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On Manes' 
ountably 
ompa
t,
ountably tight, non-
ompa
t spa
esJames DabbsAbstra
t. We give a straightforward topologi
al des
ription of a 
lass of spa
esthat are separable, 
ountably 
ompa
t, 
ountably tight and Urysohn, but not
ompa
t or sequential. We then show that this is the same 
lass of spa
es
onstru
ted by Manes [Monads in topology, Topology Appl. 157 (2010), 961{989℄ using a 
ategory-theoreti
al framework.Keywords: 
ountably 
ompa
t, 
ountably tight, p-
ompa
t, p-sequentialClassi�
ation: 54D30, 54A101. Introdu
tionIn [2℄, Nyikos asked several questions related to the existen
e of separable,
ountably 
ompa
t, 
ountably tight spa
es that are not 
ompa
t. In [3℄, Nyikosand Vaughn 
onstru
ted a Hausdor� su
h a spa
e in ZFC, but their example wasnot Urysohn1 and so 
ertainly not regular. Dow [4℄ 
onstru
ted a 
ompa
t, Haus-dor�, non-sequential su
h spa
e under the added hypothesis that 2! = 2!1 . Manes[1℄ later 
onstru
ted a 
lass of separable, Urysohn, 
ountably 
ompa
t, 
ountablytight, non-
ompa
t, non-sequential spa
es in ZFC, using the 
ategory-theoreti
al
on
ept of a monad. The question of whether or not a regular su
h spa
e existsin ZFC remains open. Our aim is to give a purely topologi
al 
onstru
tion of the
lass of spa
es studied by Manes.2. PreliminariesThroughout, p will denote an arbitrary element of �! n !.De�nition 1. Given a sequen
e xn in a spa
e X , x = p-limxn if for every openO � X with x 2 O, fn j xn 2 Og 2 p.p-limits provide a natural way to generalize sequential properties. The followingde�nitions are well known (see [5℄ for more details):De�nition 2. A spa
e X is p-
ompa
t if for every sequen
e xn in X , p-limxnexists and is in X .1A spa
e is Urysohn if any two distin
t points have neighborhoods with disjoint 
losures.



428 J. DabbsDe�nition 3. A spa
e X is p-sequential if for every non-
losed A � X there issome x 2 X nA and sequen
e xn in A with x = p-limxn.It is routine to verify [5℄ that every 
ompa
t spa
e is p-
ompa
t for any p andthat every p-
ompa
t spa
e is limit-point 
ompa
t (and thus 
ountably 
ompa
t,provided it is T1). It 
an also be shown that any p-sequential spa
e is 
ountablytight using a straightforward variation of the usual proof that every sequentialspa
e is 
ountably tight, in
luded here for 
ompleteness:Proposition 2.1. Any p-sequential spa
e is 
ountably tight.Proof: Let X be p-sequential, A � X and x 2 A nA.De�ne A0 = fy 2 X j y = p-liman for some sequen
e an in Ag. Let A0 = Aand A1 = A0, A�+1 = A0� for su

essor ordinals < !1, and A� = S�<�A� forlimit ordinals � !1.If xn is a sequen
e in A!1 then fxng � A� for some least � and so p-limxn 2A�+1 � A!1 . Thus A!1 is p-sequentially 
losed and, sin
e X is p-sequential,
losed.Thus x 2 A!1 . We 
laim that for any y 2 A!1 , there is a 
ountable B � A sothat y 2 B. If y 2 A1 then there is a sequen
e xn in A0 = A so that y = p-limxnand so y 2 fxng. Suppose that for every � < � and y 2 A� there is a 
ountableBy � A with y 2 By. Let y 2 A�. If y 2 A� for some � < � then there issu
h a By by assumption. So suppose not. Then by 
onstru
tion � must be asu

