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Study of a vis
oelasti
 fri
tional
onta
t problem with adhesionArezki TouzalineAbstra
t. We 
onsider a quasistati
 fri
tional 
onta
t problem between a vis-
oelasti
 body with long memory and a deformable foundation. The 
onta
t ismodelled with normal 
omplian
e in su
h a way that the penetration is limitedand restri
ted to unilateral 
onstraint. The adhesion between 
onta
t surfa
es istaken into a

ount and the evolution of the bonding �eld is des
ribed by a �rstorder di�erential equation. We derive a variational formulation and prove theexisten
e and uniqueness result of the weak solution under a 
ertain 
onditionon the 
oeÆ
ient of fri
tion. The proof is based on time-dependent variationalinequalities, di�erential equations and Bana
h �xed point theorem.Keywords: vis
oelasti
, normal 
omplian
e, adhesion, fri
tional, variational in-equality, weak solutionClassi�
ation: 47J20, 49J40, 74M10, 74M151. Introdu
tionConta
t problems involving deformable bodies are quite frequent in the indus-try as well as in daily life and play an important role in stru
tural and me
hani
alsystems. Conta
t pro
esses involve 
ompli
ated surfa
e phenomena, and are mod-elled by highly nonlinear initial boundary value problems. Taking into a

ountvarious 
onta
t 
onditions asso
iated with more and more 
omplex behavior lawslead to the introdu
tion of new and non standard models, expressed by the aidof evolution variational inequalities. An early attempt to study fri
tional 
onta
tproblems within the framework of variational inequalities was made in [11℄. Themathemati
al, me
hani
al and numeri
al state of the art 
an be found in [29℄. Inthis referen
e we �nd a detailed analysis and numeri
al studies of the adhesive
onta
t problems. Re
ently a new book ([31, Chapter 7{11, pp. 127{209℄) intro-du
es the reader into the theory of variational inequalities with emphasis on thestudy of 
onta
t me
hani
s and more spe
i�
ally, on antiplane fri
tional 
onta
tproblems. Also, re
ently existen
e results were established in [1℄, [9℄, [12℄ in thestudy of unilateral and fri
tional 
onta
t problems for linear elasti
 materials. In[23℄, [24℄ quasistati
 fri
tional 
onta
t problems with adhesion for linear elasti
materials were studied and existen
e results were given under a smallness assump-tion on the 
oeÆ
ient of fri
tion. Here as in [19℄, where a similar problem wasresolved, we study a mathemati
al model whi
h des
ribes a fri
tional and adhesive
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onta
t problem between a vis
oelasti
 body with long memory and a deformablefoundation. The 
onta
t is modelled with normal 
omplian
e in su
h a way thatthe penetration is limited and restri
ted to unilateral 
onstraints. The main nov-elty of the model 
onsidered is the 
oupling of memory e�e
ts with fri
tion andadhesion e�e
ts. We re
all that models for dynami
 or quasistati
 pro
esses offri
tionless adhesive 
onta
t between a deformable body and a foundation havebeen studied in [2℄, [3℄, [4℄, [5℄, [7℄, [8℄, [13℄, [19℄, [20℄, [22℄, [25℄, [26℄, [27℄, [28℄,[29℄, [30℄, [32℄, [33℄. Following [14℄, [15℄ we use the bonding �eld as an additionalstate variable �, de�ned on the 
onta
t surfa
e of the boundary. The variablesatis�es the restri
tions 0 � � � 1. At a point on the boundary 
onta
t surfa
e,when � = 1 the adhesion is 
omplete and all the bonds are a
tive; when � = 0all the bonds are ina
tive, severed, and there is no adhesion; when 0 < � < 1the adhesion is partial and only a fra
tion � of the bonds is a
tive. We refer thereader to the extensive bibliography on the subje
t in [6℄, [14℄, [15℄, [16℄, [23℄, [25℄,[28℄, [29℄. A

