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Monotone measures with badtangential behavior in the planeRobert �Cern�y, Jan Kol�a�r, Mirko RokytaAbstra
t. We show that for every " > 0, there is a set A � R2 su
h that H1xA isa monotone measure, the 
orresponding tangent measures at the origin are notunique and H1xA has the 1-dimensional density between 1 and 3+ " everywhereon the support.Keywords: monotone measure, monotoni
ity formula, tangent measureClassi�
ation: 49J451. Introdu
tionIn this paper, we study the existen
e of monotone measures with bad tangentialbehavior satisfying some additional assumptions natural for minimal surfa
es.The question about their existen
e is motivated by open problems on existen
eand regularity of minimal surfa
es, see [6℄.De�nition 1.1. Let � be a Radon measure on Rn and k 2 N. We say that �is k-monotone if the fun
tion r 7! �B(z;r)rk is nonde
reasing on (0;1) for everyz 2 Rn .De�nition 1.2. Let � be a Radon measure on Rn , z 2 spt� and k � n. We saythat � is a k-tangent measure of � at z (we write � 2 Tankz �), if � is a non-zeroRadon measure on Rn and if there is a sequen
e frjg1j=1, rj > 0, rj ! 0 as j !1su
h that 1rkj Tz;rj (�)! � vaguely as j !1, where Tz;r(x) = x� zr ;i.e. if every 
ontinuous fun
tion ' on Rn with a 
ompa
t support satis�eslimj!1 1rkj ZRn'�x� zrj � d�(x) = ZRn'd�:Resear
h of the �rst and the third author is supported by the grant MSM 0021620839.Resear
h of the se
ond author is supported by the grants AV 0Z 10190503 and IAA100190903.



318 R. �Cern�y, J. Kol�a�r, M. RokytaInstead of 1-monotone and 1-tangent we simply write monotone and tangent .The tangent measures were introdu
ed by Preiss in [5℄. If � is a k-monotonemeasure, then � has a �nite k-dimensional density �kz� = limr!0+ �B(z;r)!krk , where!k is the volume of the unit ball in Rk . If the density satis�es �kz� 2 (0;1), thenour de�nition of tangent measures 
oin
ides up to a multipli
ative 
onstant withthe one in [4, 14.1℄.For better understanding of the problems 
on
erning the minimal surfa
es, itis important to study monotone measures with non-unique tangent measures ata point of the support.The �rst su
h a measure was given by Kol�a�r in [3℄. However, this measuredoes not satisfy the density assumption natural for minimal surfa
es. Thereforethere were further attempts to 
onstru
t other k-monotone measures with badtangential behavior, i.e. �nd for �xed " > 0 a Radon measure � on Rn satisfyingthe following additional properties (we suppose that the origin 0 2 spt� is thepoint with non-unique k-tangent measures to �):(1)�kz� � 1 for every z 2 spt� (then � is 
alled a 
on
entrated measure);(2) �kz� = 1 for every z 2 spt� n f0gand(3) �k0� � 1 + ":A k-monotone measure with non-unique tangential behavior satisfying all assump-tions (1), (2) and (3) has not been 
onstru
ted yet. However it is believed thatsu
h a measure exists. Let us also note that its existen
e would disprove the 
on-je
ture that the monotoni
ity is a suÆ
ient assumption for the Allard regularitytheorem, see [6℄.Let us re
all one of the partial results 
on
erning the above problem. A mono-tone measure with non-unique tangential behavior satisfying (1) and weakenedversions of (2) and (3) was 
onstru
ted by Kir
hheim using the method from [3℄.This result was not published. Let us give the main ideas of the 
onstru
tion.Fix a > 0 and de�ne a symmetri
al pair of logarithmi
 spirals by�+a (t) = (exp (at) 
os t; exp (at) sin t); t 2 Rand ��a (t) = (� exp (at) 
os t;� exp (at) sin t); t 2 R:Next, we de�ne the measures�+a = H1 x [�+a ℄; ��a = H1 x [��a ℄ and �a = �+a + ��a ;where we use the notation [�+a ℄ = f�+a (t) : t 2 Rg, et
.



Monotone measures with bad tangential behavior in the plane 319One 
an easily see that �a has non-unique tangential behavior at the origin (seethe third se
tion for a detailed proof), the density assumptions are satis�ed (forsuÆ
iently large a), but unfortunately �a is not monotone (see the last se
tion forthe proof). However, using a 
areful Taylor expansion with a 
omputer algebrapa
kage, Kir
hheim proved the \lo
al monotoni
ity" of �a, it is the existen
e ofÆ = Æ(a) > 0 su
h that t 7! �aB(z;r)r is nonde
reasing as long as r < Æjzj. Thenhe used the 
ompensation method from [3℄ (one adds a suitable \very" monotonemeasure, see for example Lemma 2.3) showing that there is a �nite number of linespassing through the origin su
h that H1 restri
ted to the union of these lines, [�+a ℄and [��a ℄, is monotone. It is, the �nal measure is monotone, it has non-uniquetangential behavior, 
ondition (1) is satis�ed, 
ondition (2) is satis�ed up to thepoints of interse
tion of the spirals and the lines and we have a version of (3) withthe upper bound slightly larger than one plus the number of lines.The goal of this paper is to give the following three improvements 
on
erningKir
hheim's result. First, we give a short proof of the \lo
al monotoni
ity" of �a(see Proposition (5.1)). Se
ond, we obtain an estimate 
on
erning above men-tioned Æ(a) (not only the existen
e). Let us note that our estimate enables us toshow that it is enough to use two lines only as a 
ompensation for the monotoni
-ity (see Theorem 1.3) whi
h is in fa
t the smallest possible number of lines (seethe last se
tion). Third, using the De�nition 1.1 for large radii, we 
on
lude thatour �nal measure is monotone.Now, let us state our main result. SetL1 = f(t 
os(�3 ); t sin(�3 )) : t 2 Rg and L2 = f(t 
os( 2�3 ); t sin( 2�3 )) : t 2 Rg:Theorem 1.3. Let " > 0. Then there is K = K(") > 0 su
h that for everya > K, the measure �a satis�es�a +H1 x (L1 [ L2) is monotone,�a +H1 x (L1 [ L2) does not have a unique tangent measure at the origin,�1z(�a) = 1 for all z 2 spt�a n f(0; 0)g;�1z(H1 x (L1 [ L2)) = 1 for all z 2 L1 [ L2 n f(0; 0)g;�1(0;0)(�a +H1 x (L1 [ L2)) � 3 + ":A similar problem is studied in [2℄, where a version of logarithmi
 spirals in R3is given.We refer to [4℄, [5℄ and [6℄ for other information 
on
erning the geometry ofmeasures and the Monotoni
ity Formula.The paper is organized as follows. In the third se
tion we study the tangentialbehavior. The next two se
tions are devoted to the proof of the monotoni
-ity whi
h is the most diÆ
ult part of the proof of Theorem 1.3. We prove themonotoni
ity showing that the lower derivative of r 7! (�a+H1x(L1 [L2))B(z;r)r is



