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On Boman's theorem on partial regularity of mappingsTejinder S. NeelonAbstra
t. Let � � Rn � Rm and k be a positive integer. Let f : Rn ! Rm bea lo
ally bounded map su
h that for ea
h (�; �) 2 �, the derivatives Dj�f(x) :=djdtj f(x + t�)���t=0, j = 1; 2; : : : k, exist and are 
ontinuous. In order to 
on
ludethat any su
h map f is ne
essarily of 
lass Ck it is ne
essary and suÆ
ientthat � be not 
ontained in the zero-set of a nonzero homogenous polynomial�(�; �) whi
h is linear in � = (�1; �2; : : : ; �m) and homogeneous of degree k in� = (�1; �2; : : : ; �n).This generalizes a result of J. Boman for the 
ase k = 1. The statement andthe proof of a theorem of Boman for the 
ase k =1 is also extended to in
ludethe Carleman 
lasses CfMkg and the Beurling 
lasses C(Mk) (Boman J., Partialregularity of mappings between Eu
lidean spa
es, A
ta Math. 119 (1967), 1{25).Keywords: Ck maps, partial regularity, Carleman 
lasses, Beurling 
lassesClassi�
ation: 26B12, 26B35A 
ontinuous fun
tion f : Rn ! R that is di�erentiable when restri
ted toarbitrary di�erentiable 
urves is not ne
essarily di�erentiable as a fun
tion ofseveral variables (see [12℄). Indeed, there are dis
ontinuous fun
tions f : Rn ! Rwhose restri
tions to arbitrary analyti
 ar
s are analyti
 [2℄. But a C1 fun
tionf : Rn ! R whose restri
tion to every line segment is real analyti
 is ne
essarilyreal analyti
 ([13℄). In [8℄, [9℄, [10℄ and [11℄ this result was extended by 
onsideringrestri
tions to algebrai
 
urves and surfa
es of fun
tions belonging to more general
lasses of in�nitely di�erentiable fun
tions. It is also well known that a fun
tionf : Rn ! R that is in�nitely di�erentiable in ea
h variable separately may be nobetter than measurable ([7℄). In [4℄, the obverse problem is 
onsidered; for ve
torvalued fun
tions hypothesis is made on the sour
e as well as the target spa
e. Inthis note, Theorem 4 of [4℄ is generalized to Ck, k � 1, the 
lass of fun
tions thathave 
ontinuous derivatives up to order k.Let f : Rn ! Rm be a lo
ally bounded map. For (�; �) 2 Rn � Rm , setD� hf; �i (x) := ddt hf(x+ t�); �i����t=0 in the sense of distributions,where h�; �i denotes the inner produ
t on Rm . By the Leibniz Integral rule, wehave ddt Z hf(x+ t�); �i dx = Z ddt hf(x+ t�); �i dx:



350 T.S. NeelonLet k, 1 � k < 1, be �xed. For � 2 Rn , denote by Ck� (Rn ) the spa
eof all 
ontinuous fun
tions f : Rn ! R su
h that the derivatives Dj�f(x) :=djdtj f(x + t�)��t=0, j = 1; 2; : : : k, exist and are 
ontinuous. Similarly, C1� (Rn ) :=T1k=0 Ck� (Rn ).We are interested in �nding the ne
essary and suÆ
ient 
onditions on a subset� � Rn � Rm to have the following property:if f : Rn ! Rm is lo
ally boundedsu
h that hf; �i 2 Ck� (Rn ) ;8 (�; �) 2 �; then f 2 Ck (Rn ) :The 
ase k = 1 and k =1 was dealt in [4℄.Let Zn+ denote all n-tuples of nonnegative integers. For � = (�1; �2; : : : ; �n) 2Zn+, set j�j = �1 + �2 + � � � + �n. The set Zn+ of multi-indi
es is assumed to beordered lexi
ographi
ally i.e. for � = (�1; �2; : : : ; �n); � = (�1; �2; : : : ; �n) 2 Zn+,de�ne � � � if there is i; 1 � i � n, su
h that �1 = �1; �2 = �2; : : : ; �i�1 =�i�1; �i < �i.Let kn = �k+n�1k � denote the number of monomials of degree k in n variables.Then for any ' 2 C1
 (Rn ), we haveZ D� hf; �i (x)'(x) dx = ddt Z hf(x+ t�); �i'(x) dx����t=0= ddt �Z f(x)'(x � t�) dx; ������t=0 = �Z f(x) ddt'(x � t�) dx; ������t=0= �Xi �i �Z f(x)�i'(x� t�) dx; ������t=0 =Xi;j �i�j Z �ifj(x)'(x) dx:By iteration, we obtain the formula for higher-order distributional derivatives:(1) Dp� hf; �i (x) = Xj�j=p mXj=1 ���j��fj(x):Let Bk :=8<:�(�; �) = mXj=1 Xj�j=k'�j���j : '�j 2 R; � 2 Zn+; j 2 Z+9=; :For any fun
tion �(�; �), set k�k := maxk�k�1;k�k�1 j�(�; �)j. For a subsetK �� �, (�� denotes the 
ompa
t in
lusion) put k�kK := max(�;�)2K j�(�; �)j.Theorem 1. Let � � Rn � Rm be a subset and k be a positive integer. Thefollowing 
onditions are equivalent:(i) � is not 
ontained in an algebrai
 hypersurfa
e de�ned by an element ofBk i.e. � 2 Bk; �j� � 0) � � 0;



