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On meager fun
tion spa
es, network 
hara
terand meager 
onvergen
e in topologi
al spa
esTaras Banakh, Volodymyr Mykhaylyuk, Lyubomyr ZdomskyyAbstra
t. For a non-isolated point x of a topologi
al spa
e X let nw�(x) bethe smallest 
ardinality of a family N of in�nite subsets of X su
h that ea
hneighborhood O(x) � X of x 
ontains a set N 2 N . We prove that� ea
h in�nite 
ompa
t Hausdor� spa
e X 
ontains a non-isolated point xwith nw�(x) = �0;� for ea
h point x 2 X with nw�(x) = �0 there is an inje
tive sequen
e(xn)n2! in X that F-
onverges to x for some meager �lter F on !;� if a fun
tionally Hausdor� spa
e X 
ontains an F-
onvergent inje
tivesequen
e for some meager �lter F , then for every path-
onne
ted spa
e Ythat 
ontains two non-empty open sets with disjoint 
losures, the fun
tionspa
e Cp(X;Y ) is meager.Also we investigate properties of �lters F admitting an inje
tive F-
onvergentsequen
e in �!.Keywords: network 
hara
ter, meager 
onvergent sequen
e, meager �lter, meagerspa
e, fun
tion spa
eClassi�
ation: Primary 54A20, 54C35; Se
ondary 54E52This paper was motivated by a question of the se
ond author who asked if thefun
tion spa
e Cp(!�; 2) is meager. Here !� = �!n! is the remainder of the Stone-�Ce
h 
ompa
ti�
ation of the dis
rete spa
e of �nite ordinals ! and 2 = f0; 1g is thedoubleton endowed with the dis
rete topology. A

ording to Theorem 4.1 of [13℄this question is 
losely related to the so-
alled meager 
onvergen
e of sequen
esin !�.A �lter F on ! is meager if it is meager (i.e., of the �rst Baire 
ategory) inthe power-set P(!) = 2! endowed with the usual 
ompa
t metrizable topology.The simplest example of a meager �lter is the Fr�e
het �lter Fr = fA � ! : ! nAis �niteg of all 
o�nite subsets of !. By the Talagrand 
hara
terization [18℄,a free �lter F on ! is meager if and only if �(F) = Fr for some �nite-to-onefun
tion � : ! ! !. A fun
tion � : ! ! ! is �nite-to-one if for ea
h point y 2 !the preimage ��1(y) is �nite and non-empty. A �lter F on ! is de�ned to be�-meager for a surje
tive fun
tion � : ! ! ! if �(F) = Fr.We shall say that for a �lter F on !, a sequen
e (xn)n2! of points of a to-pologi
al spa
e X F-
onverges to a point x1 2 X if for ea
h neighborhoodThe third author a
knowledges the support of FWF grant P19898-N18.



274 T. Banakh, V. Mykhaylyuk, L. ZdomskyyO(x1) � X of x1 the set fn 2 ! : xn 2 O(x1)g belongs to the �lter F . Observethat the usual 
onvergen
e of sequen
es 
oin
ides with the Fr-
onvergen
e forthe Fr�e
het �lter Fr. The �lter 
onvergen
e of sequen
es has been a
tively stud-ied both in Analysis [1℄, [4℄ and Topology [5℄. A sequen
e (xn)n2! will be 
alledmeager-
onvergent if it is F-
onvergent for some meager �lter F on !. A sequen
e(xn)n2! is 
alled inje
tive if xn 6= xm for all n 6= m.We shall prove that for a zero-dimensional Hausdor� spa
e X the fun
tionspa
e Cp(X; 2) is meager if X 
ontains an inje
tive meager-
onvergent sequen
e.We re
all that a topologi
al spa
e X is fun
tionally Hausdor� if for any distin
tpoints x; y 2 X there is a 
ontinuous fun
tion � : X ! I su
h that �(x) 6= �(y).Here I= [0; 1℄ is the unit interval. For topologi
al spa
es X;Y by Cp(X;Y ) wedenote the spa
e of 
ontinuous fun
tions endowed with the topology of pointwise
onvergen
e.Theorem 1. Let X be a fun
tionally Hausdor� spa
e and let Y be a topologi
alspa
e that 
ontains two open non-empty subsets with disjoint 
losures. Assumethat X is zero-dimensional or Y is path-
onne
ted. If X 
ontains an inje
tivemeager-
onvergent sequen
e, then the fun
tion spa
e Cp(X;Y ) is meager.Proof: Let (xn)n2! be a sequen
e in X that F-
onverges to x1 2 X for somemeager �lter F in !. Then there is a �nite-to-one surje
tion � : ! ! ! su
h that�(F) = Fr. By our assumption, Y 
ontains two non-empty open subsets W0;W1with disjoint 
losures. For every n 2 ! 
