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Ratio Tauberian theorems for relatively bounded

functions and sequences in Banach spaces
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Abstract. We prove ratio Tauberian theorems for relatively bounded functions
and sequences in Banach spaces.
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1. Introduction

Let X be a Banach space and u : [0,00) = X be a locally integrable function.
Let g : [0,00) = Ry be a locally integrable function such that fooog(t) dt > 0,
where Ry := {¢t > 0:¢t € R}. We assume the condition

t
r)dr t
M—)l as t,s > oo with - —1,

s

Jo 9(r) dr
and prove that if ||u(t)|| = O(g(t)), t — oo, then the following statements are
equivalent:

(i) = =1lim; 00 (fot u(s) ds)/(fot g(s)ds);

(i) @ =limxyo (fy~ e Mu(t)dt)/( [, e Mg(t) dt).
This solves the open problem posed in [6]. Then particular choices of the function
g will be considered, leading to some generalized Tauberian theorems. Discrete
analogues are obtained as well.

2. Results for functions

Let X be a Banach space and u : [0,00) — X be a locally integrable func-
tion. The class of all such functions will be denoted by L (R, X). For u €

[Llloc](l&_ ,X),v>1and t > 0 we define the y-th order Cesaro integral s, (u) over
0,t] as

(1) s/ (u) := (ky xu)(t) = /0 k., (t — s)u(s)ds,
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where k- (t) := t7"1/T(y) for t € Ry. In particular we have s!(u) = [

o u(s)ds.
The Laplace integral u(A) for A € R is defined as

[ b
(2) u(A) ::/ e Mu(t)dt = lim e~ Mu(t) dt
0 b—oo /o
if the limit exists. It is known (see e.g. [1, Proposition 1.4.1]) that if u(\g) exists
then @w(A) exists for all A > X\o. If p is a locally finite positive measure on Ry,
then we use the notation fi(A) to denote [;~ e Mdu(t) when [;* e Mdu(t) < oo
We begin with the following key lemma.

Lemma 2.1. Let u be a locally finite positive measure on Ry such that u[0, 00) >
0. If

(C) Z[[g’z]] —1 as t,s— oo with é -1,

then

(C1) lim inf #O /A = lim inf M >0
Al0 ey Mo [ e Mdp(t)

PRrOOF: By hypothesis there are two constants G > 1 and é > 0 such that if
t>s>Gandt/s <1+0 then

0<

Thus for A > 0 with 1/A > G we have u(1/A, (1 +8)/\] < 204[0,1/A], and
u((1+ ) /A, (14 6)2/A] < 0, (1 -+ 8)/A] < 2' [0, 1/,
Then for n > 2 we have inductively
O I R

= 01//\+Zu 1+ 6)% /A, (1+6)1/A]

< (1+22’f) [0,1/A] = 27 4]0, 1/)].
Hence

0</ e Mdpu(t)
0

o0

e M du(t)

/ e~ Mdu(t) + /
[0,1/A] ()™ /X, (148)™F1/A]

01/>\]+22” [0,1/N]e” 1" < o0,

n=

IN
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Therefore
[0, 1/A] [0, 1/A] —(140)™ !
= > (1 2"e
A0 e i 2 *'E: ") o
completing the proof. O

Theorem 2.2 (cf. [2, Theorem 2.2]). Suppose 0 # g € L} (R, Ry) satisfies
condition (C) with u := g(t)dt. Then for any u € L}, (R, X) with |[u(t)| =
O(g(t)), t = oc, the following statements are equivalent:
(i) = =lim; 0 5t( )/5t( ) =limy 00 (fot u(s) ds)/(fotg(s) ds);
() = = limisoc 7 (0)/57(9)
= lim 00 (fo (t—s)7~1u(s) ds)/(fot(t—s F~1g(s) ds) for Some/all B> 1;
(ili) = = limxyo W(A)/g(N) = limxyo (fy° e Mu(t)dt)/( f;° e Mg(t) dt).

ProoOF: “(i) = (ii) = (iii)” follows from [2, Theorem 2.1].