essor ordinal � = 
 + 1 so y = p-limxn for a sequen
e xn in A
 . Then ifBy = Sn2! Bxn , y 2 By as required. �3. Constru
tionWe will show that the set of p-
ompa
t subsets of any spa
e is 
losed underarbitrary interse
tions and �nite unions. Thus the p-
ompa
t subsets of a spa
eform the 
losed sets of a new topology on that spa
e. The example we seek willbe a topology generated by the p-
ompa
t subsets of �!.First, a useful lemma:Lemma 3.1. If xn, x0n are two sequen
es in X and fn j xn = x0ng 2 p, thenp-limxn = p-limx0n (if either limit exists).Proof: Let fn j xn = x0ng = B 2 p. Suppose without loss of generality thatp-limxn = x. Then for any open O � X with x 2 O, fn j xn 2 Og 2 p.Thus fn j x0n 2 Og � fn j x0n = xn ^ xn 2 Og = B \ fn j xn 2 Og 2 p. Sox = p-limx0n. �Note that the p-
ompa
tness is preserved by �nite unions and arbitrary inter-se
tions:Proposition 3.2. If C1; C2 � X are p-
ompa
t, C1 [ C2 is p-
ompa
t.Proof: Let xn be a sequen
e in C1 [ C2. Let Bi = fn j xn 2 Cig. Sin
e p isan ultra�lter, assume without loss of generality that B1 2 p. Fix an arbitrary
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es 429z 2 C1 and let x0n = xn for all n 2 B1 and x0n = z otherwise. Then x0n is asequen
e in C1. Let x = p-limx0n. Then x exists and x 2 C1 by assumption andx = p-limxn by 3.1. Thus p-limxn 2 C1 [ C2. �Proposition 3.3. If Ci � X is p-
ompa
t for ea
h i, TCi is p-
ompa
t.Proof: If xn is a sequen
e in TCi, then xn is a sequen
e in Ci for ea
h i sop-limxn 2 Ci for ea
h i. �De�nition 4. Given a spa
e X and an ultra�lter p, let Xp = X as a set andde�ne a topology on Xp by letting all p-
ompa
t subsets of X be 
losed in Xp(along with X if X was not p-
ompa
t).Now, 
onsider the relationship between the topologies X and Xp:Proposition 3.4. If X is p-
ompa
t and C � X is 
losed, then C is p-
ompa
t.Proof: If xn is a sequen
e in C then x = p-limxn exists in X and for every openO � �! with x 2 O, fn j xn 2 Og 2 p. In parti
ular, O \ C is non-empty andx 2 C = C. Thus C is p-
ompa
t. �Corollary 3.5. If X is p-
ompa
t, the topology on Xp is �ner than the usualtopology on X .Proposition 3.6. Let xn be a sequen
e in Xp. If p-limX xn exists, then p-limXp xn = p-limX xn.Proof: Let x = p-limX xn. Suppose x 6= p-limXp xn. Then there is an O � Xpopen in Xp with x 2 O but fn j xn 2 Og =2 p. Thus fn j xn =2 Og 2 p. Fix az 2 Xp n O. De�ne x0n = xn if xn 2 Xp n O and x0n = z otherwise. Then x0n is asequen
e in Xp nO and sin
e O is open, Xp nO is 
losed in Xp and thus p-
ompa
tin X . Thus p-limX x0n 2 X n O. But xn = x0n for all n 2 fn j xn =2 Og so by 3.1,p-limX xn = p-limX x0n =2 O, a 
ontradi
tion. �Corollary 3.7. If X is p-
ompa
t then Xp is p-
ompa
t.Proposition 3.8. If A � Xp, let A0 = fx j x = p-lim an for some sequen
e anin Ag and de�ne A� indu
tively by A0 = A, A�+1 = A0� for su

essor ordinalsand A� = S�<�A� for limit ordinals. Then 
lXp(A) = A!1 .Proof: By de�nition,
lXp(A) =\fC � X : C 
losed in Xp; A � Cg=\fC � X : C p-
ompa
t in X; A � Cg:Note that if xn is a sequen
e in A!1 then by 
onstru
tion there is some � < !1so that xn is a sequen
e in A�. Thus p-limxn 2 A�+1 and so A!1 is p-
ompa
t.Thus 
lXp(A) � A!1 .Conversely, suppose A� � 
lXp(A) for all � < �. If � is a limit ordinal thenA� � 
lXp(A) trivially. If not, then � = 
 + 1 and for any a 2 A�, a = p-limxn = p-limXp xn for some sequen
e xn in A
 . Thus for any O open in Xp



