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Monotone measures with bad

tangential behavior in the plane

ROBERT CERNY, JAN KOLAR, MIRKO ROKYTA

Abstract. We show that for every € > 0, there is a set A C R? such that H'LA is
a monotone measure, the corresponding tangent measures at the origin are not
unique and H'LA has the 1-dimensional density between 1 and 3 + ¢ everywhere
on the support.
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1. Introduction

In this paper, we study the existence of monotone measures with bad tangential
behavior satisfying some additional assumptions natural for minimal surfaces.
The question about their existence is motivated by open problems on existence
and regularity of minimal surfaces, see [6].

Definition 1.1. Let 4 be a Radon measure on R” and k¥ € N. We say that u
is k-monotone if the function r — % is nondecreasing on (0, c0) for every

z € R™.

Definition 1.2. Let u be a Radon measure on R”, z € spt u and k& < n. We say
that v is a k-tangent measure of u at z (we write v € Tan’; 1), if v is a non-zero
Radon measure on R" and if there is a sequence {r;}32,,7; > 0,7; = 0 as j — oo
such that
1 . r—z
—T.r;(p) = v vaguely as j — oo, where T, ,(z) =
j

r

i.e. if every continuous function ¢ on R” with a compact support satisfies
.1 T —2z
lim —k/ cp( - )d,u(a:) :/ pdv.
j=oo i Jrn rj n
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Instead of 1-monotone and 1-tangent we simply write monotone and tangent.

The tangent measures were introduced by Preiss in [5]. If u is a k-monotone
measure, then y has a finite k-dimensional density Bfu = lim, 0, %, where
wy is the volume of the unit ball in R¥. If the density satisfies %y € (0, 00), then
our definition of tangent measures coincides up to a multiplicative constant with
the one in [4, 14.1].

For better understanding of the problems concerning the minimal surfaces, it
is important to study monotone measures with non-unique tangent measures at
a point of the support.

The first such a measure was given by Koldf in [3]. However, this measure
does not satisfy the density assumption natural for minimal surfaces. Therefore
there were further attempts to construct other k-monotone measures with bad
tangential behavior, i.e. find for fixed ¢ > 0 a Radon measure p on R” satisfying
the following additional properties (we suppose that the origin 0 € spt u is the

point with non-unique k-tangent measures to u):

(1)

0% > 1 for every z € sptu (then p is called a concentrated measure),
(2) 0% =1 for every z € sptu {0}
and
(3) O <1+e.

A k-monotone measure with non-unique tangential behavior satisfying all assump-
tions (1), (2) and (3) has not been constructed yet. However it is believed that
such a measure exists. Let us also note that its existence would disprove the con-
jecture that the monotonicity is a sufficient assumption for the Allard regularity
theorem, see [6].

Let us recall one of the partial results concerning the above problem. A mono-
tone measure with non-unique tangential behavior satisfying (1) and weakened
versions of (2) and (3) was constructed by Kirchheim using the method from [3].
This result was not published. Let us give the main ideas of the construction.

Fix a > 0 and define a symmetrical pair of logarithmic spirals by

[} (t) = (exp (at) cost,exp (at)sint), t€R

a 3
and
[, (t) = (—exp (at) cost, — exp (at) sint), t€R

a

Next, we define the measures
py =M OS] pg =HIOL] and pe = pd g,

where we use the notation [['f] = {T}(¢) : t € R}, etc.
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One can easily see that u, has non-unique tangential behavior at the origin (see
the third section for a detailed proof), the density assumptions are satisfied (for
sufficiently large a), but unfortunately p, is not monotone (see the last section for
the proof). However, using a careful Taylor expansion with a computer algebra
package, Kirchheim proved the “local monotonicity” of u,, it is the existence of
0 = §(a) > 0 such that t — %(“) is nondecreasing as long as r < §|z|. Then
he used the compensation method from [3] (one adds a suitable “very” monotone
measure, see for example Lemma 2.3) showing that there is a finite number of lines
passing through the origin such that H' restricted to the union of these lines, [['}]
and [I';], is monotone. It is, the final measure is monotone, it has non-unique
tangential behavior, condition (1) is satisfied, condition (2) is satisfied up to the
points of intersection of the spirals and the lines and we have a version of (3) with
the upper bound slightly larger than one plus the number of lines.

The goal of this paper is to give the following three improvements concerning
Kirchheim’s result. First, we give a short proof of the “local monotonicity” of u,
(see Proposition (5.1)). Second, we obtain an estimate concerning above men-
tioned §(a) (not only the existence). Let us note that our estimate enables us to
show that it is enough to use two lines only as a compensation for the monotonic-
ity (see Theorem 1.3) which is in fact the smallest possible number of lines (see
the last section). Third, using the Definition 1.1 for large radii, we conclude that
our final measure is monotone.

Now, let us state our main result. Set

Ly ={(tcos(%),tsin(%)) : t € R} and Ly = {(tcos(&),tsin(3F)) : t € R}.

Theorem 1.3. Let ¢ > 0. Then there is K = K(e) > 0 such that for every
a > K, the measure u, satisfies

pa +H' L (L1 U Ly) is monotone,

pa +H' L (L1 U Ly) does not have a unique tangent measure at the origin,
0:(a) =1 forall z € sptp,\{(0,0)},
OL(H' L (L U Ly)) =1  forall z€ L; U Ly \ {(0,0)},
0(0,0)(tta +H' L (L1 U L)) <3 +e.

A similar problem is studied in [2], where a version of logarithmic spirals in R3
is given.

We refer to [4], [5] and [6] for other information concerning the geometry of
measures and the Monotonicity Formula.