(i) = (i): We first note that if P(t) = ZnN:(] ant™ is a polynomial function
such that

(3) P(t)>d>0 on [0,1],

o e MP(e Mu(t)dt
S Mo [T e MP(emM)g(t)dt |

an(/me A(n+1)t ) fo At tu(t)dt-
0 [T et ig(t) dt

n=0
Here
o Jy e X () di
5 1 g = b ,
(5) lim [ e N ig ) db x (by (iii)),
and
JoTe Mgty ar 1
6 0< = < = by (3)).
(6) o Sa e

79
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Thus

- J e MP(e7 M Yu(t) dt
Ao [F e MP(e=M)g(t) dt
1 & >
—-— an(/ e MUt (1) dt)x = z.
0

=lim =
AN P(A) 150

Next we write

@ PPt Jee Mhe M)g(t)di
where

h(t) :=

0 if 0<t<e,
tbif el <t <.

For the proof we may assume without loss of generality that [|u(t)|| < g(¢) for all
t > 0. By condition (C), given an € > 0, there are two constants G > 1 and 6 > 0
such that

(s, 1]
u[0, 5]

=

» |~

(8) 0< <e if t>s>G and <1454

It is standard to see that there exists a polynomial function P(t) = ZnN:o ant"

such that

(a) h(t) < P(t) <eon [0,e (9],
(b) h(t) < P(t) < h(e=') +¢c on [e= (119 =1
(c) h(t) < P(t) < h(t) +eon [e7!, 1]
Then
JoPutydt i
fy" gt
_fyo e M (e M) — Pe M) u(t) dt + [ e M P(em M )u(t) dt
B S e Mh(e M) g(t) di -
=:I\+ Iy — =z,
and
; ( o+ fl(/lj(j)/A + J (s )ef)‘t (h(e™™) = P(e=?))u(t) dt
y =

fooo e~ Mh(e=M)g(t) dt
In(1) + Ix(2) + Ix(3)

Jo~ e h(e g ) di”
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where

1/2
(9) Il </ e Meg(t) dtSE/ e Mh(e™M)g(t) dt
0 0
by (c) and the assumption that ||u(t)|| < ¢(¢) for all ¢ > 0. On the other hand,
(b) implies
(1+0)/x (140)/A
In@l< [ e re)gdr< e [ gt
/2 /2
where if A > 0 is sufficiently small, then by (8)
(1+8) /A 1/x oo
/ o(t) dt <5/ g(t)dt:a/ e Mh(e=M)g(t) dt,
1/x 0 0
so that

(10) IIIn(2)|| < (e +¢€)e /000 e Mh(e M)g(t) dt

for all sufficiently small A > 0. Finally (a) implies

[11x(3)]| </ e Meg(t)dt < 5/ e Mg(t)dt.
( 0

146) /A

We apply Lemma 2.1 to infer that there exists a constant n > 0 such that

lim inf g(t) dt
iminf —5———"——
AL0 fo e Mg(t)dt

ux
> 1.

Thus if A > 0 is sufficiently small, then

/A [
/ g(t)dt > 77/ e‘”g(t) dt,
0

0

so that
) @<= [ gwar=2 [ e he g0
(11 I(3 <—/ gtdt:—/ e “"h(e "")g(t) dt.
nJo nJo
Consequently
(12) limsup [|[In]| < e+ (e +¢e)e + =
AL0 n

Now we write
[ e MPeM)g(t) d fo e MP(e " M)u(t) dt

Iy == e gy dt [ e MP(e Mgl di
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Similarly as in (12) one may show that if A > 0 is sufficiently small, then

Jo e MP(em Mg (t) di
LS e g di

Since P(t) > d > 0 on [0, 1] for some d > 0, it follows that

€
<1+8+(e+5)8+5.

- JoZ e MP(e M )u(t) dt .
Mo [iTe MPe Myg(tydt

Hence
[ e MP(e Myu(t) di
|ITx — z|| < [ e XP(eMyg(t)dt H
(13) Jo_e " Ple *ut)dt

+(6+(e+s)5+n)‘

Jo e AP (e M)g(t) dt

— (e + (e +o)+ %)Hw”

as A | 0. Combining this with (12) yields

/X

u(t)dt
(14) lim sup 01/)‘ ®) —z| < (6+(€+E)6+£)(1+Hw”)
Alo o g(t)dt n
which completes the proof, since € > 0 is arbitrary. O

Theorem 2.3 (cf. [2, Theorem 4.2], [5, Proposition 3.4]). Let a > 0. Suppose u €
LL (Ry, X) satisfies |Ju(t)]| = O(t* '), t = oo. Then the following statements
are equivalent:

(i) & = limyso (Cla+1)/t%) [T u(s) ds;
(ii) z = limy—o0 (T(a + B)/T(B)to A1) fot(t — 5)8~1u(s) ds for some/all
B>1
(iii) = = limy 0 A® u(\) = limy g A® fooo e‘”u(t) dt.

