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Lo
al/global uniform approximationof real-valued 
ontinuous fun
tionsAnthony W. HagerAbstra
t. For a Ty
hono� spa
e X, C(X) is the latti
e-ordered group (l-group) ofreal-valued 
ontinuous fun
tions on X, and C�(X) is the sub-l-group of boundedfun
tions. A property that X might have is (AP) whenever G is a divisible sub-l-group of C�(X), 
ontaining the 
onstant fun
tion 1, and separating points from
losed sets in X, then any fun
tion in C(X) 
an be approximated uniformly overX by fun
tions whi
h are lo
ally in G. The ve
tor latti
e version of the Stone-Weierstrass Theorem is more-or-less equivalent to: Every 
ompa
t spa
e has AP.It is shown here that the 
lass of spa
es with AP 
ontains all Lindel�of spa
esand is 
losed under formation of topologi
al sums. Thus, any lo
ally 
ompa
tpara
ompa
t spa
e has AP. A para
ompa
t spa
e failing AP is Roy's 
ompletelymetrizable spa
e �.Keywords: real-valued fun
tion, Stone-Weierstrass, uniform approximation, Lin-del�of spa
e, lo
ally inClassi�
ation: Primary 41A30, 54C30, 46E05, 54D20; Se
ondary 54C35, 54D35,26E99, 06F201. Introdu
tionAll spa
es will be Ty
hono�. The basi
 theory of C(X) is re
orded in [GJ60℄.With pointwise +, �, and partial order �, and resulting latti
e operations _ and^, C(X) is a 
ommutative latti
e-ordered ring with identity the 
onstant fun
tion1. We shall barely use the multipli
ation here, mostly viewing C(X) as an l-groupwith distinguished element 1.(The basi
 theory of l-groups is re
orded in [D95℄, and of ar
himedean l-groupswith \distinguished unit" in [HR77℄. We will only barely need to refer to these.)The notation G � C�(X) (or G � C(X)) means G is a sub-l-group of C�(X)(or C(X)) 
ontaining 1.Given G � C�(X), de�ne lo
G � C(X): f 2 lo
G means f 2 RX and for ea
hp 2 X there are g 2 G and an open neighborhood of U of p with [g(x) = f(x) forea
h x 2 U ℄.(Sin
e \lo
ally 
ontinuous" implies \
ontinuous", lo
G � C(X). Let 
 denote+;_;^. If f1; f2 2 lo
G and p 2 X , we have gi and Ui for fi respe
tively, theng1 
 g2 and U1 \ U2 for f1 
 f2 and p, showing lo
G is a sub-l-group of C(X).)



284 A.W. HagerLet S be a set, and let L � M � RS . If [8m 2 M 8 � > 0 9 l 2 L withjm(x) � l(x)j � � 8x 2 S℄, we say that L is uniformly dense in M , and writeL ud� M . (Note that only rational � need be 
onsidered.)For L � RS , let L+ = fl 2 L j 0 � lg. Note that, if L �M � RS , L � RS andM � RS , L+ ud� M+ implies L ud� M .A group (G;+) is divisible if 8 g 2 G 8n 2 N 9 h 2 G with nh = g. ForG � C(X), this just means 8 g 2 G 8 r 2 Q, rg 2 G. (Throughout the paper, allassumptions \G is divisible" 
ould be repla
ed by \G is a ve
tor latti
e" with noreal e�e
t.)Say that G � C�(X) is full if G is divisible and separates points and 
losedsets of X (de�ned below).De�nition 1.1. The spa
e X has the Approximation Property, AP, if, wheneverG � C�(X) is full, then lo
