Coronas of ultrametric spaces

I.V. PROTASOV

Abstract. We show that, under CH, the corona of a countable ultrametric space is homeomorphic to ω^* . As a corollary, we get the same statements for the Higson's corona of a proper ultrametric space and the space of ends of a countable locally finite group.

Keywords: Stone-Čech compactification, ultrametric space, corona, Higson's corona, space of ends

Classification: 54D35, 54D80, 54G05

Let (X, ρ) be a metric space, $x_0 \in X$, X_d be a set X endowed with the discrete topology, βX_d be the Stone-Čech compactification of X_d . We identify βX_d with the set of all ultrafilters on X and denote by $X^{\#}$ the set of all ultrafilters on X whose members are unbounded subsets of X. A subset A is bounded if there exists $n \in \omega$ such that $A \subseteq B(x_0, n)$ where $B(x_0, n) = \{x \in X : \rho(x_0, x) \leq n\}$. In what follows, all metric spaces are supposed to be unbounded, so $X^{\#} \neq \emptyset$. Clearly, $X^{\#}$ is closed in βX_d .

Given any $r, q \in X^{\#}$, we say that r, q are *parallel* (and write $r \parallel q$) if there exists $n \in \omega$ such that, for every $R \in r$, we have $B(R, n) \in q$ where $B(R, n) = \bigcup_{x \in R} B(x, n)$. By [5, Lemma 4.1], \parallel is an equivalence on $X^{\#}$. We denote by ~ the smallest (by inclusion) closed (in $X^{\#} \times X^{\#}$) equivalence on $X^{\#}$ such that $\parallel \subseteq \sim$. By [2, Theorem 3.2.11], the quotient $X^{\#} / \sim$ is a compact Hausdorff space. It is called the *corona* of X and is denoted by X. To clarify the virtual equivalence \sim , we use the slowly oscillating functions.

A function $h: (X, \rho) \to [0, 1]$ is called *slowly oscillating* if, for any $n \in \omega$ and $\varepsilon > 0$, there exists a bounded subset V of X such that, for every $x \in X \setminus V$,

$$\operatorname{diam} h(B(x,n)) < \varepsilon,$$

where diam $A = \sup\{|x - y| : x, y \in A\}.$

By [6, Proposition 1], $p \sim q$ if and only if $h^{\beta}(p) = h^{\beta}(q)$ for every slowly oscillating function $h: (X, \rho) \to [0, 1]$, where h^{β} is an extension of h to βX_d . If Xis ultrametric we may use only the slowly oscillating functions taking values 0, 1 [5, Lemma 4.3]. Recall that (X, ρ) is ultrametric if $\rho(x, y) \leq \max\{\rho(x, z), \rho(y, z)\}$ for all $x, y, z \in X$.

A metric space X is called *proper* if every ball B(X, n) is compact. In this case \check{X} is homeomorphic to the Higson's corona νX of X (see [1, §6] and [6, p. 154]).

I.V. Protasov

Let (X_1, ρ_1) , (X_2, ρ_2) be metric spaces. A bijection $f : X_1 \to X_2$ is called an *asymorphism* if, for any $n \in \omega$, there exists $m \in \omega$ such that, for all $x_1, x_2 \in X_1$ and $y_1, y_2 \in X_2$,

$$\begin{aligned} \rho_1(x_1, x_2) &\leq n \Rightarrow \rho_2(f(x_1), f(x_2)) \leq m, \\ \rho_2(y_1, y_2) &\leq n \Rightarrow \rho_1(f^{-1}(y_1), f^{-1}(y_2)) \leq m. \end{aligned}$$

A subset Y of a metric space (X, ρ) is called *large* if there exists $n \in \omega$ such that B(Y, n) = X. The metric spaces (X_1, ρ_1) , (X_2, ρ_2) are *coarsely equivalent* if there exist large subsets Y_1, Y_2 of X_1, X_2 such that $(Y_1, \rho_1), (Y_2, \rho_2)$ are asymorphic. We show that, in this case, X_1 and X_2 are homeomorphic. Let $f: Y_1 \to Y_2$ be an asymorphism. Since f and f^{-1} are \prec -mappings, applying [6, Proposition 1], we conclude that, for any $p, q \in Y_1^{\#}, p \sim q$ if and only if $f^{\beta}(p) \sim f^{\beta}(q)$. Then the mapping $\check{f}: \check{Y}_1 \to \check{Y}_2$ defined by $\check{f}([x]) = [f^{\beta}(x)]$, where [x] and $[f^{\beta}(x)]$ are equivalence classes containing x and $f^{\beta}(x)$, is a homeomorphism. To see that \check{X}_i and $\check{Y}_i, i \in \{1, 2\}$ are homeomorphic, we pick $m_i \in \omega$ such that $X_i = B(Y_i, m_i)$ and, for each $x \in X_i$, choose $h_i(x) \in Y_i$ such that $\rho_i(x, h_i(x)) \leq m_i$. Thus the mapping $\check{h}_i: \check{X}_i \to \check{Y}_i$ is a homeomorphism.

