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Chara
terization of power digraphs modulo nUzma Ahmad, Syed HusnineAbstra
t. A power digraph modulo n, denoted by G(n; k), is a dire
ted graphwith Zn = f0; 1; : : : ; n � 1g as the set of verti
es and E = f(a; b) : ak � b(mod n)g as the edge set, where n and k are any positive integers. In this paperwe �nd ne
essary and suÆ
ient 
onditions on n and k su
h that the digraphG(n; k) has at least one isolated �xed point. We also establish ne
essary andsuÆ
ient 
onditions on n and k su
h that the digraph G(n; k) 
ontains exa
tlytwo 
omponents. The primality of Fermat number is also dis
ussed.Keywords: iteration digraph, isolated �xed points, Charmi
hael lambda fun
tion,Fermat numbers, Regular digraphsClassi�
ation: 11A07, 11A15, 20K01, 05C20, 11A511. Introdu
tionPower digraphs provide a link between graph theory and number theory. Byusing graph theoreti
 properties of Power digraphs, we 
an infer many numbertheoreti
 properties of the 
ongruen
e ak � b (mod n). Some 
hara
teristi
s ofpower digraph G(n; k), where n and k are arbitrary positive integers, have beeninvestigated by C. Lu
heta et al. [2℄, Wilson [1℄, Somer and K�r���zek [7℄, [8℄, [9℄, [10℄,Kramer-Miller [5℄, S.M. Husnine, Uzma and Somer [15℄. We 
ontinue their workby generalizing previous results. The existen
e of isolated �xed point for k = 2 isstudied in [7℄ and for k = 3 in [16℄. In this paper we study the existen
e of isolated�xed points in G(n; k) for any positive integers n and k. We obtain ne
essary andsuÆ
ient 
onditions on n and k su
h that the digraph G(n; k) has at least oneisolated �xed point. We also establish ne
essary and suÆ
ient 
onditions on nand k su
h that the digraph G(n; k) 
ontains exa
tly two 
omponents.Let g : Zn ! Zn be any fun
tion, where Zn = f0; 1; : : : n� 1g and n � 1. Aniteration digraph de�ned by g is a dire
ted graph whose verti
es are the elementsfrom Zn, su
h that there exists exa
tly one edge from x to y if and only if g(x) � y(mod n). In this paper, we 
onsider g(x) � xk (mod n). For the �xed values ofn and k the iteration digraph is represented by G(n; k), where k � 2 and is 
alledpower digraph modulo n. Ea
h x 2 G(n; k) 
orresponds uniquely to a residuemodulo n.The resear
h of the �rst author is partially supported by the Higher Edu
ation Commission,Pakistan.



360 U. Ahmad, S. HusnineA 
omponent ofG(n; k) is a subdigraph whi
h is the largest 
onne
ted subgraphof the asso
iated nondire
ted graph. The indegree of x, denoted by indegn(x) isthe number of dire
ted edges 
oming into a vertex x, and the number of edges
oming out of x is referred to as the outdegree of x denoted by outdegn(x).A digraph G(n; k) is said to be regular if every vertex of G(n; k) has sameindegree. We note that a regular digraph does not 
ontain any vertex of indegree0. We 
an see that a digraph G(n; k) is regular if and only if ea
h 
omponent ofG(n; k) is a 
y
le and for ea
h vertex x, indegn(x) = outdegn(x) = 1. A digraphG(n; k) is said to be semi-regular of degree j if every vertex of G(n; k) has indegreej or 0.A 
y
le is a dire
ted path from a vertex a to a, and a 
y
le is a z-
y
le if it
ontains pre
isely z verti
es. A 
y
le of length one is 
alled a �xed point. It is
lear that 0 and 1 are �xed points of G(n; k). Sin
e ea