320 R. �Cern�y, J. Kol�a�r, M. Rokytanon-negative for every pair (z; r), z 2 R2 , r > 0. When 
he
king this pointwiseproperty, we distinguish several 
ases. In the fourth se
tion we 
onsider the 
ases
on
erning z and r su
h that the proof of the non-negativity of the lower deriv-ative is just a straightforward 
omputation. The �fth se
tion is devoted to verysmall radii (this is the diÆ
ult 
ase that Kir
hheim's result 
on
erns) where weapply a te
hnique from [1℄. In the last se
tion we show that the measure �a isnot monotone.2. PreliminariesNotation. The s
alar produ
t of x; y 2 R2 is denoted by x � y, the Eu
lideannorm of x is jxj. Further, x1 and x2 are the �rst and the se
ond 
oordinates of x(this notation is used in the main part of the paper, while in the last se
tion themeaning of the lower index is di�erent as spe
i�ed below). SetB(z; r) = fx 2 R2 : jx� zj � rg; S(z; r) = fx 2 R2 : jx� zj = rg:When z = (0; 0), we simply write B(r) and S(r).The 1-dimensional Hausdor� measure is denoted by H1. If A is a Borel set and� is a Radon measure, then � x A is the restri
tion of � to A, i.e. (� x A)(M) =�(M \ A). If I is an interval and � : I 7! Rn is a 
ontinuous 
urve, then[�℄ = f�(t) : t 2 Ig.Next, for given z and r we are interested in the points of interse
tion of S(z; r)and [�+a ℄ (or [��a ℄) with the maximal or minimal distan
e from the 
enter z. Thefollowing three points are important for us.If S(z; r) \ [�+a ℄ 6= ;, then let us denote(4) � = �+a (�) 2 S(z; r) \ [�+a ℄ su
h that j�j � j�j for all � 2 S(z; r) \ [�+a ℄;and(5) ~� = �+a (~� ) 2 S(z; r) \ [�+a ℄ su
h that j~�j � j�j for all � 2 S(z; r) \ [�+a ℄:If S(z; r) \ [��a ℄ 6= ;, then we pi
k(6) � = ��a (�) 2 S(z; r) \ [��a ℄ su
h that j�j � j�j for all � 2 S(z; r) \ [��a ℄:As z 2 S(1), there is # 2 [0; 2�) su
h that z = (
os#; sin#). Let us further set' = � � #,  = � � # where � and � are given above.In the last se
tion, we work with a sequen
e of radii frjg. In this 
ase �j , �j ,'j , et
. 
orrespond to the radius rj (it is, �j , et
. no longer denotes the j-th
oordinate of a point but the j-th member of a sequen
e).Some notes on the logarithmi
 spirals. Asj _�+a (t)j�j�+a (t)j�t = p(aeat 
os t� eat sin t)2 + (aeat sin t+ eat 
os t)2aeat =r1 + 1a2 ;



Monotone measures with bad tangential behavior in the plane 321and similarly for ��a , we obtain for 0 � 
1 � 
2(7)�+a (fx 2 R2 : 
1 � jxj � 
2g) = ��a (fx 2 R2 : 
1 � jxj � 
2g) =r1 + 1a2 (
2� 
1):Hen
e, for any r > 0, we have(8) �aB(r)2r =r1 + 1a2 :The logarithmi
 spirals are self-similar, in the sense that multipli
ation of the
oordinates by the same positive number 
orresponds to some rotation. Morepre
isely, if we de�ne�+a;t0(t) = (exp (a(t� t0)) 
os t; exp (a(t� t0)) sin t); t 2 R;��a;t0(t) = (� exp (a(t� t0)) 
os t;� exp (a(t� t0)) sin t); t 2 Rand �a;t0 = H1 x ([�+a;t0 ℄ [ [��a;t0 ℄);then for every % > 0 we have(9) 1%T(0;0);%(�a) = �a;t0 with t0 = ln %a :Some notes on monotoni
ity. Let us re
all some well known fa
ts 
on
erningthe monotoni
ity of Radon measures. Let � : [a; b℄ 7! Rn be a regular C1-
urveand let � = H1 x [�℄. If we want to prove that r 7! �B(z;r)r is nonde
reasing on(0;1) for some z 2 Rn , then it is enough to show that(10) Dr �B(z; r)r = 1r2 �rDr �B(z; r)� �B(z; r)�is nonnegative on (0;1). Here we use the notation Dr f(r) = lim infÆ!0 f(r+Æ)�f(r)Æ .Noti
e that the 
ondition Dr �B(z;r)r � 0 is satis�ed when �B(z; r) � 2r and�(a);�(b) =2 B(z; r) (if �B(z; r) = 0 then the proof is trivial and if 0 < �B(z; r) �2, then there are at least two points of interse
tion S(z; r) \ �((a; b)) and the
ontribution of ea
h of them to Dr �B(z; r) is at least 1). We use this 
riterionvery often.We say that a measure � is monotone at (z; r) if Dr �B(z;r)r � 0. The super-additivity of the lower derivative Dr implies that a sum of monotone measuresat (z; r) is again monotone at (z; r).We also need the following result inspired by the proof of [1, Proposition 2.2℄telling us when we have Dr �B(z;r)r > 0 for � being H1 restri
ted to the graph ofa fun
tion.