430 J. Dabbswith a 2 O, fn j xn 2 Og 2 p so A
 \ O is in�nite and a 2 
lXp(A). ThusA!1 � 
lXp(A). �Corollary 3.9. j 
lXp(A)j � jAj! .Proposition 3.10. If X is p-
ompa
t, then Xp is p-sequential.Proof: Let A � Xp be non-
losed. Then A � X is not p-
ompa
t. So byde�nition there is a sequen
e xn in A so that x = p-limxn =2 A. �The parti
ular example we seek is obtained by applying this 
onstru
tion to �!:Proposition 3.11. �!p is Urysohn.Proof: By 3.5, the topology on �!p is �ner than the topology on �! and sin
e�! is Urysohn, so is �!p. �Proposition 3.12. �!p is not 
ompa
t.Proof: �!p is 
ountably tight by 3.10 and 2.1, so �!p 6�= �!. Thus the topologyon �!p is stri
tly �ner and so �!p 
annot be 
ompa
t. �Proposition 3.13. �!p 
ontains no non-trivial 
onvergent sequen
es.Proof: Sin
e �!p has a �ner topology, the in
lusion map i : �!p ! �! is
ontinuous. Thus if xn ! x in �!p, i(xn)! i(x) in �! and thus xn is eventually
onstant. �Corollary 3.14. �!p is not sequential.Proof: If F � �!p and xn is a sequen
e in F with xn ! x then x = xm forsome m so x 2 F . Thus every subset of �!p is sequentially 
losed. But �!p isnot dis
rete (! � �!p is not 
losed), so �!p is not sequential. �Thus �!p is a 
ountably 
ompa
t, 
ountably tight, Urysohn, non-
ompa
t, non-sequential spa
e. It is not separable though: by 3.9, j 
l�!p(A)j � jAj! < j�!j forany 
ountable A. However:Proposition 3.15. If A � �!p is 
ountable, X = 
l�!p(A) is a separable,Urysohn, 
ountably 
ompa
t, 
ountably tight, non-
ompa
t, non-sequential sub-spa
e of �!p.Proof: Separability is trivial. Sin
e X is a 
losed subset of �!p, X is Urysohn,
ountably 
ompa
t and 
ountably tight. X is not dis
rete so as in 3.14, X is notsequential.If X is 
ompa
t then i(X) � �! is a 
ompa
t and thus 
losed subset of �! andso i(X) 
ontains a homeomorphi
 
opy of �!. Sin
e �! 
ontains weak P -points[6℄, i(X) is not 
ountably tight. But i is a homeomorphism onto its image and Xis 
ountably tight, a 
ontradi
tion. Thus X is not 
ompa
t. �



On Manes' 
ountably 
ompa
t, 
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es 4314. MonadsIn [1℄, Manes de�nes a monad as a triple (T; �; (�)#) where T is a fun
tor fromthe 
ategory of sets to itself, �X : X ! TX for all sets X and if f : X ! TYthen f# : TX ! TY subje
t to the 
onditions(1) f#�X = f ,(2) (�X )# = idTX ,(3) (g#f)# = g#f# for any set f : X ! TY and g : Y ! TZ.The prototypi
al example of a monad is the Stone-�Ce
h 
ompa
ti�
ation(�; �; (�)#) where �X : X ! �X is the usual in
lusion and f# : �X ! �Yby f#(F) = fB � Y j fx 2 X j B 2 f(x)g 2 Fg:It is straightforward to verify that this de�nition of a monad satis�es the listedproperties and that this de�nition is equivalent to the standard de�nition [7℄ interms of (T; �; �) by letting �X = (idTX )# : TTX ! TX . A subfun
tor T � �will generate a submonad (T; �; (�)#) of (�; �; (�)#) provided that for all sets X ,�X (X) � TX and for all maps f : X ! �Y with f(X) � TY , f#(TX) � TY .Given a fun
tion f : X ! Y , the fun
tor � takes f to the indu
ed map�f : �X ! �Y . Given an ultra�lter r 2 �X , we let fr denote the ultra�lter(�f)(r) = fZ � Y j f�1(Z) 2 rg.For a �xed ultra�lter r 2 !�, Manes 
onsiders the subfun
torGrX = ffr j f : ! ! Xg � �Xand the monad Tr generated by Gr (i.e., the smallest submonad of � so thatGrX � TrX for all sets X). Note �rst that Gr! is a familiar obje
t:Proposition 4.1. Using the notation from 3.8, Gr! = !0.Proof: Let f : ! ! !. Then for any basi
 open set O � �! with fr 2 O, O 2 fr.Thus by de�nition, f�1(O) = fn j f(n) 2 Og 2 r. Thus fr = r-lim f(n). �To des
ribe Tr!, we observe the following: sin
e Tr is a subfun
tor of �, givenf : A ! Tr!, the fun
tion Trf : TrA ! Tr(Tr!) is the restri
tion of �f toTrA. Also sin
e (Tr; �; (�)℄) is a submonad of (�; �; (�)℄), if h : Tr! ! Tr! andF 2 Tr(Tr!), then h℄(F) = fD � ! j fx 2 Tr! j D 2 h(x)g 2 Fg.Proposition 4.2. For any A � Tr! and g : ! ! A, if i : A! Tr! is the in
lusionmap, id#Tr! �(Tri)(gr)� = r-lim g(n) (with limit taken in �!).Proof: By de�nition,id#Tr! �(Tri)(gr)� = fD � ! j fx 2 Tr! j D 2 xg 2 (Tri)(gr)gand fx 2 Tr! j D 2 xg 2 Tri(gr) ()9C 2 gr(C � fx 2 Tr! j D 2 xg) ()