G ud� C(X).We shall prove su

essively that spa
es in these progressively larger 
lasseshave AP: Compa
t, in fa
t, almost 
ompa
t; both lo
ally 
ompa
t and �-
ompa
t;Lindel�of. And, a sum of spa
es has AP i� ea
h summand has AP.Indeed, it is not so easy to lo
ate spa
es failing AP; Roy's spa
e � is essentiallythe only example we know, this fa
t due to Sola's proof that � fails a propertyweaker (seemingly) than AP. See x6 here.We re
ord some te
hni
al preliminaries.Suppose G � C(X), and A and B are families of subsets of X (e.g., A = points,B = 
losed sets). With some in
onsisten
y in language we say G separates A andB if for ea
h A 2 A and B 2 B with A \ B = ;, there is a g 2 G(�) with g(A) = f0g and g(B) = f1g.If A = B, we just say G separates A (e.g., G separates points). Sin
e G is asub-l-group and 1 2 G, in (�) we 
an 
hange ((A; 0) and (B; 1)) to ((A; 1) and(B; 0)) by repla
ing g by 1� g, and we 
an suppose 0 � g � 1 by repla
ing g by(g ^ 0)_ 1, and we 
an 
hange (B; 1) to (B; z) for any integer z by repla
ing g byzg, and if G is divisible, we 
an 
hange (B; 1) to (B; r) for any rational r.Let f 2 C(X). The set Z(f) = fx 2 X j f(X) = 0g is 
alled a zero-set, and
oz f = X � Z(f) a 
ozero-set. Zero-sets are 
losed, any f�1[a; b℄ is a zero-set,and f�1(a; b) a 
ozero-set. See [GJ60℄.Lemma 1.2. Let G � C�(X) and let B be a family of subsets of X .(a) For any X , if G separates points and B, then G separates 
ompa
t setsand B.(b) For 
ompa
t X , if G separates points, then G separates zero-sets.Proof: (a) Suppose E is 
ompa
t and B 2 B, with E \ B = ;. For ea
h p 2 Ethere is a 0 � gp 2 G with [gp(p) = 2; gp(B) = f0g℄. Then ffx j gp(x) > 1g j
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tions 285p 2 Eg 
overs E, so there is a �nite I � E for whi
h ffx j gp(x) > 1g j p 2 Ig
overs E. Then, g = 1 ^ (WI gp) has g(E) = f1g and g(B) = f0g.(b) G separates 
ompa
t sets by (a). Zero-sets are 
losed, and thus 
ompa
twhen X is 
ompa
t. �Ea
h X has its �Ce
h-Stone 
ompa
ti�
ation �X : Ea
h f 2 C�(X) has theunique extension �f 2 C(�X), and extension provides an l-group isomorphismC�(X) � C(�X) preserving 1; ea
h f 2 C(X) has the unique extension �f 2C(�X; [�1;1℄). See [E89℄ and [GJ60℄.In fa
t, for any G � C(X) whi
h separates points and 
losed sets of X , thereis a similarly asso
iated unique 
ompa
ti�
ation of Y G of X , 
alled the Yosidaspa
e of G: Ea
h g 2 G has the unique extension ~g 2 C(Y G; [�1;1℄); withG� � fg 2 G j g is boundedg, extension provides an isomorphism G� � f~g j g 2G�g � C(Y G), and f~g j g 2 G�g separates points in Y G, and thus, if divisible,is full in C(Y G), by 1.2. See [HR77℄. Of 
ourse, Y G also 
an be 
onstru
ted byembedding X in a 
ube.Conversely, if K is a 
ompa
ti�
ation of X , then of 
ourse, C(K) separatespoints of K, thus points from 