Theorem 1. For a metric space X, the following statements hold:

- (i) every non-empty open subset of X contains a copy of ω^* ;
- (ii) every non-empty G_{δ} -subset of \check{X} has non-empty interior;
- (iii) if X is ultrametric then X is zero-dimensional F-space;
- (iv) if X is countable then \check{X} is of weight \mathfrak{c} .

PROOF: We need some notations. Let x_0 be a fixed point of X. Given an unbounded subset P of X and a function $f: \omega \to \omega$, we put

$$\Psi_{P,f} = \bigcup_{i \in \omega} B(P \setminus B(x_0, f(i)), i),$$

$$\overline{\Psi}_{P,f} = \{q \in X^{\#} : \Psi_{P,f} \in q\},$$

$$\check{\Psi}_{P,f} = \{\check{q} \in \check{X} : q \in \overline{\Psi}_{P,f}\},$$

where $\check{q} = \{r \in X^{\#} : r \sim q\}$. By [5, Theorem 2.1], for every $p \in X^{\#}$,

$$\check{p} = \bigcap \{ \overline{\Psi}_{P,f} : P \in p, f : \omega \to \omega \},\$$

and the family $\Psi_p = \{ \check{\Psi}_{P,f} : P \in p, f : \omega \to \omega \}$ is a base of neighbourhoods of \check{p} in \check{X} .

(i) Let P be an unbounded subset of X. We choose an injective sequence $(t_n)_{n\in\omega}$ in P such that, for each $n\in\omega$,

$$B(\lbrace t_1,\ldots,t_n\rbrace,n)\cap B(t_{n+1},n+1)=\emptyset,$$

and put $T = \{t_n : n \in \omega\}$. Let q, r be distinct ultrafilters from $T^*, Q \in q, R \in r$ and $Q \cap R = \emptyset$. By the choice of T, for each $n \in \omega, B(Q, n) \cap B(R, n)$ is bounded,

304

so we can choose $h: \omega \to \omega$ and $h': \omega \to \omega$ such that $\Psi_{Q,h} \cap \Psi_{R,h'} = \emptyset$. Hence, the mapping from T^* to \check{X} , defined by $p \mapsto \check{p}$ is injective. It follows that, for every $f: \omega \to \omega$, $\check{\Psi}_{P,f}$ contains a copy of ω^* .

(ii) Let $p \in X^{\#}$, $\{P_n : n \in \omega\}$ be a decreasing family of members of p, $\{f_n : n \in \omega\}$ be a family of functions $f_n : \omega \to \omega$. It suffices to show that $\bigcap_{n \in \omega} \check{\Psi}_{P_n, f_n}$ has non-empty interior. We choose a sequence $(a_n)_{n \in \omega}$ in X such that $a_n \in P_n \setminus B(x_0, n)$, where x_0 is taken from definition of $\Psi_{P,f}$, put $A = \{a_n : n \in \omega\}$, define a function $f : \omega \to \omega$ by

$$f(i) = \max\{i, f_0(i), \dots, f_i(i)\},\$$

and note that

 $A \setminus B(x_0, f(i)) \subseteq P_n \setminus B(x_0, f_n(i))$

for all $i \geq n$. Since the subset

$$\Psi_{A,f} \setminus \bigcap_{i \ge n} B(A \setminus B(x_0, f(i)), i)$$

is bounded, we get $\check{\Psi}_{A,f} \subseteq \check{\Psi}_{P_n,f_n}$.

(iii) To show that \check{X} is zero-dimensional, we fix $p \in X^{\#}$, $P \in p$ and $f : \omega \to \omega$. By the definition, $\Psi_{P,f}$ is closed. We put $\Phi = \Psi_{P,f}$. Since X is ultrametric, B(B(x,n),i) = B(x,n) for all $x \in X$ and $n \ge i$. It follows that $B(\Phi,i) \setminus \Phi$ is bounded for each $i \in \omega$. Therefore we can define a function $h : \omega \to \omega$ such that $\Psi_{\Phi,h} \subseteq \Phi$, so $\check{\Psi}_{\Phi,h} \subseteq \check{\Psi}_{P,f}$ and $\check{\Psi}_{P,f}$ is open.

To prove that \check{X} is an *F*-space, in view of [4, Lemma 1.2.2(b)], it suffices to verify that any two disjoint open F_{δ} subsets Y, Z of \check{X} have disjoint closures. We may suppose that

$$Y = \bigcup_{n \in \omega} \check{\Psi}_{Y_n, f_n}, \quad Z = \bigcup_{n \in \omega} \check{\Psi}_{Z_n, f_n}.$$

Since $\check{\Psi}_{Y_n,f_n} \cap \check{\Psi}_{Z_m,f_m}$ is bounded for all $m, n \in \omega$, we can choose inductively the sequences of functions $(f'_n)_{n \in \omega}$, $(h'_n)_{n \in \omega}$ such that

$$\check{\Psi}_{Y_n,f_n}=\check{\Psi}_{Y_n,f'_n},\ \check{\Psi}_{Z_m,h_m}=\check{\Psi}_{Z_m,h'_m},\ \Psi_{Y_n,f'_n}\cap\Psi_{Z_m,h'_m}=\emptyset$$

for all $m, n \in \omega$.

