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Cellularity and the index

of narrowness in topological groups

M. TKACHENKO

Abstract. We study relations between the cellularity and index of narrowness in
topological groups and their Gs-modifications. We show, in particular, that the
inequalities in((H),) < 272 and ¢((H),) < 227 1014 for every topo-
logical group H and every cardinal 7 > w, where (H), denotes the underlying
group H endowed with the Gr-modification of the original topology of H and
in(H) is the index of narrowness of the group H.

Also, we find some bounds for the complexity of continuous real-valued func-
tions f on an arbitrary w-narrow group G understood as the minimum cardinal
7 > w such that there exists a continuous homomorphism 7: G — H onto a
topological group H with w(H) < 7 such that # < f. It is shown that this
complexity is not greater than 22 and, if G is weakly Lindeldf (or 2% -steady),
then it does not exceed 2¢.

Keywords: cellularity, Gs-modification, index of narrowness, w-narrow, weakly
Lindel6f, R-factorizable, complexity of functions

Classification: 54H11, 54A25, 54C30

1. Introduction

Passing to a subspace of a (compact) space can increase the cellularity of a
space. Indeed, for every uncountable cardinal 7, the Tychonoff cube 1™ of weight
T contains a discrete subspace of cardinality 7, while the cellularity of the cube
itself is countable. The same happens in (compact) topological groups — it suffices
to replace the Tychonoff cube I™ with T7, where T is the circle group with the
usual multiplication and topology inherited from the complex plane C.

However, the gap between the cellularity ¢(G) of a topological group G and
the cellularity of subgroups of G becomes considerably smaller. According to [1,
Theorem 5.4.11], the inequality ¢(H) < 2¢(%) holds for every subgroup H of G. In
addition, if G is precompact, then every subgroup of GG has countable cellularity.

Another important fact for our study was proved by I. Juhdsz in [3]: If X is a
compact space and + is a disjoint family of Gs-sets in X, then the cardinality of
7 is at most 2¢(X). This result shows that the cellularity of the Gs-modification
of X, say (X),, does not exceed 2¢X), As usual, by Gs-modification of X we
mean the underlying set X which carries the topology whose base consists of
Gs-sets in X. Similarly, one defines the G -modification of X, for any cardinal
T > w, which will be denoted by (X).
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Our main concern here is to find a bound for the cellularity of the G,-modi-
fication of a topological group H in terms of the cellularity of H. This is done
in Theorem 3.1 where we show that the inequalities in((H),) < 27"(F) and
c((H);) < 227" hold for every topological group H and every cardinal 7 > w,
where in(H) is the index of narrowness of H (see Section 2 below). This means,
in particular, that every r-narrow topological group H satisfies c((H),) < 22",
It turns out that this bound is exact — in Example 3.4 we present an w-narrow
Abelian group H such that ¢((H),) = 2%".

A topological group G is called R-factorizable if every continuous real-valued
function f on G can be represented as a composition of a continuous homomor-
phism of G to a second countable group H and a continuous real-valued function
on H (see [7, Section 5] or [1, Chapter 8]). In other words, G is R-factorizable
if every continuous real-valued function on G has ‘countable complexity’. By [7,
Proposition 5.3], every R-factorizable group is w-narrow, but w-narrow groups
need not be R-factorizable according to [7, Example 5.14]. These facts give rise
to the problem of finding bounds for the complexity of continuous real-valued
functions on w-narrow groups (see [6, Problem 3.3] or Problem 4.1 below).

We show in Theorem 4.2 that 22” is such a bound. However, we do not know
whether this bound is exact. However, it is shown in Proposition 4.3 that 2¥ is a
bound for the complexity of continuous real-valued functions on weakly Lindeldf
topological groups, while Proposition 4.4 extends this fact to 2“-steady groups
(the terms are explained in the next section).

2. Notation and terminology

Given a topological group G, we define the index of narrowness of G, in(G),
as the minimum infinite cardinal 7 such that G can be covered by at most 7
translates of every neighborhood of the identity. It is easy to verify that in(G) <
¢(@) for every topological group G, where ¢(G) is the cellularity of G (see [1,
Proposition 5.2.1]). We say that G is T-narrow if it satisfies in(G) < 7.

Suppose that p: G — H is a continuous homomorphism. Given a continuous
mapping f: G — X of the group G to a space X, we write p < f if there exists
a continuous mapping h: H — X such that f = hop.

A space X is weakly Lindeldf if every open covering of X contains a countable
subfamily whose union is dense in X. All Lindel6f spaces as well as all spaces
of countable cellularity are weakly Lindel6f. By virtue of [1, Proposition 5.2.8],
every weakly Lindelof topological group is w-narrow.

A topological group G is called 7-steady (see [1, Section 5.6]) if every contin-
uous homomorphic image H of G with ¢ (H) < 7 satisfies nw(H) < 7. By [1,
Corollary 5.6.11], every 7-steady topological group is T-narrow.

