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Loal/global uniform approximationof real-valued ontinuous funtionsAnthony W. HagerAbstrat. For a Tyhono� spae X, C(X) is the lattie-ordered group (l-group) ofreal-valued ontinuous funtions on X, and C�(X) is the sub-l-group of boundedfuntions. A property that X might have is (AP) whenever G is a divisible sub-l-group of C�(X), ontaining the onstant funtion 1, and separating points fromlosed sets in X, then any funtion in C(X) an be approximated uniformly overX by funtions whih are loally in G. The vetor lattie version of the Stone-Weierstrass Theorem is more-or-less equivalent to: Every ompat spae has AP.It is shown here that the lass of spaes with AP ontains all Lindel�of spaesand is losed under formation of topologial sums. Thus, any loally ompatparaompat spae has AP. A paraompat spae failing AP is Roy's ompletelymetrizable spae �.Keywords: real-valued funtion, Stone-Weierstrass, uniform approximation, Lin-del�of spae, loally inClassi�ation: Primary 41A30, 54C30, 46E05, 54D20; Seondary 54C35, 54D35,26E99, 06F201. IntrodutionAll spaes will be Tyhono�. The basi theory of C(X) is reorded in [GJ60℄.With pointwise +, �, and partial order �, and resulting lattie operations _ and^, C(X) is a ommutative lattie-ordered ring with identity the onstant funtion1. We shall barely use the multipliation here, mostly viewing C(X) as an l-groupwith distinguished element 1.(The basi theory of l-groups is reorded in [D95℄, and of arhimedean l-groupswith \distinguished unit" in [HR77℄. We will only barely need to refer to these.)The notation G � C�(X) (or G � C(X)) means G is a sub-l-group of C�(X)(or C(X)) ontaining 1.Given G � C�(X), de�ne loG � C(X): f 2 loG means f 2 RX and for eahp 2 X there are g 2 G and an open neighborhood of U of p with [g(x) = f(x) foreah x 2 U ℄.(Sine \loally ontinuous" implies \ontinuous", loG � C(X). Let 
 denote+;_;^. If f1; f2 2 loG and p 2 X , we have gi and Ui for fi respetively, theng1 
 g2 and U1 \ U2 for f1 
 f2 and p, showing loG is a sub-l-group of C(X).)



284 A.W. HagerLet S be a set, and let L � M � RS . If [8m 2 M 8 � > 0 9 l 2 L withjm(x) � l(x)j � � 8x 2 S℄, we say that L is uniformly dense in M , and writeL ud� M . (Note that only rational � need be onsidered.)For L � RS , let L+ = fl 2 L j 0 � lg. Note that, if L �M � RS , L � RS andM � RS , L+ ud� M+ implies L ud� M .A group (G;+) is divisible if 8 g 2 G 8n 2 N 9 h 2 G with nh = g. ForG � C(X), this just means 8 g 2 G 8 r 2 Q, rg 2 G. (Throughout the paper, allassumptions \G is divisible" ould be replaed by \G is a vetor lattie" with noreal e�et.)Say that G � C�(X) is full if G is divisible and separates points and losedsets of X (de�ned below).De�nition 1.1. The spae X has the Approximation Property, AP, if, wheneverG � C�(X) is full, then loG ud� C(X).We shall prove suessively that spaes in these progressively larger lasseshave AP: Compat, in fat, almost ompat; both loally ompat and �-ompat;Lindel�of. And, a sum of spaes has AP i� eah summand has AP.Indeed, it is not so easy to loate spaes failing AP; Roy's spae � is essentiallythe only example we know, this fat due to Sola's proof that � fails a propertyweaker (seemingly) than AP. See x6 here.We reord some tehnial preliminaries.Suppose G � C(X), and A and B are families of subsets of X (e.g., A = points,B = losed sets). With some inonsisteny in language we say G separates A andB if for eah A 2 A and B 2 B with A \ B = ;, there is a g 2 G(�) with g(A) = f0g and g(B) = f1g.If A = B, we just say G separates A (e.g., G separates points). Sine G is asub-l-group and 1 2 G, in (�) we an hange ((A; 0) and (B; 1)) to ((A; 1) and(B; 0)) by replaing g by 1� g, and we an suppose 0 � g � 1 by replaing g by(g ^ 0)_ 1, and we an hange (B; 1) to (B; z) for any integer z by replaing g byzg, and if G is divisible, we an hange (B; 1) to (B; r) for any rational r.Let f 2 C(X). The set Z(f) = fx 2 X j f(X) = 0g is alled a zero-set, andoz f = X � Z(f) a ozero-set. Zero-sets are losed, any f�1[a; b℄ is a zero-set,and f�1(a; b) a ozero-set. See [GJ60℄.Lemma 1.2. Let G � C�(X) and let B be a family of subsets of X .