onsider the subset Cn = ff 2 Cp(X;Y ) :8 i 2 f0; 1g (f(x1) =2 W i ) 8m � n 9k 2 ��1(m) (f(xk) =2W i))g.The fa
t that Cp(X;Y ) is meager will follow as soon as we 
he
k that Cp(X;Y )= Sn2! Cn and ea
h set Cn is nowhere dense in Cp(X;Y ).To show that Cp(X;Y ) = Sn2! Cn, �x any 
ontinuous fun
tion f 2 Cp(X;Y ).Sin
e Y = (Y nW 0) [ (Y nW 1), there is i 2 f0; 1g su
h that f(x1) =2 W i. Sin
e(xn) is F-
onvergent to x1 and f�1(Y nW i) is an open neighborhood of x1, theset F = fn 2 ! : f(xn) =2 W ig belongs to the �lter F and thus the image �(F ),being 
o�nite in !, 
ontains the set fm 2 ! : m � ng for some n 2 !. Thenf 2 Cn by the de�nition of the set Cn.Next, we show that ea
h set Cn is nowhere dense in Cp(X;Y ). Fix any non-empty open set U � Cp(X;Y ). Without loss of generality, U is a basi
 open setof the following form:U = ff 2 Cp(X;Y ) : 8 z 2 Z f(z) 2 Uzgfor some �nite set Z � X and non-empty open sets Uz � Y , z 2 Z. We 
anadditionally assume that x1 2 Z. We need to �nd a non-empty open set V �Cp(X;Y ) su
h that V � U nCn. If U \Cn is empty, then put V = U . So we assumethat U \ Cn 
ontains some fun
tion f0. For this fun
tion we 
an �nd i 2 f0; 1gsu
h that f0(x1) =2 W i. Sin
e f0(x1) 2 Ux1 , we lose no generality assumingthat Ux1 � Y nW i.



On fun
tion spa
es and 
onvergen
e in topologi
al spa
es 275Sin
e the sequen
e (xn)n2! is inje
tive, we 
an �nd m � n su
h that the setXm = fxk : k 2 ��1(m)g does not interse
t the �nite set Z. Choose any fun
tiong : Z [ Xm ! Y su
h that g(z) = f0(z) for all z 2 Z and g(x) 2 W1�i for allx 2 Xm.We 
laim that the fun
tion g has a 
ontinuous extension �g : X ! Y . By ourassumption, X is zero-dimensional or Y path-
onne
ted. In the �rst 
ase we 
an�nd a retra
tion r : X ! Z [ Xm and put �g = g Æ r. If Y is path-
onne
ted,then take any inje
tive fun
tion � : g(Z [ Xm) ! I and extend the fun
tion� Æ g : Z [Xm ! I to a 
ontinuous map � : X ! Iusing the fun
tional Hausdor�property of X . Sin
e Y is path-
onne
ted, the map ��1 : (� Æ g)(Z [Xm) ! Yextends to a 
ontinuous map  : I! Y . Then the 
ontinuous map �g =  Æ � :X ! Y is a required 
ontinuous extension of g.In both 
ases the setV = ff 2 Cp(X;Y ) : 8 z 2 Z f(z) 2 Uz; and 8x 2 Xm f(x) 2W1�igis an open neighborhood of �g that lies in U n Cn, witnessing that the set Cn isnowhere dense in Cp(X;Y ). �Theorem 1 motivates the problem of dete
ting topologi
al spa
es that 
ontaininje
tive meager-
onvergent sequen
es. This will be done for spa
es 
ontainingpoints with 
ountable network 
hara
ter.A family N of subsets of a topologi
al spa
e X is 
alled a �-network at a pointx 2 X if ea
h neighborhood O(x) � X of x 