322 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 2.1. Let Æ1; Æ2 > 0 and f 2 C1([�Æ1; Æ2℄;R). Set �f = H1 x f(x; f(x)) :x 2 [�Æ1; Æ2℄g. Fix z = (0; h), with h 2 R, and �x r > 0 small enough so that(�Æ1; f(�Æ1)); (Æ2; f(Æ2)) =2 B(z; r). Suppose that the following is satis�ed.(i) For all x 2 (�Æ1; Æ2) we have the inequality(11) 2jxjp1 + f 02(x)1 +p1 + f 02(x) � �f (f(t; s) : t 2 I(0; x); s 2 Rg) > 0;where I(0; x) denotes the 
losed interval with the endpoints 0 and x.(ii) If �fB(z; r) > 0, let x1; x2 2 (�Æ1; Æ2) be su
h that (x1; f(x1)); (x2; f(x2)) 2S(z; r) and x1 � x � x2 for every x 2 (�Æ1; Æ2) su
h that (x; f(x)) 2 S(z; r)and assume that x1; x2 have the following property: for both i = 1; 2 the anglebetween the tangent to the graph of f at (xi; f(xi)) and the line joining z and(xi; f(xi)) is less than �2 .Then �f is monotone at (z; r).Proof: Sin
e a sum of monotone measures at (z; r) is a monotone measure at(z; r), it is enough to 
onsider even fun
tions, Æ1 = Æ2 and x > 0. Suppose h 2 R,r > 0 are �xed and �fB(z; r) > 0 (otherwise the proof is trivial by (10)).We denote x = maxft 2 R : (t; f(t)) 2 B(z; r)g. Then obviously x 2 (0; Æ2).Set �(x) = ar
tan f 0(x), 'h(x) = ar
tan f(x)�hx . Therefore 
os(�(x) � 'h(x)) > 0(see assumption (ii)) and we have��fB(z; r)�r � 2 1
os(�(x) � 'h(x)) :As r = x
os('h(x)) , we obtain(12) ��fB(z; r)�r r � 2
os(�(x) � 'h(x)) x
os('h(x))= 4x
os(�(x) � 2'h(x)) + 
os(�(x))� 4x1 + 
os(�(x)) = 4x1 + 1p1+f 02(x) = 4xp1 + f 02(x)1 +p1 + f 02(x)and the proof follows from (10), (12) and the assumptions of the lemma. �Remark 2.2. If f satis�es jf 0j � 14 on (�Æ1; Æ2), then Lemma 2.1 holds withoutassumption (ii).Proof: Sin
e a sum of monotone measures at (z; r) is a monotone measure at(z; r), it is enough to 
onsider an even fun
tion and Æ1 = Æ2. Fix r > 0, z = (0; h),with h 2 R, su
h that (Æ2; f(Æ2)) =2 B(z; r). If �fB(z; r) = 0, then �f is monotoneat (z; r). Otherwise there is x0 2 (0; Æ2) su
h that (x0; f(x0)) 2 S(z; r) and(x; f(x)) =2 S(z; r) whenever jxj 2 (x0; Æ2).



Monotone measures with bad tangential behavior in the plane 323Now, we distinguish two 
ases. First, if jh � f(0)j < 34x0 then 
ondition (ii)is satis�ed (sin
e jf 0j < 1, the angle between (1; 0) and the tangent to the graphat (x0; f(x0)) is plainly less than �4 ; sin
e jf 0j � 14 we have jf(x0)� f(0)j � 14x0,hen
e jh� f(x0)j � jh� f(0)j+ jf(0)� f(x0)j < x0, thus the angle between (1; 0)and the ve
tor (x0; f(x0))� (0; h) is less than �4 ).Se
ond, let jh�f(0)j � 34x0. Assumption jf 0j � 14 implies jf(x0)�f(0)j � 14x0,hen
e(13) r =qx20 + (h� f(x0))2 �rx20 + �12x0�2 � 1110x0:Sin
e �fB(z; r) > 0, there are at least two points in S(z; r) \ spt�f . Hen
eDr �fB(z; r) � 2 and thus from (13) and jf 0j � 14 we obtainDr �fB(z; r)r = 1r2 �rDr �fB(z; r)� �fB(z; r)�� 1r2 �21110x0 � 2r1 + �14�2x0� � 0:Therefore �f is monotone at (z; r). �Our last auxiliary result 
on
erns the monotoni
ity of H1 x (L1 [ L2).Lemma 2.3. The measure H1 x (L1 [ L2) is monotone. Moreover, if z 2 S(1)and r � 910 , then ��r (H1 x (L1 [ L2))B(z; r)r � 1200r3 :Proof: For a line L and a 
enter z, we denote d = dist(z; L). If r > d, then(14) ��r (H1 x L)B(z; r)r = ��r 2pr2 � d2r = 2 d2r2pr2 � d2 � 2d2r3 :Sin
e, in addition, (H1 x L)B(z; r) = 0 for 0 < r � d, we see that H1 x L ismonotone and the �rst assertion of the lemma follows.Let us prove estimate (14). Re
all z = (
os#; sin#). In 
ase # 2 [0; �3 � �60 ℄,we have dist(z; L1) = sin(�3 � #) 2 [sin( �60 ); sin(�3 )℄ � [ 120 ; 910 ℄and thus for r � 910 we obtain from (14)��r (H1 x (L1 [ L2))B(z; r)r � ��r (H1 x L1)B(z; r)r � 2sin2( �60 )r3 � 1200r3 :If # 2 [�3 � �60 ; �2 ℄, thendist(z; L2) = sin( 2�3 � #) 2 [sin(�6 ); sin(�3 + �60 )℄ � [ 12 ; 910 ℄;



