative f, in particular f is such
that n} , (f;0) = N,f,(F;0), and for this f we define an extension of the fractional
integral operator I, denoted by I}0, such that 0 f belongs to LS, (— o0, 00).
The following step is to prove that if f is a polynomial of degree less than or equal
to N then I;L’Of is also a polynomial of degree at most N, which shows that the
extension does not depend on the representative f.

Lemma 3.3. Let P(y) be a polynomial of degree at most N. Then I}°P(x)
(defined by (3.10)) coincides with a polynomial of degree at most N in (z_s, 00).

Proor: Without loss of generality, we can assume that P(y) = y” where 0 <
n < N. Let us fix | € Nand = € [-1/2,1/2]. Then from (3.11), we have that

[FP(z) = /m a ym)l —u(y) dy

i

(3.12) +/ac [( — )t Z; <| — g 7>(0)ﬁ] y" (1= dily)) dy

N i

—Z/ND’< ) OG0 — e do’
= Pi(z) + Py(z) + Q(z).

It is enough to prove that DN (IF:°P) = 0. Since Q(x) is a polynomial of degree
at most N, we have that DVN1(Q)(z) = 0.
Then, the only thing to prove is that

(3.13) DNTH(PRy) () = =DV (Py) ().
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We consider n(y) = y"¢i(y). Since ¢;(y) € Cg°(R), we have n(y) € C§°(R). By
the change of variable z = y — z we can write P (z) as

pl(x)z/ooo (“”W“Z)dzzfowwdz.

21 21—y

Given that n and its derivatives are compactly supported, by the standard theorem
of derivation under the integral sign we have that P (z) admits derivatives until
order N + 1 and

(3.14) DN (P () = /OOO L DNty 4 ) de.

21—

Now we want to differentiate Py(x) until order N + 1. For s = 0,1,..., N + 1,
ly| > 1 and = € [-1/2,1/2] using Taylor’s Formula and (3.1) we have

1 N 1 z!
b [<y—x>1—~ -2 (=) “”7!”
1 L, N
< oD (T ) (@l < Gl

hence,

| [ﬁ 57 (=) “ﬁ—fl

i=0

<a / "N dy < o
ly|>1

ly™ (1 —i(y))| dy

and so we obtain
DY (P ) = [0 (s ) - ) dy
=0 [T (s ) - e d

Applying integration by parts in (3.15) and changing variables y = = + z we have
that

(3.15)

M [T (s ) v - s dy

(3.16) = (- /OO m%v“ (y" 1) (y) dy

<1
= —/ —— DNz + 2) dz
0

21—

= -DN*(P) (z).
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By (3.15) and (3.16), we have proved (3.13) which finishes the proof. O

Definition 3.4. Let F' € A, and f(y) be a representative of F. We define EF

as the class in E, of the function in L] (z_o,00) given by

Ii’of(x) = lim [/OO (ZJA@@) dy

j—o0 _g;)l—v
(3.17) N .
-3 [0 (o) 006065 - 0

This definition makes sense, since by Lemma 3.2 we have that for each rep-

resentative of F' the limit in (3.17) exists in the sense of L] (2_0,00) and by

Lemma 3.3 the class EF does not depend on the representative f of F.
Furthermore, if we fix 2o € (z_~,00), and define

L% f(z) = lim U L)l_v%,j(y) dy

j—o0 (y - CU)

N .
i 1 (z — 29)’
- Z/ D (?) (@0) f(y) (D205 () = 20,1 () dy——
i=0" 7T ’ ’
where f is a representative of F', similar computations show that I;L’“f(x) differs

from I;L’Of(x) by a polynomial of degree at most N and therefore EF is also the
class of I f(x).

4. Proofs of the main results
PROOF OF THEOREM 1.2: Let zg € (£, 00) and let f(y) be the representative
of F' such that n/ ,(f;z0) = N, (F; o).