ontains some set N 2 N . If ea
h setN 2 N is in�nite, thenN will be 
alled an i-network at x. An i-network at x existsif and only if ea
h neighborhood of x in X is in�nite. In this 
ase let nw�(x;X)denote the smallest 
ardinality jN j of an i-network N at x. If some neighborhoodof x in X is �nite, then let nw�(x;X) = 1. If the spa
eX is 
lear from the 
ontext,then we write nw�(x) instead of nw�(x;X) and 
all this 
ardinal the network
hara
ter of x in X . If X is a T1-spa
e, then nw�(x) � �0 if and only if the pointx is not isolated in X . The 
ardinal hnw�(x) = supfnw�(x;A) : x 2 A � Xg is
alled the hereditary network 
hara
ter at x. Points x 2 X with hnw�(x) � �0are 
alled Pytkeev points , see [11℄.Theorem 2. If some point x of a topologi
al spa
e X has nw�(x) = �0, thenfor ea
h �nite-to-one fun
tion � : ! ! ! with limn!1 j��1(n)j = 1 there is aninje
tive sequen
e (xn)n2! in X that F-
onverges to x for some �-meager �lter F .Proof: Let (Ni)i2! be a 
ountable i-network at x. Sin
e ea
h set Ni is in�nite,we 
an 
hoose an inje
tive sequen
e (xk)k2! in X su
h that for every n 2 ! and0 � i < j��1(n)j the set Ni meets the set fxk : k 2 ��1(n)g.It is 
lear that the sequen
e (xn)n2! F-
onverges to x for the �lterF = �fn 2 ! : xn 2 O(x)g : O(x) is a neighborhood of x in X	:It remains to 
he
k that the �lter F is �-meager. Given any neighborhood O(x) �X of x we need to �nd n 2 ! su
h that for every m � n there is k 2 ��1(m)



276 T. Banakh, V. Mykhaylyuk, L. Zdomskyywith xk 2 O(x). Sin
e (Ni)i2! is a network at x, there is i 2 ! su
h thatNi � O(x). Taking into a

ount that limn!1 j��1(n)j =1, �nd n 2 ! su
h thatj��1(m)j > i for all m � n. Now the 
hoi
e of the sequen
e (xk) guarantees thatfor every m � n there is k 2 ��1(m) with xk 2 Ni � O(x). �Theorem 2 shows that it is important to dete
t points x with 
ountable network
hara
ter nw�(x). Let us re
all that the 
hara
ter �(x) (resp. the �-
hara
ter��(x)) of a point x in a topologi
al spa
e X is equal to the smallest 
ardinalityof a neighborhood base (resp. a �-base) at x. A �-base at x is any �-network at x
onsisting of non-empty open subsets of X . These de�nitions imply the followingsimple:Proposition 3. For any non-isolated point x of a T1-spa
e X ,(1) nw�(x) � �(x);(2) nw�(x) � ��(x) provided that x has a neighborhood 
ontaining no iso-lated point of X ;(3) nw�(x) = �0 if x is the limit of an inje
tive Fr-
onvergent sequen
e in X .The following simple example shows that the usual 
onvergen
e of the inje
tivesequen
e in Proposition 3(3) 
annot be repla
ed by the meager 
onvergen
e. Italso shows that Theorem 2 
annot be reversed.Example 4. Let F be the meager �lter on ! 