ProoF: “(i) = (ii) = (iii)” follows from [2, Theorem 4.1].

(iii) = (i): Suppose a > 0. Then define g(t) := ko (t) = t*~!/T(a) for t € Ry
and p := g(t)dt. Tt follows that ||u( )| = O(g(t)), t = oo, that g(\) = A\* for
all A > 0, and that p[0, ] fo s)ds = (k1 x ko) (t) = kay1(t) = t/T(a + 1).
Hence p satisfies condition (C), and so (i) follows from Theorem 2.2.

Next suppose o = 0. Since [Ju(t)|| = O(t™1), t = oo, it follows from standard
calculations (see e.g. [8, pp.204, 206]) that the function U(t fo s)ds is
bounded and feebly oscilating (i.e. ||[U(t) — U(s)|]| — 0 as ¢ and s — o0 in such
a way that ¢/s — 1). Thus (i) follows from [5, Proposition 3.4]. The proof is
complete. O
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Remark. The special case @ = 1 of Theorem 2.3 states that, under the assump-
tion that u is bounded, the Cesaro limit lim;_, o (1/t) fot u(s) ds exists if and only
if the Abel limit limy o Au(A) exists and they are both equal. This is a clas-
sical Tauberian theorem (see e.g. [1, Theorem 4.2.7]). The special case a = 0
of Theorem 2.3 states that, under the assumption that [jul| = O(t™!), t — oo,
the limit lims_y oo fot u(s) ds exists if and only if the limit limy o @(A\) exists and
they are both equal. This is another classical Tauberian theorem (see e.g. [1,
Theorem 4.2.9]).

Theorem 2.4. Suppose u € L (R, X) satisfies ||u(t)|| = O(t~1), t — oc. Then

loc
the following statements are equivalent:

(i) = =limy_e0 (1/logt) fot u(s) ds;
(i) @ = lim¢ oo (1/t°~"logt) fg(t — 5)8~1u(s) ds for some/all B > 1;
(ili) = =limxjo (1/ —log A)a(A) = limyyo (1/ —logA) [;° e Mu(t) dt.
PRrROOF: Let
g(t)::{o if 0<t<1,
t=bif ¢t > 1.

An approximation argument yields that

[Ht—s)r2g(s)ds  lim flt(t —5)7 s lds

- Jo
(15) A, t7=1logt oo t7=1logt
. fll/t(l —s)7 s lds
= lim =1
t—o0 logt
for all v > 1 and that
. 0 _Aty—1 00 _ti—1
t— dt t—"dt
16)  tim 2N Ji e i D -
Ao —logh Ao —log A A0 —log A

Since [|u(t)|| = O(g(t)), t — oo, and the measure p := g(t) dt satisfies condi-
tion (C), the desired result follows from Theorem 2.2. O

Remark. If X is a Banach lattice with positive cone X, and u € L} (R, X1),
then statements (i), (ii) and (iii) in Theorem 2.4 are also equivalent. This follows
from [2, Theorem 2.2]. (We note that if u € L] (Ry, X ), then statement (ii) in
Theorem 2.4 implies that u(\) exists for all A > 0 (see [3, Lemma 2.5]).)

Fact 2.5. Let u € L{ (R, X). Consider the following three statements:

loc
(i) = = limy_ 0o fot u(s) ds;
(i) @(N) exists for all A > 0 and z = limy_,o (1/t°71) fot(t —5)P~1u(s) ds for
some/all > 1;
(i) & = limxyo a(A) = limayo [ e Mu(t) dt.
Then (i) = (ii) = (iii).

83
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PROOF: Letting g(t) := x[o,1)(t) we have

Jalt=syg)ds _ fy(t=9"ds

lim = lim =1
t—o0 tr—1 t—00 tr—1
for all v > 1 and
1
SOV T Xt gy _
lﬂr&g(k)—l}}% ; e~ Mdt =1.
Thus the desired result follows from [2, Theorem 2.1]. O

Remarks. (a) If [;* [Ju(t)||dt < oo, then clearly both (i) and (iii) in Fact 2.5
hold. In general (iii) does not imply (i). (For example let u(t) := sint.) If
u € L} . (Ry, X) satisfies ||u(t)|| = O(t™"), t — oo, or if X is a Banach lattice and
u € L (R4, X4), then (iii) implies (i). (See Theorem 2.3 and [2, Theorem 4.2],
respectively.)