ording to [18℄, the method presented here 
onsiders a 
omplian
emodel in whi
h the 
omplian
e term does not represent ne
essarily a 
ompa
tperturbation of the original problem without 
onta
t. This leads us to studysu
h models, where a stri
tly limited penetration is permitted with the limitpro
edure to the Signorini 
onta
t problem. In [32℄, [33℄ fri
tionless unilateral
onta
t problems with adhesion for elasti
 materials were studied. Also re
entlyin [10℄ a dynami
 
onta
t problem with nonlo
al fri
tion and adhesion betweentwo vis
oelasti
 bodies of Kelvin-Voigt type was resolved. An existen
e result wasproved without any assumption on the smallness of the 
oeÆ
ient of fri
tion andthe variational formulation was approximated. Moreover some numeri
al resultswere presented. In this work as in [32℄, [33℄ we derive a variational formulation ofthe me
hani
al problem written as the 
oupling between a variational inequalityand a di�erential equation. We prove the existen
e of a unique weak solution if the
oeÆ
ient of fri
tion is suÆ
iently small, and obtain a partial regularity result forthe solution. However, 
omparing this result to that obtained in [10℄ and keepingin mind the existen
e results found in [23℄, [24℄, we observe that in quasistati
fri
tional 
onta
t problems information about the solution (se
ond derivative ofu, initial velo
ity) are removed and this is paid by more restri
tive assumptionson other data, parti
ulary on the 
oeÆ
ient of fri
tion. On the other hand whenthe latter is great, it has been proved for example in the study of some fri
tionalstati
 
onta
t problems (see [17℄) that we have nonuniqueness of the solution.The paper is stru
tured as follows. In Se
tion 2 we present some notationand give the variational formulation. In Se
tion 3 we state and prove our mainexisten
e and uniqueness result, Theorem 3.1.2. Problem statement and variational formulationLet 
 � Rd (d = 2; 3) be a domain initially o

upied by a vis
oelasti
 bodywith long memory. 
 is supposed to be open, bounded, with a suÆ
iently regularboundary �. We assume that � is 
omposed of three sets ��1, ��2, and ��3, with themutually disjoint relatively open sets �1, �2 and �3, su
h that meas(�1) > 0. The
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ted upon by a volume for
e of density '1 on 
 and a surfa
e tra
tionof density '2 on �2. On �3 the body is in adhesive fri
tional 
onta
t with adeformable foundation.Thus, the 
lassi
al formulation of the me
hani
al problem is written as follows.Problem P1. Find a displa
ement u : 
 � [0; T ℄ ! Rd and a bonding �eld� : �3 � [0; T ℄! [0; 1℄ su
h that, for all t 2 [0; T ℄,(2.1) �(t) = F"(u(t)) + Z t0 F(t� s)"(u(s)) ds in 
;(2.2) div �(t) + '1(t) = 0 in 
;(2.3) u(t) = 0 on �1;(2.4) �(t)� = '2(t) on �2;(2.5) u�(t) � g; ��(t) + p (u�(t)) � 
��2(t)R� (u� (t)) � 0���(t) + p (u�(t)) � 
��2 (t)R� (u�(t))� (u� (t)� g) = 0 9=; on �3;
(2.6) ���� (t) + 
��2(t)R� (u� (t))�� � �p (u� (t))���� (t) + 
��2(t)R� (u� (t))�� < �p (u�(t))) u� = 0���� (t) + 
��2(t)R� (u� (t))�� = �p (u� (t)))9� � 0 s.t. u� = �� ��� (t) + 
��2(t)R� (u� (t))�

9>>>>>>>>=>>>>>>>>; on �3;
(2.7) _�(t) = � h�(t)�
� (R� (u� (t)))2 + 
� jR� (u� (t))j2�� "ai+ on �3;(2.8) �(0) = �0 on �3:Equation (2.1) represents the vis
oelasti
 
onstitutive law with long memory ofthe material; F is the elasti
ity operator and R t0 F(t � s)"(u(s)) ds is the mem-ory term in whi
h F denotes the tensor of relaxation; the stress �(t) at 
urrentinstant t depends on the whole history of strains up to this moment of time.Equation (2.2) represents the equilibrium equation while (2.3) and (2.4) are thedispla
ement and tra
tion boundary 
onditions, respe
tively, in whi
h � denotesthe unit outward normal ve
tor on � and �� represents the Cau
hy stress ve
tor.The 
onditions (2.5) represent the unilateral 
onta
t with adhesion in whi
h 
� is



