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Coronas of ultrametric spaces

I.V. Pror1asov

Abstract. We show that, under CH, the corona of a countable ultrametric space is
homeomorphic to w*. As a corollary, we get the same statements for the Higson’s
corona of a proper ultrametric space and the space of ends of a countable locally
finite group.
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Let (X, p) be a metric space, g € X, X, be a set X endowed with the discrete
topology, 5X4 be the Stone-Cech compactification of X4. We identify 32X, with
the set of all ultrafilters on X and denote by X# the set of all ultrafilters on
X whose members are unbounded subsets of X. A subset A is bounded if there
exists n € w such that A C B(zg,n) where B(zq,n) = {z € X : p(zo,z) < n}.
In what follows, all metric spaces are supposed to be unbounded, so X# # (.
Clearly, X# is closed in 3X,.

Given any r,q € X#, we say that r,q are parallel (and write r || q) if there
exists n € w such that, for every R € r, we have B(R,n) € q where B(R,n) =
U,er B(z,n). By [5, Lemma 4.1], || is an equivalence on X#. We denote by ~ the
smallest (by inclusion) closed (in X# x X#) equivalence on X# such that ||C~.
By [2, Theorem 3.2.11], the quotient X#/ ~ is a compact Hausdorff space. It is
called the corona of X and is denoted by X. To clarify the virtual equivalence ~;,
we use the slowly oscillating functions.

A function h : (X, p) — [0,1] is called slowly oscillating if, for any n € w and
e > 0, there exists a bounded subset V of X such that, for every x € X \ V,

diam h(B(z,n)) < &,

where diam A = sup{|z — y| : z,y € A}.

By [6, Proposition 1], p ~ ¢ if and only if h°(p) = h?(q) for every slowly
oscillating function h : (X, p) — [0, 1], where h” is an extension of h to 3X,. If X
is ultrametric we may use only the slowly oscillating functions taking values 0, 1
[5, Lemma 4.3]. Recall that (X, p) is ultrametric if p(z,y) < max{p(z, 2), p(y,2)}
for all z,y,2z € X.

A metric space X is called proper if every ball B(X,n) is compact. In this case
X is homeomorphic to the Higson’s corona vX of X (see [1, §6] and [6, p. 154]).
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Let (X1,p1), (X2, p2) be metric spaces. A bijection f: X; — X, is called an
asymorphism if, for any n € w, there exists m € w such that, for all z1,z5 € X;
and y1,y2 € X,

p1(w1,22) < m = pa(f(w1), fz2)) < m,
p2(y1,y2) <m = pi(f (). f ' (y2)) < m.

A subset Y of a metric space (X, p) is called large if there exists n € w such that
B(Y,n) = X. The metric spaces (X1, p1), (X2, p2) are coarsely equivalent if there
exist large subsets Y7, Y5 of X;, Xo such that (Y1, p1), (Y2, p2) are asymorphic.
We show that, in this case, X, and X, are homeomorphic. Let f : Y7 — Y5 be
an asymorphism. Since f and f~! are <-mappings, applying [6, Proposition 1],
we conclude that, for any p,q € Yl#, p ~ q if and only if f5(p) ~ f%(q). Then
the mapping f : Y7 — Y5 defined by f([z]) = [f5(z)], where [z] and [f?(z)] are
equivalence classes containing 2 and f?(z), is a homeomorphism. To see that X;
and Y;, i € {1,2} are homeomorphic, we pick m; € w such that X; = B(Y;, m;)
and, for each z € X;, choose h;(z) € Y; such that p;(x,h;(z)) < m;. Thus the
mapping h; : X; — Y; is a homeomorphism.

Theorem 1. For a metric space X, the following statements hold:
(i) every non-empty open subset of X contains a copy of w*;
(ii) every non-empty Gs-subset of X has non-empty interior;
(iit) if X is ultrametric then X is zero-dimensional F-space;
(iv) if X is countable then X is of weight c.

PRrROOF: We need some notations. Let zg be a fixed point of X. Given an un-
bounded subset P of X and a function f:w — w, we put

Upy = JBP\ Bzo, f(1)),0),
IEw
Upy={g€X*:Up;eql,
\i’p’f = {(j € X 1q € Epj},
where § = {r € X# :r ~ q}. By [5, Theorem 2.1], for every p € X#,
;b:ﬂ{@pj:PEp,f:w—)w},

and the family ¥, = {\i’th :P€p, f:w— w}isa base of neighbourhoods of p
in X.