We know that a representative of EF is

s =i | [ Lt

N ,x .
_Z/ D(I—%) (20) () (@03 (¥) = 201 (1)) ayE =)

7!

Let p > 0 and z € [zg,z0 + p/4]. Our goal is to prove the following estimates

(4.1) |57 (F(1 = Gaq.p)) (2) — Q(20,2)| < Cy N o (Fi20)p" "

and

zo+p/4 q )
(42) (/ |57 (Fba0.0) (@) dx) < CyaN o (F mo)pl T a,

0
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where

(x — )’
1! '

Qlro. ) = i:j [ v (%) (20) £ (4) o1 (4)

Let us see first that, if (4.1) and (4.2) hold, then we obtain the desired estimate:

zo+p/4 %
(/ 1520 £ (2) — Q (w0, 2)]" dx>

Zo

1
q

zo+p/4
= (/ L0 f (@) =I5 (f bag,p) () + 570 (fbag ) () = Q(z0, 2)|” dfﬂ)

q

zo+p/4
< (/ L (1= bay ) (&) - Q0. 2)|] d”’”)

0

zo+p/4
([ e G o )

0

1
q

1
q o 1
< Cya Ny o (Fim0)p™ 7 (Z) + Oy aNf o (Fi20)p™ s

1
= C,Y7QN;:Q(F;:UO),0Q+’Y+‘1 :

Then for p > 0

]. ]. I0+P/4 + q % +
— (5 [ @) - Qo) de | < Co Ny (o),
B

and taking supremum for p > 0 we have

n;:a+'y (I'jwof(w) - Q(CUO: CU); CUO) < Oa,'qufa(F; wO)-

Since %0 f(x) — Q(xo, ) € IF F, we have

N+

q,a+y

(I’y—+F1$0) S CC!,’YN;,_Q(F;'/EO)a To € (Z‘,OO,OO).

Now we prove (4.1) and (4.2).
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For (4.1) we have

L (£ (1= 6u,)) (7) = lim {/ H0— brog )0l

j—00 -

=S | (= 7)<xo>f<y><1—¢m,p<y>><¢m,j<y>—¢zo,l<y>>dy

i=0 "7

y (w—mg)].

i!

Subtracting and adding up = f( — (1 = ¢20,0(¥)) P20, (y) in the first integral and
associating we have

E = b)) = [ 4 b))t

(y —x)!
(4.4) C [ 1 & 1 NG
A z l(:ﬂ—y)” ;D (I-—yl”>(0) i ]
X FW) (1 = Gu0,0(y)) (D20, (Y) — bao,1(y)) dy
Writing
1 _ N i 1 . (2 — 0)"
(z—y)'= _;D <|-—y|1‘”>( )
(4.5)

' [# - iD (=) _i!m)i]

and replacing (4.5) in the first integral of (4.4), we have
(4.6)

N — )’
I’?’zo (f(]. - (bzo,p))(x) = Z/ f(y)Dl <%) (I'O)szg,l(y) dy (x . )

yl'= 7!

—é/:of(y)D < T v) 20) P01 (Y) Pz, (y) d (m_.mo)i

1!

. > (x—xo)i
AL, l( z; ( =yt ">(m0) i ]
x f(y)1 —¢zo,p( )bz, (y) dy

69
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Let us estimate I;(z), I>(z) and Is(z). Since F' € A, and f is a representative
such that n}, (f;z0) = N, (F;x0) then by Lemma 2.1(6) for i = 0, we have

1FW)| < CINSo(F3)| Ny = w0l®

Then from the last estimate and (3.1) we obtain that each integral in I; is bounded

by
[ w0 () ] s
<ovEal [P () e

xo+2 -
<y | NEL(FD)L / ly— 20" |y — 20l® d
xr

0

—£E0|a d

xo+2 1
= O INFL (R / ly — 2ol dy < oo,
xr

0

sincey+a—-i—-1=9+p+N—-i—-1>N-1—-4>-1if0<¢< N. Then
I1(x) is a polynomial of degree at most N, denoted by Q(xg,z), that is

A7) Qo Z / i (%)(xom,l(y)dyw.

