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On �{
aliber and an appli
ation of Prikry's partial orderAndrzej SzymanskiAbstra
t. We study the 
on
ept of �-
aliber as an alternative to the well known
on
ept of 
aliber. �-
aliber and 
aliber values 
oin
ide for regular 
ardinalsgreater than or equal to the Souslin number of a spa
e. Unlike 
aliber, �-
alibermay take on values below the Souslin number of a spa
e. Under Martin's axiom,2! is a �-
aliber of N� . Prikry's poset is used to settle a problem by Fedeliregarding possible values of very weak 
aliber.Keywords: nowhere dense, point-� family, �-
aliberClassi�
ation: Primary 54A38, 54A15; Se
ondary 03E35Let � be a 
ardinal number. A family P of non-empty subsets of a spa
e X isa point-� family if for every x 2 X , jfU 2 P : x 2 Ugj < �.A 
ardinal number � is a 
aliber of a spa
e X if every point-� family of non-empty open subsets of X has 
ardinality less than �. Sin
e its in
eption (N. �Sanin,[12℄, [13℄), 
aliber (and its variations) has been the obje
t of intense study ingeneral topology, set theory, and 
ombinatori
s (
f. [2℄, [3℄).A 
ardinal number � is a �-
aliber of a spa
e X if for every point-� family Pof non-empty open subsets of X and for every non-empty open set G � X thereexists a non-empty open set V � G su
h that jfU 2 P : V \ U 6= ;gj < �.It is obvious that if � is a 
aliber of a spa
e X , then � is a �-
aliber of X .The 
onverse impli
ation does not hold: suÆ
e to noti
e that if � is a �-
aliberof X� for ea
h �, then � is going to be a �-
aliber of the disjoint union of all thespa
es X�. Thus �-
aliber 
onstitutes a proper generalization of 
aliber be
ausethe values for 
aliber are bounded from below by the Souslin number of a spa
ewhereas values for �-
aliber are not. The distin
tion between �-
aliber and 
aliber
an only o

ur for spa
es with large (relative to �-
aliber) Souslin number. Forwe show that if � is a regular un
ountable 
ardinal and the Souslin number of aspa
e X is less than or equal to �, then � is a 
aliber of X if and only if � is a�-
aliber of X .Let � be an in�nite 
ardinal. A spa
e X is 
alled �-Baire if for ea
h familyfE� : � < �g of nowhere dense subsets of X and for ea
h non-empty open subsetU of X , U �SfE� : � < �g 6= ;. !-Baire spa
es are known as Baire spa
es .The 
ardinal ! 
annot be the value of 
aliber of any in�nite Hausdor� spa
e.The Flet
her-Lindgren theorem ([6℄; see also [10℄) asserts that ! is a �-
aliber ofXif and only if X is a Baire spa
e. However the existen
e of a normal ultra�lter on



464 A. Szymanskian un
ountable 
ardinal � implies the existen
e of a 
ompa
t Hausdor� extremallydis
onne
ted spa
e X that is �-Baire for every � < � but !1 is not a �-
aliber ofX . It follows that any in�nite regular 
ardinal � < �, in parti
ular, !1, is a veryweak 
aliber of the spa
e X but !1 is not a �-
aliber of X . This settles, modulomeasurable 
ardinals, a 
onje
ture by Fedeli [5℄.1. �-
aliber and �-Baire spa
esChara
terizing �-Baire spa
es in terms of � being a possible �-
aliber, as indi-
ated in the Flet
her-Lindgren theorem, ends there. At �rst, let us noti
e that,other than !, a value for the �-
aliber has no bearing on the Baire type of thespa
e. Take, e.g., X to be a T1 
ountable spa
e without isolated points. ThenX is not a Baire spa
e and yet any 
ardinal of un
ountable 
o�nality is going tobe a (�-)
aliber of X . Now, we are going to 
onstru
t an example demonstratingimpossibility of the 
onverse.Let us begin by re
alling several pertinent notions and fa
ts. All other unde-�ned terms 
an be found in [7℄.We say that a family F is a �-
omplete �lter over a set X if F is a family ofin�nite subsets of X su
h that:(j) TF = ; and for ea
