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On Boman’s theorem on partial regularity of mappings

TEJINDER S. NEELON

Abstract. Let A C R™ x R™ and k be a positive integer. Let f :R™ — R™ be
a locally bounded map such that for each (£,n) € A, the derivatives Déf(:v) =
;T]jf(x + t¢) ro’ j =1,2,...k, exist and are continuous. In order to conclude
that any such map f is necessarily of class C* it is necessary and sufficient
that A be not contained in the zero-set of a nonzero homogenous polynomial
®(&,7n) which is linear in n = (n1,792,...,mm) and homogeneous of degree k in

§= (§1’§27 s 7&1)'

This generalizes a result of J. Boman for the case k = 1. The statement and
the proof of a theorem of Boman for the case k = oc is also extended to include
the Carleman classes C{M},} and the Beurling classes C'(M},) (Boman J., Partial
regularity of mappings between Euclidean spaces, Acta Math. 119 (1967), 1-25).
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A continuous function f : R® — R that is differentiable when restricted to
arbitrary differentiable curves is not necessarily differentiable as a function of
several variables (see [12]). Indeed, there are discontinuous functions f : R®* — R
whose restrictions to arbitrary analytic arcs are analytic [2]. But a C* function
f :R" — R whose restriction to every line segment is real analytic is necessarily
real analytic ([13]). In [8], [9], [10] and [11] this result was extended by considering
restrictions to algebraic curves and surfaces of functions belonging to more general
classes of infinitely differentiable functions. It is also well known that a function
f+R" — R that is infinitely differentiable in each variable separately may be no
better than measurable ([7]). In [4], the obverse problem is considered; for vector
valued functions hypothesis is made on the source as well as the target space. In
this note, Theorem 4 of [4] is generalized to C*, k > 1, the class of functions that
have continuous derivatives up to order k.

Let f: R®™ — R™ be a locally bounded map. For (£,7n) € R® x R™, set

De(f.n) (@) = L (f(a + t6).m)

= in the sense of distributions,

t=0

where (-, -) denotes the inner product on R™. By the Leibniz Integral rule, we
have

G [ = [ 5@+ 19).0) do
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Let £k, 1 < k < oo, be fixed. For ¢ € R, denote by C’é“(]R") the space
of all continuous functions f : R®* — R such that the derivatives Dgf(:v) =

dt] (z +t€) ‘t:O’ J =1,2,...k, exist and are continuous. Similarly, Cg° (R?) :=

Nizo C& (R™).
We are interested in finding the necessary and sufficient conditions on a subset
A CR* x R™ to have the following property:

if f:R" — R™ islocally bounded
such that (f,n) € Cf (R"),V(¢,n) € A, then fe C*(RY).

The case k = 1 and k = oo was dealt in [4].

Let Z" denote all n-tuples of nonnegative integers. For a = (a1, az,...,a,) €
7%, set |a| = a; + az + --- 4+ a,. The set Z'} of multi-indices is assumed to be
ordered lexicographically i.e. for a = (a1, a2,...,0y),8 = (B1,B2,...,0n) € L7,
define a < S if there is i,1 < ¢ < n, such that a; = f1,as = fBo,..., ;1 =
Bi—1,a; < Bi.

Let k, = (*™77") denote the number of monomials of degree k in n variables.

Then for any p € C°(R™), we have

[ Petron @otards = 5 [ (a1 o) de|

-2 </f ol — t€) do n> = </f(w)%so(w ~ 1) dw,n> 3
- Zf </f(x)6ig0(x — t€) dm,n> = ZZEmj /Bifj(x)w(x) dx

By iteration, we obtain the formula for higher-order distributional derivatives:

(1) DE(fm)(z) = ) Z&“ma“f]

la|=p =1

Let

m
Bi=X0Em) =YY 00 paj ERa€ELLjEL,
i=1|al=k
For any function ®(,7n), set ||| := max)¢ <1,y <1 |®(&;n)]. For a subset
K CC A, (CC denotes the compact inclusion) put ||®||x := max(¢ pyer [®(&,1)].
Theorem 1. Let A C R* x R™ be a subset and k be a positive integer. The
following conditions are equivalent:
(i) A isnot contained in an algebraic hypersurface defined by an element of
Bk i.e.