260 A. Touzalinea given adhesion 
oeÆ
ient and R� , R� are trun
ation operators de�ned in (2.5)and (2.6), respe
tively, byR�(s) = 8><>:L if s < �L�s if � L � s � 00 if s > 0 ; R� (v) = (v if jvj � L;L vjvj if jvj > L:Here L > 0 is the 
hara
teristi
 length of the bond, beyond whi
h the latter hasno additional tra
tion (see [23℄, [29℄) and p is a normal 
omplian
e fun
tion whi
hsatis�es the assumption (2.16); g denotes the maximum value of the penetrationwhi
h satis�es g � 0. When u� < 0 i.e. when there is separation between thebody and the foundation then the 
ondition (2.5) 
ombined with hypothesis (2.16)and de�nition of R� shows that �� = 
��2R�(u�) and does not ex
eed the valueLk
�kL1(�3). When g > 0, the body may interpenetrate into the foundation,but the penetration is limited, that is u� � g. In this 
ase of penetration (i.e.u� � 0), when 0 � u� < g then ��� = p(u�) whi
h means that the rea
tion ofthe foundation is uniquely determined by the normal displa
ement and �� � 0.Sin
e p is an in
reasing fun
tion, the rea
tion is in
reasing with the penetration.If u� = g then ��� � p(g) and �� is not uniquely determined. If g > 0 andp = 0, 
onditions (2.5) be
ome the Signorini's 
onta
t 
onditions with a gap andadhesionu� � g; �� � 
��2R� (u�) � 0; ��� � 
��2R� (u�)� (u� � g) = 0:If g = 0, the 
onditions (2.5) 
ombined with hypothesis (2.16) lead to the Signorini
onta
t 
onditions with adhesion, with zero gap, given byu� � 0; �� � 
��2R� (u�) � 0; ��� � 
��2R� (u�)�u� = 0:These 
onta
t 
onditions were used in [30℄, [32℄. It follows from (2.5) that thereis no penetration between the body and the foundation, sin
e u� � 0 duringthe pro
ess. Also, note that when the bonding �eld vanishes, then the 
onta
t
onditions (2.5) be
ome the 
lassi
al Signorini 
onta
t 
onditions with zero gap,that is, u� � 0; �� � 0; ��u� = 0:Conditions (2.6) represent Coulomb's law of dry fri
tion with adhesion where �denotes the 
oeÆ
ient of fri
tion and 
� is a given adhesion 
oeÆ
ient. Equa-tion (2.7) represents the ordinary di�erential equation whi
h des
ribes the evolu-tion of the bonding �eld, in whi
h r+ = maxfr; 0g, and it was already used in [7℄.Sin
e _� � 0 on �3 � (0; T ), on
e debonding o