(b) There exists a continuous function u : [0,00) = R such that inf{\ € R :
u(A) exists} = 1 and also such that limy_,o (1/t) fot(t— s)u(s) ds (€ R) exists (see
the Remark over Theorem 2.4 in [3], or [7, Example 5]). Thus the hypothesis that
u(A) exists for all A > 0 cannot be omitted from (ii) in Fact 2.5.

3. Results for sequences

Let {z,} := {z,}}2, be a sequence in a Banach space X. For v € R and
n € NU {0}, we define the v-th order Cesaro sum s) ({z;}) as

" n—k4+y-1
(17) e =3 ("TE T
k=0
where (7) :== Ll and () == r(r—1)...(r —n+ 1)/n! for r € R and n > 1.
Thus s ({z;}) = 2o for all y € R, s)({z;}) = z,, and s}, ({z;}) = > }_, zx for all

—

n € Ny. The Abel sum {z;}(r) of {z,} is defined as

— i -1
(18) {z;}(r) = Z Ty, 0<r< (lim sup ||$n||1/n) .
n=0 n— o0

—

Clearly {z;}(r) exists for all 0 < r < 1 if and only if lim sup,,_, ., ||z.|/*/" < 1. Let
{a,}32, be a sequence of nonnegative real numbers such that Y~ a, > 0. We
define u(t) := zpy and g(t) := ajy for t > 0, where [t] denotes the largest integer
less than or equal to ¢t. Then we have the following

Lemma 3.1. (i) z = lim,_ 0 (Zzzo wk)/(ZZ:o ak) if and only if © =

lim; o0 (fot u(s) ds)/(fotg(s) ds).
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(ii) Suppose {:E/l\}(r) and {a/?}(r) exist for all 0 < r < 1. Then
i O T e
1 {a Yr) i Yooy
if and only if

m “AMu(t) dt
z = lim E(A) = lim fo .
Ao g(A) Mo [ e Mg(t) dt

PRroOF: (i) Putting §(¢) := ¢t — [t] we have 0 < 4(¢) < 1, and

Jou(s)ds  (1—8(0) XV ap +00) UL

fya(s)ds  (1-6() S an +6() S ar

so that the first condition of (i) implies the second condition. The converse im-
plication is obvious.
(ii) By an elementary calculation we have

Jo7 e Mu(t) dt _ S e My,
foeMgtydt 30l e may

whence (ii) follows. O

A>0,

Theorem 3.2 (cf. [2, Theorem 3.2]). Let {a,}32, be a sequence of nonnegative
real numbers such that ZZO:O a, > 0. Suppose

Z;cnzo Ak
() ko Ok

Then for any sequence {x,}5>, in X, with ||z,|| = O(a,), n = oo, the following
statements are equivalent:

(i) = =limpooo s} ({2:})/6n({ai}) =limyoe (X poo i)/ (X heo ar);
(i) z = limy o0 8, ({mz})/sﬁ({al}) for some/all > 1;

(iii) = = lim,4q {z:}() /{ai}(r) = limpg1 (o7 2n)/(Xopg ™).
Proor: Condition (D) 1mphes that the function g(t) = ay satisfies condition (C)

with p := g(¢) dt. Hence {az}( ) and {a:l}( ) exist for all 0 < r < 1. Then “(i) =
(ii) = (iii)” follows from [2, Theorem 3.1].
(iii) = (i): By Lemma 3.1 and Theorem 2.2 we have

O _ o s _ sk

1 {/a\i}(r) ~ o g\ s st (g) o s ({a;})’

) m
-1 as m,n—>o0 with — — 1.
n

—_~
&8
—
=
<)

which completes the proof. O
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Theorem 3.3 (cf. [2, Theorem 4.4], [5, Proposition 3.6]). Let @ > 0. Suppose

{zn}5%, is a sequence in X such that ||z,|| = O(n®~'), n — oo. Then the
following statements are equivalent:

(i) z =limpoe (Cla+1)/(n+ 1)) X p o Tk;
(i) @ =limyoo (D(a+ B)/(n+ 1)2F5=1) 68 ({z;}) for some/all B > 1;

(i) & = limpgy (1= 7){z; }(r) = limpp (1= 1) %0 ria,.

Proor: “(i) = (ii) = (iii)” follows from [2, Theorem 4.3].