losed sets in K (1.2). Thus also in X , so that theset of restri
tions C(K) j X is full in C�(X).2. Compa
t and almost 
ompa
tThis se
tion is an a

ount, for our purposes, of the Stone-Weierstrass Theorem.What we will say is known, but it is simpler to sket
h proofs than do a tedious
onfusing translation to pre
ise statements of what we need.Theorem 2.1 ([H47, Theorem 1℄). LetX be any Ty
hono� spa
e, let G � C�(X)and suppose G is divisible. Then, G ud� C�(X) if and only if G separates zero-sets.Proof: Suppose G � C�(X), and G is divisible.Suppose G ud� C�(X) and Z0; Z1 are disjoint zero-sets. Take fi 2 C(X) withZ(fi) = Zi. Then f = jf0j=(jf0j + jf1j) has value i on Zi. Take g 2 G withjf � gj � 1=3. Then g0 = 3((g _ 1=3) ^ 2=3� 1=3) has value i on Zi.Suppose G � C�(X) separates zero-sets, f 2 C�(X)+ and � > 0 is rational.For n 2 N, let Un = f�1(�(n�2); �(n+2)) and En = f�1[�(n�1); �(n+1)℄. Notethat X � Un and En are disjoint zero-sets. Sin
e f is bounded, there is M withf < M + 2, so that fUn j n � Mg 
overs X . For ea
h n � M , 
hoose gn 2 Gwith values 0 on X � Un and �(n � 1) on En, and 0 � gn � �(n � 1). Theng � Wn�M gn has jf � gj � 3�. �Corollary 2.2 (Stone-Weierstrass: [S48, Corollary 3, p. 174℄). LetX be 
ompa
t,let G � C(X) and suppose G is divisible. If G separates points then G ud� C(X).Every 
ompa
t spa
e has AP.Proof: Here C�(X) = C(X). Apply 1.2 and 2.1. �



286 A.W. HagerThe statement \Every 
ompa
t spa
e has AP," implies the rest of 2.2, thoughthis requires an argument: Suppose divisible G � C�(X), separating points.Then, as in x1, the set of extensions ~G � C(Y G) is full. If X is 
ompa
t,C�(X) = C(X) and Y G = X . Assuming X has AP, lo
G ud� C(X). But, sin
eY G = X , lo
G = G by [HR78, 5.2 and 5.5(a)℄.X is 
alled almost 
ompa
t if j�X �X j � 1, equivalently, the only 
ompa
ti-�
ation of X is �X . See [GJ60℄.Corollary 2.3 ([H47, Theorem 4℄). X is almost 
ompa
t if and only if for everyfull G � C�(X), G ud� C�(X).Every almost 
ompa
t spa
e has AP.Proof: We use the dis
ussion after 1.2. For G � C�(X) full, ~G ud� C(Y G)by 2.2. If X is almost 
ompa
t, Y G = �X , so ~G ud� C(�X), so G = eG j X ud�C(�X) j X = C�(X). Conversely, if there is a 
ompa
ti�
ation K 6= �X , thenG = C(K) j X � C�(X) is full, not uniformly dense in C�(X). �3. Lo
ally 
ompa
t �-
ompa
tThis is the most novel step in analyzing AP.Theorem 3.1. Every lo
ally 
ompa
t and �-
ompa
t spa
e has AP.The proof will use some known lemmas, and an additional 
onstru
tion usingthe Stone-Weierstrass Theorem on pie
es of the spa
e.Lemma 3.2. The following are equivalent about X .(a) X is lo
ally 
ompa
t and �-
ompa
t.(b) There is a sequen
e fKn j n 2 Ng of 
ompa
t sets, with Kn � intKn+18n, and X = Sn2NKn.(
) There is a v 2 C�(X) with 0 < v(x) 8x, and [8 � > 0 9 
ompa
t K with(x =2 K ) v(x) � �)℄.(d) There is u 2 C(X) with 0 < u(x) 8x, and [8 0 < M 9 
ompa
