
Comment.Math.Univ.Carolin. 52,3 (2011) 317{339 317
Monotone measures with badtangential behavior in the planeRobert �Cern�y, Jan Kol�a�r, Mirko RokytaAbstrat. We show that for every " > 0, there is a set A � R2 suh that H1xA isa monotone measure, the orresponding tangent measures at the origin are notunique and H1xA has the 1-dimensional density between 1 and 3+ " everywhereon the support.Keywords: monotone measure, monotoniity formula, tangent measureClassi�ation: 49J451. IntrodutionIn this paper, we study the existene of monotone measures with bad tangentialbehavior satisfying some additional assumptions natural for minimal surfaes.The question about their existene is motivated by open problems on existeneand regularity of minimal surfaes, see [6℄.De�nition 1.1. Let � be a Radon measure on Rn and k 2 N. We say that �is k-monotone if the funtion r 7! �B(z;r)rk is nondereasing on (0;1) for everyz 2 Rn .De�nition 1.2. Let � be a Radon measure on Rn , z 2 spt� and k � n. We saythat � is a k-tangent measure of � at z (we write � 2 Tankz �), if � is a non-zeroRadon measure on Rn and if there is a sequene frjg1j=1, rj > 0, rj ! 0 as j !1suh that 1rkj Tz;rj (�)! � vaguely as j !1, where Tz;r(x) = x� zr ;i.e. if every ontinuous funtion ' on Rn with a ompat support satis�eslimj!1 1rkj ZRn'�x� zrj � d�(x) = ZRn'd�:Researh of the �rst and the third author is supported by the grant MSM 0021620839.Researh of the seond author is supported by the grants AV 0Z 10190503 and IAA100190903.



318 R. �Cern�y, J. Kol�a�r, M. RokytaInstead of 1-monotone and 1-tangent we simply write monotone and tangent .The tangent measures were introdued by Preiss in [5℄. If � is a k-monotonemeasure, then � has a �nite k-dimensional density �kz� = limr!0+ �B(z;r)!krk , where!k is the volume of the unit ball in Rk . If the density satis�es �kz� 2 (0;1), thenour de�nition of tangent measures oinides up to a multipliative onstant withthe one in [4, 14.1℄.For better understanding of the problems onerning the minimal surfaes, itis important to study monotone measures with non-unique tangent measures ata point of the support.The �rst suh a measure was given by Kol�a�r in [3℄. However, this measuredoes not satisfy the density assumption natural for minimal surfaes. Thereforethere were further attempts to onstrut other k-monotone measures with badtangential behavior, i.e. �nd for �xed " > 0 a Radon measure � on Rn satisfyingthe following additional properties (we suppose that the origin 0 2 spt� is thepoint with non-unique k-tangent measures to �):(1)�kz� � 1 for every z 2 spt� (then � is alled a onentrated measure);(2) �kz� = 1 for every z 2 spt� n f0gand(3) �k0� � 1 + ":A k-monotone measure with non-unique tangential behavior satisfying all assump-tions (1), (2) and (3) has not been onstruted yet. However it is believed thatsuh a measure exists. Let us also note that its existene would disprove the on-jeture that the monotoniity is a suÆient assumption for the Allard regularitytheorem, see [6℄.Let us reall one of the partial results onerning the above problem. A mono-tone measure with non-unique tangential behavior satisfying (1) and weakenedversions of (2) and (3) was onstruted by Kirhheim using the method from [3℄.This result was not published. Let us give the main ideas of the onstrution.Fix a > 0 and de�ne a symmetrial pair of logarithmi spirals by�+a (t) = (exp (at) os t; exp (at) sin t); t 2 Rand ��a (t) = (� exp (at) os t;� exp (at) sin t); t 2 R:Next, we de�ne the measures�+a = H1 x [�+a ℄; ��a = H1 x [��a ℄ and �a = �+a + ��a ;where we use the notation [�+a ℄ = f�+a (t) : t 2 Rg, et.



Monotone measures with bad tangential behavior in the plane 319One an easily see that �a has non-unique tangential behavior at the origin (seethe third setion for a detailed proof), the density assumptions are satis�ed (forsuÆiently large a), but unfortunately �a is not monotone (see the last setion forthe proof). However, using a areful Taylor expansion with a omputer algebrapakage, Kirhheim proved the \loal monotoniity" of �a, it is the existene ofÆ = Æ(a) > 0 suh that t 7! �aB(z;r)r is nondereasing as long as r < Æjzj. Thenhe used the ompensation method from [3℄ (one adds a suitable \very" monotonemeasure, see for example Lemma 2.3) showing that there is a �nite number of linespassing through the origin suh that H1 restrited to the union of these lines, [�+a ℄and [��a ℄, is monotone. It is, the �nal measure is monotone, it has non-uniquetangential behavior, ondition (1) is satis�ed, ondition (2) is satis�ed up to thepoints of intersetion of the spirals and the lines and we have a version of (3) withthe upper bound slightly larger than one plus the number of lines.The goal of this paper is to give the following three improvements onerningKirhheim's result. First, we give a short proof of the \loal monotoniity" of �a(see Proposition (5.1)). Seond, we obtain an estimate onerning above men-tioned Æ(a) (not only the existene). Let us note that our estimate enables us toshow that it is enough to use two lines only as a ompensation for the monotoni-ity (see Theorem 1.3) whih is in fat the smallest possible number of lines (seethe last setion). Third, using the De�nition 1.1 for large radii, we onlude thatour �nal measure is monotone.Now, let us state our main result. SetL1 = f(t os(�3 ); t sin(�3 )) : t 2 Rg and L2 = f(t os( 2�3 ); t sin( 2�3 )) : t 2 Rg:Theorem 1.3. Let " > 0. Then there is K = K(") > 0 suh that for everya > K, the measure �a satis�es�a +H1 x (L1 [ L2) is monotone,�a +H1 x (L1 [ L2) does not have a unique tangent measure at the origin,�1z(�a) = 1 for all z 2 spt�a n f(0; 0)g;�1z(H1 x (L1 [ L2)) = 1 for all z 2 L1 [ L2 n f(0; 0)g;�1(0;0)(�a +H1 x (L1 [ L2)) � 3 + ":A similar problem is studied in [2℄, where a version of logarithmi spirals in R3is given.We refer to [4℄, [5℄ and [6℄ for other information onerning the geometry ofmeasures and the Monotoniity Formula.The paper is organized as follows. In the third setion we study the tangentialbehavior. The next two setions are devoted to the proof of the monotoni-ity whih is the most diÆult part of the proof of Theorem 1.3. We prove themonotoniity showing that the lower derivative of r 7! (�a+H1x(L1 [L2))B(z;r)r is