324 R. �Cern�y, J. Kol�a�r, M. Rokytahen
e for r � 910 we have by (14)��r (H1 x (L1 [ L2))B(z; r)r � ��r (H1 x L2)B(z; r)r � 2sin2 ��6 �r3 � 12r3 :Thus, we are done in the �rst quadrant. In any other quadrant the proof is similar(see the de�nition of L1 and L2). �3. Tangential behaviorProposition 3.1.Tan1(0;0)(�a +H1 x (L1 [ L2)) = f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g:Proof: Using (9) one 
an easily prove thatTan1(0;0)(�a +H1 x (L1 [ L2)) � f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g:Indeed, sin
e we plainly have for any t0 2 [0; �) the identity(15) �a;t0 = �a;t0+k� for all k 2 Z;it is enough to take the sequen
e of blow-ups 
orresponding to %j = exp(a(t0 �j�)), j 2 N.The opposite in
lusion is obtained by a suitable 
hoi
e of a test fun
tion. As-sume %j > 0 for j 2 N, %j ! 0 and 1%j T(0;0);%j (�a + H1 x (L1 [ L2)) vaguely
onverges. Set tj = ln %ja . Hen
e from (9) and an obvious identity1%j T(0;0);%j (H1 x (L1 [ L2)) = H1 x (L1 [ L2)we see that �a;tj vaguely 
onverges. Let  : [0;1) 7! R be a 
ontinuous fun
tionwith a 
ompa
t support satisfying  � 0,  (0) = 0 and R10  (t) dt = 1. We de�neon R2 a 
ontinuous test fun
tion with a 
ompa
t support by '1(0; 0) = 0 and'1(x) =  (jxj)��� x1jxj 
os� ln jxja �+ x2jxj sin� ln jxja ���� for jxj > 0:If t 2 R and x = �+a;tj (t) or x = ��a;tj (t) we have'1(x) =  (jxj)j 
os t 
os(t� tj) + sin t sin(t� tj)j =  (jxj)j 
os tj j:Hen
e, we obtain from (7)ZR2 '1 d�a;tj = j 
os tj j ZR2  (jxj) d�a;tj = j 
os tj j Z 10 2r1 + 1a2 (t) dt= 2r1 + 1a2 j 
os tj j:
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os tj j 
onverges. If j 
os tj j ! 1, then from (15) we see that �a;tj !�a;0 = �a vaguely. Similarly, if j 
os tj j ! 0, then �a;tj ! �a;�2 vaguely.Finally, if j 
os tj j ! 
 2 (0; 1), then there is t0 2 (0; �2 ) su
h that j 
os tj j !j 
os t0j = j 
os(� � t0)j. Let us set '2(0; 0) = 0 and'2(x) =  (jxj)��� x1jxj 
os� ln jxja + t0�+ x2jxj sin� ln jxja + t0���� for jxj > 0;where the fun
tion  is the same as above. This time we obtain for x 2 spt�a;tj'2(x) =  (jxj)j 
os t 
os(t� tj + t0) + sin t sin(t� tj + t0)j =  (jxj)j 
os(tj � t0)j:The vague 
onvergen
e implies the same way as above that j 
os(tj�t0)j 
onverges.If j 
os(tj � t0)j ! 1, then (15) implies �a;tj ! �a;t0 vaguely. Otherwise, sin
ej 
os(tj � t0)j ! d 6= 1 and j 
os tj j ! j 
os(� � t0)j, we have 
os tj ! 
os(� � t0).Thus using (15) we obtain �a;tj ! �a;��t0 vaguely. Hen
e we have the remainingin
lusionTan1(0;0)(�a +H1 x (L1 [ L2)) � f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g: �4. Large radii: monotoni
ity by 
ompensationBe
ause of the self-similarity of the logarithmi
 spirals it is enough to provemonotoni
ity at (z; r) only for z 2 S(1)[f(0; 0)g and r > 0. In 
ase of large radii,we 
arefully estimate ea
h term on the right hand side of (10) for � = �a.Throughout the rest of the paper we will often use the notation de�ned inPreliminaries, in parti
ular the one used in (4){(6) without further noti
e.Proposition 4.1. There is K1 > 0 su
h that if a > K1, z 2 S(1) and r � 910 ,then �a +H1 x (L1 [ L2) is monotone at (z; r).Proof of Proposition 4.1: 
ase r 2 [ 910 ; 8℄. If r 2 [ 910 ; 8℄ and z 2 S(1), thenthe proof of the monotoni
ity at (z; r) is obtained dire
tly from formula (10).The main ingredient of the proof is the estimate 
on
erning �aB(z; r) given inLemmata 4.2, 4.3 and 4.4, respe
tively.Lemma 4.2. Assume a � 9, z 2 S(1) and r 2 [1 + 1a ; 8℄. Then�aB(z; r) � 2�1 + 4ln2 aa2 �r:Proof: As r 2 [1 + 1a ; 8℄ and jzj = 1, we have S(z; r) \ [�+a ℄ 6= ; 6= S(z; r) \ [��a ℄and j�j; j�j 2 [ 1a ; 9℄. Hen
e �; � 2 [� ln aa ; ln 9a ℄, and thus a � 9 implies j sin �
os � j � 2 lnaa ,j sin�
os� j � 2 lnaa , �1 > 0 and �1 < 0. Thereforej�1j+ j�1j = �1 � �1 = j�1 � �1j � j�1 � z1j+ jz1 � �1j � 2r



326 R. �Cern�y, J. Kol�a�r, M. Rokytaand thus (7) implies�aB(z; r) = �+a B(z; r) + ��a B(z; r)�r1 + 1a2 (j�j+ j�j) =r1 + 1a2�s1 + ��2�1 �2j�1j+s1 + ��2�1 �2j�1j�=r1 + 1a2�r1 + � sin �
os � �2j�1j+r1 + � sin�
os��2j�1j�� 2r1 + 1a2s1 + 4ln2 aa2 r < 2�1 + 4ln2 aa2 �r: �Lemma 4.3. Assume a � 9, z 2 S(1) and r 2 [1� 3a ; 1 + 1a ℄. Then�aB(z; r) � 2�1 + 4ln2 aa2 ��1 + 1a� � 2r�1 + 4ln2 aa2 ��1 + 6a�:Proof: Sin
e B(z; r) � B(z; 1+ 1a ), the �rst inequality follows from Lemma 4.2.The se
ond estimate follows from the assumptions 
on
erning r and a. �Lemma 4.4. Assume a � 9, z 2 S(1) and r 2 [ 910 ; 1� 3a ℄. Then�aB(z; r) � 2r1 + 1a2 r + 1ar1 + 1a2 :Proof: By the symmetry between �+a and ��a we 
an suppose z1 � 0. Sin
eevery x 2 B(z; r) satis�es1� r = jzj � r � jxj � jzj+ r = 1 + r;we obtain from (7)(16) �+a B(z; r) �r1 + 1a2�(1 + r) � (1� r)� = 2r1 + 1a2 r:Next, let us estimate ��a B(z; r). Plainly B(z; r) � B(2). Further, if t 2 [ ln 1aa ; ln 2a ℄and � = ��a (t), then we have j�j 2 [ 1a ; 2℄, �1 < 0, j�2j � jeattj � 2a (be
ause thefun
tion g(s) = eass satis�es g0(s) = eas(1 + as), g( ln 1aa ) = � lnaa2 > � 2a , g(� 1a ) =� 1ea and g( ln 2a ) = 2 ln 2a , whi
h implies jg(s)j � 2a on [ ln 1aa ; ln 2a ℄). Thereforejz � �j2 = (z1 � �1)2 + (z2 � �2)2 � z21 + z22 � 2jz2jj�2j � 1� 4a > �1� 3a�2 � r2:



Monotone measures with bad tangential behavior in the plane 327It follows that � =2 B(z; r). Hen
e we have B(z; r) \ [��a ℄ � B( 1a ) and thus from(7) we obtain(17) ��a B(z; r) � ��a B( 1a ) = 1ar1 + 1a2 :As �a = �+a + ��a , the proof follows from (16) and (17). �Proof of Proposition 4.1: 
ase 910 � r � 8: Let us suppose that �aB(z; r)> 0, otherwise the proof is trivial. Sin
e there are at least two points in theinterse
tion S(z; r) \ spt�a, we have(18) Dr �aB(z; r) � 2:If r 2 [ 910 ; 1� 3a ℄, using (10), (18), Lemma 4.4 and Lemma 2.3 we obtainDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r + 1ar2 r1 + 1a2 + 1200r3 :If r 2 [1� 3a ; 1 + 1a ℄, then (10), (18), Lemma 4.3 and Lemma 2.3 giveDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r�1 + 4ln2 aa2 ��1 + 6a�+ 1200r3 :Finally, if r 2 [1 + 1a ; 8℄, then (10), (18), Lemma 4.2 and Lemma 2.3 implyDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r�1 + 4ln2 aa2 �+ 1200r3 :Now, if a is suÆ
iently large, then the right hand side is positive in all three
ases. �Proof of Proposition 4.1: 
ase r � 8. For large radii, our estimates have to bemu
h more 
areful then in the previous 
ase. Let us brie
y outline our strategy.Sin
e there are always at least two points of the interse
tion B(z; r)\spt�a (re
allr � 8), from (7) and (10) we obtainDr �aB(z; r)r � q1 + 1a2r2 ���j�j�r + �j�j�r �r � j�j � j�j�:Next, we estimate all the terms on the right hand side using the identities fromLemma 4.6. Noti
e, that when estimating �j�j�r (and similarly �j�j�r ), we do not usethe expli
it formula (21) (whi
h is not 
onvenient to work with), but we pro
eedin the following way. First, we obtain a rough estimate (see Lemma 4.7). Then weuse formula (20) together with this rough estimate on the right hand side (where�j�j�r is multiplied by 1a , whi
h 
an be made very small).



328 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 4.5. Assume �; � 2 R, z 2 S(1) and r � 8. Thenp
os2 '+ r2 � 1 � �1� 1100�r; p
os2  + r2 � 1 � �1� 1100�r:Proof: Sin
e r � 8, we have pr2 � 1 � 99100r. Now, both estimates followeasily. �Lemma 4.6. Assume a � 30 and z 2 S(1). The fun
tion r 7! j�j is 
ontinuouslydi�erentiable on (8;1) and satis�es(19) j�j = 
os'+p
os2 '+ r2 � 1;(20) �j�j�r = � 1a sin'�j�j�r + rp
os2 '+ r2 � 1and(21) �j�j�r = rp
os2 '+ r2 � 1 + sin'a :The fun
tion r 7! j�j is 
ontinuously di�erentiable on (8;1) and satis�es(22) j�j = � 
os +p
os2  + r2 � 1;(23) �j�j�r = 1a sin �j�j�r + rp
os2  + r2 � 1and(24) �j�j�r = rp
os2  + r2 � 1� sin a :Proof: Using � = �+a (�) = (j�j 
os �; j�j sin �) we setF (r; �) = j� � zj2 � r2 = (j�j 
os � � z1)2 + (j�j sin � � z2)2 � r2= j�j2 � 2j�j(z1 
os � + z2 sin �) + 1� r2= j�j2 � 2j�j 
os'+ 1� r2:Solving the equation F (r; �) = 0 with respe
t to nonnegative j�j we obtain (19).The smoothness, (20) and (21) follow from the Impli
it Fun
tion Theorem.Indeed, �'�� = �(��#)�� = 1 and �j�j�� = � exp(a�)�� = a exp(a�) = aj�j imply�F�� = 2aj�j2 � 2aj�j 
os'+ 2j�j sin' = 2aj�j�j�j � 
os'+ sin'a �:
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e applying (19) and Lemma 4.5 we obtain�F�� = 2aj�j�p
os2 '+ r2 � 1 + sin'a � > 0:Further �F�r = �2r, �j�j�� = aj�j, above formula for �F�� imply�j�j�r = �j�j�� ���r = �j�j�� � (�1) �F�r�F�� = aj�j 2r2aj�j(p
os2 '+ r2 � 1 + sin'a ) :This is (21). As � = �
+Æ is equivalent to � = ��Æ�
 provided 
 + Æ 6= 0 6= 
, (20)follows from (21). For the point of interse
tion �, the proof is similar. �Lemma 4.7. Assume a � 30, z 2 S(1) and r � 8. Then�j�j�r � 2 and �j�j�r � 2:Proof: The estimate 
on
erning �j�j�r follows from (21) and Lemma 4.5. For �j�j�rwe use (24) and Lemma 4.5. �Lemma 4.8. Assume a � 30, z 2 S(1) and r � 8. Then��j�j�r + �j�j�r �r � j�j � j�j � � 3a(r � 1) :Proof: Sin
e r > 1 and z 2 S(1), we have j�j; j�j 2 [r� 1; r+1℄. Set Æ = j� ��j.We observe(25) 0 � Æ = ���1a ln j�j � 1a ln j�j��� � 1a ln�r + 1r � 1� = 1a ln�1 + 2r � 1� � 2a(r � 1) :Using (19), (20), (22) and (23) we obtain(26)��j�j�r + �j�j�r �r � j�j � j�j= � � 1a sin'�j�j�r + rp
os2 '+ r2 � 1 + 1a sin �j�j�r + rp
os2  + r2 � 1�r � 
os'�p
os2 '+ r2 � 1+ 
os �p
os2  + r2 � 1:Further, we have(27) j 
os'� 
os j � j'�  j = j� � �j = Æ;(28) j sin'� sin j � j'�  j = j� � �j = Æ;



330 R. �Cern�y, J. Kol�a�r, M. Rokyta(29) r2p
os2 '+ r2 � 1 + r2p
os2  + r2 � 1�p
os2 '+ r2 � 1�p
os2  + r2 � 1= 1� 
os2 'p
os2 '+ r2 � 1 + 1� 
os2  p
os2  + r2 � 1 � 0and by Lemma 4.5 and (27)(30)��� 1p
os2 '+ r2 � 1 � 1p
os2  + r2 � 1 ���= j(
os2  + r2 � 1)� (
os2 '+ r2 � 1)jp
os2 '+ r2 � 1p
os2  + r2 � 1(p
os2 '+ r2 � 1 +p
os2  + r2 � 1)� j 
os2  � 
os2 'j2( 99100r)3 � 2j 
os � 
os'jr3 � 2Ær3 :Lemma 4.5, Lemma 4.7, (20), (23), (25), (28) and (30) imply
(31) ����j�j�r � �j�j�r ��� = ���� rp
os2 '+ r2 � 1 � rp
os2  + r2 � 1�+ 1a�� � sin'�j�j�rp
os2 '+ r2 � 1 + sin'�j�j�rp
os2  + r2 � 1�+ (� sin'+ sin )�j�j�rp
os2  + r2 � 1 + sin (��j�j�r � �j�j�r )p
os2  + r2 � 1 ����� 2Ær2 + 1a�22Ær3 + 2Æ99100r + 499100r� � 5ar :Finally, from Lemma 4.5, Lemma 4.7, (25), (28), (30) and (31) we obtain(32)���� � 1a sin'�j�j�rp
os2 '+ r2 � 1 + 1a sin �j�j�rp
os2  + r2 � 1�r���= ra ��� � sin'�j�j�rp
os2 '+ r2 � 1 + sin'�j�j�rp
os2  + r2 � 1� (sin'� sin )�j�j�rp
os2  + r2 � 1 � sin ��j�j�r � �j�j�r �p
os2  + r2 � 1 ���� ra�22Ær3 + 2Æ99100r + 199100r 5ar� � 1ar :Now, the proof follows from (26) 
ombined with estimates (27) (see also (25)),(29) and (32). �



Monotone measures with bad tangential behavior in the plane 331Proof of Proposition 4.1: 
ase r � 8. Let us suppose that �aB(z; r) > 0,otherwise the proof is trivial. Hen
e there are at least two points in the interse
tionS(z; r)\ spt�a. Using in addition (7), (10), Lemma 2.3 and Lemma 4.8 we obtainDr (�a +H1 x (L1 [ L2))B(z; r)r� q1 + 1a2r2 ���j�j�r + �j�j�r �r � j�j � j�j�+Dr (H1 x (L1 [ L2))B(z; r)r� �q1 + 1a2r2 3a(r � 1) + 1200r3 :If a is suÆ
iently large, then the right hand side is positive and we are done. �5. Small radiiFor very small radii we 
annot rely on any 
ompensation, be
ause some balls
entered on S(1) with small radii do not interse
t L1 [ L2.Proposition 5.1. There is K2 > 0 su
h that if a > K2, 0 < r � 910 and z 2 S(1),then �a is monotone at (z; r).For the proof of this proposition we need some auxiliary lemmata.If the 
enter z 2 S(1) is relatively far from [�+a ℄ or [��a ℄, then the proof is easy.Lemma 5.2. There is K3 > 0 su
h that if a > K3, 0 < r � 910 , z 2 S(1) andjz � (1; 0)j � 120 , then �+a is monotone at (z; r).Proof: Let us use the logarithmi
 parameterization~�+a (t) = �t 
os� ln ta �; t sin� ln ta ��; t 2 (0;1):We observe that there is K3 > 0 su
h that for every a > K3 and t 2 [ 120 ; 2℄ wehave(33) (~�+a )1(t) > 0; j(~�+a )2(t)j � 180 and r1 + 1a2 �r1 + 1802 :Now, we distinguish two 
ases. First, let z1 � 0. For t 2 (0; 120 ℄ we havejz � ~�+a (t)j � jzj � j~�+a (t)j � 1� 120 > 910 � r:For t 2 [ 120 ; 2℄, we see that (33) and z1 � 0 � (~�+a )1(t) imply



332 R. �Cern�y, J. Kol�a�r, M. Rokytajz � ~�+a (t)j =q(z1 � (~�+a )1(t))2 + (z2 � (~�+a )2(t))2 �qz21 + z22 � 2jz2jj(~�+a )2(t)j�r1� 2 180 > 910 � r:Finally, for t > 2 we havejz � ~�+a (t)j � j~�+a (t)j � jzj � 2� 1 > 910 � r:Hen
e if z1 � 0, we always have �+a B(z; r) = 0 and thus �+a is monotone at (z; r).In the se
ond 
ase we have z1 > 0. We 
an further suppose that �+a B(z; r) > 0,otherwise the proof is trivial. In this 
ase one 
an easily 
he
k that jz2j > 140 , thepoints �; ~� 2 S(z; r)\ [�+a ℄ are well de�ned, j�j; j~�j 2 [ 120 ; 2℄ and Dr �+a B(z; r) � 2.Hen
e using (33) we arrive to the estimater =s� j� � ~�j2 �2 + ���z � � + ~�2 ���2 � j� � ~�j2 vuut1 + 4jz2 � �2+~�22 j2(j�j+ j~�j)2� j� � ~�j2 s1 + 4( 140 � 180 )24 � j� � ~�j2 r1 + 1a2 � j�j � j~�j2 r1 + 1a2 :Therefore we obtain from (7) and (10)Dr �+a B(z; r)r = Dr �+a B(z; r)r � �+a B(z; r)r2 � 1r2 �2r �r1 + 1a2 (j�j � j~�j)� � 0:�Our next goal is to obtain the lo
al monotoni
ity for the measure �+a (seeLemma 5.4). We start with the following auxiliary result.Lemma 5.3. There is K4 > 0 su
h that for a > K4 the fun
tion�a(t) = exp(at)�(a2 � 1) 
os t+ 2a sin t� (1 + a2)�+ (1 + a2)(1 + 
os t)� 2a2satis�es �a(t) � 0 on [0; 1a ℄ and �a(t) � 0 on [� 125a ; 0℄.Proof: We have�0a(t) = exp(at)�a(1 + a2) 
os t+ (1 + a2) sin t� a(1 + a2)�� (1 + a2) sin t;�00a(t) = exp(at)�(1 + a2)2 
os t� a2(1 + a2)�� (1 + a2) 
os t:



Monotone measures with bad tangential behavior in the plane 333As �a(0) = �0a(0) = 0 it is enough to �nd K4 > 0 su
h that the fun
tion	a(t) = exp(at)�(1 + a2) 
os t� a2�� 
os t = 11 + a2�00a(t)satis�es the following inequalities for a > K4(34) 	a(t) � 0 on h�125a; 0i and 	a(t) � 0 on h0; 1ai:First, there is M1 > 0 su
h that 
os t � 0 for a > M1 and t 2 [� 125a ; 0℄, and thus	a(t) � exp(at)�(1 + a2) 
os t� a2 � 
os t� = a2 exp(at)(
os t� 1) � 0:This is the �rst inequality in (34). Let us prove the se
ond one. There isM2 > M1su
h that for a > M2 and t 2 [0; 1a ℄ we haveexp(at) � 1 + at+ a2t22 ;(35) 
os t � 1� t22(36)and(37) (1 + a2) 
os t� a2 � (1 + a2)�1� t22 �� a2 � (1 + a2)�1� 12a2�� a2= 12 � 12a2 � 0:Using (35) and (37) we obtain	a(t) � �(1 + a2) 
os t� a2��1 + at+ a2t22 �� 
os t= a2(
os t� 1) + �(1 + a2) 
os t� a2��at+ a2t22 �:Hen
e estimate (36) implies	a(t) � �a2t22 +�1� (1 + a2)t22 ��at+ a2t22 � = at�1� (1 + a2)t22 � a(1 + a2)t34 �:Finally, there is K4 > M2 su
h that for a > K4 and t 2 [0; 1a ℄ we have1� (1 + a2)t22 � a(1 + a2)t34 � 1� (1 + a2)2a2 � (1 + a2)4a2 = 14 � 34a2 � 0and thus 	a(t) � 0 on [0; 1a ℄ for a > K4. We have (34) and we are done. �



334 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 5.4. There is K5 > 0 su
h that if a > K5, 0 < r � 910 , z 2 S(1) andjz � (1; 0)j � 120 , then �+a is monotone at (z; r).Proof: Suppose �+a B(r; z) > 0, otherwise the proof is trivial. We �nd � 2 [�+a ℄su
h that jz � �j = dist(z; [�+a ℄). As (1; 0) 2 [�+a ℄ and jz � (1; 0)j � 120 , we obtainjj�j � jzjj � j� � zj � j(1; 0)� zj � 120 ;hen
e j�j 2 [ 1920 ; 2120 ℄. Assumption r � 910 implies j~�j; j�j 2 [ 110 ; 1910 ℄ � [ j�j11 ; 2j�j℄. Nowwe would like to parameterize a suitable part of [�+a ℄ as a graph of a fun
tion sothat we 
ould use Lemma 2.1.Be
ause of the self-similarity of the logarithmi
 spirals, our 
ase is equivalentto the 
ase with the nearest point �0 = �+a (t0), where t0 = � ar
tan( 1a ), thepoints of interse
tion ~�0; �0 satisfying j~�0j; j�0j 2 [ j�0j11 ; 2j�0j℄ and the 
enter z0 ona line passing through �+a (t0) and perpendi
ular to [�+a ℄ at �+a (t0). Let r0 denotethe radius in this 
ase. On some neighborhood of �+a (t0), the 
urve �+a 
an besuitably represented by a graph of a fun
tion as shown in the sequel. Let us de�nex(t) = ea(t+t0) 
os(t+ t0)� eat0 
os(t0); t 2 (��2 ; �2 );y(t) = ea(t+t0) sin(t+ t0)� eat0 sin(t0); t 2 (��2 ; �2 ):The 
hoi
e t0 = � ar
tan( 1a ) implies 
os t0 = �a sin t0,(38) sin t0 = � sin(�t0) = �s tan2(�t0)1 + tan2(�t0) = �s 1a21 + 1a2 = � 1p1 + a2 ;(39) 
os(t+t0) = 
os t0 
os t�sin t0 sin t = � sin t0(a 
os t+sin t) = a 
os t+ sin tp1 + a2and(40) sin(t+t0) = sin t0 
os t+
os t0 sin t = � sin t0(a sin t�
os t) = a sin t� 
os tp1 + a2 :Hen
e x0(t) = ddt� eat0p1 + a2 (eat(a 
os t+ sin t))� = ea(t+t0)p1 + a2 (1 + a2) 
os tand y0(t) = ddt� eat0p1 + a2 (eat(a sin t� 
os t))� = ea(t+t0)p1 + a2 (1 + a2) sin t:Therefore we see that we 
an 
onsider x 7! y as a fun
tion f : (x(��2 ); x(�2 )) 7! Rwith f 0(x) = tan t, where t is su
h that x = x(t).



Monotone measures with bad tangential behavior in the plane 335Next, let us show that the fun
tion f satis�es the assumptions of Lemma 2.1,the version from Remark 2.2. There is ~K > 0 large enough su
h that for a > ~Kwe have (��2 ; �2 ) � [� 125a ; 1a ℄ and jf 0j � 14 on [x(� 125a ); x( 1a )℄. Next, using x(0) = 0and f 0(0) = f 0(x(0)) = tan 0 = 0, one 
an easily 
he
k that the �rst 
oordinateof the 
enter z0 is the same as the �rst 
oordinate of the point [x(0); f(x(0))℄.It remains to 
he
k 
ondition (11). For t 2 [� 125a ; 1a ℄ let us de�ne	a(t) = 2jx(t)jp1 + f 02(x(t))� (1 +p1 + f 02(x(t)))�f (f(u; v) : u 2 I(0; x(t)); v 2 Rg)= sgn t�2(ea(t+t0) 
os(t+ t0)� eat0 
os t0)p1 + tan2 t� (1 +p1 + tan2 t)r1 + 1a2 (ea(t+t0) � eat0)�;where we have used (7). From (38), (39), (40), p1 + tan2 t = 1j 
os tj = 1
os t on(��2 ; �2 ), 
os t0 = �a sin t0 = ap1+a2 and aq1 + 1a2p1 + a2 = 1 + a2 we obtain	a(t) = eat0 sgn t�2�eat 1p1 + a2 (a 
os t+ sin t)� ap1 + a2� 1
os t� �1 + 1
os t�r1 + 1a2 (eat � 1)�= eat0 sgn tap1 + a2 
os t�2aeat(a 
os t+ sin t)� 2a2 � (1 + 
os t)(1 + a2)(eat � 1)�= eat0 sgn tap1 + a2 
os t�eat(2a2 
os t+ 2a sin t� (
os t+ 1)(1 + a2))� 2a2 + (
os t+ 1)(1 + a2)�= eat0 sgn tap1 + a2 
os t�a(t):Hen
e Lemma 5.3 implies 	a(t) � 0 on [� 125a ; 1a ℄ provided a > K5 = max(K4; ~K).This proves inequality (11) on [x(� 125a ); x( 1a )℄. Further, we 
an see that the 
urve(x(t); y(t)) + �+a (t0), t 2 [� 125a ; 1a ℄, parameterizes the setM = f�+a (t) : t 2 [t0 � 125a ; t0 + 1a ℄g = [�+a ℄ \ nx 2 R2 : jxj 2 he� 125 j�0j; e1j�0jio:Hen
e, as exp(� 125 ) < 111 � j~�0jj�0j and exp 1 > 2 � j�0jj�0j , we have �0; ~�0 2 M .Therefore Lemma 2.1 and Remark 2.2 imply that �a is monotone at (z0; r0). Thus,the self-similarity of logarithmi
 spirals gives that �a is monotone at (z; r). �



336 R. �Cern�y, J. Kol�a�r, M. RokytaProof of Proposition 5.1: Let us re
all that �a = �+a +��a . The monotoni
-ity at (z; r) for �+a follows from Lemma 5.2 and Lemma 5.4. Next, the symmetrybetween �+a and ��a gives the same for ��a . Finally, the super-additivity of thelower derivative Dr 
on
ludes the proof. �Proof of Theorem 1.3: Fix K > max(K1;K2) large enough so that(41) r1 + 1K2 < 1 + ":For z 2 S(1) and r � 910 , the monotoni
ity at (z; r) of �a+H1 x (L1 [L2) followsfrom Proposition 4.1. If z 2 S(1) and r � 910 , then we use Proposition 5.1. In anyother 
ase, with z 6= (0; 0), the monotoni
ity at (z; r) follows from above by theself-similarity of the logarithmi
 spirals. Finally, if z = (0; 0) and r > 0, then themonotoni
ity at (z; r) is easily obtained from (8) and Lemma 2.3. The non-uniquetangential behavior follows from Proposition 3.1. The density properties easilyfollow from the de�nitions of �+a , ��a , L1 and L2, from (8) and from (41). �6. Ne
essity of 
ompensationIn this se
tion, we show that the measure �a is not monotone by itself for anya > 0. Further, sin
e for any line L, the measure H1 x L does not provide any
ompensation for balls 
entered on L (see (14) with d = 0), only one line 
annotbe a suÆ
ient 
ompensation for the monotoni
ity.Proposition 6.1. Assume a > 0 and z 2 R2 n f0g. Then there exists r > 0 su
hthat % 7! �aB(z;%)% is de
reasing on some neighborhood of r.Let us start with some preliminary work. In this se
tion, �j , �j , et
. no longerdenote the j-th 
oordinate of a point but the j-th member of a sequen
e.Lemma 6.2. Let a > 0 and z 2 S(1). Then there is r0 > 1 with the followingproperty:If r � r0, then S(z; r) \ spt�a = f�; �g, where � 2 S(z; r) \ [�+a ℄ and � 2S(z; r) \ [��a ℄, the fun
tions r 7! j�j and r 7! j�j are in
reasing and 
ontinuouslydi�erentiable on (r0;1) and satisfy (19), (21), (22) and (24).Proof: The proof is similar to the proof of Lemma 4.6. �Lemma 6.3. Assume a > 0, z 2 S(1). Then there is a sequen
e of radii frjg1j=1su
h that rj � r0 (r0 > 1 is given by Lemma 6.2), rj ! 1 and the points ofinterse
tion �j = �+a (�j) 2 S(z; rj) \ [�+a ℄ and �j = ��a (�j) 2 S(z; rj) \ [��a ℄satisfy 
os j = 1 and 0 < 'j �  j � 2a(rj�1) for all j 2 N.Proof: Applying Lemma 6.2 to r = r0 we obtain a unique t0 2 R su
h that��a (t0) 2 S(z; r)\ [��a ℄. Given j 2 N, �nd tj 2 [jt0j+ 2a +2�(j�1); jt0j+ 2a +2�j)
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h that 
os(tj � #) = 1 and set rj = j��a (tj) � zj. Thus ��a (tj) = �(rj � 1)zand rj = j��a (tj)� zj � j��a (tj)j � jzj = eatj � 1� eajt0j+2 � 1 � eajt0j + 1 � j��a (t0)j+ jzj � r0:Lemma 6.2 gives that �j and �j are well de�ned, �j = tj , �j = �(rj � 1)z andj�j j � j�j � zj � jzj = rj � 1 = j�j j:Hen
e �j � �j . On the other hand j�j j � j�j � zj+ jzj = rj + 1. Therefore0 � 'j �  j = �j � �j = 1a ln j�j j � 1a ln j�j j � 1a ln�rj + 1rj � 1�= 1a ln�1 + 2rj � 1� � 2a(rj � 1) :Finally, if 'j =  j , we have �j = �j . Thus �j = ��j = (rj � 1)z. Thereforerj = j�j � zj = j(rj � 1)z � zj = j(rj � 2)zj = jrj � 2j:Hen
e from rj � r0 > 1 we obtain a 
ontradi
tion. This implies 'j >  j and weare done. �Proof of Proposition 6.1: From the self-similarity of the logarithmi
 spiralswe see that it is enough to 
onsider z = (
os#; sin#), # 2 [0; 2�), only. FromLemma 6.2 and (7) for any r > r0 we have(42) ��r �aB(z; r)r = 1r2 �r ��r�aB(z; r)� �aB(z; r)�= 1r2r1 + 1a2��j�j�r r � j�j+ �j�j�r r � j�j�:From (19), (21), (22), (24), (42) and 
os j = 1 we obtain��r �aB(z; r)r jr=rj = 1r2j q1 + 1a2q
os2 'j + r2j � 1 + sin'ja �(rj);



338 R. �Cern�y, J. Kol�a�r, M. Rokytawhere�(rj) = �q
os2 'j + r2j � 1 + sin'ja �� r2jq
os2 'j + r2j � 1 + sin'ja� �
os'j +q
os2 'j + r2j � 1�� rj + (�1 + rj)�= r2j + �1� 
os'j �q
os2 'j + r2j � 1��q
os2 'j + r2j � 1 + sin'ja �= r2j + (1� 
os'j)q
os2 'j + r2j � 1 + (1� 
os'j) sin'ja � 
os2 'j � r2j+ 1�q
os2 'j + r2j � 1sin'ja :Hen
e it is enough to show that �(rj) < 0 for j large enough. As rj � 1 �q
os2 'j + r2j � 1 � rj , 1� 
os2 'j = (1+
os'j)(1� 
os'j) � 2(1� 
os'j) andsin'j � 0 for j large, we obtain�(rj) � (1� 
os'j)rj + sin'ja + 2(1� 
os'j)� (rj � 1)sin'ja= (1� 
os'j)(rj + 2)� (rj � 2)sin'ja :Re
all that we have 
os j = 1 by Lemma 6.3. Hen
e  j is a multiple of 2�.Moreover, as 1� 
os t = 2 sin2( t2 ), we have1� 
os'j = 1� 
os('j �  j) = 2 sin2�'j �  j2 �:Thus from 'j� j 2 (0; 2a(rj�1) ℄ (whi
h 
omes from Lemma 6.3) and t2 � sin t � ton [0; �2 ℄ we obtain for rj suÆ
iently large�(rj) � 2(rj + 2) sin2�'j �  j2 �� (rj � 2)sin('j �  j)a� 4rj�'j �  j2 �2 � rj2 'j �  j2a = rj('j �  j)�'j �  j � 14a�� rj('j �  j)� 2a(rj � 1) � 14a� < 0:Thus ��r �aB(z;r)r is negative on some neighborhood of rj for j large enough. �A
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