1!

Now we estimate each term of I5. Since supp(mqﬁxo,p(y)) C [zo, 20 + 2p]
and using the condition (3.1) we have

< - v) (20) bao,1 (Y) a0 (y) dyw

7!

zo+2p . T — T i
< / fro — = 1)y 20
. .

zo+2p L pi
N e e

zo+2~ ]+1 )
<Cpin' Z / 20 =1 () | dy
zo+2"7p
< cwp _ / (v) dy
(2— Jp)1+ 7 Jaot2-ip
1 To+2" it
<pr2 2JP)HZV/ y)l dy
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0

zg+2_j+1p % I
< Chip' Z i) (/ If(y)qdy> (277 p)

oo : 1 j+1 2
; (2—]+1p) 1 zo+2 p 1
= O’Yi Z (2 Jp)1+2 ~ 2,]‘+1p/ ‘f(y)|q dy (2 J+1p)
Zo

7=0

S (2~ J+1 —Jj+1 e N+
S Z 2 Jp 1+z 'y 2 p) Nq,OZ(F;wO)
j=0

o0
< C’y,mpaﬂN;:a(F; o) Z 9—i(—ita+y)
j=0

Since —i +a +v > B+ > 0, we have that the series Z;’io 2-i(—itatr) g
convergent and then each term of I>(z) is controlled by

@ # T (z — x0)’
D ( —yl“f) (20)P0,1 (Y) a0 (y) dy——7——

1!
< CyialN, (Fx)a+7.

Then for x € [xo,z0 + 4],
(4.8) I (2)] < Oy aNgf o (Fi20)p™*7.

We estimate I3(x). Supposing that = € [zq, zo+p/4], y ¢ [To,To+p] and 0 < 0 < 1
we have

3
20+ 6@ —20) =yl > ly = ol — & = ol > |y — x| = § > Ty~ wol.

By the Mean Value Theorem, the condition (3.1) and the Taylor’s Formula we
have that I3(z) is estimated by

[ [ £ ()]

=0

X f(Y)(1 = Ba,p(y))bao,; Ayl
*~ N+1 1 — .
|0 (g ) 0 = b o0)bes )

N+1
)

<

(x — zo
TN

oo

< Oy npNH! / o + 6(z — o) — y*™ "N | £(y)]| dy
zo+p
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oo
()]
<C,n N+1/ B AC) | — d
S Uy ,Np _— ly — zo| TN 2 Y
10+2J+1p
o am Wl
N S PN )
v,NP Z/zg+2]p ly — x| 7 HN+2 Y
zo+2911)
< Oyt / (4] dy
,]ZO 27) V+N+2 zo+2ip

1
<C’ vl E —1 ek | ( )‘qd ' (2] )1’
NP Y Y
b Jj= 0 FY+N+2 2]0 zo+29p

1
q

1 $0+2’+1
=Cynp"™ 12 eh) 7+N+2 27 |f(y)]? dy

10+27
a+1

< O”y,Np’Ha]\pL F,z) ol =~ fN+2

8||M8

NP TN (F,zo) Z 9i(y=N=2+a+1),

j=0

.

Since y — N — 2+ a + 1 < 0, we have that the series is convergent and
(4.9) ()] < Cra Ny o (Fy20)p .