(i) Let P be an unbounded subset of X. We choose an injective sequence
(tn)new in P such that, for each n € w,

B({t1,...,tn},n) N B(tpt1,n+ 1) =0,

and put T = {t, : n € w}. Let ¢,r be distinct ultrafilters from T*, Q € ¢, R € r
and QN R = (. By the choice of T, for each n € w, B(Q,n)NB(R,n) is bounded,
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so we can choose h : w — w and h' : w = w such that ¥g , N ¥pr, = 0. Hence,
the mapping from 7" to X, defined by p — p is injective. It follows that, for

every f:w — w, ¥p ¢ contains a copy of w*.

(ii) Let p € X#, {P, : n € w} be a decreasing family of members of p,
{fn : n € w} be a family of functions f, : w — w. It suffices to show that
MNhew \i’pmfn has non-empty interior. We choose a sequence (a,)nec, in X such
that an € P, \ B(zg,n), where zq is taken from definition of ¥p s, put A = {a, :
n € w}, define a function f:w — w by

f('L) = max{i, fg(l), ey fl(l)},
and note that
A\ B(zo, f(i)) C Pn \ B(o, fa(i))

for all i > n. Since the subset

Ta s\ () B(A\B(zo, f(i)), 1)

i>n

is bounded, we get ¥4 ; C ¥p, ;.

(iii) To show that X is zero-dimensional, we fix p € X# P e pand f:w — w.
By the definition, ¥p s is closed. We put ® = ¥py. Since X is ultrametric,
B(B(z,n),i) = B(x,n) for all z € X and n > i. It follows that B(®,i) \ ® is
bounded for each i € w. Therefore we can define a function h : w — w such that
¥gp CP,s0 \i’cp,h - \i’th and \i’th is open.

To prove that X is an F-space, in view of [4, Lemma 1.2.2(b)], it suffices to
verify that any two disjoint open Fj subsets Y, Z of X have disjoint closures. We
may suppose that

Y= ¥y 2= ¥z
new necw

Since Wy, s, N W ;. is bounded for all m,n € w, we can choose inductively the
sequences of functions (f},)new, (Al )new such that

Uy, pn = Uy, 05 Yz, b =Yz, n, Uy, Nz, =10

for all m,n € w.
For every n € w, we put

v, = ﬂ B(Yn\B(mO:frlz(Z)):Z)a

i>n

i>n
and note that

U, =¥y, 5, U, =¥z 5.
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¥, and pick p' € p such that p' € clyxx J T,
¥, and define a function f :w — w by

Now suppose that p € clg ¢,
80 U,ew ¥n €. We put P =, .,

f(i) = max{fo(i),..., fi(i)}.

Since X is ultrametric, B(¥,,i) = ¥, for every i < n. Hence, ¥p; C [J,c., ¥n
and p C U, c,, Yn-

Analogously, for every ¢ € clx U,c, ¥, we have § C Unew
(Unew ¥n) N (Uyew ¥7) = 0, we conclude that clg Y Ncly Z = 0.

(iv) By (i), w(X) > ¢. The family

- .
¥! . Since

{¥p;: P is an unbounded subset of X, f:w — w}

is a base of topology of X, so w(X) < c. O

Theorem 2. Let X be an ultrametric space such that X = B(A,n) for some
countable subset A of X and n € w. Then, under CH, X is homeomorphic to w*.

PROOF: Since X and A are coarsely equivalent, X and A are homeomorphic,
so we may suppose that X is countable. By Theorem 1, X is a compact zero-
dimensional F-space of weight ¢ in which every non-empty Ggs-subset has an
infinite interior. Thus, we can apply a characterization [4, Corollary 1.2.4] of w*
under CH. O

Corollary 1. Under CH, the Higson’s corona vX of a proper ultrametric space
X is homeomorphic to w*.

PROOF: To apply Theorem 2, we note that »X is homeomorphic to X and X =
B(A,1) for some countable subset A of X. O

Let G be an infinite discrete group. A subset A C @ is called almost invariant
if gA\ A is finite for every g € G. We denote by A the family of all infinite almost
invariant subsets of G and by G the set of all maximal filters in 4 endowed with
the topology defined by the family {{¢ € eG : A € ¢} : A € A} as a base for the
open sets. Then G is the remainder of the Freudental-Hopf compactification of
G and every element of G is called an end of G (for this approach to definition
of ends see [3]). If G is countable and locally finite, by [7, Theorem 3.1.1] and
[5, Proposition 2], there is an ultrametric on G such that G is homeomorphic
to eG. Recall that G is locally finite if every finite subset of G generates a finite
subgroup.

Corollary 2. Under CH, the space of ends of a countable locally finite group G
is homeomorphic to w*.
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