® e B, @, =0=> & =0;
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(ii) there exists a set consisting of m - k,, points

(€, 7%) = {(§(P>,n<P>) €A, p= 1,2,...,mkn} such that det A (€*,7*) #0,
where

A& ) = [(ﬁ(p))anj("))

]\a\:k,lsJSm,lsPSmkn ’

(iii) if f:R® — R™ is locally bounded and (f,n) € CE(R™), V (€,7) € A, then
f € CHR" , R™).

If any one of the above equivalent conditions is satisfied, then there exists a
constant B depending only on A such that the following inequality holds for all
locally bounded maps f : R* — R™:

(2) max max |0%f;(z)] < B- sup ‘Df (f,m) (x)| Ve e R".
Isjsm |a|=k (m)€EA

ProoF: We will prove (i)=(ii)=-(iii)=(i).

(i)=(ii). Suppose det A(£*,n*) = 0 for every set of mk,, elements (£*,n*) =
{(€® )} <p<mr, in A. Fix one such set (£*,7*) so that the rank [ :=
rank A(£*,7*) is positive. Let A®) denote some I x [ submatrix of A(£*,n*)
such that the minor det A® is nonzero. Let AU*Y) be a (14 1) x (I+1) submatrix
of A(£*,n*) that contains A() as a submatrix. Replace the point (£(P0), 5(Po)) in
AU+ which does not appear in A®) by variables (¢,7) € R* x R™. By expanding
AU+ along the row where the replacement took place we obtain an element

(I)(é-’ 77) = Z Qoajfanja
a,j

of B, which is nonzero since one of its coefficients coincides with det A®) up to
a sign.

Since A(&*,n*) has rank [, we find that ®(¢,n) = 0 for all (§,n) € (&*,n*). If
®(¢,m) = 0 for all (£,1) € A, we are done. Otherwise, choose a point (£,7) €

AN (§,n°) with B(E,7) # 0.

Let (£*,1*) be the set which is obtained from (£*,7*) by replacing the point
(€po), y(po)) by (gﬁ) Then, the rankA({*,ﬁ*) > | + 1. By repeating above
procedure, we find a sequence of subsets (¢*,7*)) C A, i =1,2,3,..., each with
mk, elements such that the rank A(&*,5*)(9) is a strictly increasing sequence of
nonnegative integers. After finitely many steps we obtain a nonzero element of
B, which vanishes on the entire A.
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(ii)=(iii). Let (¢*,1*) = {(£®,nP)) € A}1<p<mi, be aset of points such that
det A(€*,n*) # 0. By applying Cramer’s rule to (1), we get

mhn Jet A( ?)
0%fi(x) = Tt A g(p) <f, > (z) in the distributional sense,

where A ) denotes the cofactor obtained by deleting the (a,j)-th row and the
p-th column Since Dé(f, n) € C° for all (&,n) € A, we have

N mkn et A( P) 0
0% fi(@) = Y ——L Dk (£ () € C°.
p=1

Furthermore, there exists a constant B = B(k, f, A) such that

Wy |det AY)
a g, aj
501 2| T Dk (£:07) @) < B sup [DE(f) ()]

for all @ with |a| =k, and all j =1,2,...,m
(iii)=>(i). Suppose (i) does not hold. Let & € By be such that <I>| = 0.

We can write ®(€,7) = (.(€),n), where ¢.(8) = (¢1(6),92(&), .., pm(€)) and
(&) = Z‘a‘:k o€, j =1,2,...,m, homogeneous polynomials of degree k.
Define the map

) (n|ln|z])¢.(z) if z#0,
f@y_{o it z=0.