The paper is organized as follows. In the third section we study the tangential
behavior. The next two sections are devoted to the proof of the monotonic-

ity which is the most difficult part of the proof of Theorem 1.3. We prove the
(pat+H' (L1 ULy))B(z,r)

p 1S

monotonicity showing that the lower derivative of r —
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non-negative for every pair (z,7r), 2 € R?, 7 > 0. When checking this pointwise
property, we distinguish several cases. In the fourth section we consider the cases
concerning z and r such that the proof of the non-negativity of the lower deriv-
ative is just a straightforward computation. The fifth section is devoted to very
small radii (this is the difficult case that Kirchheim’s result concerns) where we
apply a technique from [1]. In the last section we show that the measure p, is

not monotone.

2. Preliminaries

Notation. The scalar product of z,y € R? is denoted by z -y, the Euclidean
norm of x is |z|. Further, 1 and x5 are the first and the second coordinates of z
(this notation is used in the main part of the paper, while in the last section the
meaning of the lower index is different as specified below). Set

B(z,r) ={z e R* : |z — 2| < r}, S(z,r)={z e R : |z —z|=r}.

When z = (0,0), we simply write B(r) and S(r).

The 1-dimensional Hausdorff measure is denoted by H'. If A is a Borel set and
w is a Radon measure, then g A is the restriction of u to A, i.e. (pL A)(M) =
w(M N A). If Iis an interval and T' : I — R"” is a continuous curve, then
[[]=A{T(¢) :t e I}.

Next, for given z and r we are interested in the points of intersection of S(z,r)
and [['}] (or [[';]) with the maximal or minimal distance from the center z. The
following three points are important for us.

If S(z,7) N[TF] # 0, then let us denote
(4) € =TS(r) € S(z,r)N[TS] such that |¢| >0 forall § € S(z,r)N[]]

and

(5) E=TF(7) € S(z,7r)N[TF] such that €| < |f] forall § € S(z,r)NI[F].
If S(z,7)N[T,] # 0, then we pick

(6) n=T, (o) € S(z,r)N[T';] suchthat |[p| > 10| forall 8 € S(z,r)N[[,].

As z € S(1), there is ¥ € [0,27) such that z = (cos,sind). Let us further set
p=71—19,% =0 —1 where T and o are given above.

In the last section, we work with a sequence of radii {r;}. In this case &;, 7;,
@j, etc. correspond to the radius r; (it is, §;, etc. no longer denotes the j-th
coordinate of a point but the j-th member of a sequence).

Some notes on the logarithmic spirals. As

aITd ()] aedt
ot

ITH(t)|  \/(aest cost — eatsint)? + (ae? sint + et cost)? \/1 N 1
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and similarly for I',, we obtain for 0 < ¢; < ¢

(7)

- 1
pffreR ey <|z| <)) =p,({r eR :e; < |z <)) =4 /1+ a_Q(CQ_Cl).

Hence, for any r > 0, we have

1o B(r) / 1
(8) o = 1 + a—2 .

The logarithmic spirals are self-similar, in the sense that multiplication of the
coordinates by the same positive number corresponds to some rotation. More
precisely, if we define

I"a"’to (t) = (exp (a(t — to)) cost,exp (a(t — to)) sint), t € R,

L, 4, (t) = (—exp(a(t —to)) cost, —exp (a(t — to))sint), te€R

Y

and

pago =H' L ([T0 ] U g ,)),

then for every ¢ > 0 we have

1 .
(9) ET(O’O)7Q(M[L) = Ma,tg with t(] = —.

Some notes on monotonicity. Let us recall some well known facts concerning
the monotonicity of Radon measures. Let ' : [a,b] — R™ be a regular C'-curve
and let v = H! L [[']. If we want to prove that r M
(0, 00) for some z € R", then it is enough to show that

is nondecreasing on

vB(z,r)

(10) -

_ %(rgr vB(z,r) — vB(z,1))

=T

is nonnegative on (0, 00). Here we use the notation D, f(r) = lignﬁi(r)lf M.

Notice that the condition D, M > 0 is satisfied when vB(z,r) < 2r and
I'(a),T'(b) ¢ B(z,r) (if vB(z,r) = 0 then the proof is trivial and if 0 < vB(z,r) <
2, then there are at least two points of intersection S(z,7) N I'((a,b)) and the
contribution of each of them to D, vB(z,r) is at least 1). We use this criterion
very often.

We say that a measure v is monotone at (z,r) if D, M > 0. The super-
additivity of the lower derivative D, implies that a sum of monotone measures
at (z,r) is again monotone at (z,r).

We also need the following result inspired by the proof of [1, Proposition 2.2]
vB1) 0 for v being H! restricted to the graph of

telling us when we have D, —:

a function.



322

R. Cerny, J. KolaF, M. Rokyta

Lemma 2.1. Let 61,82 > 0 and f € C'([—61,82],R). Set uy = H' L {(=, f(z)) :
x € [=d1,02]}. Fix z = (0,h), with h € R, and fix r > 0 small enough so that
(=01, f(=b1)), (82, f(2)) ¢ B(z,r). Suppose that the following is satisfied.

(i) For all x € (—d1,02) we have the inequality

20z|\/1+ 172
(11) ArlVIRTPD) ) ((ts) 1 € 1(0,2),5 € BY) >0,

L+ 1+ f2(z)
where I(0,z) denotes the closed interval with the endpoints 0 and x.
(11) If IUfB(Z,’I“) >0, let x1,29 € (—61,(52) be such that (a:l,f(wl)), (CUQ,f(ZEQ)) S
S(z,r) and 1 < & < x9 for every & € (—01,09) such that (z, f(x)) € S(z,r)
and assume that x1,x have the following property: for both i = 1,2 the angle
between the tangent to the graph of f at (z;, f(z;)) and the line joining z and
(x4, f(x;)) is less than %.