For every $n \in \omega$, we put

$$\Psi_n = \bigcap_{i \ge n} B(Y_n \setminus B(x_0, f'_n(i)), i),$$

$$\Psi'_n = \bigcap_{i \ge n} B(Z_n \setminus B(x_0, h'_n(i)), i),$$

and note that

$$\check{\Psi}_n = \check{\Psi}_{Y_n, f_n}, \ \check{\Psi}'_n = \check{\Psi}_{Z_n, h_n}.$$

Now suppose that $\check{p} \in \operatorname{cl}_{\check{X}} \bigcup_{n \in \omega} \check{\Psi}_n$ and pick $p' \in \check{p}$ such that $p' \in \operatorname{cl}_{X^{\#}} \bigcup \overline{\Psi}_n$, so $\bigcup_{n \in \omega} \Psi_n \in p'$. We put $P = \bigcup_{n \in \omega} \Psi_n$ and define a function $f : \omega \to \omega$ by

$$f(i) = \max\{f_0(i), \ldots, f_i(i)\}.$$

Since X is ultrametric, $B(\Psi_n, i) = \Psi_n$ for every $i \leq n$. Hence, $\Psi_{P,f} \subseteq \bigcup_{n \in \omega} \Psi_n$ and $\check{p} \subseteq \overline{\bigcup_{n \in \omega} \Psi_n}$.

Analogously, for every $\check{q} \in \operatorname{cl}_{\check{X}} \bigcup_{n \in \omega} \check{\Psi}'_n$, we have $\check{q} \subseteq \overline{\bigcup_{n \in \omega} \Psi'_n}$. Since $(\bigcup_{n \in \omega} \Psi_n) \cap (\bigcup_{n \in \omega} \Psi'_n) = \emptyset$, we conclude that $\operatorname{cl}_{\check{X}} Y \cap \operatorname{cl}_{\check{X}} Z = \emptyset$.

(iv) By (i), $w(\check{X}) \ge \mathfrak{c}$. The family

 $\{\Psi_{P,f}: P \text{ is an unbounded subset of } X, f: \omega \to \omega\}$

is a base of topology of \check{X} , so $w(\check{X}) \leq \mathfrak{c}$.

Theorem 2. Let X be an ultrametric space such that X = B(A, n) for some countable subset A of X and $n \in \omega$. Then, under CH, \check{X} is homeomorphic to ω^* .

PROOF: Since X and A are coarsely equivalent, \check{X} and \check{A} are homeomorphic, so we may suppose that X is countable. By Theorem 1, \check{X} is a compact zerodimensional F-space of weight \mathfrak{c} in which every non-empty G_{δ} -subset has an infinite interior. Thus, we can apply a characterization [4, Corollary 1.2.4] of ω^* under CH.

Corollary 1. Under CH, the Higson's corona νX of a proper ultrametric space X is homeomorphic to ω^* .

PROOF: To apply Theorem 2, we note that νX is homeomorphic to X and X = B(A, 1) for some countable subset A of X.

Let G be an infinite discrete group. A subset $A \subseteq G$ is called *almost invariant* if $gA \setminus A$ is finite for every $g \in G$. We denote by \mathcal{A} the family of all infinite almost invariant subsets of G and by εG the set of all maximal filters in \mathcal{A} endowed with the topology defined by the family $\{\{\varphi \in \varepsilon G : A \in \varphi\} : A \in \mathcal{A}\}$ as a base for the open sets. Then εG is the remainder of the Freudental-Hopf compactification of G and every element of εG is called an *end* of G (for this approach to definition of ends see [3]). If G is countable and locally finite, by [7, Theorem 3.1.1] and [5, Proposition 2], there is an ultrametric on G such that \check{G} is homeomorphic to εG . Recall that G is *locally finite* if every finite subset of G generates a finite subgroup.

Corollary 2. Under CH, the space of ends of a countable locally finite group G is homeomorphic to ω^* .

Acknowledgment. The author is thankful to the referee who helped to improve the presentation of the paper.

306

References

- [1] Dranishnikov A., Asymptotic topology, Russian Math. Surveys 55 (2000), 1085-1129.
- [2] Engelking R., General Topology, PWN, Warzsawa, 1985.
- Houghton C.H., Ends of groups and associated first cohomology groups, J. London Math. Soc. 6 (1972), 81-92.
- [4] van Mill J., Introduction to $\beta \omega$, in Handbook of Set-Theoretical Topology, Chapter 11, Elsevier Science Publishers B.V., Amsterdam, 1984.
- [5] Protasov I.V., Normal ball structures, Math. Stud. 20 (2003), 3-16.
- [6] Protasov I.V., Coronas of balleans, Topology Appl. 149 (2005), 149-160.
- [7] Protasov I., Zarichnyi M., General asymptology, Math. Stud. Monogr. Ser. 12, VNTL, Lviv, 2007.

Department of Cybernetics, Kyiv University, Volodimirska 64, Kyiv 01033, Ukraine

E-mail: I.V.Protasov@gmail.com

(Received November 17, 2010, revised January 12, 2011)