432 J. Dabbs9C 2 gr(8y 2 C(y 2 fx 2 Tr! j D 2 xg)) ()9C 2 gr(8y 2 C(D 2 y)) ()9B 2 r ^ 9C � g(B)(8y 2 C(D 2 y)) ()9B 2 r(8y 2 g(B)(D 2 y)):The last equivalen
e following from taking C = g(B). Thus D 2 id#Tr! �(Tri)(gr)�() 9B 2 r with D 2 T g(B), and so id#Tr! �(Tri)(gr)� = SB2r \g(B).Given any basi
 open O � �! 
ontaining SB2r \g(B), O 2 SB2r \g(B) sothere is some B 2 r so that O 2 x for every x 2 g(B). Thus B � fn j O 2g(n)g = fn j g(n) 2 Og and so fn j g(n) 2 Og 2 r and SB2r \g(B) = r-lim g(n)as required. �Corollary 4.3. For any g : ! ! Tr!, id#Tr!(gr) = r-lim g(n).Proof: Sin
e Tr(idTr!) = idTrTr!. �Proposition 4.4. As a set, Tr! = 
l�!r(!).Proof: Sin
e Tr is a monad and idTr! : Tr! ! Tr!, id#Tr!(TrTr!) � Tr!.For any sequen
e xn in Tr!, let g : ! ! Tr! by n 7! xn, so gr 2 TrTr! andid#Tr!(gr) = r-limxn 2 Tr!. Thus Tr! is r-
ompa
t and Tr! � 
l�!r(!).On the other hand, taking A0 = ! and letting A� be de�ned as in 3.8, A1 =A0 = Gr! � Tr! by de�nition. If A� � Tr! for all � < �, then if � is a limitordinal, A� � Tr! trivially. If not, let � = 
 + 1 and x 2 A�. Then there is asequen
e xn in A
 with x = r-limxn. Let g : ! ! A
 � Tr! by n 7! xn. Thenx = r-lim xn = id#Tr!(gr) 2 Tr!. Thus A� � Tr! for all � � !1. �De�nition 5. Following [1℄, a subset A � Tr! is 
losed if it is a subalgebra, thatis, if there is a map �0 rendering the following diagram 
ommutative:TrA Tri //�0�� TrTr!id#Tr!��A i // Tr!Proposition 4.5. The topologies on 
l�!r(!) and Tr! 
oin
ide.Proof: Su
h a �0 will exist only if id#Tr! �(Tri)(TrA)� � A, but if this is true,then 8gr 2 TrA, id#Tr! �(Tri)(gr)� = r-lim g(n) 2 A. Thus A is 
losed if and onlyif it is r-
ompa
t. �
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