(a) For any X , if G separates points and B, then G separates ompat setsand B.(b) For ompat X , if G separates points, then G separates zero-sets.Proof: (a) Suppose E is ompat and B 2 B, with E \ B = ;. For eah p 2 Ethere is a 0 � gp 2 G with [gp(p) = 2; gp(B) = f0g℄. Then ffx j gp(x) > 1g j



Loal/global uniform approximation of real-valued ontinuous funtions 285p 2 Eg overs E, so there is a �nite I � E for whih ffx j gp(x) > 1g j p 2 Igovers E. Then, g = 1 ^ (WI gp) has g(E) = f1g and g(B) = f0g.(b) G separates ompat sets by (a). Zero-sets are losed, and thus ompatwhen X is ompat. �Eah X has its �Ceh-Stone ompati�ation �X : Eah f 2 C�(X) has theunique extension �f 2 C(�X), and extension provides an l-group isomorphismC�(X) � C(�X) preserving 1; eah f 2 C(X) has the unique extension �f 2C(�X; [�1;1℄). See [E89℄ and [GJ60℄.In fat, for any G � C(X) whih separates points and losed sets of X , thereis a similarly assoiated unique ompati�ation of Y G of X , alled the Yosidaspae of G: Eah g 2 G has the unique extension ~g 2 C(Y G; [�1;1℄); withG� � fg 2 G j g is boundedg, extension provides an isomorphism G� � f~g j g 2G�g � C(Y G), and f~g j g 2 G�g separates points in Y G, and thus, if divisible,is full in C(Y G), by 1.2. See [HR77℄. Of ourse, Y G also an be onstruted byembedding X in a ube.Conversely, if K is a ompati�ation of X , then of ourse, C(K) separatespoints of K, thus points from losed sets in K (1.2). Thus also in X , so that theset of restritions C(K) j X is full in C�(X).2. Compat and almost ompatThis setion is an aount, for our purposes, of the Stone-Weierstrass Theorem.What we will say is known, but it is simpler to sketh proofs than do a tediousonfusing translation to preise statements of what we need.Theorem 2.1 ([H47, Theorem 1℄). LetX be any Tyhono� spae, let G � C�(X)and suppose G is divisible. Then, G ud� C�(X) if and only if G separates zero-sets.Proof: Suppose G � C�(X), and G is divisible.Suppose G ud� C�(X) and Z0; Z1 are disjoint zero-sets. Take fi 2 C(X) withZ(fi) = Zi. Then f = jf0j=(jf0j + jf1j) has value i on Zi. Take g 2 G withjf � gj � 1=3. Then g0 = 3((g _ 1=3) ^ 2=3� 1=3) has value i on Zi.Suppose G � C�(X) separates zero-sets, f 2 C�(X)+ and � > 0 is rational.For n 2 N, let Un = f�1(�(n�2); �(n+2)) and En = f�1[�(n�1); �(n+1)℄. Notethat X � Un and En are disjoint zero-sets. Sine f is bounded, there is M withf < M + 2, so that fUn j n � Mg overs X . For eah n � M , hoose gn 2 Gwith values 0 on X � Un and �(n � 1) on En, and 0 � gn � �(n � 1). Theng � Wn�M gn has jf � gj � 3�. �Corollary 2.2 (Stone-Weierstrass: [S48, Corollary 3, p. 174℄). LetX be ompat,let G � C(X) and suppose G is divisible. If G separates points then G ud� C(X).Every ompat spae has AP.Proof: Here C�(X) = C(X). Apply 1.2 and 2.1. �



286 A.W. HagerThe statement \Every ompat spae has AP," implies the rest of 2.2, thoughthis requires an argument: Suppose divisible G � C�(X), separating points.Then, as in x1, the set of extensions ~G � C(Y G) is full. If X is ompat,C�(X) = C(X) and Y G = X . Assuming X has AP, loG ud� C(X). But, sineY G = X , loG = G by [HR78, 5.2 and 5.5(a)℄.X is alled almost ompat if j�X �X j � 1, equivalently, the only ompati-�ation of X is �X . See [GJ60℄.Corollary 2.3 ([H47, Theorem 4℄). X is almost ompat if and only if for everyfull G � C�(X), G ud� C�(X).Every almost ompat spae has AP.Proof: We use the disussion after 1.2. For G � C�(X) full, ~G ud� C(Y G)by 2.2. If X is almost ompat, Y G = �X , so ~G ud� C(�X), so G = eG j X ud�C(�X) j X = C�(X). Conversely, if there is a ompati�ation K 6= �X , thenG = C(K) j X � C�(X) is full, not uniformly dense in C�(X). �3. Loally ompat �-ompatThis is the most novel step in analyzing AP.Theorem 3.1. Every loally ompat and �-ompat spae has AP.The proof will use some known lemmas, and an additional onstrution usingthe Stone-Weierstrass Theorem on piees of the spae.Lemma 3.2. The following are equivalent about X .(a) X is loally ompat and �-ompat.(b) There is a sequene fKn j n 2 Ng of ompat sets, with Kn � intKn+18n, and X = Sn2NKn.() There is a v 2 C�(X) with 0 < v(x) 8x, and [8 � > 0 9 ompat K with(x =2 K ) v(x) � �)℄.(d) There is u 2 C(X) with 0 < u(x) 8x, and [8 0 < M 9 ompat K with(x =2 K )M � u(x))℄.Proof: This is a standard, and we just sketh.(b) ) (a). Obvious.(a)) (b). WriteX = Sn2NEn, with En ompat. By indution: LetK1 = E1,and given ompat Kn, over it by open sets with ompat losure, take a �nitesubover with union U , and let Kn+1 = U .(b) ) (). X is normal. By Urysohn's Lemma, there is a vn 2 C(X) with 0 �vn � 1, with value 1 on Kn, and 0 on X � intKn+1. Then v �P 2�nvn 2 C(X)by the Weierstrass M-test. (See [E89℄ if needed.)() ) (d). Set u � 1=v.(d) ) (b). Given the u, for suitable Mn " +1, let Kn = u�1[0;Mn℄. �



Loal/global uniform approximation of real-valued ontinuous funtions 287In any C(X), a loally �nite partition of unity is a family ff�g � C(X; [0; 1℄),with fozf�g loally �nite (meaning: Every point has a neighborhood meetingonly �nitely many of the sets oz f�), and with P� f�(x) = 1 8x (in whih: 8x,P� f�(x) is a �nite sum, by the loal �niteness).Lemma 3.3 ([BH74, 2.1℄). For any X : if fUn j n 2 Ng is a (ountable) overof X by ozero-sets, then there is in C(X) a loally �nite partition of unityfun j n 2 Ng with oz fn � Un 8n.Proof of 3.1: Let u 2 C(X) be as in 3.2(d), let Un = u�1(n � 1; n + 1) andVn = u�1(n � 3=2; n + 3=2). Apply 3.3 to fUng. For any f 2 C(X), we havef = f � 1 = f �Pun =P(fun).Let C � C�(X) be full. For any K � X , G j K � C�(K) is full, thus separatespoints of K. For eah n, Un is ompat, and so G j Un ud� C(Un) by 2.2.Let f 2 C(X)+, and let � > 0 be rational. For eah n, take gn 2 G withjfun � gnj � � on Un. Let Dn = Un�Un, and by ontinuity of the funtions andompatness of Dn there is an open Wn with Dn � Wn � Vn suh that fun � �and un � 2� on Wn.Now, Un is ompat, so supf(fun)(x) j x 2 Ung � sn < +1. Using 1.2, takehn 2 G with values � sn on Un, and 0 on X�(Un[Wn). Then kn � gn^hn 2 G.We have jfun � knj � 2� on all of X , and we have oz kn � ozun [ Wn �Un [Wn � Vn.If Vi\Vj 6= ;, then ji�jj � 2, so fozkng is loally �nite, so l �P kn 2 C(X).Sine on Vn, we have l =Pfki j n� 2 � i � n+ 2g, we have l 2 loG.A little alulation shows jf � lj � 6� on all of X . �4. Lindel�ofHere is the next enlargement of the lass AP.Theorem 4.1. Every Lindel�of spae has AP.The proof of this uses 3.1, the following known items, and some simple furtherargument.Lemma 4.2. Suppose X � Y . Eah of the following implies the next.(a) X is Lindel�of.(b) X is z-embedded in Y : For eah zero-set Z of X , there is a zero set Z 0 ofY with Z = Z 0 \X .() 8 f 2 C(X) 8 � > 0 9 a ozero-set V of Y with X � V , and 9h 2 C(V )with jf(x)� h(x)j � � 8x 2 X .(a) ) (b) �rst appeared in [HJ61, 5.3℄, and is attributed to M. Jerison; thereis also a proof in [BH74, 4.1℄.(b) ) (), assuming X dense in Y , �rst appears in [H69, 3.6℄; the density isremoved, and the proof leaned up, in [BH74, 2.2℄. This latter proof identi�esand invokes 3.3.