Clearly f ¢ C* and f is C>® in {z € R"* : 0 < |z| < 1}. We will prove that
Df(f(:n),n) exists at = 0, for all (¢,n) € A. It is easy to see that here are
constants C, such that

Co

0%In|n|z||| < ————————
jzlel [in |||’

WVa,la| > 1.

Since the ¢;(x)’s are homogeneous polynomials of degree k, when the Leibniz’s
formula is applied to the products (In|In|z||)p;(x), it is clear that all terms in
D(f(x),m), 1 < p < k, except possibly

(3) (In[In|z(|) (D¢ p.(x),m)

tend to 0 as z — 0. We only need to prove that the function in (3) also tends to
0 as ¢ — 0. By expanding (z1 +t&)* (zo +t£2)*2 ... (zp + t£,)*™ binomially, we
can write

p.(x +1t€) = p.(x) + P(z,£,1) + ¢.(O)1".
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But since (¢,7) € A,
(DEp.(x),m) = k! {.(£),m) = 0.

It follows that [Dg(f(0),n)| = 0 for p < k. Thus, f € Cf for all (€,7) € A, but
fé¢ck. O

Remark 1 (cf. [6]). Suppose (i) is satisfied for all £ > 0. It would be of interest
to know whether there exists a constant p = p(A), depending only on some
appropriate notion of capacity of A, so that (2) is satisfied with B = (p(A))~* for
all f and all k.

Remark 2. Suppose A satisfies (i) or (ii). The proof of Theorem 1 shows that
if f is continuous and Dg(f, n) =0, V({,n) € A, then f is a polynomial. The
assumption of continuity of f is not necessary but our proof is valid only if f is
continuous (see [4]).

Remark 3. If A satisfies (i), then A contains at least mk,, elements. Furthermore,
if (i) holds for k then (i) also holds for all j < k. Suppose there exists ® € B;,j < k

such that ®|, = 0 but & # 0. Then, & /® € By, & /®|, = 0 but this is
a contradiction.

Let {M}72,, be a sequence of nonnegative numbers. For h > 0 and K CC R”
define the seminorm on C'*°(R"),

0°f(2)]
= Ssu sup —w——.
ph,K(f) QGZp:_ IGE h‘a‘M\a\

The spaces
C{M} ={feC*R"): VK CCR",3h >0, s.t. pp,x(f) < oo}
and

C (My) ={f € C®(R") : pp,r(f) < 00,VK CCR*,Vh >0}

are called the Carleman and Beurling classes, respectively. The classes C{(k!)"},
v > 1, known as Gevrey classes, are especially important in partial differential
equations and harmonic analysis. The class C{k!} is precisely the class of real
analytic functions.

We assume that

(4) My =1 and M > k. Vk;

(5) M,i/k is strictly increasing;
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(6) 3C > 0 such that M, < C*¥My, VEk.

These conditions insure that the classes C{M}} and C(M},) are nontrivial and
are closed under product and differentiation of functions. For more properties of
these spaces, see [5], [11] and references therein.

It is well known that f € C*°(R") if and only if supgcpa \£|J|ﬁ(§)\ < oo,Vy €
C>*(R™), j > 1. A similar characterization is also available for C{M}} (see [5]) a
routine modification of which yields an analogous characterization of C'(Mj).

Let r > 0. Choose a sequence of cut-off functions x ;) € C2°, j = 1,2,..., such
that x ;) (2) = 1if |z — 20| <7, x(j)(z) =0 if |z — 2] > 3r and

0°x(j) ()] < (C1)™ V4,V |a| < j,Vz,

where the constant C is independent of j.
Then f € C{M}} (resp. C(M})) in a neighborhood of 2 € R™ if and only if
there exists a constant i > 0 (resp. for every i > 0) such that

sup sup i M HEP | Fx) (€)] < oo
£ER™ j>1

Call a subset A C R"* x R™ a determining set for bilinear forms of rank 1 if
there is no nonzero bilinear form ¢(£,7),£ € R? ) € R™ of rank 1 such that

@(&,m) =0 for all (§,n) € A
Clearly A is a determining set for bilinear forms of rank 1 if and only if