t K with(x =2 K )M � u(x))℄.Proof: This is a standard, and we just sket
h.(b) ) (a). Obvious.(a)) (b). WriteX = Sn2NEn, with En 
ompa
t. By indu
tion: LetK1 = E1,and given 
ompa
t Kn, 
over it by open sets with 
ompa
t 
losure, take a �nitesub
over with union U , and let Kn+1 = U .(b) ) (
). X is normal. By Urysohn's Lemma, there is a vn 2 C(X) with 0 �vn � 1, with value 1 on Kn, and 0 on X � intKn+1. Then v �P 2�nvn 2 C(X)by the Weierstrass M-test. (See [E89℄ if needed.)(
) ) (d). Set u � 1=v.(d) ) (b). Given the u, for suitable Mn " +1, let Kn = u�1[0;Mn℄. �



Lo
al/global uniform approximation of real-valued 
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tions 287In any C(X), a lo
ally �nite partition of unity is a family ff�g � C(X; [0; 1℄),with f
ozf�g lo
ally �nite (meaning: Every point has a neighborhood meetingonly �nitely many of the sets 
oz f�), and with P� f�(x) = 1 8x (in whi
h: 8x,P� f�(x) is a �nite sum, by the lo
al �niteness).Lemma 3.3 ([BH74, 2.1℄). For any X : if fUn j n 2 Ng is a (
ountable) 
overof X by 
ozero-sets, then there is in C(X) a lo
ally �nite partition of unityfun j n 2 Ng with 
oz fn � Un 8n.Proof of 3.1: Let u 2 C(X) be as in 3.2(d), let Un = u�1(n � 1; n + 1) andVn = u�1(n � 3=2; n + 3=2). Apply 3.3 to fUng. For any f 2 C(X), we havef = f � 1 = f �Pun =P(fun).Let C � C�(X) be full. For any K � X , G j K � C�(K) is full, thus separatespoints of K. For ea
h n, Un is 
ompa
t, and so G j Un ud� C(Un) by 2.2.Let f 2 C(X)+, and let � > 0 be rational. For ea
h n, take gn 2 G withjfun � gnj � � on Un. Let Dn = Un�Un, and by 
ontinuity of the fun
tions and
ompa
tness of Dn there is an open Wn with Dn � Wn � Vn su
h that fun � �and un � 2� on Wn.Now, Un is 
ompa
t, so supf(fun)(x) j x 2 Ung � sn < +1. Using 1.2, takehn 2 G with values � sn on Un, and 0 on X�(Un[Wn). Then kn � gn^hn 2 G.We have jfun � knj � 2� on all of X , and we have 
oz kn � 
ozun [ Wn �Un [Wn � Vn.If Vi\Vj 6= ;, then ji�jj � 2, so f
ozkng is lo
ally �nite, so l �P kn 2 C(X).Sin
e on Vn, we have l =Pfki j n� 2 � i � n+ 2g, we have l 2 lo
G.A little 
al
ulation shows jf � lj � 6� on all of X . �4. Lindel�ofHere is the next enlargement of the 
lass AP.Theorem 4.1. Every Lindel�of spa
e has AP.The proof of this uses 3.1, the following known items, and some simple furtherargument.Lemma 4.2. Suppose X � Y . Ea
h of the following implies the next.(a) X is Lindel�of.(b) X is z-embedded in Y : For ea
h zero-set Z of X , there is a zero set Z 0 ofY with Z = Z 0 \X .(
) 8 f 2 C(X) 8 � > 0 9 a 
ozero-set V of Y with X � V , and 9h 2 C(V )with jf(x)� h(x)j � � 8x 2 X .(a) ) (b) �rst appeared in [HJ61, 5.3℄, and is attributed to M. Jerison; thereis also a proof in [BH74, 4.1℄.(b) ) (
), assuming X dense in Y , �rst appears in [H69, 3.6℄; the density isremoved, and the proof 
leaned up, in [BH74, 2.2℄. This latter proof identi�esand invokes 3.3.