onsisting of the sets F � ! su
hthat limn!1 jF \ [2n; 2n+1)j2n = 1:On the spa
e X = ! [ f1g 
onsider the topology in whi
h all points n 2 ! areisolated while the sets F [ f1g, F 2 F , are neighborhoods of 1. It is 
lear thatthe sequen
e xn = n, n 2 !, F-
onverges to1 in X . On the other hand, a simplediagonal argument shows that nw�(1;X) > �0.Theorem 5. Ea
h in�nite 
ompa
t Hausdor� spa
e X 
ontains a point x 2 Xwith nw�(x) = �0.Proof: Theorem trivially holds if X 
ontains a non-trivial 
onvergent sequen
e.So we assume that X 
ontains no non-trivial 
onvergent sequen
e. Then X 
on-tains a 
losed subset C � X that admits a 
ontinuous map g : C ! I onto theunit interval I= [0; 1℄, see [7, p.172℄. Repla
ing C by a smaller subset, we 
anassume that the map g : C ! I is irredu
ible, whi
h means that g(C 0) 6= I forany proper 
losed subset C 0 � C. Fix any 
ountable base B of the topologyof I. The irredu
ibility of the map g : C ! I implies that the spa
e C has noisolated points. Also the irredu
ibility of g implies that the 
ountable familyN = fg�1(U) : U 2 Bg of open in�nite subsets of C is an i-network at ea
h pointx 2 C. Consequently, nw�(x) = �0 for ea
h point x 2 C. �Theorems 1{5 imply:
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tion spa
es and 
onvergen
e in topologi
al spa
es 277Corollary 6. For ea
h in�nite zero-dimensional 
ompa
t Hausdor� spa
e X andea
h topologi
al spa
e Y 
ontaining two non-empty open sets with disjoint 
lo-sures the fun
tion spa
e Cp(X;Y ) is meager. In parti
ular, the fun
tion spa
eCp(!�; 2) is meager.Also Theorems 2 and 5 implyCorollary 7. Let � : ! ! ! be a �nite-to-one fun
tion with limn!1 j��1(n)j =1. Ea
h in�nite 
ompa
t Hausdor� spa
e X 
ontains an inje
tive F-
onvergentsequen
e for some �-meager �lter F on !.In fa
t, the 
ondition limn!1 j��1(n)j =1 in Corollary 7 
annot be weakened.Let us re
all that an in�nite subset A is 
alled a pseudointerse
tion of a familyof sets F if A �� F for all F 2 F where A �� F means that A n F is �nite. Ifa sequen
e (xn)n2! in a topologi
al spa
e F-
onverges to a point x1 for some�lter F with in�nite pseudointerse
tion A � !, then the subsequen
e (xk)k2A
onverges to x1 in the standard sense.Lemma 8. Let I be a 
ountable set and C = Si2I Ci, where the sets Ci arenonempty and mutually disjoint, and supi2I jCij < !. If H is a �lter on C allof whose elements interse
t all but �nitely many Ci's, then H has an in�nitepseudointerse
tion.Proof: The proposition will be proved by indu
tion on n = supi2I jCij. In 
asen = 1 there is nothing to prove. Suppose that it is true for all k < n and let I ,fCi : i 2 Ig, H be as above with maxfjCij : i 2 Ig = n. If for every H 2 Hthe set fi 2 I : jCi \ H j < ng is �nite, then C itself is a pseudointerse
tion ofH. So suppose that J = fi 2 I : jCi \ H0j < ng is in�nite for some H0 2 H.In this 
ase we may use our indu
tive hypothesis for J , fCi \ H0 : i 2 Jg,G = H � (Si2J Ci \ H0), and n � 1. Thus G has an in�nite pseudointerse
tion,and hen
e so does H. �Proposition 9. If F is a �-meager �lter on ! for some surje
tive fun
tion � :! ! ! with limn!1j��1(n)j < 1, then any sequen
e (xn)n2! in a topologi
alspa
e X that F-
onverges to a point x1 2 X 
ontains a subsequen
e (xnk )k2!that 
onverges to x1.Proof: Choose an in�nite set I � ! su
h that supi2I j��1(i)j < !. Let Ci =��1(i) for every i 2 I , C = Si2I Ci and H = fF \ C : F 2 Fg. A

ording toLemma 8 there exists an in�nite set D � C su
h that D �� H for every H 2 H.Then the subsequen
e (xi)i2D 
onverges to x1. �Now let us 
ompare two fa
ts:(1) the 
ompa
t Hausdor� spa
e �! 
ontains no inje
tive Fr-
onvergent se-quen
es;(2) ea
h in�nite 
ompa
t Hausdor� spa
e X 
ontains an inje
tive F-
onver-gent sequen
e for some meager �lter F .