2
Then py is monotone at (z,r).

PROOF: Since a sum of monotone measures at (z,7) is a monotone measure at
(z,7), it is enough to consider even functions, §; = d2 and = > 0. Suppose h € R,
r > 0 are fixed and puyB(z,7) > 0 (otherwise the proof is trivial by (10)).

We denote x = max{t € R : (¢, f(t)) € B(z,r)}. Then obviously z € (0, ds).

Set n(x) = arctan f'(x), ¢n(z) = arctan f(xzﬁ Therefore cos(n(z) — pn(z)) >0
(see assumption (ii)) and we have

OpsB(z,r) > 9 1 .

or cos(n(z) — pn(x))
Asr = m, we obtain
OpsB(z, T)r S 2 x
or ~ cos(n(x) = pn(x)) cos(pn(z))

_ 4z
(12) ~ cos((z) — 2¢n(z)) + cos(n(z))

S 4z B 4z _Axy/1+ f%(z)

~ 1+cos(n(z)) 1+ m T 1+ 1+ 2(2)
and the proof follows from (10), (12) and the assumptions of the lemma. O

Remark 2.2. If f satisfies |f'| <  on (—d1,65), then Lemma 2.1 holds without
assumption (ii).

PROOF: Since a sum of monotone measures at (z,7) is a monotone measure at
(z,7), it is enough to consider an even function and d; = 5. Fixr > 0, z = (0, h),
with h € R, such that (2, f(d2)) ¢ B(z,7). If pyB(z,r) = 0, then uy is monotone
at (z,r). Otherwise there is zy € (0,02) such that (zo, f(x0)) € S(z,r) and
(z, f(x)) ¢ S(z,r) whenever |z| € (zg, d2).
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Now, we distinguish two cases. First, if |h — f(0)| < 3zo then condition (ii)
is satisfied (since |f'| < 1, the angle between (1,0) and the tangent to the graph
at (zo, f(z0)) is plainly less than T; since |f'| < 1 we have |f(zo) — f(0)| < fo,
hence |h — f(zo)| < |h— f(0)] 4+ |f(0) — f(z0)| < xo, thus the angle between (1,0)
and the vector (2o, f(20)) — (0, h) is less than T).

Second, let |h— f(0)| > 2zo. Assumption |f'| < I implies |f(zo)— f(0)] < fwo,
hence

(13) r= \/xo (h— f(z0))? > /a2 + (%xO)Q > %xg.

Since pyB(z,7) > 0, there are at least two points in S(z,7) N sptpus. Hence
D, pyB(z,r) > 2 and thus from (13) and |f'| < 2 we obtain

B(z,r 1
D ”fi() — _Q(TDr HfB(ZaT) - ufB(Z,T'))

= T T
> %(2%3:0 —24/1+ (3)2330) > 0.

Therefore ;¢ is monotone at (z,r). O
Our last auxiliary result concerns the monotonicity of H! L (L1 U Ls).

Lemma 2 3. The measure H' L (L; U Ly) is monotone. Moreover, if z € S(1)

and r > 10, then

g (Hl L (L1 U Lz))B(Z,’I“) S 1
or r = 20073 °
PRrOOF: For a line L and a center z, we denote d = dist(z, L). If » > d, then

(14) 0 (H'cL)B(z,r) _ 0 2vVr? —d? _ 9 d? S 2d_2
or r ~ or r P22 —d@2 ~

Since, in addition, (H' L L)B(z,r) = 0 for 0 < r < d, we see that H' _ L is
monotone and the first assertion of the lemma follows.
Let us prove estimate (14). Recall z = (cos®,sin®)). In case ¥ € [0, T — &,
we have
dist(z, L) = sin(Z — ¥) € [sin(&),sin(%)] C [&, 5]
and thus for r > 2 we obtain from (14)

3(7—[1 L (L1 U Ly))B(z,r) S 2(7—[1 L L1)B(z,r) S 2sin2(%) 1
or r = or r - r3 T 20003 °
If 9 €% — & ], then

dist(z, L2) = sin(3F — 9) € [sin(F),sin( + &5)] C [5, 15,
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hence for r > £+ we have by (14)

2(7—[1 L (L1 U Ly))B(z,7) S 0 (H'L Ly)B(z,1) S 251n2 (%) 1

or r = or T - r3 T 23
Thus, we are done in the first quadrant. In any other quadrant the proof is similar
(see the definition of L; and Ls). O

3. Tangential behavior
Proposition 3.1.

Tan%mo) (o +H' (L1 U Lo)) = {pazo + H' L (L1 U Ly) : 0 <ty < 7.
ProoF: Using (9) one can easily prove that

Tan(g ) (e + H' © (L1 U L2)) D {ptagy + H' L (L1 U L) : 0 < o < w}.
Indeed, since we plainly have for any ¢, € [0,7) the identity
(15) Maty = Mato+kn for all k€ Z,

it is enough to take the sequence of blow-ups corresponding to ¢; = exp(a(ty —
™), jEN,

The opposite inclusion is obtained by a suitable choice of a test function. As-
sume g; > 0 for j € N, g; — 0 and Q%T(g,o)7gj(ﬂa + H' L (L U L)) vaguely

In g,
a

converges. Set t; = . Hence from (9) and an obvious identity

1
;T(O,O),gj (7‘[1 L (L1 U LQ)) = 7‘[1 L (L1 U LQ)

j
we see that pu, ; vaguely converges. Let 1 : [0,00) — R be a continuous function
with a compact support satisfying ¢ > 0, 1(0) = 0 and fooo ¥(t)dt = 1. We define
on R? a continuous test function with a compact support by ¢;(0,0) = 0 and

v1(z) = 1/)(\x\)‘$—1cos (1n|x|) + 22 gin (1n|x|)‘ for |z| > 0.

kg a J] a

IfteRand z = I‘;ti (t) or z =T, (t) we have

1(z) = ¢(|x])| costcos(t — t;) + sintsin(t — ¢;)| = ¥ (|z|)| cost;|.