h vertex has outdegreeone, it follows that ea
h 
omponent 
ontains a unique 
y
le. A vertex a is saidto be an isolated �xed point if it is a �xed point and there does not exist a non
y
le vertex b su
h that bk � a (mod n). In other words a has indegree 1.The Carmi
hael lambda-fun
tion �(n) is de�ned as the smallest positive integersu
h that x�(n) � 1 (mod n) for all x relatively prime to n. The values of theCarmi
hael lambda-fun
tion �(n) are�(1) = 1;�(2) = 1;�(4) = 2;�(2k) = 2k�2 for k � 3;�(pk) = (p� 1)pk�1;for any odd prime p and k � 1 and�(pe11 pe22 : : : perr ) = l
m(�(pe11 ); �(pe22 ); : : : ; �(perr ));where p1; p2; : : : ; pr are distin
t primes and ei � 1 for all i.The subdigraph of G(n; k), 
ontaining all verti
es relatively prime to n, isdenoted by G1(n; k) and the subdigraph 
ontaining all verti
es not relativelyprime to n is denoted by G2(n; k). It is obvious that G1(n; k) and G2(n; k)are disjoint and there is no edge between G1(n; k) and G2(n; k) and G(n; k) =G1(n; k) [G2(n; k).Let n = ml, where g
d(m; l) = 1. We 
an easily see with the help of the ChineseRemainder Theorem that 
orresponding to ea
h vertex x 2 G(n; k), there is anordered pair (x1; x2), where 0 � x1 < m and 0 � x2 < l and xk 
orrespondsto (xk1 ; xk2). The produ
t of digraphs, G(m; k) and G(l; k) is de�ned as follows:a vertex x 2 G(m; k)�G(l; k) is an ordered pair (x1; x2) su
h that x1 2 G(m; k)and x2 2 G(l; k). Also there is an edge from (x1; x2) to (y1; y2) if and only ifthere is an edge from x1 to y1 in G(m; k) and there is an edge from x2 to y2 inG(l; k). This implies that (x1; x2) has an edge leading to (xk1 ; xk2). We then see



Chara
terization of power digraphs modulo n 361that G(n; k) �= G(m; k)�G(l; k). We 
an further assert that if !(n) denotes thenumber of distin
t prime divisors of n and(1.1) n = pe11 pe22 : : : perr ;where p1 < p2 < � � � < pr and ei > 0, i.e. r = !(n), then(1.2) G(n; k) �= G(pe11 ; k)�G(pe22 ; k)� � � � �G(perr ; k):Let N(n; k; b) denote the number of in
ongruent solutions of the 
ongruen
exk � b (mod n). Then N(n; k; b) = indegn(b) and by the Chinese RemainderTheorem, we haveN(n; k; b) = indegn(b) = rYi=1N(peii ; k; b):(1.3)2. Some previous resultsTheorem 2.1 (Carmi
hael [14℄). Let a; n 2 N. Thena�(n) � 1 (mod n)if and only if g
d (a; n) = 1. Moreover, there exists an integer g su
h thatordn a = �(n);where ordn g denotes the multipli
ative order of g modulo n.Lemma 2.2 ([1℄). Let n = n1n2, where g
d(n1; n2) = 1 and a = (a1; a2) be a ver-tex in G(n; k) �= G(n1; k)�G(n2; k). Then N(n; k; a) = N(n1; k; a1) �N(n2; k; a2).Theorem 2.3 ([1℄). Let n be an integer having fa
torization as given in (1.1)and a be a vertex of G1(n; k). Thenindegn(a) = N(n; k; a) = rYi=1N(peii ; k; a) = rYi=1 "i g
d(�(peii ); k);or N(n; k; a) = 0;where "i = 2 if 2 j k and 8 j peii , and "i = 1 otherwise.Theorem 2.4 ([1℄). There exists a t-
y
le in G1(n; k) if and only if t = ordd k forsome fa
tor d of u, where �(n) = uv and u is the highest fa
tor of �(n) relativelyprime to k.Theorem 2.5 ([9℄). Let n � 1 and k � 2 be integers. Then(1) G1(n; k) is regular if and only if g
d(�(n); k) = 1;(2) G2(n; k) is regular if and only if either n is square free and g
d(�(n); k) = 1or n = p, where p is prime;(3) G(n; k) is regular if and only if n is square free and g
d(�(n); k) = 1.