The Nagami number of a Tychonoff space X is Nag(X) (see [1, Section 5.3]).
Every topological group G with Nag(G) < 7 is 7-steady and the class of 7-steady
groups is productive according to [1, Theorem 5.6.4]. It is also clear that a
continuous homomorphic image of a T-steady group is 7-steady.
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3. Cellularity and index of narrowness

Let us consider the behavior of the cellularity in topological groups when pass-
ing from a group H to (H), or (H),, for an infinite cardinal 7. It is known that
if H is o-compact or, more generally, a Lindelof X-group, then every family v of
Gs-sets in H contains a countable subfamily A such that [J A is dense in | (see
[9, Theorem 2] or [7, Theorem 4.14]). Further, the cellularity of an w-bounded
group G cannot be greater than 2 [7, Theorem 4.29], and this bound is attained
even if G is Lindeldf [2, Example 8]. An interesting complement to the former
fact was found in [4]: If H is a Lindeldf topological group, then every family + of
Gs-sets in H contains a subfamily A with |A] < 2% such that [J A is dense in (7.
It is an open problem whether this result remains valid for the class of w-narrow
groups [4]. We also recall that if X is a compact space of countable cellularity,
then the cellularity of the space (X), does not exceed 2¥ [3]. It turns out that
if H is a 7-narrow topological group, then the cellularity of (G), does not exceed
the second exponent of 7:

o7 in(G

Theorem 3.1. The inequalities in((G);) < 27(%) and ¢((G),) < 2 " hold
for every topological group G and every cardinal T > w. In particular, if G is
T-narrow, then c((G);) < 2%".

PrOOF: First we show that in((G),) < 2*, where A\ = 7-in(G). Let O be a
neighbourhood of the identity e in (G),. Then there exists a family v = {U, :
a < 7} of open neighbourhoods of e in G such that [y C O. By [7, Lemma 3.7,
for every a < 7, one can find a continuous homomorphism p,: G — H, onto
a topological group H, with w(H,) < X and an open neighbourhood V,, of the
identity in H, such that p;'(V,) C U,. Denote by p the diagonal product of
the homomorphisms p,, @ < 7. Then the homomorphism p: G — [],., Ha is
continuous and the group H = p(G) C [], ., Ha satisfies w(H) < A. Therefore,
|H| < 2*. For every a < 7, there exists a continuous homomorphism 7, : H — H,
such that p, = 7o op. Then W, = w;l(Va) is an open neighbourhood of the
identity in H and p='(W,) = p~ 7 (V,) = p;' (Va) C U, for each a < 7. Hence
the set W = (., W, contains the identity of H and satisfies p~! (W) C O. In
particular, kerp C O. Since |H| < 2*, we can find a subset A of G such that
p(A) = H and |A| < 2*. Then

G=A kerpCA-0OCGQG,

that is, A- O = G. This proves the inequality in((G),) < 2*.
By [7, Theorem 4.29], every topological group K satisfies ¢(K) < 2*(5), We
apply this inequality with (G), in place of K to conclude that ¢((G),) < 22" O

Corollary 3.2. Every topological group G satisfies ¢((G),) < 2277 I parti-
9e(G)

cular, ¢((G),) <2 .
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PRrOOF: Since in(G) < ¢(G) by [7, Proposition 3.3(b)], the conclusion follows
from Theorem 3.1. O

Let us show that the upper bounds for the cellularity given in Theorem 3.1
and Corollary 3.2 are exact. First, we need a lemma.

Lemma 3.3. The free Abelian group A. with ¢ generators admits a second count-
able Hausdorff precompact group topology, where ¢ = 2%,

PRrROOF: Denote by T the maximal precompact group topology on A, (i.e., the
Bohr topology of A, see [1, Section 9.9]). Since |A.| = ¢, T contains a weaker
metrizable group topology T, by [1, Proposition 9.9.37]. Since every precompact
group has countable cellularity, we conclude that the group K = (A4, T,) is
Hausdorff, second countable, and precompact. O

Example 3.4. There exists a precompact Abelian topological group H such that
c¢((H)y) = 2°.

PrOOF: We apply Uspenskij’s result in [8]: For every infinite cardinal 7, there
exists a subgroup G, of (A, 4)?" such that ¢(G,) = 27, where A, 4 is the free
Abelian group A, with 7 generators endowed with the discrete topology (the
construction in [9] makes the use of the free group F; with 7 generators instead
of A,, but a similar argument works as well for A,, see [1, Example 5.4.13]).