Hence, we obtain from (7)

° 1
/ 1 dpay; = \costj|/ Y(|2]) dpa,t; = |costj\/ 24/ 1+ —o(t) dt
R2 R2 0 a

1
=24/1+ ﬁ\costﬂ.
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Therefore | cost;| converges. If |cost;| — 1, then from (15) we see that jiq,; —
Ha,0 = fta Vaguely. Similarly, if [cos;| — 0, then pia,t; — pa,z vaguely.

Finally, if [cost;| = ¢ € (0,1), then there is o € (0, %) such that |cost;| —
| costo| = | cos(m —tg)]. Let us set ¢3(0,0) =0 and

2] | (ln\ +t0)+|$;| sin(1n| |+t0)‘ for |z| >0,

where the function 1) is the same as above. This time we obtain for = € spt piq 4,

pa(z) = p(lal)| =

pa(z) = ¢(|z])| costcos(t —t; + to) + sintsin(t — t; + to)| = ¢(|2])| cos(t; — to)].

The vague convergence implies the same way as above that | cos(t; —to)| converges.
If [cos(t; — to)| — 1, then (15) implies p4; — fa,;, vaguely. Otherwise, since
|cos(t; — to)] = d # 1 and |cost;| — |cos(m — to)|, we have cost; — cos(m — to).
Thus using (15) we obtain fi,,¢; — fta,x—t, vaguely. Hence we have the remaining
inclusion

Tan(y o) (o + H' 0 (L1 U L)) C {ptae + H' (L1 U Ly) : 0 < to < 7}

4. Large radii: monotonicity by compensation

Because of the self-similarity of the logarithmic spirals it is enough to prove
monotonicity at (z,r) only for z € S(1)U{(0,0)} and r > 0. In case of large radii,
we carefully estimate each term on the right hand side of (10) for v = p,.

Throughout the rest of the paper we will often use the notation defined in
Preliminaries, in particular the one used in (4)—(6) without further notice.

Proposition 4.1. There is Ki > 0 such that if a > Ky, z € S(1) and r > %
then p, +H' L (L1 U L) is monotone at (z,7).

Proof of Proposition 4.1: case r € [10, 8. If r € [%,8] and z € S(1), then
the proof of the monotonicity at (z,r) is obtained directly from formula (10).

The main ingredient of the proof is the estimate concerning u,B(z,7) given in
Lemmata 4.2, 4.3 and 4.4, respectively.

Lemma 4.2. Assumea > 9,z € S(1) and r € [1+ 1,8]. Then

1 2
woB(z,7) < 2(1 +4 1ZLQa)r.

PROOF: Asr € [1+ 1,8] and |z| = 1, we have S(z,7) N [T§] # 0 # S(z,r)N[T ’]
and [¢[,|n| € [£,9]. Hence 7,0 € [— Ina 091 and thus a > 9 implies |$22| < 2102

“a ' a cos

|sine | < QIM, & > 0 and iy < 0. Therefore

cos o

Gl ml=& —m=1& —m| <& — 21| +]z1 —m| < 2r
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and thus (7) implies

paB(z,7) = piy B(2,1) + pg B(z,r

SF(ﬁHnI) (1 (&) 1+ 1+ (2) )

=i+ (14 <:t;;:> a1+ 1+ (220) )

/ 1
<2,/1+— 1+4 r<21+4n2a)r
a

Lemma 4.3. Assumea > 9,z € S(1) andr € [1— 2,1+ 1], Then

paB(z.1) < (1+4ln a)(1+2) 527«( L a)(1+g).

ProoOF: Since B(z,r) C B(z,1+ %), the first inequality follows from Lemma 4.2.
The second estimate follows from the assumptions concerning r and a. O

Lemma 4.4. Assume a > 9, z € S(1) and r € [5,1— 2]. Then

waB(z, 7 <2\/1+—r-|——\/1+—2
a

PROOF: By the symmetry between I'} and I', we can suppose z; > 0. Since
every = € B(z,r) satisfies

L-r=ls|-r<la| <l +r =1+,

we obtain from (7)

(16) N:B(Zﬂ“)f\/1+a_12((1+7")_(1_7")):2\/14‘;_27"-

Next, let us estimate pu, B(z,r). Plainly B(z,r) C B(2). Further, if ¢ € [ 1n2]

a’a

and § = I'; (t), then we have 6] € [1,2], 6; < 0, 62| < |e?’t| < 2 (because the
function g(s) = e*®s satisfies g'(s) = e**(1 + as), g(lna%) =-lp s 2 4-1)=
—L and g(122) = 2122 which implies |g(s)| < 2 on [lna% , 1T]) Therefore

4 3\ 2
12— 6% = (21 — 6)? (ZQ—92)22z$+z§—2|zQ|\92\21—E>(1—5) > 2,
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It follows that 6 ¢ B(z,r). Hence we have B(z,r) N [[';] C B(%) and thus from
(7) we obtain

1 1
— — 1 _
(17) uaB(Zvr)SuaB(E)_E\/1+a_2'

As po = pf + p, the proof follows from (16) and (17). O

9

PROOF OF PROPOSITION 4.1: CASE 15 <7 < 8: Let us suppose that u,B(z,r)

> 0, otherwise the proof is trivial. Since there are at least two points in the
intersection S(z,r) N spt ., we have

(18) D, noB(z,7) > 2.