urs bonding 
annot be reestab-lished and, indeed, the adhesive pro
ess is irreversible. Also from [21℄ it must bepointed out 
learly that 
ondition (2.7) does not allow for 
omplete debonding in�nite time. Finally, (2.8) is the initial 
ondition, in whi
h �0 denotes the initialbonding �eld. In (2.7) a dot above a variable represents its derivative with re-spe
t to time. We denote by Sd the spa
e of se
ond order symmetri
 tensors on
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lidean norm on Rd and Sd. Thus, forevery u; v 2 Rd , u � v = uivi, jvj = (v � v) 12 , and for every �; � 2 Sd, � � � = �ij�ij ,j� j = (� � �) 12 . Here and below, the indi
es i and j run between 1 and d and thesummation 
onvention over repeated indi
es is adopted. Now, to pro
eed withthe variational formulation, we need the following fun
tion spa
es:H = �L2 (
)�d , H1 = �H1(
)�d ; Q = �� = (�ij) : �ij = �ji 2 L2 (
)	 ;Q1 = f� 2 Q : div � 2 Hg :Note that H and Q are real Hilbert spa
es endowed with the respe
tive 
anoni
alinner produ
ts (u; v)H = Z
 uivi dx; h�; �iQ = Z
 �ij�ij dx:The strain tensor is "(u) = ("ij(u)) = 12 (ui;j + uj;i) ;div � = (�ij;j) is the divergen
e of �. For every element v 2 H1 we denote by v�and v� the normal and the tangential 
omponents of v on the boundary � givenby v� = v � �; v� = v � v��:We also denote by �� and �� the normal and the tangential tra
es of a fun
tion� 2 Q1, and when � is a regular fun
tion then�� = (��) � �; �� = �� � ���;and the following Green's formula holds:h�; "(v)iQ + (div �; v)H = Z� �� � v da 8 v 2 H1;where da is the surfa
e measure element. Now, let V be the 
losed subspa
e ofH1 de�ned by V = fv 2 H1 : v = 0 on �1g ;and denote the 
onvex subset of admissible displa
ements given byK = fv 2 V : v� � g a:e: on �3g :Sin
e meas(�1) > 0, the following Korn's inequality holds [11℄:(2.9) k"(v)kQ � 

kvkH1 8 v 2 V;
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 > 0 is a 
onstant whi
h depends only on 
 and �1. We equip V withthe inner produ
t (u; v)V = h"(u); "(v)iQand k � kV is the asso
iated norm. It follows from Korn's inequality (2.9) that thenorms k�kH1 and k�kV are equivalent on V . Thus, (V; k�kV ) is a real Hilbert spa
e.Moreover by Sobolev's tra
e theorem, there exists d
 > 0 whi
h only depends onthe domain 
, �1 and �3 su
h that(2.10) kvk(L2(�3))d � d
kvkV 8 v 2 V:For p 2 [1;1℄, we use the standard norm of Lp(0; T ;V ). We also use the Sobolevspa
e W 1;1(0; T ;V ) equipped with the normkvkW 1;1(0;T ;V ) = kvkL1(0;T ;V ) + k _vkL1(0;T ;V ):For every real Bana
h spa
e (X; k�kX) and T > 0 we use the notation C([0; T ℄;X)for the spa
e of 
ontinuous fun
tions from [0; T ℄ to X ; re
all that C([0; T ℄;X) isa real Bana
h spa
e with the normkxkC([0;T ℄;X) = maxt2[0;T ℄ kx(t)kX :We suppose that the body for
es and surfa
e tra
tions have the regularity(2.11) '1 2 C([0; T ℄;H); '2 2 C �[0; T ℄; �L2 (�2)�d� :We de�ne the fun
tion f : [0; T ℄! V by(2.12) (f(t); v)V = Z
 '1(t) � v dx+ Z�2 '2(t) � v da 8 v 2 V; t 2 [0; T ℄;and we note that (2.11) and (2.12) implyf 2 C ([0; T ℄;V ) :In the study of the me
hani
al problem P1 we assume that the elasti
ity operatorF : 
� Sd ! Sd, satis�es
(2.13)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
(a) there exists M > 0 su
h thatjF (x; "1)� F (x; "2)j �M j"1 � "2j for all "1; "2 in Sd;a:e: x 2 
;(b) there exists m > 0 su
h that(F (x; "1)� F (x; "2)) � ("1 � "2) � m j"1 � "2j2 ;for all "1; "2 in Sd; a:e: x 2 
;(
) the mapping x! F (x; ") is Lebesgue measurable on 
for any " in Sd;(d) x! F (x; 0) 2 Q:
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e the spa
e of the tensors of fourth order de�ned byQ1 = fE =(Eijkl) : Eijkl = Ejikl = Eklij 2 L1 (
)g ;whi
h is a real Bana
h spa
e with the normkEkQ1 = max0�i;j;k;l�d kEijklkL1(
) :We assume that the tensor of relaxation F satis�es(2.14) F 2 C ([0; T ℄ ;Q1) :The adhesion 
oeÆ
ients satisfy(2.15) 
� ; 
� ; "a 2 L1 (�3) and 
� ; 
� ; "a � 0 a:e: on �3;and we assume that the initial bonding �eld satis�es(2.16) �0 2 L2 (�3) ; 0 � �0 � 1 a:e: on �3:Next, we de�ne respe
tively the fun
tionalsj
 : V � V ! R; j� : V � V ! Rby j
(u; v) = Z�3 p(u�)v� da; j� (u; v) = Z�3 �p(u�)jv� j da;and let j = j
 + j� :We also de�ne the fun
tionalr : L2 (�3)� V � V ! Rby r(�; u; v) = Z�3 ��
��2R�(u�� v� + 
��2R� (u� ) � v� ) da8 (�; u; v) 2 L2(�3)� V � V:As in [18℄ we assume that the normal 
omplian
e fun
tion p satis�es(2.17) 8>>>>>><>>>>>>: (a) p :℄�1; g℄! R;(b) there exists Lp > 0 su
h thatjp (r1)� p (r2)j � Lp jr1 � r2j ; for all r1; r2 � g;(
) (p (r1)� p (r2)) (r1 � r2) � 0; for all r1; r2 � g;(d) p(r) = 0 for all r < 0:



264 A. TouzalineWe assume that the 
oeÆ
ient of fri
tion � satis�es(2.18) � 2 L1 (�3) and � � 0 a:e: on �3:Finally we need to introdu
e the following set of the bonding �eld,B = �� : [0; T ℄! L2 (�3) : 0 � �(t) � 1; 8 t 2 [0; T ℄; a:e: on �3	 :Below, 
 is a generi
 positive 
onstant whi
h does not depend on t 2 [0; T ℄, whosevalue may 
hange from pla
e to pla
e.Now using Green's formula, we obtain that the problem P1 has the followingvariational formulation.Problem P2. Find a displa
ement �eld u 2 C([0; T ℄;K) and a bonding �eld� 2W 1;1(0; T ;L2(�3)) \ B su
h that(2.19) hF"(u(t)); "(v)� "(u(t))iQ + DR t0 F(t� s)"(u(s)) ds; "(v) � "(u(t))EQ+r (�(t); u(t); v � u(t)) + j(�(t); u(t); v) � j (�(t); u(t); u (t))� (f(t); v � u(t))V 8 v 2 K; t 2 [0; T ℄;(2.20)_� (t) = � h� (t) (
� (R� (u� (t)))2 + 
� jR� (u� (t))j2)� "ai+ a:e: t 2 (0; T ) ;(2.21) � (0) = �0:3. Existen
e and uniqueness of the solutionOur main result in this se
tion is the following theorem.Theorem 3.1. Let (2:11), (2:13), (2:14), (2:15), (2:16), (2:17) and (2:18) hold.Then, there exists a 
onstant �0 > 0 su
h that Problem P2 has a unique solutionif k�kL1(�3) < �0:The proof of Theorem 3.1 is 
arried out in several steps. In the �rst step, letk > 0 and 
onsider the spa
e X de�ned asX = (� 2 C �[0; T ℄;L2 (�3)� : supt2[0;T ℄ �exp(�kt)k�(t)kL2(�3)� < +1) :It is well known that X is a Bana
h spa
e with the normk�kX = supt2[0;T ℄ �exp(�kt)k�(t)kL2(�3)� :Next for a given � 2 X , we 
onsider the following variational problem.
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oelasti
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t problem with adhesion 265Problem P1�. Find u� 2 C([0; T ℄;K) su
h thathF" (u�(t)) ; "(v)� " (u�(t))iQ+�Z t0 F(t� s)" (u�(s)) ds; "(v)� " (u�(t))�Q+ r (� (t) ; u� (t) ; v � u�(t)) + j (u�(t); v)� j (u� (t) ; u� (t))� (f(t); v � u�(t))V 8 v 2 K; t 2 [0; T ℄:(3.1)We have the following result.Proposition 3.2. There exists a 
onstant �1 > 0 su
h that Problem P1� has aunique solution if k�kL1(�3) < �1:For the proof of this proposition we 
onsider the following problem.Problem P1��. For � 2 C([0; T ℄;Q), �nd u�� 2 C([0; T ℄;K) su
h that(3.2) hF" (u��(t)) ; " (v � u��(t))iQ + h�(t); " (v � u��(t))iQ+r (�(t); u�� (t) ; v � u��(t)) + j (u��(t); v) � j (u�� (t) ; u��(t))� (f (t) ; v � u�� (t))V 8 v 2 K; t 2 [0; T ℄ :Riesz's representation theorem leads to the existen
e of an element f� 2C([0;T ℄;V )su
h that (f� (t) ; v)V = (f(t); v)V � h�(t); "(v)iQ 8 v 2 V:Then it is 
lear that Problem P1�� is equivalent to the following problem.Problem P2��. For � 2 C([0; T ℄;Q), �nd u�� 2 C([0; T ℄;K) su
h that(3.3) hF" (u��(t)) ; " (v � u��(t))iQ + r (� (t) ; u��(t); v � u��(t))+j (u�� (t) ; v)� j (u��(t); u�� (t)) � (f�(t); v � u��(t))V8 v 2 K; t 2 [0; T ℄:We have the following result.Lemma 3.3. There exists a 
onstant �1 > 0 su
h that Problem P2�� has a uniquesolution if k�kL1(�3) < �1.Proof: Let t 2 [0; T ℄ and let At : V ! V be the operator de�ned by(Atu; v)V = hF" (u) ; "(v)iQ + r(�(t); u; v) + j
(u; v) 8u; v 2 V:As in [29℄, using (2.13)(a), (2.15), (2.17)(b) and the properties of R� and R� ,we see that the operator At is Lips
hitz 
ontinuous. Also using (2.13)(b), (2.15),