On Boman's theorem on partial regularity of mappings 351(ii) there exists a set 
onsisting of m � kn points(��; ��) = n��(p); �(p)� 2 �; p = 1; 2; : : : ;mkno su
h that det� (��; ��) 6= 0;where �(��; ��) := h��(p)�� �(p)j ij�j=k;1�j�m;1�p�mkn ;(iii) if f : Rn ! Rm is lo
ally bounded and hf; �i 2 Ck� (Rn ); 8 (�; �) 2 �, thenf 2 Ck(Rn ;Rm).If any one of the above equivalent 
onditions is satis�ed, then there exists a
onstant B depending only on � su
h that the following inequality holds for alllo
ally bounded maps f : Rn ! Rm :(2) max1�j�m maxj�j=k j��fj(x)j � B � sup(�;�)2� ��Dk� hf; �i (x)�� ;8x 2 Rn :Proof: We will prove (i))(ii))(iii))(i).(i))(ii). Suppose det�(��; ��) = 0 for every set of mkn elements (��; ��) =f(�(p); �(p))g1�p�mkn in �. Fix one su
h set (��; ��) so that the rank l :=rank�(��; ��) is positive. Let �(l) denote some l � l submatrix of �(��; ��)su
h that the minor det�(l) is nonzero. Let �(l+1) be a (l+1)� (l+1) submatrixof �(��; ��) that 
ontains �(l) as a submatrix. Repla
e the point (�(p0); �(p0)) in�(l+1) whi
h does not appear in �(l) by variables (�; �) 2 Rn�Rm . By expanding�(l+1) along the row where the repla
ement took pla
e we obtain an element�(�; �) =X�;j '�j���j ;of Bk whi
h is nonzero sin
e one of its 
oeÆ
ients 
oin
ides with det�(l) up toa sign.Sin
e �(��; ��) has rank l, we �nd that �(�; �) = 0 for all (�; �) 2 (��; ��). If�(�; �) = 0 for all (�; �) 2 �, we are done. Otherwise, 
hoose a point (e�; e�) 2�r (��; ��) with �(e�; e�) 6= 0.Let ( e��; e��) be the set whi
h is obtained from (��; ��) by repla
ing the point(�(p0); �(p0)) by (e�; e�). Then, the rank�( e��; e��) � l + 1. By repeating abovepro
edure, we �nd a sequen
e of subsets (��; ��)(i) � �, i = 1; 2; 3; : : : , ea
h withmkn elements su
h that the rank�(��; ��)(j) is a stri
tly in
reasing sequen
e ofnonnegative integers. After �nitely many steps we obtain a nonzero element ofBk whi
h vanishes on the entire �.