From the identity (4.6), the estimations (4.7), (4.8) and (4.9) give (4.1).
Now we have to prove (4.2):

(4.10)
I’j"mo (f(bzg,p)(iﬂ) = lim f( )

j—o0 (y —Cﬂ)l v

_z/ Dz(| i 7)< )05 (1) B 5(0) — D1 (w) dy T

W
- / (y_x)l,mw(y)dy

N

> /;o D' ( —'" ) (80) 520 p )1 = B 0)) "

Guro.p(Y) Do, (y) dy

Arguing as in the proof of (4.8), we have

(4.11) |12 (z)| < CyaNS o (Fi20)p®t7 forall @ € (zo,x0 + p/4).
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In order to estimate the L7 norm of J;, we use Holder inequality and (1.1). In
effect, if r = =2~ we have

/ iy mO,l ) g,

/10+p/4

zo+p/4
- / IF (o p) ()] de

0

zotp/d r v zo+p/4 . »
[ e oot a7

q

= O I5 (o)l
< Ol fbeonllin' ™"

oo (1 zo+p/4 .
=Lt (5 / Fbrop(@)|? da
o

< Of INS o (Fao)]plot st

q
dx

<

Then from the estimations of J; (z) and Jy(z) we have proved (4.2). O

PROOF OF THEOREM 1.1: From Theorem 1.2 and by a standard argument we
obtain Theorem 1.1. Anyway, for the sake of completeness we will do the proof.
In effect, for F' € H?F (w) we want to prove that there exists a constant C., , such
that

(4.12)

) S CrolF gz

q a+7

By Lemma 2.4 we have that there exists a sequence F; € HE(w) N A4 such that
Fj - F in {2 (w).
Since Fj € HbF (w) N Aq C Ay, by Theorem 1.2 we have

(4.13)

3 FjHH‘“’* » <Cya ||Fj||H§:2(w)

q,a+y

Using that the operator E is linear and (4.13) we have that for each j, k € N

|7 -5md,,

S
o NTE I )

< CyallFj = Fillyr +()

(4.14)

Since Fj is a Cauchy sequence in 1 (w), by (4.14) we have that EF]- is a
Cauchy sequence in 7—Lq Ot_i_AY( w). By Lemma 2.3 H’q”;ﬁ( ) is complete, thus I F;

has a limit in H}’ a+w( w) that we define by EF and so we have that EF]' — EF
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in 7—[5:;_7((.0). Then by this last conclusion and (4.13) we have (4.12) as follows

HHLFHH’;?IH(W) - Jlggo H‘WF]‘HH

P @)
< Cha Jlggo ||Fj||7.¢g;;r(w) = v,aHFHHg;;r(w)-

5. Final remarks

Remark 5.1. By the characterization given in Lemma 2.1(5) we can observe
that Theorem 1.2 gives another proof of the classical result which ensures that

Emap Ay into Agqy fora =N+ with0 < B +v < 1.

Remark 5.2. It is not hard to see that as a consequence of Ombrosi’s results,
see Theorems 4.1.5 and 4.2.2 in [8], we can say that the previous result is also
true for the case a € N.

Remark 5.3. Nevertheless, Theorem 1.1 is false for 5 +7=1,0< 8 < 1. We
will see that by an example. We suppose w = 1. Let ¢ be ain C§°, 0 < ¢(y) < 1,
with support contained in [—8, 8], and with ¢(y) = 1 in [—4,4]. For 0 < a < 1,
we define

(5.1) a(z) = o(z) (Z 2% cos 2%) .

n=1

The previous series defines a function Lipschitz-a (see [14]), and since ¢(z) € C§°,
a(z) also belongs to Lipschitz-a. Then if we denote the class of a(z) in E{ by
A, we have that N, (A, ) is bounded, and therefore since a(x) has compact
support contained in a bounded interval, A is a multiple of a p-atom in H’qug(l).
Then the class of a(z) in E§ belongs to #2-F(1). If we consider, in particular, the

case a = N+ 3, N =0and 3+~ = 1. If we suppose that I, is a bounded

1-a
extension from H?F (1) into 12 (1), then we have that the class in E§ of the

function I}t  a(z) € Hf}’:f(l) and this is false. If we suppose that it is true, by

Theorem 4.2.2 in [8] we have that DI;"  a(z) € HP, where HP is the classical
Hardy space, and this is false. A proof of this fact is given in [8].
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