(iii) = (i): Suppose a > 0. Then define a, := (”+;‘1’71) for n > 0. It follows
(cf. [9, pp. 76-77]) that (1—r)~* =37 r"a, for 0 <r < 1, and a, = n* ' (1+
0(1))/T(a), n = oco. Thus ||z,|| = O(a,), n = co. Since

«

,éak: (n;i;a> :ﬁ(1+0(1))’ n - oo,

{an}22, satisfies condition (D). Hence (i) follows from Theorem 3.2.

Next suppose o = 0. Then the function u(t) = xjy satisfies [Ju(t)|| = O(t™!),
t — oo, and (iii) implies that @ = limyyo [, e~ *u(t) dt. Hence, by Theorem 2.3,
z = lims_, o0 fot u(s)ds =limp_y00 Y p_q k- This completes the proof. O

Remark. The special cases @« = 1 and a = 0 of Theorem 3.3 are classical results
for sequences corresponding to a = 1 and a = 0 of Theorem 2.3, respectively.
(See e.g. [4, Theorem 3.1], [1, Theorem 4.2.17].)

Theorem 3.4. Suppose {r,}32, is a sequence in X such that ||z,|| = O(n™1),
n — 0o. Then the following statements are equivalent:

(i) z =limpoo (1/log(n+1)) Yo ks
(i) 2 =limysee (T(B)/(n+1)7""log(n + 1)) 85 ({x;}) for some/all B > 1;

0

(ii)) @ =limyjo (1/ —log \){zi}(e*) = limyo (1/ —logA) pZg e M.
PRrROOF: Define ag := 0 and a, := n~! for n > 1. Hence ||z,]| = O(a,), n —

oo, and Y p_sar = logn + O(1), n — oo. It follows that {a,};>, satisfies
condition (D). If # > 1, then

(19) RS S A T

k=1

Since
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it follows by an approximation argument that

np—g)s-t
52 ({a;}) /1 %s_l ds - (14 0(1))

L'(B)
nP~1log n
= ———2—(140(1)), n—ox by (15)).
Similarly
{a}(e ) = Zef)‘"nfl z/ e Mttt - (1+0(1))
n=1 1

= —logA-(1+o0(1)), ALO (by (16)).

Hence the desired result follows from Theorem 3.2. O

Remark. If X is a Banach lattice and {z,}32, C X, then statements (i), (ii)
and (iii) in Theorem 3.4 are also equivalent. This follows from [2, Theorem 3.2].
(We note that statement (ii) in Theorem 3.4 implies that {z;}(r) exists for all
0<r<l)

Fact 3.5. Let {x,}52, be a sequence in X. Consider the following three state-
ments:

(1) 2 =limy o0 Dopp Tk;

(ii) z = limyoo (D(B)/(n + 1)P 1) 85 ({z;}) for some/all B > 1;

(iil) 2 =limpqy {z;}(r) = limp4y Y00 o 7" 2.
Then (i) = (ii) = (iii).
ProOF: By letting ap := 1 and a,, := 0 for n > 1, the desired result follows as in
Fact 2.5. We may omit the details. O

Remark. In general (iii) does not imply (i) in Fact 3.5. (For example let z,, :=
(=1)™.) If {z,} satisfies ||z,|| = O(n~!), n — oo, or if X is a Banach lattice
and {z,} C X4, then (iii) implies (i). (See Theorem 3.3 and [2, Theorem 4.4]
respectively.)

Y

4. A counterexample

The following example shows that condition (D) is essential in Theorem 3.2.
(See also Example 3 in [6].)

Example. Define {a,}32, by

n if ne{2% 2% +1} for some k> 1,
ap =
0 otherwise.
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Thus {a,} does not satisfy condition (D). Next define {z,}52, by

n if n=2*% for some k> 1,
Ty =
" 0 otherwise.

It follows that z, = O(ay,), n — co. An elementary calculation yields

1 "oz noox 2
— — liminf % < lim sup % =2
n—oo Zk:() (427 n—o00 Zkzo (427 3

so that lim, . s5({z:})/sL({a;}) does not exist. Nevertheless we have

—

fai}(r) _ >t 27
{ai}(r) Q4730 2 +r 3
Remark. Let 0 # g € L. (R, ,R,). Suppose that g()\) exists for all A > 0 and

loc
that = = limy;o u(\)/g(\) implies z = lim;_00 (fot u(s) ds)/(fot g(s)ds) for all
u € L (Ry,X) with |lu(t)]| = O(g(t)), t = co. Then in view of Theorem 2.2
it would be natural to ask the following question: Does the measure p := g(t) dt

satisfy condition (C) of Lemma 2.1? The author could not solve this problem.

1
0 —>§ as r11.
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