352 T.S. Neelon(ii))(iii). Let (��; ��) = f(�(p); �(p)) 2 �g1�p�mkn be a set of points su
h thatdet�(��; ��) 6= 0. By applying Cramer's rule to (1), we get��fj(x) = mknXp=1 det�(p)�jdet� Dk�(p) Df; �(p)E (x) in the distributional sense,where �(p)�j denotes the 
ofa
tor obtained by deleting the (�; j)-th row and thep-th 
olumn. Sin
e Dk� hf; �i 2 C0 for all (�; �) 2 �, we have��fj(x) = mknXp=1 det�(p)�jdet� Dk�(p) Df; �(p)E (x) 2 C0:Furthermore, there exists a 
onstant B = B(k; f;�) su
h thatj��fj(x)j � mknXp=1 �����det�(p)�jdet� ����� ���Dk�(p) Df; �(p)E (x)��� � B � sup(�;�)2� ��Dk� hf; �i (x)�� ;for all � with j�j = k, and all j = 1; 2; : : : ;m.(iii))(i). Suppose (i) does not hold. Let � 2 Bk be su
h that ���� � 0.We 
an write �(�; �) = h'�(�); �i, where '�(�) := ('1(�); '2(�); : : : ; 'm(�)) and'j(�) =Pj�j=k '�j��, j = 1; 2; : : : ;m, homogeneous polynomials of degree k.De�ne the map f(x) := ((ln jln jxjj)'�(x) if x 6= 0;0 if x = 0:Clearly f =2 Ck and f is C1 in fx 2 Rn : 0 < jxj < 1g. We will prove thatDk� hf(x); �i exists at x = 0, for all (�; �) 2 �. It is easy to see that here are
onstants C� su
h thatj�� ln jln jxjjj � C�jxjj�j jln jxjj ;8�; j�j � 1:Sin
e the 'j(x)'s are homogeneous polynomials of degree k, when the Leibniz'sformula is applied to the produ
ts (ln j ln jxjj)'j(x), it is 
lear that all terms inDp� hf(x); �i, 1 � p � k, ex
ept possibly(3) (ln jln jxjj) 
Dk�'�(x); ��tend to 0 as x! 0. We only need to prove that the fun
tion in (3) also tends to0 as x! 0. By expanding (x1+ t�1)�1(x2+ t�2)�2 : : : (xn+ t�n)�n binomially, we
an write '�(x+ t�) := '�(x) + P (x; �; t) + '�(�)tk :
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e (�; �) 2 �, 
Dk�'�(x); �� = k! h'�(�); �i = 0:It follows that jDp� hf(0); �ij = 0 for p � k. Thus, f 2 Ck� for all (�; �) 2 �, butf =2 Ck. �Remark 1 (
f. [6℄). Suppose (i) is satis�ed for all k � 0. It would be of interestto know whether there exists a 
onstant � = �(�), depending only on someappropriate notion of 
apa
ity of �, so that (2) is satis�ed with B = (�(�))�k forall f and all k.Remark 2. Suppose � satis�es (i) or (ii). The proof of Theorem 1 shows thatif f is 
ontinuous and Dk� hf; �i = 0, 8 (�; �) 2 �, then f is a polynomial. Theassumption of 
ontinuity of f is not ne
essary but our proof is valid only if f is
ontinuous (see [4℄).Remark 3. If � satis�es (i), then � 
ontains at leastmkn elements. Furthermore,if (i) holds for k then (i) also holds for all j � k. Suppose there exists � 2 Bj ; j < ksu
h that ���� � 0 but � 6� 0. Then, �k�j1 � 2 Bk, �k�j1 ���� � 0 but this isa 
ontradi
tion.Let fMkg1k=0, be a sequen
e of nonnegative numbers. For h > 0 and K �� Rnde�ne the seminorm on C1(Rn ),ph;K(f) = sup�2Zn+ supx2K j��f(x)jhj�jMj�j :The spa
esC fMkg = ff 2 C1(Rn ) : 8K �� Rn ; 9h > 0; s.t. ph;K(f) <1gand C (Mk) = ff 2 C1(Rn ) : ph;K(f) <1;8K �� Rn ;8h > 0gare 
alled the Carleman and Beurling 
lasses, respe
tively. The 
lasses Cf(k!)�g,� > 1, known as Gevrey 
lasses, are espe
ially important in partial di�erentialequations and harmoni
 analysis. The 
lass Cfk!g is pre
isely the 
lass of realanalyti
 fun
tions.We assume that M0 = 1 and Mk � k!;8 k;(4) M1=kk is stri
tly in
reasing;(5)



354 T.S. Neelon(6) 9C > 0 su
h that Mk+1 � CkMk; 8 k:These 
onditions insure that the 
lasses CfMkg and C(Mk) are nontrivial andare 
losed under produ
t and di�erentiation of fun
tions. For more properties ofthese spa
es, see [5℄, [11℄ and referen
es therein.It is well known that f 2 C1(Rn ) if and only if sup�2Rn j�jj j
�f(�)j <1;8� 2C1
 (Rn ), j � 1. A similar 
hara
terization is also available for CfMkg (see [5℄) aroutine modi�
ation of whi
h yields an analogous 
hara
terization of C(Mk).Let r > 0. Choose a sequen
e of 
ut-o� fun
tions �(j) 2 C1
 , j = 1; 2; : : : , su
hthat �(j)(x) = 1 if jx� x0j < r, �(j)(x) = 0 if jx� x0j > 3r and�����(j)(x)�� � (C1j)j�j ;8 j;8 j�j � j;8x;where the 
onstant C1 is independent of j.Then f 2 CfMkg (resp. C(Mk)) in a neighborhood of x0 2 Rn if and only ifthere exists a 
onstant ~ > 0 (resp. for every ~ > 0) su
h thatsup�2Rn supj�1 ~�jM�1j j�jj j[f�(j)(�)j <1:Call a subset � � Rn � Rm a determining set for bilinear forms of rank 1 ifthere is no nonzero bilinear form '(�; �); � 2 Rn ; � 2 Rm of rank 1 su
h that'(�; �) = 0 for all (�; �) 2 �.Clearly � is a determining set for bilinear forms of rank 1 if and only ifhu; �i hv; �i = 0;8 (�; �) 2 �) jujjvj = 0(here hu; �i and hv; �i are dot produ
ts on Rn and Rm , respe
tively), or equiva-lently, \(�;�)2�f(u; v) 2 Rn � Rm : hu; �ihv; �i = 0g = (Rn � 0) [ (0� Rm ):Sin
e R[u; v℄ is a Noetherian ring, � 
ontains a �nite subset �0 su
h that the setsfhu; �ihv; �i : (�; �) 2 �g and fhu; �ihv; �i : (�; �) 2 �0g generate the same ideal inR[u; v℄ and thus de�ne the same varieties:\(�;�)2�f(u; v) 2 Rn � Rm : hu; �ihv; �i = 0g= \(�;�)2�0f(u; v) 2 Rn � Rm : hu; �ihv; �i = 0g:Thus, any determining set for bilinear forms of rank 1 
ontains a �nite determiningset for bilinear forms of rank 1.