320 R. �Cern�y, J. Kol�a�r, M. Rokytanon-negative for every pair (z; r), z 2 R2 , r > 0. When heking this pointwiseproperty, we distinguish several ases. In the fourth setion we onsider the asesonerning z and r suh that the proof of the non-negativity of the lower deriv-ative is just a straightforward omputation. The �fth setion is devoted to verysmall radii (this is the diÆult ase that Kirhheim's result onerns) where weapply a tehnique from [1℄. In the last setion we show that the measure �a isnot monotone.2. PreliminariesNotation. The salar produt of x; y 2 R2 is denoted by x � y, the Eulideannorm of x is jxj. Further, x1 and x2 are the �rst and the seond oordinates of x(this notation is used in the main part of the paper, while in the last setion themeaning of the lower index is di�erent as spei�ed below). SetB(z; r) = fx 2 R2 : jx� zj � rg; S(z; r) = fx 2 R2 : jx� zj = rg:When z = (0; 0), we simply write B(r) and S(r).The 1-dimensional Hausdor� measure is denoted by H1. If A is a Borel set and� is a Radon measure, then � x A is the restrition of � to A, i.e. (� x A)(M) =�(M \ A). If I is an interval and � : I 7! Rn is a ontinuous urve, then[�℄ = f�(t) : t 2 Ig.Next, for given z and r we are interested in the points of intersetion of S(z; r)and [�+a ℄ (or [��a ℄) with the maximal or minimal distane from the enter z. Thefollowing three points are important for us.If S(z; r) \ [�+a ℄ 6= ;, then let us denote(4) � = �+a (�) 2 S(z; r) \ [�+a ℄ suh that j�j � j�j for all � 2 S(z; r) \ [�+a ℄;and(5) ~� = �+a (~� ) 2 S(z; r) \ [�+a ℄ suh that j~�j � j�j for all � 2 S(z; r) \ [�+a ℄:If S(z; r) \ [��a ℄ 6= ;, then we pik(6) � = ��a (�) 2 S(z; r) \ [��a ℄ suh that j�j � j�j for all � 2 S(z; r) \ [��a ℄:As z 2 S(1), there is # 2 [0; 2�) suh that z = (os#; sin#). Let us further set' = � � #,  = � � # where � and � are given above.In the last setion, we work with a sequene of radii frjg. In this ase �j , �j ,'j , et. orrespond to the radius rj (it is, �j , et. no longer denotes the j-thoordinate of a point but the j-th member of a sequene).Some notes on the logarithmi spirals. Asj _�+a (t)j�j�+a (t)j�t = p(aeat os t� eat sin t)2 + (aeat sin t+ eat os t)2aeat =r1 + 1a2 ;



Monotone measures with bad tangential behavior in the plane 321and similarly for ��a , we obtain for 0 � 1 � 2(7)�+a (fx 2 R2 : 1 � jxj � 2g) = ��a (fx 2 R2 : 1 � jxj � 2g) =r1 + 1a2 (2� 1):Hene, for any r > 0, we have(8) �aB(r)2r =r1 + 1a2 :The logarithmi spirals are self-similar, in the sense that multipliation of theoordinates by the same positive number orresponds to some rotation. Morepreisely, if we de�ne�+a;t0(t) = (exp (a(t� t0)) os t; exp (a(t� t0)) sin t); t 2 R;��a;t0(t) = (� exp (a(t� t0)) os t;� exp (a(t� t0)) sin t); t 2 Rand �a;t0 = H1 x ([�+a;t0 ℄ [ [��a;t0 ℄);then for every % > 0 we have(9) 1%T(0;0);%(�a) = �a;t0 with t0 = ln %a :Some notes on monotoniity. Let us reall some well known fats onerningthe monotoniity of Radon measures. Let � : [a; b℄ 7! Rn be a regular C1-urveand let � = H1 x [�℄. If we want to prove that r 7! �B(z;r)r is nondereasing on(0;1) for some z 2 Rn , then it is enough to show that(10) Dr �B(z; r)r = 1r2 �rDr �B(z; r)� �B(z; r)�is nonnegative on (0;1). Here we use the notation Dr f(r) = lim infÆ!0 f(r+Æ)�f(r)Æ .Notie that the ondition Dr �B(z;r)r � 0 is satis�ed when �B(z; r) � 2r and�(a);�(b) =2 B(z; r) (if �B(z; r) = 0 then the proof is trivial and if 0 < �B(z; r) �2, then there are at least two points of intersetion S(z; r) \ �((a; b)) and theontribution of eah of them to Dr �B(z; r) is at least 1). We use this riterionvery often.We say that a measure � is monotone at (z; r) if Dr �B(z;r)r � 0. The super-additivity of the lower derivative Dr implies that a sum of monotone measuresat (z; r) is again monotone at (z; r).We also need the following result inspired by the proof of [1, Proposition 2.2℄telling us when we have Dr �B(z;r)r > 0 for � being H1 restrited to the graph ofa funtion.