<u7€> (%ﬂ) = Ovv(gan) EA= ‘UHU‘ =0

(here (u,&) and (v,n) are dot products on R"® and R™, respectively), or equiva-
lently,

ﬂ {(u,v) € R*" x R™ : (u,&){v,n) =0} = (R* x 0) U (0 x R™).
(§meA

Since Ru,v] is a Noetherian ring, A contains a finite subset A’ such that the sets
{{u,&){v,n) : (§&,n) € A} and {(u,&)(v,n) : (£,n) € A'} generate the same ideal in
Rlu, v] and thus define the same varieties:

M {(wv) € R x B™ : (u,€)(v,1) = 0}
(&mEA
= () {wv) e R xR : (u,€){v,n) = 0}.
(&men’

Thus, any determining set for bilinear forms of rank 1 contains a finite determining
set for bilinear forms of rank 1.
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Let C{M}.}(§) (resp. C(My)(€)) denote the set of all f € Cg°(R") such that
for every subset K CC R", sup; ¢ \Dgf(a:)m_fM]fl < 00,V j, for some A > 0
(resp. for every h > 0).

Theorem 2. Let {M;}72, be a sequence of nonnegative numbers satisfying the
conditions (4), (5) and (6). The following statements are equivalent:

(i) A is a determining set for bilinear forms of rank 1;
(ii) for any locally bounded map f : R* — R™,

(n,f) € C{My} () ,YV(n,§) € A = f € C{My};

(iii) for any locally bounded map f : R* — R™,

(n, f) € C (M) (€),YV(n,§) € A= feC(My);

(iv) for any locally bounded map f : R* — R™,

(n, f)eC* (&), Y(n,§) e A= feC™.

ProOF: (cf. Theorem 4 in [4]) Assume (i) holds. By the remark above, by re-
placing A by a subset, if necessary, we may assume A is finite. Suppose for every

(n,€) € A, (n,f) € C{M}(€) (vesp. (n, f) € C(My)(€)). Now for a suitable
function f,

(€00 = {62 (0. 7)) = (i [ [1€.00 7] sy o)

= <n, —i / e (¢, 0, f) <x>dx> = <n, —i / e ") De f(x) dm>-

Let gy = fx() € C{Mi} near a fixed point z5. Assume, without loss of
generality, 2o = 0. By assumption, for all (£,7) € A there exist constants C' = Cl,
and h = hey > 0 (resp. for all (€,m7) € A and for all & > 0 there exists a constant
C = C¢p,p) such that

(1,960 ()] 16, QP = [(m, 55 (©) K&, QF < Chi,
V(&n) ENCER,jET,.

The function

(7) R* xR™ 3 (w,0) = [(mo)|[(€u),

(&m)eA

is homogeneous of degree 1 in v, of homogeneous degree [ in u. Since none of
the terms |(n, v||(¢, u)| can vanish on all of A, the function in (7) has a positive

355
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minimum on the compact set {(u,v) : |u| = 1,|v] = 1}. Thus, there is an ¢ > 0
such that

Y Km0 &) > efolful,
(&mea
(see [Lemma 1][4]). Applying this to u = (, v = g;)((), we get

GHO[IC < > (a6 O < Mg,

(&mEA

where hi = max(¢,,en fign (resp. for all h > 0) and C =e~' 35, ) C¢y. Thus
(ii) and (iii) hold. By setting & =1 and M; = 1,V j, in the above argument, it is
clear that (iii) holds as well.

Conversely if A is not a determinant set for bilinear forms of rank 1, there exist
u # 0 and v # 0 such that

<U,f) <U777> =0,V (5,77) €A

Let h: R — R be an arbitrary continuous function. Let f: R®* — R™ be defined
as f(z) = h({u, z)) - v. Then

= (n,v) (u, &) b’ ((u, z + t&))|,_, = 0.

t=0

(5 s +160)

Thus (n, f) € C(My)(&) C C{M}(&) C C>(¢),V(&,n) € A but f need not be
even differentiable. O
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