By Lemma 3.3, the free Abelian group A = A, admits a second countable,
Hausdorff, precompact group topology T,. Put K = (4,7T,) and A = 2¢. Tt
is clear that (K), coincides with the discrete group A, say, A4. Consider the
identity isomorphism ¢: K* — A} and let H = ¢ 1(G), where G is a subgroup
of A) satisfying ¢(G) = X. Then H is precompact being a subgroup of the
precompact group K* and, therefore, ¢(H) < w. In addition, ¢: (K*), = (A))w
is a topological isomorphism and the topology of (A4)),, is finer than that of A7).
Therefore, the restriction of p: (K*), — A} to the subgroup (H), of (K*), is
a continuous isomorphism of (H), onto G and, hence, 2° = ¢(G) < ¢((H),). On
the other hand, ¢((H),) < 2¢ by Theorem 3.1, so ¢((H),,) = 2°. O

4. Complexity of continuous real-valued functions on w-narrow groups

Since R-factorizable groups form a proper subclass of w-narrow groups, it is
natural to consider the following problem (see also [6, Problem 3.3]):

Problem 4.1. Let G be an w-narrow topological group and f be a continuous
real-valued function on G. Does there exist a continuous homomorphism w: G —
K onto a topological group K with w(K) < 2% such that = < f7

It turns out that the complexity of continuous real-valued functions on w-
narrow topological groups does not exceed 2¢, where ¢ = 2¢. We do not know,
however, if this bound is exact.
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Theorem 4.2. Let f be a continuous real-valued function on an w-narrow topo-
logical group G. Then there exists a continuous homomorphism 7: G — H onto
a topological group H satisfying w(H) < 2° such that = < f.

ProoOF: By [7, Theorem 4.29], the cellularity of G is not greater than ¢. Hence, ac-
cording to [1, Theorem 8.1.18], one can find a continuous homomorphism ¢: G —
K onto a topological group K with ¢(K) < ¢ such that ¢ < f. Take a contin-
uous real-valued function g on K satisfying f = g o ¢. Clearly, the group K is
w-narrow as a continuous homomorphic image of the w-narrow group G. We can
now apply [7, Theorem 4.6] according to which |K| < 2ir(E)-¥(K) < 2¢ In parti-
cular, nw(K) < |K| < 2°. Now we use the following weak form of Shakhmatov’s
theorem in [5] (with 7 = 2°): If K is a topological group with nw(K) < 7 and
g: K — R is a continuous function, then there exist a continuous isomorphism
i: K — H onto a topological group H with w(H) < 7 and a continuous function
h: H — R such that g = hoi.
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Then the continuous homomorphism 7 = i o ¢ of G onto H and the function h

satisfy the equality f = hom, i.e., 7 < f. Since w(H) < 2 this finishes the
proof. O
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The following result provides a partial solution to Problem 4.1 in the special
case when H is weakly Lindel6f. As usual we denote by ¢ the power of the
continuum.

Proposition 4.3. Let f: G — X be a continuous mapping, where G is a weakly
Lindel6f topological group and X is a Tychonoff space with w(X) < ¢. Then
there exists a continuous homomorphism 7: G — L onto a topological group L
with w(L) < ¢ such that m < f.

PRroOOF: Clearly X is homeomorphic to a subspace of R°. Taking compositions
of f with projections of R® to the factors, we can assume that X = R. Then by
[1, Theorem 8.1.18], one can find a continuous homomorphism ¢: G — K onto a
topological group K of countable pseudocharacter and a continuous real-valued
function g: K — R such that f = goy. The group G is w-narrow since it is weakly
Lindeldf [7, Proposition 4.4], so K is also w-narrow as a continuous homomorphic
image of G. Therefore, |K| < 2i*(K)-¥(K) — ¢ by [7, Theorem 4.6]. In particular,
nw(K) < c. By a theorem in [5], there exist a continuous isomorphism i: K — L
onto a topological group L with w(L) < ¢ and a continuous function h: L — R
such that g = hoi. Hence the homomorphism 7 = iop: G — L is as required. O
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We are now in the position to present another subclass of w-narrow groups
where Problem 4.1 is solved in the affirmative.

Proposition 4.4. Let G be an w-narrow topological group. If G is c-steady,
then for every continuous real-valued function f on G there exists a continuous
homomorphism ©: G — H onto a topological group H with w(H) < ¢ such that
m < f.

PROOF: Given a continuous real-valued function f on GG, we can find, as in the
proof of Theorem 4.2, a continuous homomorphism ¢: G — K onto a topologi-
cal group K with ¢(K) < ¢ and a continuous real-valued function g on K such
that f = go¢. Since G is ¢-steady, the group K satisfies nw(K) < ¢. Apply-
ing Shakhmatov’s theorem in [5] once again, we find a continuous isomorphism
i: K — H of K onto a topological group H with w(H) < ¢ and a continuous
real-valued function h on H such that g = hoi. Therefore, the continuous homo-
morphism 7 =i o ¢ of G onto H satisfies 7 < f. O

5. Open problems

There exist w-narrow groups H satisfying ¢(H) = ¢ [9]. In fact, there are even
Lindel6f groups with the same property [2, Example 8]. We do not know, however,
whether large pairwise disjoint families of open sets in w-narrow groups can be
discrete:

Problem 5.1. Does there exist an w-narrow topological group which contains a
discrete family v of open sets with |y| = ¢?

Another related problem concerns regular closed subsets of Lindel6f groups:

Problem 5.2. Is every regular closed subset of a Lindeléf topological group the
intersection of at most 2* open sets?

Example 3.4 leaves the following open problem.

Problem 5.3. Let v be a family of Gs-sets in a precompact topological group K.
Does there exist a subfamily v, of v such that || < ¢ and |J o is dense in | Jy?
What if the group K is w-narrow?
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