Ifre [19—0,1 - %], using (10), (18), Lemma 4.4 and Lemma 2.3 we obtain

(fta +H' L (L1 U Ly))B(z,) >2 2T+% 1+i+ 1
~r a? = 200r3°

—T

r r2

Ifrel-2,1+1] then (10), (18), Lemma 4.3 and Lemma 2.3 give

a’ 3

D,

(o + H' L (L1 U Ly))B(z,7) _ 2 2 In® a 6 1
" T Z;__(1+4 a? )(1+5)+200r3'

Finally, if r € [1 4+ 1,8], then (10), (18), Lemma 4.2 and Lemma 2.3 imply

—T

1 2
D (g + H' L (L1 U Ly))B(z,71) % 2(1+ In a)+ 1

> _— .
r - r a? 20073

Now, if a is sufficiently large, then the right hand side is positive in all three
cases. d

Proof of Proposition 4.1: case r > 8. For large radii, our estimates have to be
much more careful then in the previous case. Let us briefly outline our strategy.
Since there are always at least two points of the intersection B(z,r)Nspt u, (recall
r > 8), from (7) and (10) we obtain

p, teBlr) , V1 (284 A1), g — ).

r - or or

r r2

Next, we estimate all the terms on the right hand side using the identities from
Lemma 4.6. Notice, that when estimating % (and similarly %), we do not use
the explicit formula (21) (which is not convenient to work with), but we proceed
in the following way. First, we obtain a rough estimate (see Lemma 4.7). Then we
use formula (20) together with this rough estimate on the right hand side (where

% is multiplied by %, which can be made very small).
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Lemma 4.5. Assume 7,0 € R, z € S(1) and r > 8. Then

1 1
c052<p+r2—12(1—1—00)r, cos2w+r2—12(l—m)r.

PROOF: Since r > 8, we have 72 —1 > %r. Now, both estimates follow

easily. O

Lemma 4.6. Assume a > 30 and z € S(1). The function r — |{| is continuously
differentiable on (8, 00) and satisfies

(19) |€] = cosp + v/cos? p + 12 — 1,

or yeos2p+r2—1
and
(21) ol _ L —
or cos? o+ 12 —14 =2

The function r — |n| is continuously differentiable on (8, cc) and satisfies

(22) |n| = —cost + \/cos? Y +r2 —1,

.
o i _ ey
or Veos?y +r2 -1
and
(24) Ol _ !

iny °
Or  \Jcos2tp +r2 —1— 0¥
PrROOF: Using £ =T 1 (1) = (|| cos T, |£] sinT) we set
F(r,7) =€ — 2> —r? = (|¢|cosT — 21)? + (|¢]sinT — 23)* — 72
= |¢]? — 2¢|(21 cos T + zosinT) + 1 — 12
— | = 2lé]cosp + 117,

Solving the equation F'(r,7) = 0 with respect to nonnegative |¢| we obtain (19).
The smoothness, (20) and (21) follow from the Implicit Function Theorem.

Indeed, 22 = B(Ta;ﬂ) =1 and % = angT(aT) = aexp(ar) = a|¢| imply

OF sin ¢

5 = 2a\§|2 — 2al| cosyp + 2|¢|sing = 2a|§\(\£| —cosp + T)'
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Hence applying (19) and Lemma 4.5 we obtain

OF i
_:2a|§\( cos?p+r2—1 Sm@) > 0.
or a
Further % = —2r, % al¢|, above formula for 2 —T imply
ol _oleor o % o

ar ~arar or )B—F:a‘ﬂQa\ﬂ( cos?p + 72 — 1+ 822y

orT

This is (21). As a = % is equivalent to a = @ provided v + § # 0 # v, (20)
follows from (21). For the point of intersection 7, the proof is similar.

Lemma 4.7. Assume a > 30, z € S(1) and r > 8. Then
ol _, onl _,
or —

and o =

PRrROOF: The estimate concerning ‘5‘ follows from (21) and Lemma 4.5. For <%

we use (24) and Lemma 4.5.

Lemma 4.8. Assume a > 30, z € S(1) and r > 8. Then
olgl , Ol

(G + 50 )r—lel=lnl = -

3
81“ a(r — 1)

PRrROOF: Since r > 1 and z € S(1), we have |¢|,|n| € [r—1,r+1]. Set § = |7 —a|.

We observe

1 1 1 r+1 1 2
(25) 0< 4 ‘aln|§\ aln|n\‘_aln< 1) ln(1+ )_

r—1

Using (19), (20), (22) and (23) we obtain

(26)
9l¢| Bln\)
(G2 + 5 )r—lel =l
1 o[¢] 3\77\
+
:( Sy, T 5 ST )r—cos<p— cosp + 12 —
\/c052<p+r2 -1 \/c052¢+r2 -1

+ costp —/cos?p + 12 — 1.

Further, we have

(27) [cosp —cosyp| < |p — 9| = |7 — 0| =9,

(28) |sing —sin¢| < o —¢| = |7 —0of =,

329
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2 2
+
Veos2p+r2 —1  yfeos?ehp+1r2 — 1
(29) —Veos2p+72 —1—/cos?p +12 — 1
1 —cos? 1 — cos? 1)

= =+ >
Veos2p+r2 —1  yJeos2p + 12 — 1

and by Lemma 4.5 and (27)
(30)

1 1
‘\/0052<p+r2—1_\/cos21p+r2—1
_ I(cos?¢p + 12 — 1) — (cos? o + 1% — 1)]
C JeosZ o+ 12 — 1\ Jeos? )+ 12 — 1(y/cos®> o+ 12 — 1 + \/cos?ih + 12 — 1)
| cos? p — cos? < 2| cos1p — cos | < 26

= 2%y - r3 =

Lemma 4.5, Lemma 4.7, (20), (23), (25), (28) and (30) imply

olg| _ ol :‘( r _ r )
or or Veos2o+r2 =1 yJeos2p +72 — 1
n 1(( —sing 6‘5‘ . sin ¢ 6‘6‘ )
\/c052<p-|-r2—1 \/cos2w+r2—1