278 T. Banakh, V. Mykhaylyuk, L. ZdomskyyThese two fa
ts suggest a problem of �nding the borderline between �lters F thatadmit an inje
tive F-
onvergent sequen
e in �! and �lters that admit no su
hsequen
es. We hope that this borderline passes near analyti
 �lters. Let us re
allthe de�nitions of some properties of �lters.A �lter F is analyti
 (resp. an F�-�lter , F�Æ-�lter) if F is an analyti
 sub-set (resp. F�-subset, F�Æ-subset) of the power-set P(!) = 2! endowed with thenatural 
ompa
t metrizable topology.A �lter F is measurable (resp. null) if is it measurable (resp. has measurezero) with respe
t to the Haar measure on the Cantor 
ube 2! 
onsidered as the
ountable produ
t of 2-element groups. It is well-known that a �lter is measurableif and only if it is null. The relations between meager and null �lters are not trivialand were investigated in [18℄ and [2℄. Sin
e ea
h analyti
 �lter is meager and null,we get the following 
hain of properties of �lters:F� ) analyti
 ) meager & null:We are going to show that some meager and null �lter F admits an inje
tiveF-
onvergent sequen
e in �! while no F�-�ler F admits su
h a sequen
e. Thelatter fa
t holds more generally for analyti
 P+-�lters.A �lter F on ! is 
alled a P -�lter (resp. a P+-�lter) if ea
h 
ountable subfamilyC � F has a pseudointerse
tion A that belongs to F (resp. to F+). HereF+ = fA � ! : 8F 2 F A \ F 6= ;g
oin
ides with the union of all �lters that 
ontain F . It is 
lear that ea
h P -�lteris a P+-�lter. In parti
ular, the Fr�e
het �lter F is both a P -�lter and P+-�lter.For a �lter F on ! by �(F) we denote its 
hara
ter . It is equal to the smallest
ardinality jBj of the base B � F that generates F in the sense that F = fF �! : 9B 2 B B � Fg. It is well-known that the 
hara
ter of ea
h free ultra�lter on! is un
ountable. The un
ountable 
ardinal u = minf�(U) : U 2 �! n!g is 
alledthe ultra�lter number , see [3℄, [20℄. The dominating number d is the smallest
ardinality jDj of a 
o�nal subset D in the partially ordered set (!!;�), see [3℄,[20℄. By Ketonen's Theorem [10℄, ea
h �lter F on ! with 
hara
ter �(F) < d isa P+-�lter .Now we 
an establish some properties of �lters F admitting inje
tive F-
onver-gent sequen
es in �!.Theorem 10. Assume that a �lter F admits an inje
tive F-
onvergent sequen
e(xn)n2! in �!.(1) If F is a P+-�lter, then for some set A 2 F+ the �lter FjA = fF \ A :F 2 Fg on A is an ultra�lter.(2) �(F) � minfd; ug;(3) F is not an analyti
 P+-�lter;(4) F is not an F�-�lter.