266 A. Touzaline(2.17)(
) and the properties of R� and R� , we have(Atu�Atv; u� v)V � mku� vk2V 8u; v 2 V:Then the operator At is strongly monotone. Next, we 
an easily 
he
k that, for agiven u 2 K, the fun
tional j� (u; �) : K ! R is 
onvex and lower semi
ontinuous.Let �1 = m=Lpd2
, then for k�kL1(�3) < �1, sin
e K is a nonempty 
losed
onvex subset of V , using a standard existen
e and uniqueness result for ellipti
variational inequalities (see [2℄), it follows that there exists a unique elementu��(t) 2 K whi
h satis�es the inequality (3.3). Moreover a

ording again to [29℄,using (3.3), we haveku�� (t1)� u�� (t2)kV� 
�k� (t1)� � (t2)kL2(�3) + kf� (t1)� f� (t2)kV � 8 t1; t2 2 [0; T ℄:Hen
e the regularity f� 2 C([0; T ℄;V ) and � 2 C([0; T ℄;L2(�3)) imply that u�� 2C([0; T ℄;K). �Now to end the proof of Proposition 3.2, we introdu
e the operator�� : C ([0; T ℄ ;Q)! C ([0; T ℄ ;Q)de�ned by(3.4) ���(t) = Z t0 F(t� s)" (u��(s)) ds 8 � 2 C([0; T ℄;Q); t 2 [0; T ℄:Lemma 3.4. The operator �� has a unique �xed point �� .Proof: Let �1; �2 2 C([0; T ℄;Q). Using (3.3), (3.4) and (2.14) we obtaink���1(t)� ���2(t)kQ � 
 Z t0 k�1(s)� �2(s)kQ ds 8 t 2 [0; T ℄:Reiterating this inequality n times, yields