288 A.W. HagerProof of 4.1: Suppose X is Lindel�of, G � C�(X) is full, and let Y = Y G bethe Yosida spae of G (disussed in x1), so that G � ~G � C(Y ), with ~G � C(Y )full (by 1.2).Let V be a ozero-set of Y with V � X . Then, ~G j V � C�(V ) is full, and Vis loally ompat and �-ompat, so 3.1 shows lo( ~G j V ) ud� C(V ). Note thatk 2 lo( ~GjV ) implies k j X 2 loG.Take f 2 C(X) and rational � > 0. Apply 4.2 to �nd V as above and h 2 C(V )with jf � hj � � on X . Apply the previous paragraph to �nd k 2 lo( ~G j V ) withjh� kj � � on V . We then have jf � kj � 2� on X , and k j X 2 loG.Thus loG ud� C(X). �5. SumsGiven fXi j i 2 Ig a set of spaes, the sum (or oprodut)PI Xi is the disjointunion, in whih U is open if and only if for eah i, U \ Xi is open in Xi. Weenlarge further the lass AP.Theorem 5.1. PI Xi has AP if and only if eah Xi has AP.Proof: Suppose eah Xi has AP, let X =PXi and suppose G � C�(X) is full.Let Gi = G j Xi (the set of restritions). It is easy to see that Gi � C�(Xi) isfull, so loGi ud� C(Xi). Take f 2 C(X) and rational � > 0. So f j Xi 2 C(Xi),and there is gi 2 loG with jf � gij � � on Xi. De�ne g 2 C(X) as g(x) = gi(x)when x 2 Xi. Evidently, g 2 loG, and jf � gj � � on all of X .For the onverse, it suÆes to show that if X has AP and U is lopen inX , then U has AP. So, suppose we have suh X and U , and G � C�(U) isfull. Let H = fh 2 C�(X)jhjU 2 Gg. Beause U is lopen, H � C�(X) fulland loH = ff 2 C(X)jf jU 2 loGg. Thus, loH ud� C(X), and this impliesloG ud� C(U). �Corollary 5.2. Any loally ompat paraompat spae has AP.Proof: Suh a spae is the sum of loally ompat �-ompat spaes, by [E89,p. 308℄. Apply 3.1 and 5.1. �In 5.2, \loally ompat" annot be dropped, beause of Example 6.3. I donot know if \paraompat" an be dropped, but strongly doubt it; see ommentsin x7.6. One exampleWe explain why Roy's spae � [R68℄ fails AP, ourtesy of M. Sola [S87℄. Thisis essentially the only example we know of a spae failing AP. (Of ourse, anyspae with � as a summand will fail AP, by 5.1.)