(31)
(—sinp + sinzp)% singz;(_% — M)

r or

veos2y +1r2 —1 veos2yp +r2 —1
<§+1(22_6+2_6+i) <E
Tt e\t 67/
Finally, from Lemma 4.5, Lemma 4.7, (25), (28), (30) and (31) we obtain
(32)

‘( smgoaam N %sinzﬂ% ) ‘
r
\/cos2<p+r2—1 \/cos21[)+r2—1
sin 28l alel
_ Yar sin o 5

‘\/cos2cp+r2—1 Veos2ah 12 — 1
. . olgl _ alnl
_(smcp—smw)% _smz/)( BZ)

Veos2 i+ 12 — 1 \/cos2¢+r2—1‘
r(226 20 1 S)S 1

< l(9ZZ L 22 —
~a 300 99,0 99 g

100 100 ar

Now, the proof follows from (26) combined with estimates (27) (see also (25)),
(29) and (32). O
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PROOF OF PROPOSITION 4.1: CASE r > 8. Let us suppose that u,B(z,7) > 0,
otherwise the proof is trivial. Hence there are at least two points in the intersection
S(z,r)Nspt pe. Using in addition (7), (10), Lemma 2.3 and Lemma 4.8 we obtain

(o +H L (L1 U Ly))B(z,7)

D,
.
VI ol on (4 (11 U L) Ber)
> Y (58 + S8)r — lel = al) + D, -

1
. Vita 3 1

2 alr-1) * 200m8°

If a is sufficiently large, then the right hand side is positive and we are done. O

5. Small radii

For very small radii we cannot rely on any compensation, because some balls
centered on S(1) with small radii do not intersect Ly U L.

Proposition 5.1. There is Ko > 0 such that if a > K5, 0 < r < 19—0 and z € S(1),
then p, is monotone at (z,r).

For the proof of this proposition we need some auxiliary lemmata.

If the center z € S(1) is relatively far from [['7] or [T, ], then the proof is easy.
Lemma 5.2. There is K3 > 0 such that if a > K3, 0 <1 < &%, z € S(1) and
|z — (1,0)] > 5, then p is monotone at (z,r).

PRrROOF: Let us use the logarithmic parameterization

Tr(t) = (tcos(h;Tt),tsin(hl—t)), t € (0,00).

a

We observe that there is K3 > 0 such that for every a > Kz and ¢ € [55,2] we
have

33) (i) >0, (0 < g and \/1+ai2§\/1+$_

Now, we distinguish two cases. First, let z; < 0. For ¢ € (0 we have

1
:%]
. . 1 9
2 =T () >z —TH(@H)| >1— —=>—>r.

For t € [55,2], we see that (33) and z; <0 < (T)1(t) imply
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2 =T (1) = \/(21 = (P (1)? + (22 = (T2 (2))* > \/Zf + 25 = 2|2 (T2 (2)]

1 9
>qi/1-2=—=>—>r
>4/1 280>10_T

Finally, for t > 2 we have
D+ D+ 9
|Z_Fa(t)|2|Fa(t)|_‘2‘22_1>1_02r'

Hence if z; < 0, we always have uf B(z,r) = 0 and thus p is monotone at (z,7).

In the second case we have z; > 0. We can further suppose that pur B(z,7) > 0,
otherwise the proof is trivial. In this case one can easily check that 22| > 7, the
points &,& € S(z,7) N [[#] are well defined, |¢],|¢] € [, 2] and D, pif B(z,7) > 2.
Hence using (33) we arrive to the estimate

I e+ép_le-§ 4z — E2t2)
’“‘W ) e 2 e

€ — ¢ 45— %) _ 1E—€ L lg—1g [, 1
> 1 > 14 —>2—24/14+ —.
- 2 + 4 - 2 +a2_ 2 +a2

Therefore we obtain from (7) and (10)

pEB(.r) _ Dyt Ble,r)r — uf B(z,r)

1 1 ~
D, e R > (- 14 (8 - D) 20

O

Our next goal is to obtain the local monotonicity for the measure ul (see
Lemma 5.4). We start with the following auxiliary result.

Lemma 5.3. There is K4 > 0 such that for a > K, the function
®,(t) = exp(at) ((a2 —1)cost+ 2asint — (1 + a2)) + (1 + a®)(1 + cost) — 2a*

satisfies ®4(t) > 0 on [0, 1] and ®,(t) < 0 on [-£2,0].

PrOOF: We have
®! (t) = exp(at) (a(l +a*)cost + (1 +a*)sint — a(1 + a2)) — (1 + a*)sint,

8" (1) = exp(at) ((1 +a?)?cost — a*(1 + a2)) — (1 + a?) cost.
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As ®,(0) = ®/,(0) = 0 it is enough to find K4 > 0 such that the function

1
T, (t) = exp(at) ((1 + a®) cost — a2) —cost = H—(ﬂq’g(t)

satisfies the following inequalities for a > K4

(34) U, (1) <0 on [_;_2’0] and  W,(t) >0 on [02]

First, there is My > 0 such that cost > 0 for a > M; and ¢ € [-12,0], and thus
U, (t) < exp(at) ((1 + a?) cost — a® — cos t) = a® exp(at)(cost — 1) < 0.

This is the first inequality in (34). Let us prove the second one. There is My > M,
such that for a > M, and t € [0, 1] we have

a’t?
(35) exp(at) > 1+ at + —5
t2
(36) cost >1— 5l
and
2 2 2 t* 2 2 1 2
(1+a°)cost—a®>(1+a )(1—5) —a°>(1+a )(1_ﬁ) —a
(37) ] ]
- —>
2 24>~ 0
Using (35) and (37) we obtain
v 1+ a2 2) (1 e
> _ i I
o(t) > (( +a”)cost —a )( + at + 5 ) cost
249

_ 2 _ 2 2 a’t

=a’(cost —1) + ((1+a Jcost —a )(at+—2 )
Hence estimate (36) implies

a’t? (1 + a®)t? a’t? (1+a®)t? a(l+a?)t3
> 4 (-T2 =)= - - .