�n��1 � �n��2

C([0;T ℄;Q) � (
T )nn! k�1 � �2kC([0;T ℄;Q) :As limn!+1 (
T )nn! = 0, it follows that for a positive integer n suÆ
iently large,�n� is a 
ontra
tion; then, by using the Bana
h �xed point theorem, it admits aunique �xed point �� whi
h is also a unique �xed point of �� i.e.,(3.5) ����(t) = ��(t) 8 t 2 [0; T ℄:Then by (3.3) and (3.5) we 
on
lude that u��� is the unique solution of (3.1) andProposition 3.2 is proved. �Next denote u� = u��� . In the step below we 
onsider the following problem.
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t problem with adhesion 267Problem P2�. Find �� : [0; T ℄! L1(�3) su
h that_��(t) = � h��(t)�
� (R� (u���(t)))2 + 
� jR� (u��� )j2�� "ai+(3.6) a:e: t 2 (0; T );��(0) = �0:(3.7)We obtain the following result.Proposition 3.5. Problem P2� has a unique solution �� whi
h satis�es�� 2W 1;1 �0; T ;L2 (�3)� \ B:Proof: Consider the mapping � : X ! X given by��(t) = �0 � Z t0 h�(s)�
�(R� (u��(s)))2 + 
� jR� (u�� )j2�� "ai+ ds;where u� is the solution of Problem P1� . Then we havek��1 (t)� ��2(t)kL2(�3)� 
 Z t0 


�1(s) �R� �u�1�(s)��2 � �2(s) �R� �u�2�(s)��2


L2(�3) ds+ 
 Z t0 


�1(s) ��R� �u�1� (s)���2 � �2 (s) ��R� �u�2� (s)���2


L2(�3) ds:We use the de�nition of the trun
ation operators R� and R� and write�1 = �1 � �2 + �2:It follows after some algebra 
al
ulus thatk��1 (t)� ��2 (t)kL2(�3)� 
 R t0 k�1(s)� �2 (s)kL2(�3) ds+ 
 R t0 ku�1� (s)� u�2�(s)kL2(�3) ds:Moreover using (2.10), we getk��1(t)� ��2(t)kL2(�3)� 
 Z t0 k�1 (s)� �2(s)kL2(�3) ds+ 
d
 Z t0 ku�1(s)� u�2(s)kV ds:(3.8)Now we need to show the following lemma.Lemma 3.6. There exists a 
onstant �0 2℄0; �1[ su
h that for k�kL1(�3) < �0,we have ku�2(t)� u�1(t)kV � 
 k�1(t)� �2(t)kL2(�3) 8 t 2 [0; T ℄:



268 A. TouzalineProof: Let t 2 [0; T ℄. Take u�2(t) in the inequality (3.1) satis�ed by u�1(t), thentake u�1(t) in the same inequality satis�ed by u�2(t). After adding the resultinginequalities we �nd thathF" (u�1 (t))� F" (u�2 (t)) ; " (u�2 (t))� " (u�1(t))iQ+DR t0 F(t� s)" (u�1(s))� " (u�2(s)) ds; " (u�2(t)) � " (u�1(t))EQ+r (�1(t); u�1(t); u�2(t)� u�1 (t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))+j (u�1(t); u�2(t))� j (u�1 (t) ; u�1(t)) + j (u�2(t); u�1(t))�j (u�2(t); u�2(t)) � 0:Using the assumption (2.13)(b) on F we dedu
e from the previous inequality that
(3.9) m ku�1(t)� u�2(t)k2V� DR t0 F(t� s)" (u�1(s))� " (u�2(s)) ds; " (u�2(t))� " (u�1(t))EQ+r (�1(t); u�1(t); u�2(t)� u�1(t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))+j (u�1(t); u�2 (t))� j (u�1 (t) ; u�1(t)) + j (u�2 (t) ; u�1(t))�j (u�2 (t) ; u�2(t)) :Using the properties of R� and R� (see [29℄), we �nd thatr (�1(t); u�1 (t) ; u�2(t)� u�1(t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))� �k
�kL1(�3) + k
�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3) ku�1(t)� u�2 (t)kV :On the other hand as in [31℄ we haveDR t0 F(t� s) (" (u�1 (s))� " (u�2(s))) ds; " (u�2(t)� u�1 (t))EQ� �R t0 kF(t� s)kQ1 ku�2(s)� u�1(s)kV ds� ku�2(t)� u�1(t)kV� 
�R t0 ku�2(s)� u�1(s)kV ds� ku�2(t)� u�1(t)kV :Using the elementary inequality
ab � 
2 a22m +mb22 ;
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onstant m > 0 is introdu
ed in (2.13)(b), we �nd that�Z t0 F(t� s) (" (u�1(s)) � " (u�2(s))) ds; " (u�2(t)� u�1 (t))�Q� 
22m �Z t0 ku�2(s)� u�1 (s)kV ds�2 + m2 ku�2(t)� u�1(t)k2V :(3.10)Also using the assumptions (2.17)(b) and (2.17)(
) on the fun
tion p yields(3.11) j (u�1(t); u�2 (t))� j (u�1 (t) ; u�1(t))+j (u�2 (t) ; u�1(t))� j (u�2(t); u�2(t))� Lpd2
 k�kL1(�3) ku�2 (t)� u�1 (t)k2V :Now, we 
ombine inequalities (3.9), (3.10) and (3.11) to obtain(3.12) m ku�1(t)� u�2(t)k2V � Lpd2
 k�kL1(�3) ku�2 (t)� u�1(t)k2V+ 
22m �Z t0 ku�2(t)� u�1 (t)kV ds�2 + m2 ku�2(t)� u�1(t)k2V+ �k
�kL1(�3) + k
�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3)� ku�1(t)� u�2(t)kV :Using Young's inequality we get(3.13) �k
�kL1(�3) + k
�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3)� ku�1(t)� u�2(t)kV� 
 k�1(t)� �2(t)k2L2(�3) + m4 ku�2(t)� u�1 (t)k2V :Then we dedu
e from (3.12) and (3.13) thatm4 ku�2(t)� u�1(t)k2V � Lpd2
 k�kL1(�3) ku�2(t)� u�1(t)k2V+ 
22m �Z t0 ku�2(s)� u�1(s)kV ds�2 + 
 k�1 (t)� �2 (t)k2L2(�3) :Let �0 = m4Lpd2
 = �14 :Then if k�kL1(�3) < �0;