Loal/global uniform approximation of real-valued ontinuous funtions 289Let K be a ompati�ation of X . Set C[K;X ℄ = SfC(V )jX jV is open inK and V � Xg. Note that C[�X;X ℄ = C(X) (beause f 2 C(X) extends to�f 2 C(�X; [�1;+1℄), so f 2 C(V ) j X for V = �f�1(�1;+1)).We say that H � C(X) is uniformly omplete if H is losed in C(X) underuniform onvergene of sequenes. Of ourse, C(X) and C�(X) are uniformlyomplete.Proposition 6.1. (a) Suppose K is a ompati�ation of X . Then C[K;X ℄� C(X), separates points and losed sets and is divisible, and C[K;X ℄ =loC[K;X ℄.(b) Suppose G � C�(X) separating points and losed sets. Then G � loG �C[Y G;X ℄ � C(X); if G is uniformly omplete, then loG = C[Y G;X ℄.(C[K;X ℄ need not be uniformly omplete: Let K = [0; 1℄; X the irrationalpoints. Then C[K;X ℄ ud� C(X) by 4.2, but there is f 2 C(X) with no ontinuousextension to any p 2 K �X [FGL65℄.)At the risk of exessive jargon, let us say: \H is almost C(X)" if H � C(X),H separates points and losed sets, H is divisible and uniformly omplete andH = loH . And \K is almost �X" if K is a ompati�ation of X , and �V = �Xfor eah V open in K with V � X .Proposition 6.2. (a) Suppose K is almost �X . Then, C[K;X ℄ is almostC(X) and Y C[K;X ℄ = K; and C[K;X ℄ = C(X) if and only if K = �X .(b) H is almost C(X) if and only if H = C[Y H;X ℄ and Y H is almost �X .It is fairly easy to derive 6.2 from 6.1, and the proof of 6.1 is not diÆult. Inany event, the proofs appear, more-or-less, in [H76℄ (mutatis mutandis), beause6.1 and 6.2 an be shown equivalent to statements in [H76℄. See also remarksbelow.If X has AP, then [H almost C(X) implies H = C(X)℄ (beause H = loH =loH�), and so by 6.2 [K almost �X implies K = �X ℄. Thus, if X has aompati�ationK whih is almost �X butK 6= �X , then X will fail AP. In [R68℄is onstruted a ompletely metrizable spae � for whih ind� = 0 < 1 = dim�.Consequently, the maximal zero-dimensional ompati�ation �X is not ��. In[S87℄ it is shown (in response to a question from [H76℄ | see 6.4 below) �� isalmost ��. (This is not easy.)Example 6.3. � fails AP.Remark 6.4. My paper [H76℄ was an inonlusive attempt to give a new order-algebrai haraterization of C(X). In 6.1 and 7.3 there, appears what is alleda \working onjeture," whih is equivalent to:If H is almost C(X) and X = R(H) (the real ideal spae of H),(y) then H = C(X).



290 A.W. Hager(Here, that X = R(H) is equivalent to: 8 p 2 Y H �X there is a GÆ-set U of Y Hwith p 2 U and U \ X = ;.) And I said \I suspet (y) false" (p. 18). I pointedout there in 6.4 (a) , (b) what is, in e�et, the onsequene of 6.2 above, that(H almost C(X)) H = C(X)) if and only if (K almost �X ) K = �X) | thissans \X = R(H)" | and said that I did not know if either/both is/are true. Inthe \if and only if" here, \X = R(H)" translates to \X is GÆ-losed in K".Sola ounterexampled (K almost �X ) K = �X) with X = �, K = ��.This does not ounterexample (y) beause the GÆ-losure of X in �X is what isalled ��, the so-alled \N-ompati�ation" of �, and the assoiated \H almostC(�)" is H = lo(C(��) j �) = C(��)j�; here R(H) = ��. (See [S87℄ and[N73℄ for some of these details.)The upshot of this is: (y) still remains an open question. I still suspet (y)false. (A related question is: H almost C(X) ?) H � C(R(H))? As noted above,� fails to ounterexample this.)7. Other AP'sThe ondition on X disussed in x6 above, that H almost C(X)) H = C(X),an be viewed as another Approximation Property for X , and these are severalsimilar ones, whih might or might not be worth further study, and whih we list.In the following, G and H are assumed to separate points and losed sets of X .(AP1) 8G � C�(X), �(loG)� � C(�X) separates points of �X .(AP) 8 divisible G � C�(X), loG ud� C(X).(AP1) 8 divisible uniformly omplete G � C�(X), loG ud� C(X).(AP2) H almost C(X)) H = C(X).It an be shown (and will be, in [H1℄) that AP1 ) AP, and it is easy to seethat AP) AP1 ) AP2. I have no knowledge of any of the onverse impliations.It is true (and not so easy) that any loally ompat �-ompat spae has AP1,and also true that any loally ompat spae has AP1, (beause in the onlusionof AP1, loG = C(X) by applying the Stone-Weierstrass Theorem on ompatneighborhoods).It does not seem plausible to me that every loally ompat spae has AP; itseems to me that some version of paraompatness is required for AP.Here are three more spei� questions about the extent of the lass AP.(1) What is the relationship (if any) between the onditions \X has AP" and\�X has AP"? (�X is the Hewitt real ompati�ation [GJ60℄.)(2) Does every pseudoompat spae have AP?(3) Does every almost Lindel�of spae have AP? (X is almost Lindel�of if �Xis Lindel�of and j�X �X j � 1. See [HM02℄.)
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