362 U. Ahmad, S. HusnineLemma 2.6 ([10℄). Let p be a prime and � � 1, k � 2 be integers. ThenN(p�; k; 0) = p��d�k e.Theorem 2.7 ([10℄). Let n be an integer having fa
torization as given in (1.1).ThenAt(G(n; k)) = 1t " rYi=1(Æi g
d(�(peii ); kt � 1) + 1)� Xdjt;d6=t dAd(G(n; k))#;where Æi = 2 if 2 j kt � 1 and 8 j peii , and Æi = 1 otherwise.Theorem 2.8 ([10℄). Let n = n1n2, where g
d(n1; n2) = 1 and a = (a1; a2) bea vertex in G(n; k) �= G(n1; k)�G(n2; k). Then a is a 
y
le vertex if and only ifa1 is a 
y
le vertex in G(n1; k) and a2 is a 
y
le vertex in G(n2; k).Lemma 2.9 ([5℄). Let n = n1n2, where g
d(n1; n2) = 1 and J(n1; k) be a
omponent of G(n1; k) and L(n2; k) be a 
omponent of G(n2; k). Suppose s isthe length of L(n2; k)'s 
y
le and let t be the length of J(n1; k)'s 
y
le. ThenC(n; k) �= J(n1; k) � L(n2; k) is a subdigraph of G(n; k) 
onsisting of g
d(s; t)
omponents, ea
h having 
y
les of length l
m(s; t).3. Existen
e of isolated �xed pointsWe know that if n is square free then 0 is an isolated �xed point of G(n; k).Now if G1(n; k) is regular then 1 is an isolated �xed point of G(n; k). We alsoknow that for k = 1, the digraph G(n; k) 
onsists of isolated �xed points only.However, the 
riteria for the existen
e of isolated point for other 
ases are yet notstudied by any other author. In the following se
tion we attempt to sort out thisproblem for the 
ase when G1(n; k) is not regular and n is not square free.Lemma 3.1. Let n = ml, where g
d(m; l) = 1 and x = (x1; x2) be a vertex inG(n; k) �= G(m; k) � G(l; k). Then x is an isolated �xed point of G(n; k) if andonly if x1 and x2 are isolated �xed points of G(m; k) and G(l; k), respe
tively.Proof: Let x be an isolated �xed point. Then x is 
y
le of length one andN(n; k; x) = 1. From Theorems 2.8 and 2.9, x1 and x2 are �xed points of G(m; k)and G(l; k), respe
tively. Also by Theorem 2.2, N(m; k; x1) = 1 = N(l; k; x2).Hen
e, x1 and x2 are isolated �xed points in G(m; k) and G(l; k), respe
tively.Converse is similar. �Theorem 3.2. The power digraph G(n; k), where n is de�ned as in (1.1) andk � 2, has at least one isolated �xed point if and only if either ei = 1 org
d(�(peii ); k) = 1 for all 1 � i � r in prime fa
torization of n.Proof: Suppose G(n; k) has an isolated �xed point a. For all peii k n, where 1 �i � r, either ei = 1 or ei > 1. Suppose to the 
ontrary that there exists 1 � j � rsu
h that g
d(�(pejj ); k) 6= 1 and ej > 1. Sin
e a is a �xed point, by Theorems 2.8,



Chara
terization of power digraphs modulo n 363Theorem 2.9 and equation (1.2) there exist �xed points ai 2 G(peii ; k) for all1 � i � r su
h that a = (a1; : : : ; aj ; : : : ; ar). Now from Theorem 2.2, we 
an writeN(n; k; a) = rYi=1N(n; k; ai):(3.1)If aj 2 G1(pejj ; k) then N(pejj ; k; aj) = g
d(�(pejj ); k) 6= 1. Thus in this 
asefrom equation (3.1), N(n; k; a) 6= 1, whi
h 
ontradi
ts the fa