Yalt) 2 - +(1 2 )(“H’ 2 ) at(l 2 4 )

Y

Finally, there is K4 > M such that for a > K4 and t € [0 %] we have

(1+a®)t®>  a(l+a*)t3 (1+a®) (1+a%) 1
1 - >1- - — -
2 4 - 2a? 4a? 4

3
-2 >0
4a? —

and thus W, (t) > 0 on [0,1] for a > K,. We have (34) and we are done. O
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Lemma 5.4. There is K5 > 0 such that if a > K5, 0 <r < &%, z € S(1) and

|z — (1,0)] < 5, then p is monotone at (z,r).

PROOF: Suppose uf B(r,z) > 0, otherwise the proof is trivial. We ﬁnd 6 € [T}]
such that [z — 6| = dist(z, [[]). As (1,0) € [[§] and |z — (1,0)| < 55, we obtain
1

— 2] <10 — 2] <[(1,0) — 2| < =,
161 = |2l < 18 = 2] < 1(1,0) — 2 < 55,

0
hence |6] € [52, 211, Assumption r < & implies €], |¢] € [&,12] c [, 2/g]]. Now
we would like to parameterize a suitable part of [I'}] as a graph of a function so
that we could use Lemma 2.1.

Because of the self-similarity of the logarithmic spirals, our case is equivalent

to the case with the nearest point 6y = T'f (to), where ¢, = —arctan(L), the

points of intersection &, & satisfying ||, || € [‘00‘ ,2|6p]] and the center zy on
a line passing through T'f (to) and perpendicular to [['}] at T} (o). Let rq denote
the radius in this case. On some neighborhood of '} (#y), the curve '] can be
suitably represented by a graph of a function as shown in the sequel. Let us define

z(t) = e ) cos(t + to) — e cos(ty), t€ (=%, %),
y(t) = e sin(t + 1) — e sin(ty), t€ (=%, %)

The choice tg = — arctan(%) implies costg = —asinty,

e 1
(38) Sin t(] = — Sin(—to) = — - = - _ a2 —

1+ tan?(—tg) 1—}—a1—2 _\/1+a2’

acost +sint

(39) cos(t+tg) = costgcost—sintgsint = —sintg(acost+sint) = Vi
and
. . . . . asint — cost
(40) sin(t+tg) = sintg cost+costosint = —sintg(asint—cost) = Vi
Hence
d eato ea(t-l-to)
' _ v at : _ 2
2 (t) = dt(im(e (acost+s1nt))) = (1 e cost
and
d eato ea(t-l-to)
! at(,, o 2\
t :—(76 asint — cost ):71—}—(1 sin t.
rO=a\ g )= srat )

Therefore we see that we can consider z — y as a function f: (z(-3),z(3)) = R
with f'(z) = tant, where ¢ is such that z = z(t).
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Next, let us show that the function f satisfies the assumptions of Lemma 2.1,
the version from Remark 2.2. There is K > 0 large enough such that for a > K
we have (—3,%) D [-£2, 4] and |f'| < § on [2(—£2),2(1)]. Next, using #(0) =0
and f'(0) = f'(z(0)) = tan0 = 0, one can easily check that the first coordinate
of the center zp is the same as the first coordinate of the point [z(0), f(z(0))].

It remains to check condition (11). For t € [-12, 1] let us define

Uo(t) = 2[z(t)[V1 + f2(2(1))
— (L + 1+ f2(@(0) s ({(u,0) 2w € 1(0,2(1)), v € R})
= sgnt(?(e“(HtO) cos(t + tg) — e costy) V1 + tan?t

1
—(1+ V1 + tan?t) 1+§(e“(t+t°)—e“t°)),

where we have used (7). From (38), (39), (40), V1+tan’t = —L— = L on

[cost| — cost

,Z2), costy = —asinty = == and a,/1 + L1+ a2 =1+ a? we obtain
—5:5 Vita? a

1 a 1
U, (t) = e*og nt(2(e“t7 acost +sint) — 7)—
®) & 1+a2( ) V1+ a2/ cost

1 1
1 —) 1+ — “t—1)
(+cost +a2(e )

e sgn (2 “(gcost +sint) — 2a* — (1 4 cost)(1 + a?)(e™ 1))
= ——(2ae"(a int) — 2a” — a’)(e® —
av'1l+ a? cost
et sgnt ( atre 2 . 2
= —————(e"(2a" cost + 2asint — (cost + 1)(1 +a
av'1+ a?cost ( ( ) )
—2a” + (cost + 1)(1 + a2))
atg t
=& BN 5.
av'1l+ a? cost
Hence Lemma 5.3 implies ¥, (¢) > [—1—a 11 provided a > K5 = max(Ky, K).
This proves inequality (11) on [z ( ) z(1)]. Further, we can see that the curve

(z(t),y(t)) + Tt (o), t € [-£2, 1], parameterlzes the set

a

M={Tf(t):telto— 2o+ 1} = [Ti]N {o e B : (2] € [~ F1ho],e'60]] }.

K.

Hence, as exp(—2) < 1 < o] ‘ and expl > 2 > “501, we have &,& € M.
Therefore Lemma 2.1 and Remark 2.2 imply that u, is monotone at (zq,79). Thus,
the self-similarity of logarithmic spirals gives that u, is monotone at (z,r). O
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PROOF OF PROPOSITION 5.1: Let us recall that p, = u + p; . The monotonic-
ity at (z,r) for uf follows from Lemma 5.2 and Lemma 5.4. Next, the symmetry
between T'} and ', gives the same for p, . Finally, the super-additivity of the
lower derivative D, concludes the proof. O

ProOF OF THEOREM 1.3: Fix K > max(K7, K») large enough so that

(41) 1+ % <l+e.