On fun
tion spa
es and 
onvergen
e in topologi
al spa
es 279Proof: 1. Assume that F is a P+-�lter. Let x1 be the F-limit of the F-
onvergent sequen
e (xn)n2! in �!. Sin
e the sequen
e (xn) is inje
tive, there ism 2 ! su
h that for every n � m xn 6= x1 and hen
e we 
an �x a neighborhoodUn of x1 whose 
losure does not 
ontain the point xn. Sin
e the sequen
e (xk) F-
onverges to x1, for every n � m the set Fn = fk 2 ! : xk 2 Ung belongs to the�lter F . Sin
e F is a P+-�lter, the sequen
e (Fn)n�m has a pseudointerse
tionA 2 F+. It follows from the 
hoi
e of the neighborhoods Un that the set fxngn2Ais dis
rete in �! and the sequen
e (xn)n2A is FjA-
onvergent to x1. By Rudin'sTheorem [16℄, the map f : A ! �!, f : n 7! xn, has inje
tive Stone-�Ce
hextension �f : �A! �!, whi
h implies that the �lter FjA is an ultra�lter.2. If �(F) < minfd; ug, then �(F) < d and by the Ketonen's Theorem [10℄F is a P+-�lter. By the pre
eding statement, FjA is an ultra�lter for some setA 2 F+. Consequently, u � �(FjA) � �(F) < uand this is a desired 
ontradi
tion.3. If F is an analyti
 P+-�lter, then by the �rst statement, FjA is an ultra�lterfor some subset A 2 F+. On the other hand, the �lter FjA is analyti
 being a
ontinuous image of the analyti
 �lter F . So, FjA 
annot be an ultra�lter.4. Assume that F is an F�-�lter. In order to apply the pre
eding statement,it suÆ
es to show that F is a P+-�lter. This is done in the following lemma. �Lemma 11. Ea
h F�-�lter F on ! is a P+-�lter.Proof: A

ording to a result of Mazur [12℄ (see also [17℄), for the F�-�lter Fthere exists a lower semi-
ontinuous submeasure � on P(!) su
h that F = fA �! : �(!nA) <1g. Sin
e F 6= P(!), �(!) =1 and the subadditivity of � impliesthat �(F ) =1 for all F 2 F . It follows from F = fA � ! : �(! nA) <1g thata set A � ! belongs to F+ if and only if �(A) =1.To show that F is a P+-�lter, �x any de
reasing sequen
e of sets (Ak)k2! inF . Let n0 = 0 and by indu
tion 
onstru
t an in
reasing sequen
e of positiveintegers (nk)k2! su
h that �([nk ; nk+1) \ Ak) > k for every k 2 !. Then the setA = Sk2! [nk; nk+1) \ Ak is a pseudointerse
tion of (Ak)k2! and belongs to thefamily F+ as �(A) =1. �Let us remark that Lemma 11 
annot be generalized to F�Æ-�lters. The fol-lowing example was suggested to the authors by Jonathan Verner.Example 12. The �lterFr 
 Fr = �A � ! � ! : �n 2 ! : fm 2 ! : (n;m) 2 Ag 2 Fr	 2 Fr	on ! � ! is an F�Æ but not P+.Looking at Theorem 10, it is natural to ask the followingQuestion 13. Does �! 
ontain an inje
tive F-
onvergent sequen
e for someanalyti
 �lter F?



280 T. Banakh, V. Mykhaylyuk, L. ZdomskyyOn the other hand, we have the following fa
t:Theorem 14. Ea
h in�nite 
ompa
t Hausdor� spa
e X 
ontains an inje
tiveF-
onvergent sequen
e for some meager and null �lter F .Proof: Choose any �nite-to-one fun
tion � : ! ! ! su
h thatlimn!1 j��1(n)j =1 and Yn2!(1� 2�j��1(n)j) = 0:By Corollary 7, any in�nite 
ompa
t Hausdor� spa
e X 
ontains an inje
tive F-
onvergent sequen
e for some �-meager �lter F . It is 
lear that F is meager. Itremains to 
he
k that F is null. The �lter F , being �-meager, lies in the unionSn2! Fn where Fn = fA � ! : 8 k � n A \ ��1(k) 6= ;g. It suÆ
es to prove thatea
h set Fn has Haar measure zero. Observe that the set Fn 
an be identi�edwith the produ
t Qk�n(P('�1(k)) n f;g), whi
h has Haar measureYk�n 2j'�1(k)j � 12j'�1(k)j = Yk�n(1� 2�j'�1(k)j) = 0: �Remark 15. After writing this paper the authors learned from V. Tka
hukthat the meager property of the fun
tion spa
e Cp(!�; 2) was also establishedby E.G. Pytkeev in his Dissertation [15, 3.24℄. Game 
hara
terizations of topolo-gi
al spa
es X with Baire fun
tion spa
e Cp(X;R) were given in [9℄, [19℄ and [14℄.A
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