t that a is an isolated�xed point. Hen
e, we may suppose aj 2 G2(pejj ; k). Now we know that G2(pejj ; k)
onsists of one 
omponent 
ontaining �xed point 0. Thus aj � 0 (mod pejj ). FromLemma 2.6, N(pejj ; k; aj) = N(pejj ; k; 0) = pej�d ejk ej . Sin
e ej > 1 and k � 2,N(pejj ; k; aj) 6= 1. Now from equation (3.1) it follows that N(n; k; a) 6= 1 whi
hagain is a 
ontradi
tion.Conversely, suppose for all peii k n, where 1 � i � r, either ei = 1 org
d(�(peii ); k) = 1. If ei = 1, 0 is an isolated �xed point in G(pi; k). If ei > 1and g
d(�(peii ); k) = 1, 1 is an isolated point in G(peii ; k). Now 
onsider a =(a1; a2; : : : ; ar), where ai = 0 if ei = 1;= 1 if ei > 1:From Lemma 3.1, a is an isolated �xed point of G(n; k). �Corollary 3.3. Suppose k is even and n > 2 is de�ned as in (1:1). The powerdigraph G(n; k) has at least one isolated �xed point if and only if n is square free.Proof: We know that 2 j �(peii ) for all 1 � i � r. Sin
e k is even, g
d(�(peii ); k) 6=1 for any 1 � i � r. Hen
e, from Theorem 3.2, ei = 1 for all 1 � i � r whi
himplies n is square free.Conversely, if n is square free, 0 is an isolated �xed point of G(n; k). �Corollary 3.4. Suppose G1(n; k) is not regular and n is not square free. Thepower digraph G(n; k), where n is de�ned as in (1.1) and k � 2, has an isolated�xed point if and only if the following statements are satis�ed.(1) k must be odd.(2) The sets l = fpeii j ei > 1 and g
d(�(peii ; k) = 1)g and m = fpejj j ej = 1gare non empty. Also G(n; k) �= G(l; k)�G(m; k).(3) The digraph G1(m; k) is not regular.Proof: Suppose G(n; k) has an isolated �xed point a. If k is even then fromCorollary 3.3, n is square free whi
h is a 
ontradi
tion. Now from Theorem 3.2,either ei = 1 or g
d(�(peii ); k) = 1 for all 1 � i � r in the prime fa
torization of n.Sin
e G1(n; k) is not regular and n is not square free, there must exist 1 � s < rsu
h that ei = 1 for all 1 � i � s and g
d(�(peii ); k) = 1 for all i > s. Hen
e, thesets l and m are non empty. Sin
e l and m are disjoint, from equation (1.2), weget G(n; k) �= G(l; k)�G(m; k).



364 U. Ahmad, S. HusnineNow if G1(m; k) is regular then from equation (1.2) and Theorem 2.5, G1(n; k)= G1(l; k)�G1(m; k) is also regular whi
h is a 
ontradi
tion.Conversely, suppose all three 
onditions are true. Sin
e l is non empty andG1(l; k) is regular, 1 is an isolated �xed point in G(l; k). Again sin
e m isnonempty, 0 is an isolated �xed point of G2(m; k). Thus from Lemma 3.1,a = (1; 0) is an isolated �xed point of G(n; k) �= G(l; k)�G(m; k). �Example 3.5. Let n = 28 = 22 � 7 and k = 15. Here we 
an see that the setsl = f22g and m = f7g are non empty. Sin
e g
d(�(4); 15) = 1 and g
d(�(7); 15) =3 6= 1, from Theorem 2.5, G1(l; k) is regular and G1(m; k) is not regular. ThusG(28; 15) satis�es 
onditions 1, 2 and 3 of Theorem 3.2. Hen
e, G(28; 15) 
ontainsan isolated �xed point. It is shown in Figure 1.