270 A. Touzalinewe dedu
e thatku�2(t)� u�1(t)k2V � 
�Z t0 ku�2(s)� u�1(s)k2V ds+ k�1 (t)� �2(t)k2L2(�3)� :Hen
e Gronwall's argument implies that �(3.14) ku�2(t)� u�1(t)kV � 
 k�1 (t)� �2(t)kL2(�3) :Now to end the proof of Proposition 3.5 we use (3.8) and (3.14) to getk��1(t)� ��2(t)kL2(�3) � 
 R t0 k�1(s)� �2 (s)kL2(�3) ds:On the other hand we haveZ t0 k�1(s)� �2(s)kL2(�3) ds � k�1 � �2kX exp(kt)k :Thereforek��1(t)� ��2(t)kL2(�3) � 
 k�1 � �2kX exp(kt)k 8 t 2 [0; T ℄;whi
h yieldsexp(�kt) k��1(t)� ��2(t)kL2(�3) � 
k k�1 � �2kX 8 t 2 [0; T ℄:Hen
e we obtain(3.15) k��1 � ��2kX � 
k k�1 � �2kX :The inequality (3.15) shows that for k suÆ
iently large � is a 
ontra
tion. Then ithas a unique �xed point �� whi
h satis�es (3.6) and (3.7). To prove that �� 2 B,we use (2.17) and we refer the reader to [30, Remark 3.1℄. �Lemma 3.7. (u�� ; ��) is a unique solution of Problem P2.Proof: Existen
e. Let � = �� and let u�� the solution of Problem P1� . We
on
lude by (3.1), (3.6) and (3.7) that (u�� ; ��) is a solution to Problem P2.Uniqueness. Suppose that (u; �) is a solution of Problem P2 whi
h satis�es (2.19),(2.20) and (2.21). It follows from (2.19) that u is a solution to Problem P1� , andfrom Proposition 3.2 that u = u� . Take u = u� in (2.19) and use the initial
ondition (2.21), we dedu
e that � is a solution to Problem P2� . Therefore, weobtain from Proposition 3.5 that � = �� and then we 
on
lude that (u�� ; ��) isa unique solution to Problem P2. �
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