For z € S(1) and r > %, the monotonicity at (z,r) of pa +H* L (L1 U L) follows
from Proposition 4.1. If z € S(1) and r < 2, then we use Proposition 5.1. In any
other case, with z # (0,0), the monotonicity at (z,r) follows from above by the
self-similarity of the logarithmic spirals. Finally, if z = (0,0) and r > 0, then the
monotonicity at (z,r) is easily obtained from (8) and Lemma 2.3. The non-unique
tangential behavior follows from Proposition 3.1. The density properties easily

follow from the definitions of I'}, T, L; and Ly, from (8) and from (41). O

6. Necessity of compensation

In this section, we show that the measure p, is not monotone by itself for any
a > 0. Further, since for any line L, the measure H' L L does not provide any
compensation for balls centered on L (see (14) with d = 0), only one line cannot
be a sufficient compensation for the monotonicity.

Proposition 6.1. Assume a > 0 and z € R? \ {0}. Then there exists r > 0 such

that o — %}Z"’) is decreasing on some neighborhood of .

Let us start with some preliminary work. In this section, &;, n;, etc. no longer
denote the j-th coordinate of a point but the j-th member of a sequence.

Lemma 6.2. Let a > 0 and z € S(1). Then there is 7o > 1 with the following
property:

If r > rg, then S(z,7) N sptu, = {&,n}, where ¢ € S(z,r) N [[F] and n €
S(z,r) N [T,], the functions r — |£| and r — || are increasing and continuously
differentiable on (rg,00) and satisfy (19), (21), (22) and (24).

PRrROOF: The proof is similar to the proof of Lemma 4.6. O

Lemma 6.3. Assume a >0, z € S(1). Then there is a sequence of radii {r;}32,

such that r; > ro (ro > 1 is given by Lemma 6.2), r; — oo and the points of
intersection &; = T} (1;) € S(z,7;) N [['f] and n; = T, (c0;) € S(z,r;) N [T;]
satisfy cos¢; =1 and 0 < ¢; — 1 < ﬁ for all j € N.

J

PrOOF: Applying Lemma 6.2 to r = rp we obtain a unique to € R such that
I, (to) € S(z,r) N[, ]. Given j € N, find ¢; € [[to| + 2 +2m(j — 1), |to| + 2 + 27))



Monotone measures with bad tangential behavior in the plane 337

such that cos(t; — ) = 1 and set r; = |I', (¢;) — 2|. Thus I, (t;) = —(r; — 1)z
and

rj =05 () = 2 2 I, ()] — 2] = e — 1
> etlolt2 1> etltol 1> 17 (to) + 12| > o,

Lemma 6.2 gives that &; and n; are well defined, 0; = ¢;, n; = —(r; — 1)z and
61 218 — 2l = |zl = rj = 1= Inj].
Hence 7; > o;. On the other hand |¢;| < |§; — 2| + |2| = r; + 1. Therefore

Tj+1)

1 1 1
OSW—%‘ZTJ‘—UJ‘:Eln\ﬁﬂ—aln\nﬂﬁaln(r._l
J

- Eln(l + rj2—1) < a(rj2— 1)’

Finally, if p; = 1, we have 7; = ;. Thus {; = —n; = (r; — 1)z. Therefore
rj =& =2l = |(rj =Dz = 2[ = |(rj = 2)2| = |r; = 2|.

Hence from r; > ro > 1 we obtain a contradiction. This implies ¢; > 1; and we
are done. 0

PROOF OF PROPOSITION 6.1: From the self-similarity of the logarithmic spirals
we see that it is enough to consider z = (cosd,sind), ¥ € [0,2n), only. From
Lemma 6.2 and (7) for any r > ry we have

D paB(z,7) _ %( B, ))

or r
SYARNECR
)

(42) 6| |
+ 55 (G — 1+ S —Inl).

From (19), (21), (22), (24), (42) and cost; = 1 we obtain

2 MGB(Z,T)

7‘ = [0}
or r T 2 2 2 sin ¢
iyjeos® i+ —1+—>
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2

si ; r
d’(rj):(,/c052<pj+r?—1+ m%)( L —
a \/cos? @j 15 — 14 2L
—(coscpj+\/cos2cpj+r]2.—1)—rj+(—1+rj))
S
:r?+(1—cos<pj—\/cos2<pj+r§—1>(\/c052<pj+r -1+ m%)
a
sin ¢,
:r?+(1—cos<pj),/cos2<pj+rj2.—1+(1—cos<pj) a%—cos2<pj—r?
+1—,/cos2<pj+r?—1%.
a

Hence it is enough to show that ®(r;) < 0 for j large enough. As r; — 1 <

\Jcos? i + 13 —1 <715, 1—cos® pj = (14cosp;)(1—cosp;) < 2(1—cosgp;) and
sinp; > 0 for j large, we obtain

sin @
a

®(r;) < (1 —cospj)r; + Sma%

+2(1 —cosgj;) — (r; — 1) ——=
sin @

= (1 —cosgp;)(rj +2) = (r; —2) -

Recall that we have cost; = 1 by Lemma 6.3. Hence v; is a multiple of 2.

Moreover, as 1 — cost = 2sin*(%), we have

1 —cosp; =1 — cos(p; — ;) = 2sin’ (%%%)

Thus from ¢; —; € (0, ﬁ] (which comes from Lemma 6.3) and £ < sint <¢

on [0, §] we obtain for r; sufficiently large

wi — ;i sin(gp; — ;)
£ty - Sl =)

a

< 47“1(%%%)2 - %%2;(1% =7;(p; —@ij)(w - - %)

<rj(p; — %‘)(ﬁ - %) <0.

Thus ar “"f(“") is negative on some neighborhood of r; for j large enough. O

O(r;) <2(r; +2) sin2(
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