322 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 2.1. Let Æ1; Æ2 > 0 and f 2 C1([�Æ1; Æ2℄;R). Set �f = H1 x f(x; f(x)) :x 2 [�Æ1; Æ2℄g. Fix z = (0; h), with h 2 R, and �x r > 0 small enough so that(�Æ1; f(�Æ1)); (Æ2; f(Æ2)) =2 B(z; r). Suppose that the following is satis�ed.(i) For all x 2 (�Æ1; Æ2) we have the inequality(11) 2jxjp1 + f 02(x)1 +p1 + f 02(x) � �f (f(t; s) : t 2 I(0; x); s 2 Rg) > 0;where I(0; x) denotes the losed interval with the endpoints 0 and x.(ii) If �fB(z; r) > 0, let x1; x2 2 (�Æ1; Æ2) be suh that (x1; f(x1)); (x2; f(x2)) 2S(z; r) and x1 � x � x2 for every x 2 (�Æ1; Æ2) suh that (x; f(x)) 2 S(z; r)and assume that x1; x2 have the following property: for both i = 1; 2 the anglebetween the tangent to the graph of f at (xi; f(xi)) and the line joining z and(xi; f(xi)) is less than �2 .Then �f is monotone at (z; r).Proof: Sine a sum of monotone measures at (z; r) is a monotone measure at(z; r), it is enough to onsider even funtions, Æ1 = Æ2 and x > 0. Suppose h 2 R,r > 0 are �xed and �fB(z; r) > 0 (otherwise the proof is trivial by (10)).We denote x = maxft 2 R : (t; f(t)) 2 B(z; r)g. Then obviously x 2 (0; Æ2).Set �(x) = artan f 0(x), 'h(x) = artan f(x)�hx . Therefore os(�(x) � 'h(x)) > 0(see assumption (ii)) and we have��fB(z; r)�r � 2 1os(�(x) � 'h(x)) :As r = xos('h(x)) , we obtain(12) ��fB(z; r)�r r � 2os(�(x) � 'h(x)) xos('h(x))= 4xos(�(x) � 2'h(x)) + os(�(x))� 4x1 + os(�(x)) = 4x1 + 1p1+f 02(x) = 4xp1 + f 02(x)1 +p1 + f 02(x)and the proof follows from (10), (12) and the assumptions of the lemma. �Remark 2.2. If f satis�es jf 0j � 14 on (�Æ1; Æ2), then Lemma 2.1 holds withoutassumption (ii).Proof: Sine a sum of monotone measures at (z; r) is a monotone measure at(z; r), it is enough to onsider an even funtion and Æ1 = Æ2. Fix r > 0, z = (0; h),with h 2 R, suh that (Æ2; f(Æ2)) =2 B(z; r). If �fB(z; r) = 0, then �f is monotoneat (z; r). Otherwise there is x0 2 (0; Æ2) suh that (x0; f(x0)) 2 S(z; r) and(x; f(x)) =2 S(z; r) whenever jxj 2 (x0; Æ2).



Monotone measures with bad tangential behavior in the plane 323Now, we distinguish two ases. First, if jh � f(0)j < 34x0 then ondition (ii)is satis�ed (sine jf 0j < 1, the angle between (1; 0) and the tangent to the graphat (x0; f(x0)) is plainly less than �4 ; sine jf 0j � 14 we have jf(x0)� f(0)j � 14x0,hene jh� f(x0)j � jh� f(0)j+ jf(0)� f(x0)j < x0, thus the angle between (1; 0)and the vetor (x0; f(x0))� (0; h) is less than �4 ).Seond, let jh�f(0)j � 34x0. Assumption jf 0j � 14 implies jf(x0)�f(0)j � 14x0,hene(13) r =qx20 + (h� f(x0))2 �rx20 + �12x0�2 � 1110x0:Sine �fB(z; r) > 0, there are at least two points in S(z; r) \ spt�f . HeneDr �fB(z; r) � 2 and thus from (13) and jf 0j � 14 we obtainDr �fB(z; r)r = 1r2 �rDr �fB(z; r)� �fB(z; r)�� 1r2 �21110x0 � 2r1 + �14�2x0� � 0:Therefore �f is monotone at (z; r). �Our last auxiliary result onerns the monotoniity of H1 x (L1 [ L2).Lemma 2.3. The measure H1 x (L1 [ L2) is monotone. Moreover, if z 2 S(1)and r � 910 , then ��r (H1 x (L1 [ L2))B(z; r)r � 1200r3 :Proof: For a line L and a enter z, we denote d = dist(z; L). If r > d, then(14) ��r (H1 x L)B(z; r)r = ��r 2pr2 � d2r = 2 d2r2pr2 � d2 � 2d2r3 :Sine, in addition, (H1 x L)B(z; r) = 0 for 0 < r � d, we see that H1 x L ismonotone and the �rst assertion of the lemma follows.Let us prove estimate (14). Reall z = (os#; sin#). In ase # 2 [0; �3 � �60 ℄,we have dist(z; L1) = sin(�3 � #) 2 [sin( �60 ); sin(�3 )℄ � [ 120 ; 910 ℄and thus for r � 910 we obtain from (14)��r (H1 x (L1 [ L2))B(z; r)r � ��r (H1 x L1)B(z; r)r � 2sin2( �60 )r3 � 1200r3 :If # 2 [�3 � �60 ; �2 ℄, thendist(z; L2) = sin( 2�3 � #) 2 [sin(�6 ); sin(�3 + �60 )℄ � [ 12 ; 910 ℄;



324 R. �Cern�y, J. Kol�a�r, M. Rokytahene for r � 910 we have by (14)��r (H1 x (L1 [ L2))B(z; r)r � ��r (H1 x L2)B(z; r)r � 2sin2 ��6 �r3 � 12r3 :Thus, we are done in the �rst quadrant. In any other quadrant the proof is similar(see the de�nition of L1 and L2). �3. Tangential behaviorProposition 3.1.Tan1(0;0)(�a +H1 x (L1 [ L2)) = f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g:Proof: Using (9) one an easily prove thatTan1(0;0)(�a +H1 x (L1 [ L2)) � f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g:Indeed, sine we plainly have for any t0 2 [0; �) the identity(15) �a;t0 = �a;t0+k� for all k 2 Z;it is enough to take the sequene of blow-ups orresponding to %j = exp(a(t0 �j�)), j 2 N.The opposite inlusion is obtained by a suitable hoie of a test funtion. As-sume %j > 0 for j 2 N, %j ! 0 and 1%j T(0;0);%j (�a + H1 x (L1 [ L2)) vaguelyonverges. Set tj = ln %ja . Hene from (9) and an obvious identity1%j T(0;0);%j (H1 x (L1 [ L2)) = H1 x (L1 [ L2)we see that �a;tj vaguely onverges. Let  : [0;1) 7! R be a ontinuous funtionwith a ompat support satisfying  � 0,  (0) = 0 and R10  (t) dt = 1. We de�neon R2 a ontinuous test funtion with a ompat support by '1(0; 0) = 0 and'1(x) =  (jxj)��� x1jxj os� ln jxja �+ x2jxj sin� ln jxja ���� for jxj > 0:If t 2 R and x = �+a;tj (t) or x = ��a;tj (t) we have'1(x) =  (jxj)j os t os(t� tj) + sin t sin(t� tj)j =  (jxj)j os tj j:Hene, we obtain from (7)ZR2 '1 d�a;tj = j os tj j ZR2  (jxj) d�a;tj = j os tj j Z 10 2r1 + 1a2 (t) dt= 2r1 + 1a2 j os tj j:



Monotone measures with bad tangential behavior in the plane 325Therefore j os tj j onverges. If j os tj j ! 1, then from (15) we see that �a;tj !�a;0 = �a vaguely. Similarly, if j os tj j ! 0, then �a;tj ! �a;�2 vaguely.Finally, if j os tj j !  2 (0; 1), then there is t0 2 (0; �2 ) suh that j os tj j !j os t0j = j os(� � t0)j. Let us set '2(0; 0) = 0 and'2(x) =  (jxj)��� x1jxj os� ln jxja + t0�+ x2jxj sin� ln jxja + t0���� for jxj > 0;where the funtion  is the same as above. This time we obtain for x 2 spt�a;tj'2(x) =  (jxj)j os t os(t� tj + t0) + sin t sin(t� tj + t0)j =  (jxj)j os(tj � t0)j:The vague onvergene implies the same way as above that j os(tj�t0)j onverges.If j os(tj � t0)j ! 1, then (15) implies �a;tj ! �a;t0 vaguely. Otherwise, sinej os(tj � t0)j ! d 6= 1 and j os tj j ! j os(� � t0)j, we have os tj ! os(� � t0).Thus using (15) we obtain �a;tj ! �a;��t0 vaguely. Hene we have the remaininginlusionTan1(0;0)(�a +H1 x (L1 [ L2)) � f�a;t0 +H1 x (L1 [ L2) : 0 � t0 < �g: �4. Large radii: monotoniity by ompensationBeause of the self-similarity of the logarithmi spirals it is enough to provemonotoniity at (z; r) only for z 2 S(1)[f(0; 0)g and r > 0. In ase of large radii,we arefully estimate eah term on the right hand side of (10) for � = �a.Throughout the rest of the paper we will often use the notation de�ned inPreliminaries, in partiular the one used in (4){(6) without further notie.Proposition 4.1. There is K1 > 0 suh that if a > K1, z 2 S(1) and r � 910 ,then �a +H1 x (L1 [ L2) is monotone at (z; r).Proof of Proposition 4.1: ase r 2 [ 910 ; 8℄. If r 2 [ 910 ; 8℄ and z 2 S(1), thenthe proof of the monotoniity at (z; r) is obtained diretly from formula (10).The main ingredient of the proof is the estimate onerning �aB(z; r) given inLemmata 4.2, 4.3 and 4.4, respetively.Lemma 4.2. Assume a � 9, z 2 S(1) and r 2 [1 + 1a ; 8℄. Then�aB(z; r) � 2�1 + 4ln2 aa2 �r:Proof: As r 2 [1 + 1a ; 8℄ and jzj = 1, we have S(z; r) \ [�+a ℄ 6= ; 6= S(z; r) \ [��a ℄and j�j; j�j 2 [ 1a ; 9℄. Hene �; � 2 [� ln aa ; ln 9a ℄, and thus a � 9 implies j sin �os � j � 2 lnaa ,j sin�os� j � 2 lnaa , �1 > 0 and �1 < 0. Thereforej�1j+ j�1j = �1 � �1 = j�1 � �1j � j�1 � z1j+ jz1 � �1j � 2r



326 R. �Cern�y, J. Kol�a�r, M. Rokytaand thus (7) implies�aB(z; r) = �+a B(z; r) + ��a B(z; r)�r1 + 1a2 (j�j+ j�j) =r1 + 1a2�s1 + ��2�1 �2j�1j+s1 + ��2�1 �2j�1j�=r1 + 1a2�r1 + � sin �os � �2j�1j+r1 + � sin�os��2j�1j�� 2r1 + 1a2s1 + 4ln2 aa2 r < 2�1 + 4ln2 aa2 �r: �Lemma 4.3. Assume a � 9, z 2 S(1) and r 2 [1� 3a ; 1 + 1a ℄. Then�aB(z; r) � 2�1 + 4ln2 aa2 ��1 + 1a� � 2r�1 + 4ln2 aa2 ��1 + 6a�:Proof: Sine B(z; r) � B(z; 1+ 1a ), the �rst inequality follows from Lemma 4.2.The seond estimate follows from the assumptions onerning r and a. �Lemma 4.4. Assume a � 9, z 2 S(1) and r 2 [ 910 ; 1� 3a ℄. Then�aB(z; r) � 2r1 + 1a2 r + 1ar1 + 1a2 :Proof: By the symmetry between �+a and ��a we an suppose z1 � 0. Sineevery x 2 B(z; r) satis�es1� r = jzj � r � jxj � jzj+ r = 1 + r;we obtain from (7)(16) �+a B(z; r) �r1 + 1a2�(1 + r) � (1� r)� = 2r1 + 1a2 r:Next, let us estimate ��a B(z; r). Plainly B(z; r) � B(2). Further, if t 2 [ ln 1aa ; ln 2a ℄and � = ��a (t), then we have j�j 2 [ 1a ; 2℄, �1 < 0, j�2j � jeattj � 2a (beause thefuntion g(s) = eass satis�es g0(s) = eas(1 + as), g( ln 1aa ) = � lnaa2 > � 2a , g(� 1a ) =� 1ea and g( ln 2a ) = 2 ln 2a , whih implies jg(s)j � 2a on [ ln 1aa ; ln 2a ℄). Thereforejz � �j2 = (z1 � �1)2 + (z2 � �2)2 � z21 + z22 � 2jz2jj�2j � 1� 4a > �1� 3a�2 � r2:



Monotone measures with bad tangential behavior in the plane 327It follows that � =2 B(z; r). Hene we have B(z; r) \ [��a ℄ � B( 1a ) and thus from(7) we obtain(17) ��a B(z; r) � ��a B( 1a ) = 1ar1 + 1a2 :As �a = �+a + ��a , the proof follows from (16) and (17). �Proof of Proposition 4.1: ase 910 � r � 8: Let us suppose that �aB(z; r)> 0, otherwise the proof is trivial. Sine there are at least two points in theintersetion S(z; r) \ spt�a, we have(18) Dr �aB(z; r) � 2:If r 2 [ 910 ; 1� 3a ℄, using (10), (18), Lemma 4.4 and Lemma 2.3 we obtainDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r + 1ar2 r1 + 1a2 + 1200r3 :If r 2 [1� 3a ; 1 + 1a ℄, then (10), (18), Lemma 4.3 and Lemma 2.3 giveDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r�1 + 4ln2 aa2 ��1 + 6a�+ 1200r3 :Finally, if r 2 [1 + 1a ; 8℄, then (10), (18), Lemma 4.2 and Lemma 2.3 implyDr (�a +H1 x (L1 [ L2))B(z; r)r � 2r � 2r�1 + 4ln2 aa2 �+ 1200r3 :Now, if a is suÆiently large, then the right hand side is positive in all threeases. �Proof of Proposition 4.1: ase r � 8. For large radii, our estimates have to bemuh more areful then in the previous ase. Let us briey outline our strategy.Sine there are always at least two points of the intersetion B(z; r)\spt�a (reallr � 8), from (7) and (10) we obtainDr �aB(z; r)r � q1 + 1a2r2 ���j�j�r + �j�j�r �r � j�j � j�j�:Next, we estimate all the terms on the right hand side using the identities fromLemma 4.6. Notie, that when estimating �j�j�r (and similarly �j�j�r ), we do not usethe expliit formula (21) (whih is not onvenient to work with), but we proeedin the following way. First, we obtain a rough estimate (see Lemma 4.7). Then weuse formula (20) together with this rough estimate on the right hand side (where�j�j�r is multiplied by 1a , whih an be made very small).



328 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 4.5. Assume �; � 2 R, z 2 S(1) and r � 8. Thenpos2 '+ r2 � 1 � �1� 1100�r; pos2  + r2 � 1 � �1� 1100�r:Proof: Sine r � 8, we have pr2 � 1 � 99100r. Now, both estimates followeasily. �Lemma 4.6. Assume a � 30 and z 2 S(1). The funtion r 7! j�j is ontinuouslydi�erentiable on (8;1) and satis�es(19) j�j = os'+pos2 '+ r2 � 1;(20) �j�j�r = � 1a sin'�j�j�r + rpos2 '+ r2 � 1and(21) �j�j�r = rpos2 '+ r2 � 1 + sin'a :The funtion r 7! j�j is ontinuously di�erentiable on (8;1) and satis�es(22) j�j = � os +pos2  + r2 � 1;(23) �j�j�r = 1a sin �j�j�r + rpos2  + r2 � 1and(24) �j�j�r = rpos2  + r2 � 1� sin a :Proof: Using � = �+a (�) = (j�j os �; j�j sin �) we setF (r; �) = j� � zj2 � r2 = (j�j os � � z1)2 + (j�j sin � � z2)2 � r2= j�j2 � 2j�j(z1 os � + z2 sin �) + 1� r2= j�j2 � 2j�j os'+ 1� r2:Solving the equation F (r; �) = 0 with respet to nonnegative j�j we obtain (19).The smoothness, (20) and (21) follow from the Impliit Funtion Theorem.Indeed, �'�� = �(��#)�� = 1 and �j�j�� = � exp(a�)�� = a exp(a�) = aj�j imply�F�� = 2aj�j2 � 2aj�j os'+ 2j�j sin' = 2aj�j�j�j � os'+ sin'a �:



Monotone measures with bad tangential behavior in the plane 329Hene applying (19) and Lemma 4.5 we obtain�F�� = 2aj�j�pos2 '+ r2 � 1 + sin'a � > 0:Further �F�r = �2r, �j�j�� = aj�j, above formula for �F�� imply�j�j�r = �j�j�� ���r = �j�j�� � (�1) �F�r�F�� = aj�j 2r2aj�j(pos2 '+ r2 � 1 + sin'a ) :This is (21). As � = �+Æ is equivalent to � = ��Æ� provided  + Æ 6= 0 6= , (20)follows from (21). For the point of intersetion �, the proof is similar. �Lemma 4.7. Assume a � 30, z 2 S(1) and r � 8. Then�j�j�r � 2 and �j�j�r � 2:Proof: The estimate onerning �j�j�r follows from (21) and Lemma 4.5. For �j�j�rwe use (24) and Lemma 4.5. �Lemma 4.8. Assume a � 30, z 2 S(1) and r � 8. Then��j�j�r + �j�j�r �r � j�j � j�j � � 3a(r � 1) :Proof: Sine r > 1 and z 2 S(1), we have j�j; j�j 2 [r� 1; r+1℄. Set Æ = j� ��j.We observe(25) 0 � Æ = ���1a ln j�j � 1a ln j�j��� � 1a ln�r + 1r � 1� = 1a ln�1 + 2r � 1� � 2a(r � 1) :Using (19), (20), (22) and (23) we obtain(26)��j�j�r + �j�j�r �r � j�j � j�j= � � 1a sin'�j�j�r + rpos2 '+ r2 � 1 + 1a sin �j�j�r + rpos2  + r2 � 1�r � os'�pos2 '+ r2 � 1+ os �pos2  + r2 � 1:Further, we have(27) j os'� os j � j'�  j = j� � �j = Æ;(28) j sin'� sin j � j'�  j = j� � �j = Æ;



330 R. �Cern�y, J. Kol�a�r, M. Rokyta(29) r2pos2 '+ r2 � 1 + r2pos2  + r2 � 1�pos2 '+ r2 � 1�pos2  + r2 � 1= 1� os2 'pos2 '+ r2 � 1 + 1� os2  pos2  + r2 � 1 � 0and by Lemma 4.5 and (27)(30)��� 1pos2 '+ r2 � 1 � 1pos2  + r2 � 1 ���= j(os2  + r2 � 1)� (os2 '+ r2 � 1)jpos2 '+ r2 � 1pos2  + r2 � 1(pos2 '+ r2 � 1 +pos2  + r2 � 1)� j os2  � os2 'j2( 99100r)3 � 2j os � os'jr3 � 2Ær3 :Lemma 4.5, Lemma 4.7, (20), (23), (25), (28) and (30) imply
(31) ����j�j�r � �j�j�r ��� = ���� rpos2 '+ r2 � 1 � rpos2  + r2 � 1�+ 1a�� � sin'�j�j�rpos2 '+ r2 � 1 + sin'�j�j�rpos2  + r2 � 1�+ (� sin'+ sin )�j�j�rpos2  + r2 � 1 + sin (��j�j�r � �j�j�r )pos2  + r2 � 1 ����� 2Ær2 + 1a�22Ær3 + 2Æ99100r + 499100r� � 5ar :Finally, from Lemma 4.5, Lemma 4.7, (25), (28), (30) and (31) we obtain(32)���� � 1a sin'�j�j�rpos2 '+ r2 � 1 + 1a sin �j�j�rpos2  + r2 � 1�r���= ra ��� � sin'�j�j�rpos2 '+ r2 � 1 + sin'�j�j�rpos2  + r2 � 1� (sin'� sin )�j�j�rpos2  + r2 � 1 � sin ��j�j�r � �j�j�r �pos2  + r2 � 1 ���� ra�22Ær3 + 2Æ99100r + 199100r 5ar� � 1ar :Now, the proof follows from (26) ombined with estimates (27) (see also (25)),(29) and (32). �



Monotone measures with bad tangential behavior in the plane 331Proof of Proposition 4.1: ase r � 8. Let us suppose that �aB(z; r) > 0,otherwise the proof is trivial. Hene there are at least two points in the intersetionS(z; r)\ spt�a. Using in addition (7), (10), Lemma 2.3 and Lemma 4.8 we obtainDr (�a +H1 x (L1 [ L2))B(z; r)r� q1 + 1a2r2 ���j�j�r + �j�j�r �r � j�j � j�j�+Dr (H1 x (L1 [ L2))B(z; r)r� �q1 + 1a2r2 3a(r � 1) + 1200r3 :If a is suÆiently large, then the right hand side is positive and we are done. �5. Small radiiFor very small radii we annot rely on any ompensation, beause some ballsentered on S(1) with small radii do not interset L1 [ L2.Proposition 5.1. There is K2 > 0 suh that if a > K2, 0 < r � 910 and z 2 S(1),then �a is monotone at (z; r).For the proof of this proposition we need some auxiliary lemmata.If the enter z 2 S(1) is relatively far from [�+a ℄ or [��a ℄, then the proof is easy.Lemma 5.2. There is K3 > 0 suh that if a > K3, 0 < r � 910 , z 2 S(1) andjz � (1; 0)j � 120 , then �+a is monotone at (z; r).Proof: Let us use the logarithmi parameterization~�+a (t) = �t os� ln ta �; t sin� ln ta ��; t 2 (0;1):We observe that there is K3 > 0 suh that for every a > K3 and t 2 [ 120 ; 2℄ wehave(33) (~�+a )1(t) > 0; j(~�+a )2(t)j � 180 and r1 + 1a2 �r1 + 1802 :Now, we distinguish two ases. First, let z1 � 0. For t 2 (0; 120 ℄ we havejz � ~�+a (t)j � jzj � j~�+a (t)j � 1� 120 > 910 � r:For t 2 [ 120 ; 2℄, we see that (33) and z1 � 0 � (~�+a )1(t) imply



332 R. �Cern�y, J. Kol�a�r, M. Rokytajz � ~�+a (t)j =q(z1 � (~�+a )1(t))2 + (z2 � (~�+a )2(t))2 �qz21 + z22 � 2jz2jj(~�+a )2(t)j�r1� 2 180 > 910 � r:Finally, for t > 2 we havejz � ~�+a (t)j � j~�+a (t)j � jzj � 2� 1 > 910 � r:Hene if z1 � 0, we always have �+a B(z; r) = 0 and thus �+a is monotone at (z; r).In the seond ase we have z1 > 0. We an further suppose that �+a B(z; r) > 0,otherwise the proof is trivial. In this ase one an easily hek that jz2j > 140 , thepoints �; ~� 2 S(z; r)\ [�+a ℄ are well de�ned, j�j; j~�j 2 [ 120 ; 2℄ and Dr �+a B(z; r) � 2.Hene using (33) we arrive to the estimater =s� j� � ~�j2 �2 + ���z � � + ~�2 ���2 � j� � ~�j2 vuut1 + 4jz2 � �2+~�22 j2(j�j+ j~�j)2� j� � ~�j2 s1 + 4( 140 � 180 )24 � j� � ~�j2 r1 + 1a2 � j�j � j~�j2 r1 + 1a2 :Therefore we obtain from (7) and (10)Dr �+a B(z; r)r = Dr �+a B(z; r)r � �+a B(z; r)r2 � 1r2 �2r �r1 + 1a2 (j�j � j~�j)� � 0:�Our next goal is to obtain the loal monotoniity for the measure �+a (seeLemma 5.4). We start with the following auxiliary result.Lemma 5.3. There is K4 > 0 suh that for a > K4 the funtion�a(t) = exp(at)�(a2 � 1) os t+ 2a sin t� (1 + a2)�+ (1 + a2)(1 + os t)� 2a2satis�es �a(t) � 0 on [0; 1a ℄ and �a(t) � 0 on [� 125a ; 0℄.Proof: We have�0a(t) = exp(at)�a(1 + a2) os t+ (1 + a2) sin t� a(1 + a2)�� (1 + a2) sin t;�00a(t) = exp(at)�(1 + a2)2 os t� a2(1 + a2)�� (1 + a2) os t:



Monotone measures with bad tangential behavior in the plane 333As �a(0) = �0a(0) = 0 it is enough to �nd K4 > 0 suh that the funtion	a(t) = exp(at)�(1 + a2) os t� a2�� os t = 11 + a2�00a(t)satis�es the following inequalities for a > K4(34) 	a(t) � 0 on h�125a; 0i and 	a(t) � 0 on h0; 1ai:First, there is M1 > 0 suh that os t � 0 for a > M1 and t 2 [� 125a ; 0℄, and thus	a(t) � exp(at)�(1 + a2) os t� a2 � os t� = a2 exp(at)(os t� 1) � 0:This is the �rst inequality in (34). Let us prove the seond one. There isM2 > M1suh that for a > M2 and t 2 [0; 1a ℄ we haveexp(at) � 1 + at+ a2t22 ;(35) os t � 1� t22(36)and(37) (1 + a2) os t� a2 � (1 + a2)�1� t22 �� a2 � (1 + a2)�1� 12a2�� a2= 12 � 12a2 � 0:Using (35) and (37) we obtain	a(t) � �(1 + a2) os t� a2��1 + at+ a2t22 �� os t= a2(os t� 1) + �(1 + a2) os t� a2��at+ a2t22 �:Hene estimate (36) implies	a(t) � �a2t22 +�1� (1 + a2)t22 ��at+ a2t22 � = at�1� (1 + a2)t22 � a(1 + a2)t34 �:Finally, there is K4 > M2 suh that for a > K4 and t 2 [0; 1a ℄ we have1� (1 + a2)t22 � a(1 + a2)t34 � 1� (1 + a2)2a2 � (1 + a2)4a2 = 14 � 34a2 � 0and thus 	a(t) � 0 on [0; 1a ℄ for a > K4. We have (34) and we are done. �



334 R. �Cern�y, J. Kol�a�r, M. RokytaLemma 5.4. There is K5 > 0 suh that if a > K5, 0 < r � 910 , z 2 S(1) andjz � (1; 0)j � 120 , then �+a is monotone at (z; r).Proof: Suppose �+a B(r; z) > 0, otherwise the proof is trivial. We �nd � 2 [�+a ℄suh that jz � �j = dist(z; [�+a ℄). As (1; 0) 2 [�+a ℄ and jz � (1; 0)j � 120 , we obtainjj�j � jzjj � j� � zj � j(1; 0)� zj � 120 ;hene j�j 2 [ 1920 ; 2120 ℄. Assumption r � 910 implies j~�j; j�j 2 [ 110 ; 1910 ℄ � [ j�j11 ; 2j�j℄. Nowwe would like to parameterize a suitable part of [�+a ℄ as a graph of a funtion sothat we ould use Lemma 2.1.Beause of the self-similarity of the logarithmi spirals, our ase is equivalentto the ase with the nearest point �0 = �+a (t0), where t0 = � artan( 1a ), thepoints of intersetion ~�0; �0 satisfying j~�0j; j�0j 2 [ j�0j11 ; 2j�0j℄ and the enter z0 ona line passing through �+a (t0) and perpendiular to [�+a ℄ at �+a (t0). Let r0 denotethe radius in this ase. On some neighborhood of �+a (t0), the urve �+a an besuitably represented by a graph of a funtion as shown in the sequel. Let us de�nex(t) = ea(t+t0) os(t+ t0)� eat0 os(t0); t 2 (��2 ; �2 );y(t) = ea(t+t0) sin(t+ t0)� eat0 sin(t0); t 2 (��2 ; �2 ):The hoie t0 = � artan( 1a ) implies os t0 = �a sin t0,(38) sin t0 = � sin(�t0) = �s tan2(�t0)1 + tan2(�t0) = �s 1a21 + 1a2 = � 1p1 + a2 ;(39) os(t+t0) = os t0 os t�sin t0 sin t = � sin t0(a os t+sin t) = a os t+ sin tp1 + a2and(40) sin(t+t0) = sin t0 os t+os t0 sin t = � sin t0(a sin t�os t) = a sin t� os tp1 + a2 :Hene x0(t) = ddt� eat0p1 + a2 (eat(a os t+ sin t))� = ea(t+t0)p1 + a2 (1 + a2) os tand y0(t) = ddt� eat0p1 + a2 (eat(a sin t� os t))� = ea(t+t0)p1 + a2 (1 + a2) sin t:Therefore we see that we an onsider x 7! y as a funtion f : (x(��2 ); x(�2 )) 7! Rwith f 0(x) = tan t, where t is suh that x = x(t).



Monotone measures with bad tangential behavior in the plane 335Next, let us show that the funtion f satis�es the assumptions of Lemma 2.1,the version from Remark 2.2. There is ~K > 0 large enough suh that for a > ~Kwe have (��2 ; �2 ) � [� 125a ; 1a ℄ and jf 0j � 14 on [x(� 125a ); x( 1a )℄. Next, using x(0) = 0and f 0(0) = f 0(x(0)) = tan 0 = 0, one an easily hek that the �rst oordinateof the enter z0 is the same as the �rst oordinate of the point [x(0); f(x(0))℄.It remains to hek ondition (11). For t 2 [� 125a ; 1a ℄ let us de�ne	a(t) = 2jx(t)jp1 + f 02(x(t))� (1 +p1 + f 02(x(t)))�f (f(u; v) : u 2 I(0; x(t)); v 2 Rg)= sgn t�2(ea(t+t0) os(t+ t0)� eat0 os t0)p1 + tan2 t� (1 +p1 + tan2 t)r1 + 1a2 (ea(t+t0) � eat0)�;where we have used (7). From (38), (39), (40), p1 + tan2 t = 1j os tj = 1os t on(��2 ; �2 ), os t0 = �a sin t0 = ap1+a2 and aq1 + 1a2p1 + a2 = 1 + a2 we obtain	a(t) = eat0 sgn t�2�eat 1p1 + a2 (a os t+ sin t)� ap1 + a2� 1os t� �1 + 1os t�r1 + 1a2 (eat � 1)�= eat0 sgn tap1 + a2 os t�2aeat(a os t+ sin t)� 2a2 � (1 + os t)(1 + a2)(eat � 1)�= eat0 sgn tap1 + a2 os t�eat(2a2 os t+ 2a sin t� (os t+ 1)(1 + a2))� 2a2 + (os t+ 1)(1 + a2)�= eat0 sgn tap1 + a2 os t�a(t):Hene Lemma 5.3 implies 	a(t) � 0 on [� 125a ; 1a ℄ provided a > K5 = max(K4; ~K).This proves inequality (11) on [x(� 125a ); x( 1a )℄. Further, we an see that the urve(x(t); y(t)) + �+a (t0), t 2 [� 125a ; 1a ℄, parameterizes the setM = f�+a (t) : t 2 [t0 � 125a ; t0 + 1a ℄g = [�+a ℄ \ nx 2 R2 : jxj 2 he� 125 j�0j; e1j�0jio:Hene, as exp(� 125 ) < 111 � j~�0jj�0j and exp 1 > 2 � j�0jj�0j , we have �0; ~�0 2 M .Therefore Lemma 2.1 and Remark 2.2 imply that �a is monotone at (z0; r0). Thus,the self-similarity of logarithmi spirals gives that �a is monotone at (z; r). �



336 R. �Cern�y, J. Kol�a�r, M. RokytaProof of Proposition 5.1: Let us reall that �a = �+a +��a . The monotoni-ity at (z; r) for �+a follows from Lemma 5.2 and Lemma 5.4. Next, the symmetrybetween �+a and ��a gives the same for ��a . Finally, the super-additivity of thelower derivative Dr onludes the proof. �Proof of Theorem 1.3: Fix K > max(K1;K2) large enough so that(41) r1 + 1K2 < 1 + ":For z 2 S(1) and r � 910 , the monotoniity at (z; r) of �a+H1 x (L1 [L2) followsfrom Proposition 4.1. If z 2 S(1) and r � 910 , then we use Proposition 5.1. In anyother ase, with z 6= (0; 0), the monotoniity at (z; r) follows from above by theself-similarity of the logarithmi spirals. Finally, if z = (0; 0) and r > 0, then themonotoniity at (z; r) is easily obtained from (8) and Lemma 2.3. The non-uniquetangential behavior follows from Proposition 3.1. The density properties easilyfollow from the de�nitions of �+a , ��a , L1 and L2, from (8) and from (41). �6. Neessity of ompensationIn this setion, we show that the measure �a is not monotone by itself for anya > 0. Further, sine for any line L, the measure H1 x L does not provide anyompensation for balls entered on L (see (14) with d = 0), only one line annotbe a suÆient ompensation for the monotoniity.Proposition 6.1. Assume a > 0 and z 2 R2 n f0g. Then there exists r > 0 suhthat % 7! �aB(z;%)% is dereasing on some neighborhood of r.Let us start with some preliminary work. In this setion, �j , �j , et. no longerdenote the j-th oordinate of a point but the j-th member of a sequene.Lemma 6.2. Let a > 0 and z 2 S(1). Then there is r0 > 1 with the followingproperty:If r � r0, then S(z; r) \ spt�a = f�; �g, where � 2 S(z; r) \ [�+a ℄ and � 2S(z; r) \ [��a ℄, the funtions r 7! j�j and r 7! j�j are inreasing and ontinuouslydi�erentiable on (r0;1) and satisfy (19), (21), (22) and (24).Proof: The proof is similar to the proof of Lemma 4.6. �Lemma 6.3. Assume a > 0, z 2 S(1). Then there is a sequene of radii frjg1j=1suh that rj � r0 (r0 > 1 is given by Lemma 6.2), rj ! 1 and the points ofintersetion �j = �+a (�j) 2 S(z; rj) \ [�+a ℄ and �j = ��a (�j) 2 S(z; rj) \ [��a ℄satisfy os j = 1 and 0 < 'j �  j � 2a(rj�1) for all j 2 N.Proof: Applying Lemma 6.2 to r = r0 we obtain a unique t0 2 R suh that��a (t0) 2 S(z; r)\ [��a ℄. Given j 2 N, �nd tj 2 [jt0j+ 2a +2�(j�1); jt0j+ 2a +2�j)



Monotone measures with bad tangential behavior in the plane 337suh that os(tj � #) = 1 and set rj = j��a (tj) � zj. Thus ��a (tj) = �(rj � 1)zand rj = j��a (tj)� zj � j��a (tj)j � jzj = eatj � 1� eajt0j+2 � 1 � eajt0j + 1 � j��a (t0)j+ jzj � r0:Lemma 6.2 gives that �j and �j are well de�ned, �j = tj , �j = �(rj � 1)z andj�j j � j�j � zj � jzj = rj � 1 = j�j j:Hene �j � �j . On the other hand j�j j � j�j � zj+ jzj = rj + 1. Therefore0 � 'j �  j = �j � �j = 1a ln j�j j � 1a ln j�j j � 1a ln�rj + 1rj � 1�= 1a ln�1 + 2rj � 1� � 2a(rj � 1) :Finally, if 'j =  j , we have �j = �j . Thus �j = ��j = (rj � 1)z. Thereforerj = j�j � zj = j(rj � 1)z � zj = j(rj � 2)zj = jrj � 2j:Hene from rj � r0 > 1 we obtain a ontradition. This implies 'j >  j and weare done. �Proof of Proposition 6.1: From the self-similarity of the logarithmi spiralswe see that it is enough to onsider z = (os#; sin#), # 2 [0; 2�), only. FromLemma 6.2 and (7) for any r > r0 we have(42) ��r �aB(z; r)r = 1r2 �r ��r�aB(z; r)� �aB(z; r)�= 1r2r1 + 1a2��j�j�r r � j�j+ �j�j�r r � j�j�:From (19), (21), (22), (24), (42) and os j = 1 we obtain��r �aB(z; r)r jr=rj = 1r2j q1 + 1a2qos2 'j + r2j � 1 + sin'ja �(rj);



338 R. �Cern�y, J. Kol�a�r, M. Rokytawhere�(rj) = �qos2 'j + r2j � 1 + sin'ja �� r2jqos2 'j + r2j � 1 + sin'ja� �os'j +qos2 'j + r2j � 1�� rj + (�1 + rj)�= r2j + �1� os'j �qos2 'j + r2j � 1��qos2 'j + r2j � 1 + sin'ja �= r2j + (1� os'j)qos2 'j + r2j � 1 + (1� os'j) sin'ja � os2 'j � r2j+ 1�qos2 'j + r2j � 1sin'ja :Hene it is enough to show that �(rj) < 0 for j large enough. As rj � 1 �qos2 'j + r2j � 1 � rj , 1� os2 'j = (1+os'j)(1� os'j) � 2(1� os'j) andsin'j � 0 for j large, we obtain�(rj) � (1� os'j)rj + sin'ja + 2(1� os'j)� (rj � 1)sin'ja= (1� os'j)(rj + 2)� (rj � 2)sin'ja :Reall that we have os j = 1 by Lemma 6.3. Hene  j is a multiple of 2�.Moreover, as 1� os t = 2 sin2( t2 ), we have1� os'j = 1� os('j �  j) = 2 sin2�'j �  j2 �:Thus from 'j� j 2 (0; 2a(rj�1) ℄ (whih omes from Lemma 6.3) and t2 � sin t � ton [0; �2 ℄ we obtain for rj suÆiently large�(rj) � 2(rj + 2) sin2�'j �  j2 �� (rj � 2)sin('j �  j)a� 4rj�'j �  j2 �2 � rj2 'j �  j2a = rj('j �  j)�'j �  j � 14a�� rj('j �  j)� 2a(rj � 1) � 14a� < 0:Thus ��r �aB(z;r)r is negative on some neighborhood of rj for j large enough. �Aknowledgment. The authors are very grateful to Professors David Preissand Bernd Kirhheim for fruitful disussions. The authors would like to thankthe referee for areful reading.
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