Figure 1. The isolated �xed points of G(28,15) are 7 and 214. Power digraphs of Fermat numbersTheorem 4.1. The power digraph G(n; k), where n > 2 and k � 2 are positiveintegers exhibits the following properties:(1) G(n; k) 
onsists of exa
tly two 
omponents 
ontaining �xed points 0and 1,(2) G1(n; k) is semi-regular of degree 2d for some d � 1if and only if k is even and n = 2l or n = Fm, where l � 2, m � 1 are integersand Fm = 22m + 1 is Fermat prime.Proof: Suppose that a power digraph G(n; k) exhibits the above properties (1)and (2). Sin
e 0 and 1 are �xed points of G(n; k), G2(n; k) and G1(n; k) both
onsist of one 
omponent 
ontaining �xed points 0 and 1, respe
tively.First suppose k is odd; then 2 j k � 1. Sin
e n > 2, 2 divides �(peii ) for all1 � i � r. Thus from Theorem 2.6, A1(G(n; k)) � 3. This along with the fa
tthat ea
h 
omponent of G(n; k) 
ontains a unique 
y
le implies that the numberof 
omponents of G(n; k) is greater than or equal to 3 whi
h 
ontradi
ts (1).We know that the Euler fun
tion �(n) is a power of 2 if and only n = 2lFm1Fm2: : : Fms . Also it is easy to show that �(n) = 2i if and only if �(n) = 2j , where



Chara
terization of power digraphs modulo n 365j � i. Now we 
laim that n must be of the form 2lFm1Fm2 : : : Fms , where l � 0and Fmi are Fermat primes for all i. For if n 6= 2lFm1Fm2 : : : Fms then �(n) isnot a power of 2. Therefore, there exists an odd prime divisor p of �(n). Thenby de�nition of �(n) there exists i, where 1 � i � r su
h that p is a prime divisorof �(peii ). If p j k, by Theorem 2.3, either N(n; k; a) = 0 or p j N(n; k; a) for alla 2 G1(n; k) whi
h 
ontradi
ts (2). Thus we may suppose p - k. Now p is a fa
torof �(n) whi
h is relatively prime to k. Thus from Theorem 2.4 there exists a 
y
leof length t in G1(n; k) su
h thatkt � 1 (mod p):If t = 1 then p j k � 1. Now from Theorem 2.6, A1(G(n; k)) � p + 1 whi
h
ontradi
ts (1). Hen
e, we may suppose t > 1. But then there exists a 
omponent
ontaining a 
y
le of length t > 1 whi
h again 
ontradi
t (1). Thus in any 
ase,we get a 
ontradi
tion. Hen
e, n = 2lFm1Fm2 : : : Fms , where l � 0 and Fmi areFermat primes for all i.Now sin
e G2(n; k) 
onsists of only one 
omponent 
ontaining the �xed point 0,nmust be of the form p�, where p is any prime and � � 1. Thus n = 2l or n = Fm,where l � 2, m � 1 are integers and Fm = 22m + 1 is Fermat prime.Conversely, suppose k is even and n = 2l or n = Fm, where l � 2, m � 1 areintegers and Fm = 22m +1 is Fermat prime. It is easy to see that �(n) is a powerof 2. Property (2) 
an be proved from Theorem 2.3. To prove property (1), we�rst show that G1(n; k) does not 
ontain any 
y
le of length greater than 1. FromTheorem 2.4 and the fa
t that the greatest divisor of �(n) whi
h is relativelyprime to k is 1, it follows that all 
y
les of G1(n; k) are �xed points. Now fromTheorem 2.6, A1(G(n; k)) = 1. Sin
e the number of 
omponents in G1(n; k) isequal to the number of 
y
les in G1(n; k), G1(n; k) 
onsists of only one 
ompo-nent 
ontaining 1. This along with the fa
t that G2(n; k) always 
onsists of one
omponent whenever n is a power of a prime, 
ompletes the proof. �Remark 4.2. In Theorem 4.1, we have taken n > 2 as for n = 2, the power digraphG(2; k) always 
onsists of two 
omponents whi
h are isolated �xed points. It doesnot depend on value of k. We also note that property (2) is not satis�ed in this
ase.Corollary 4.3. Let n be a positive integer and k = 2s, where s � 1. The powerdigraph G(n; k) 
onsists of exa
tly two 
omponents 
ontaining �xed points 0 and1 if and only if n = 2l or n = Fm, where Fm = 22m + 1 is Fermat prime for all1 � i � s and l � 1.Proof: Sin
e k = 2s, from Theorem 2.3 N(n; k; a) = Qri=1 g
d(�(peii ); k) = 2dfor some d � 1 or N(n; k; a) = 0. Hen