On Boman's theorem on partial regularity of mappings 355Let CfMkg(�) (resp. C(Mk)(�)) denote the set of all f 2 C1� (Rn ) su
h thatfor every subset K �� Rn , supj;x2K jDj�f(x)j~�jM�1j < 1;8 j, for some ~ > 0(resp. for every ~ > 0).Theorem 2. Let fMkg1k=0 be a sequen
e of nonnegative numbers satisfying the
onditions (4), (5) and (6). The following statements are equivalent:(i) � is a determining set for bilinear forms of rank 1;(ii) for any lo
ally bounded map f : Rn ! Rm ,h�; fi 2 C fMkg (�) ;8 (�; �) 2 �) f 2 C fMkg ;(iii) for any lo
ally bounded map f : Rn ! Rm ,h�; fi 2 C (Mk) (�) ;8 (�; �) 2 �) f 2 C (Mk) ;(iv) for any lo
ally bounded map f : Rn ! Rm ,h�; fi 2 C1 (�) ;8 (�; �) 2 �) f 2 C1:Proof: (
f. Theorem 4 in [4℄) Assume (i) holds. By the remark above, by re-pla
ing � by a subset, if ne
essary, we may assume � is �nite. Suppose for every(�; �) 2 �, h�; fi 2 CfMkg(�) (resp. h�; fi 2 C(Mk)(�)). Now for a suitablefun
tion f ,h�; zi\h�; fi(z) = h�; ziD�; bf(z)E = ��; i Z hh�; �xi e�ihx;zii f(x) dx�= ��;�i Z e�ihx;zi h�; �xfi (x)dx� = ��;�i Z e�ihx;ziD�f(x) dx� :Let g(j) := f�(j) 2 CfMkg near a �xed point x0. Assume, without loss ofgenerality, x0 = 0. By assumption, for all (�; �) 2 � there exist 
onstants C = C��and ~ = ~�� > 0 (resp. for all (�; �) 2 � and for all ~ > 0 there exists a 
onstantC = C��;~) su
h that��� \
�; g(j)�(�)��� jh�; �ijj = ��
�;dg(j)(�)��� jh�; �ijj � C~jMj ;8 (�; �) 2 �; � 2 Rn ; j 2 Z+:The fun
tion(7) Rn � Rm 3 (u; v)! X(�;�)2� jh�; vij jh�; uijl ;is homogeneous of degree 1 in v, of homogeneous degree l in u. Sin
e none ofthe terms jh�; vjjh�; uij 
an vanish on all of �, the fun
tion in (7) has a positive



356 T.S. Neelonminimum on the 
ompa
t set f(u; v) : juj = 1; jvj = 1g. Thus, there is an " > 0su
h that X(�;�)2� jh�; vij jh�; uijl � "jvjjujl;(see [Lemma 1℄[4℄). Applying this to u = �, v =dg(j)(�), we get��dg(j)(�)�� j�jl � "�1 X(�;�)2� ��
�;dg(j)(�)��� jh�; �ijl � C~jMj ;where ~ = max(�;�)2� ~�� (resp. for all ~ > 0) and C = "�1P(�;�)2� C�� . Thus(ii) and (iii) hold. By setting ~ = 1 and Mj = 1;8 j, in the above argument, it is
lear that (iii) holds as well.Conversely if � is not a determinant set for bilinear forms of rank 1, there existu 6= 0 and v 6= 0 su
h thathu; �i hv; �i = 0; 8 (�; �) 2 �:Let h : R ! R be an arbitrary 
ontinuous fun
tion. Let f : Rn ! Rm be de�nedas f(z) = h(hu; zi) � v. Then� ddt h�; f(z + t�)i�����t=0 = h�; vi hu; �ih0 (hu; z + t�i)jt=0 � 0:Thus h�; fi 2 C(Mk)(�) � CfMkg(�) � C1(�);8 (�; �) 2 � but f need not beeven di�erentiable. �Referen
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