288 A.W. HagerProof of 4.1: Suppose X is Lindel�of, G � C�(X) is full, and let Y = Y G bethe Yosida spa
e of G (dis
ussed in x1), so that G � ~G � C(Y ), with ~G � C(Y )full (by 1.2).Let V be a 
ozero-set of Y with V � X . Then, ~G j V � C�(V ) is full, and Vis lo
ally 
ompa
t and �-
ompa
t, so 3.1 shows lo
( ~G j V ) ud� C(V ). Note thatk 2 lo
( ~GjV ) implies k j X 2 lo
G.Take f 2 C(X) and rational � > 0. Apply 4.2 to �nd V as above and h 2 C(V )with jf � hj � � on X . Apply the previous paragraph to �nd k 2 lo
( ~G j V ) withjh� kj � � on V . We then have jf � kj � 2� on X , and k j X 2 lo
G.Thus lo
G ud� C(X). �5. SumsGiven fXi j i 2 Ig a set of spa
es, the sum (or 
oprodu
t)PI Xi is the disjointunion, in whi
h U is open if and only if for ea
h i, U \ Xi is open in Xi. Weenlarge further the 
lass AP.Theorem 5.1. PI Xi has AP if and only if ea
h Xi has AP.Proof: Suppose ea
h Xi has AP, let X =PXi and suppose G � C�(X) is full.Let Gi = G j Xi (the set of restri
tions). It is easy to see that Gi � C�(Xi) isfull, so lo
Gi ud� C(Xi). Take f 2 C(X) and rational � > 0. So f j Xi 2 C(Xi),and there is gi 2 lo
G with jf � gij � � on Xi. De�ne g 2 C(X) as g(x) = gi(x)when x 2 Xi. Evidently, g 2 lo
G, and jf � gj � � on all of X .For the 
onverse, it suÆ
es to show that if X has AP and U is 
lopen inX , then U has AP. So, suppose we have su
h X and U , and G � C�(U) isfull. Let H = fh 2 C�(X)jhjU 2 Gg. Be
ause U is 
lopen, H � C�(X) fulland lo
H = ff 2 C(X)jf jU 2 lo
Gg. Thus, lo
H ud� C(X), and this implieslo
G ud� C(U). �Corollary 5.2. Any lo
ally 
ompa
t para
ompa
t spa
e has AP.Proof: Su
h a spa
e is the sum of lo
ally 
ompa
t �-
ompa
t spa
es, by [E89,p. 308℄. Apply 3.1 and 5.1. �In 5.2, \lo
ally 
ompa
t" 
annot be dropped, be
ause of Example 6.3. I donot know if \para
ompa
t" 
an be dropped, but strongly doubt it; see 
ommentsin x7.6. One exampleWe explain why Roy's spa
e � [R68℄ fails AP, 
ourtesy of M. Sola [S87℄. Thisis essentially the only example we know of a spa
e failing AP. (Of 
ourse, anyspa
e with � as a summand will fail AP, by 5.1.)



Lo
al/global uniform approximation of real-valued 
ontinuous fun
tions 289Let K be a 
ompa
ti�
ation of X . Set C[K;X ℄ = SfC(V )jX jV is open inK and V � Xg. Note that C[�X;X ℄ = C(X) (be
ause f 2 C(X) extends to�f 2 C(�X; [�1;+1℄), so f 2 C(V ) j X for V = �f�1(�1;+1)).We say that H � C(X) is uniformly 
omplete if H is 
losed in C(X) underuniform 
onvergen
e of sequen
es. Of 
ourse, C(X) and C�(X) are uniformly
omplete.Proposition 6.1. (a) Suppose K is a 
ompa
ti�
ation of X . Then C[K;X ℄� C(X), separates points and 
losed sets and is divisible, and C[K;X ℄ =lo
C[K;X ℄.(b) Suppose G � C�(X) separating points and 
losed sets. Then G � lo
G �C[Y G;X ℄ � C(X); if G is uniformly 
omplete, then lo
G = C[Y G;X ℄.(C[K;X ℄ need not be uniformly 
omplete: Let K = [0; 1℄; X the irrationalpoints. Then C[K;X ℄ ud� C(X) by 4.2, but there is f 2 C(X) with no 
ontinuousextension to any p 2 K �X [FGL65℄.)At the risk of ex
essive jargon, let us say: \H is almost C(X)" if H � C(X),H separates points and 
losed sets, H is divisible and uniformly 
omplete andH = lo
H . And \K is almost �X" if K is a 
ompa
ti�
ation of X , and �V = �Xfor ea
h V open in K with V � X .Proposition 6.2. (a) Suppose K is almost �X . Then, C[K;X ℄ is almostC(X) and Y C[K;X ℄ = K; and C[K;X ℄ = C(X) if and only if K = �X .(b) H is almost C(X) if and only if H = C[Y H;X ℄ and Y H is almost �X .It is fairly easy to derive 6.2 from 6.1, and the proof of 6.1 is not diÆ
ult. Inany event, the proofs appear, more-or-less, in [H76℄ (mutatis mutandis), be
ause6.1 and 6.2 
an be shown equivalent to statements in [H76℄. See also remarksbelow.If X has AP, then [H almost C(X) implies H = C(X)℄ (be
ause H = lo
H =lo
H�), and so by 6.2 [K almost �X implies K = �X ℄. Thus, if X has a
ompa
ti�
ationK whi
h is almost �X butK 6= �X , then X will fail AP. In [R68℄is 
onstru
ted a 
ompletely metrizable spa
e � for whi
h ind� = 0 < 1 = dim�.Consequently, the maximal zero-dimensional 
ompa
ti�
ation �X is not ��. In[S87℄ it is shown (in response to a question from [H76℄ | see 6.4 below) �� isalmost ��. (This is not easy.)Example 6.3. � fails AP.Remark 6.4. My paper [H76℄ was an in
on
lusive attempt to give a new order-algebrai
 
hara
terization of C(X). In 6.1 and 7.3 there, appears what is 
alleda \working 
onje
ture," whi
h is equivalent to:If H is almost C(X) and X = R(H) (the real ideal spa
e of H),(y) then H = C(X).