e, G1(n; k) is semi-regular of degree 2d forsome d � 1. Corollary follows from Theorem 4.1. �Corollary 4.4. Let k be an even integer (k � 2). A Fermat number Fm = 22m+1is prime if and only if following are satis�ed:(1) G(Fm; k) 
onsists of two 
omponents 
ontaining �xed points 0 and 1,



366 U. Ahmad, S. Husnine(2) G1(Fm; k) is semi-regular of degree 2d for some 1 � d � 2m.Proof: It is straight forward from Theorem 4.1. �Corollary 4.5. Let n be a positive integer and k = 2s, where s � 1. A Fermatnumber Fm = 22m+1 is prime if and only if G(Fm; k) 
onsists of two 
omponents
ontaining �xed points 0 and 1.Proof: It 
an be proved from Theorem 2.3 and Corollary 4.4. �Corollaries 4.3 and 4.5 for s = 1 has been proved in [7℄.Theorem 4.6. Let n > 2 be a positive integer and k = q�11 : : : q�ss be the primede
omposition of k. The power digraph G(n; k) 
onsists of two 
omponents ifand only if k is even and n has one of the following forms:(1) n = p, where p = 1+Q1�i�s q
ii is prime and 
i � 0 for all i;(2) n = q�j for some 1 � j � s and qj = 1 +Q1�i�s;i6=j q
ii , where 
i � 0 forall i.Proof: Suppose the power digraph G(n; k) 
onsists of two 
omponents. Nowif k is odd then 2 j k � 1. Also sin
e n > 2, 2 j �(peii ) for all 1 � i � r.Hen
e, from Theorem 2.6, A1(G(n; k)) � 3. This along with the fa
t that thenumber of 
omponents is equal to the number of 
y
les in power digraphs impliesthat the number of 
omponents of G(n; k) is greater than or equal to 3 whi
h isa 
ontradi
tion. Hen
e, k must be even.As the verti
es 0 and 1 belong to G(n; k), both of its 
omponents 
ontain �xedpoints and there does not exist any other 
omponent 
ontaining a 
y
le of lengthgreater than 1. Sin
e G2(n; k) itself is a 
omponent 
ontaining 0, n must be ofthe form n = p�, where p is any prime. Suppose on the 
ontrary that n does notsatisfy the 
onditions given in (1) and (2). The following 
ases arise:Case 1. If n = p�, where p 6= qi for any 1 � i � s and � > 1, then p j �(n) =�(p�) = p��1(p � 1). We 
an see that p - k whi
h shows that p is a fa
tor of�(n) relatively prime to k. Thus from Theorem 2.4, there exists a 
y
le of lengtht su
h that(4.1) kt � 1 (mod p):The fa
t that there does not exist any other 
omponent 
ontaining the 
y
le oflength greater than 1 for
es t = 1. But then p j k � 1 from (4.1). Consequentlyfrom Theorem 2.7, A1(G(n; k)) � p+ 1. This further implies that the number of
omponents of G(n; k) is greater than or equal to p+ 1 whi
h is a 
ontradi
tion.Case 2. Now suppose n = p, where p is any prime or n = q�j for some 1 � j � s,but there exist prime divisors p1 6= qi and p2 6= qi for any i su
h that p1 j p � 1and p2 j qj � 1. Then p1 and p2 are prime divisor of �(n) relatively prime to k.Now again by the same argument as in Case 1, we �nd the 
ontradi
tion.Conversely, suppose k is even and n has one of the forms given in (1) and (2).We note that in either 
ase �(n) does not 
ontain any prime fa
tor relatively prime
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tor of �(n) relatively prime to k is u = 1. We 
an see that k � 1(mod u). Thus from Theorem 2.4, every 
y
le of G1(n; k) is of length 1, that is a�xed point. Now from Theorem 2.6 there are two �xed points. This implies thatG(n; k) 
onsists of two 
omponents whi
h 
ompletes the proof. �Referen
es[1℄ Wilson B., Power digraphs modulo n, Fibona
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 Quart. 34(1996), 226{239.[3℄ Burton D.M., Elementary Number Theory, M
Graw-Hill, 2007.[4℄ Chartrand G., Oellermann O.R., Applied and Algorithmi
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Graw-Hill,New York, 1993.[5℄ Kramer-Miller J. Stru
tural properties of power digraphs modulo n, in Pro
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