290 A.W. Hager(Here, that X = R(H) is equivalent to: 8 p 2 Y H �X there is a GÆ-set U of Y Hwith p 2 U and U \ X = ;.) And I said \I suspe
t (y) false" (p. 18). I pointedout there in 6.4 (a) , (b) what is, in e�e
t, the 
onsequen
e of 6.2 above, that(H almost C(X)) H = C(X)) if and only if (K almost �X ) K = �X) | thissans \X = R(H)" | and said that I did not know if either/both is/are true. Inthe \if and only if" here, \X = R(H)" translates to \X is GÆ-
losed in K".Sola 
ounterexampled (K almost �X ) K = �X) with X = �, K = ��.This does not 
ounterexample (y) be
ause the GÆ-
losure of X in �X is what is
alled ��, the so-
alled \N-
ompa
ti�
ation" of �, and the asso
iated \H almostC(�)" is H = lo
(C(��) j �) = C(��)j�; here R(H) = ��. (See [S87℄ and[N73℄ for some of these details.)The upshot of this is: (y) still remains an open question. I still suspe
t (y)false. (A related question is: H almost C(X) ?) H � C(R(H))? As noted above,� fails to 
ounterexample this.)7. Other AP'sThe 
ondition on X dis
ussed in x6 above, that H almost C(X)) H = C(X),
an be viewed as another Approximation Property for X , and these are severalsimilar ones, whi
h might or might not be worth further study, and whi
h we list.In the following, G and H are assumed to separate points and 
losed sets of X .(AP1) 8G � C�(X), �(lo
G)� � C(�X) separates points of �X .(AP) 8 divisible G � C�(X), lo
G ud� C(X).(AP1) 8 divisible uniformly 
omplete G � C�(X), lo
G ud� C(X).(AP2) H almost C(X)) H = C(X).It 
an be shown (and will be, in [H1℄) that AP1 ) AP, and it is easy to seethat AP) AP1 ) AP2. I have no knowledge of any of the 
onverse impli
ations.It is true (and not so easy) that any lo
ally 
ompa
t �-
ompa
t spa
e has AP1,and also true that any lo
ally 
ompa
t spa
e has AP1, (be
ause in the 
on
lusionof AP1, lo
G = C(X) by applying the Stone-Weierstrass Theorem on 
ompa
tneighborhoods).It does not seem plausible to me that every lo
ally 
ompa
t spa
e has AP; itseems to me that some version of para
ompa
tness is required for AP.Here are three more spe
i�
 questions about the extent of the 
lass AP.(1) What is the relationship (if any) between the 
onditions \X has AP" and\�X has AP"? (�X is the Hewitt real 
ompa
ti�
ation [GJ60℄.)(2) Does every pseudo
ompa
t spa
e have AP?(3) Does every almost Lindel�of spa
e have AP? (X is almost Lindel�of if �Xis Lindel�of and j�X �X j � 1. See [HM02℄.)
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