h A � F, if jAj < �, then TA 2 F;(jj) if a 2 F and a � b � X , then b 2 F.A �lter F over a 
ardinal � is normal if F is 
losed under diagonal interse
tions1.A 
ardinal � is measurable if it is un
ountable and there exists an ultra�lter over� whi
h is also �-
omplete. We will need the following two known fa
ts (
f. [7℄).Theorem 1. (1) If � is a measurable 
ardinal, then there exists an ultra�lterover � that is �-
omplete and normal.(2) Let F be an ultra�lter over � that is �-
omplete and normal. If P is apartition of [�℄<! into less than � pie
es, then there exists A 2 F su
hthat for ea
h natural number n there is B 2 P su
h that [A℄n � B.Let F be a �lter over a 
ardinal �. The following de�nition of a partiallyordered set P (F; �) is due to K. Prikry [11℄. The underlying set of P (F; �) is the
olle
tion of all pairs (s; F ) su
h that s 2 [�℄<!, F 2 F, and � < � whenever� 2 s and � 2 F ; (t; E) � (s; F ) if s is an initial segment of t, i.e., s = t \ 
 forsome 
 < �, E � F , and t� s � F .Prikry's poset plays a very important role in for
ing 
onsiderations involvingmeasurable 
ardinals (
f. [7℄, [9℄). In our dis
ussion that follows we are going torefrain from making any for
ing referen
es and present our arguments in purelytopologi
al fashion.A partially ordered set (P;<) is separative if for all p; q 2 P , if p 
 q thenthere exists an 
 � p that is in
ompatible with q. The following lemma is prettystraightforward but for the sake of 
ompleteness we prove it here.1The diagonal interse
tion of a family fA� : � < �g of subsets of the 
ardinal � is the set�fA� : � < �g = f� < � : � 2 TfA� : � < �gg.
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ation of Prikry's partial order 465Lemma 1. Let F be a �-
omplete �lter over �. Then the partially ordered setP (F; �) is separative.Proof: Suppose that (t; E) 
 (s; F ).Case 1. s is not an initial segment of t.Sub
ase 1.1. max s � max t. We set 
 = (t; E). Trivially 
 is in
ompatiblewith (s; F ).Sub
ase 1.2. max s > max t. Pi
k �; � su
h that max s < � < � < � and � 2E. We set 
 = (t[ f�g; E � �). Then 
 < (t; E). Trivially, max s < max(t[ f�g)and sin
e s is not an initial segment of t, s is not an initial segment of t [ f�geither. Thus 
 is in
ompatible with (s; F ).Case 2. s is an initial segment of t but t� s * F . We set 
 = (t; E). Trivially
 is in
ompatible with (s; F ).Case 3. s is an initial segment of t and t � s � F but E * F . Pi
k �; � su
hthat max s < � < � < � and � 2 E � F . We set 
 = (t [ f�g; E � �). Sin
emax t < minE, 
 < (t; E). To show that 
 is in
ompatible with (s; F ), take any(r;G) 2 P (F; �) su
h that (r;G) � (t [ f�g; E � �). Then, in parti
ular, t [ f�gis an initial segment of r. Hen
e � 2 r � s and so r � s * F . �For a non-empty subset D of P (F; �), let pr(D) = fs : 9F (s; F ) 2 Dg.Lemma 2. If D is dense in (s; F ) 2 P (F; �), then there exists E 2 F su
h thatf0 < n < ! : s [ [E℄n � pr(D)g is in�nite. Here, s [ [E℄n stands for the setfs [ t : t 2 [E℄ng.Proof: For the two-element partition�ft� s : t 2 pr(D)g ; [�℄<! � ft� s : t 2 pr(D)g	of [�℄<! take A 2 F that satis�es (2) of Theorem 1 and set E = F \ A. Fixa natural number m, pi
k an arbitrary subset t of E of size m + 1, and take(s [ t; E � max t). By density of D, there exists (r;H) 2 D su
h that (r;H) �(s[ t; E�max t). Thus r�s � E and n = jr�sj > m. Hen
e s[ [E℄n � pr(D). �Theorem 2. If � is a measurable 
ardinal, then there exists a 
ompa
t Hausdor�extremally dis
onne
ted spa
e X su
h that X is �-Baire for ea
h � < � and !1 isnot a �-
aliber of X .Proof: Let P (F; �) be the Prikry partially ordered set, where F is an ultra�lterover � that is �-
omplete and normal. Sin
e P (F; �) is separative, it is a densesubset of a 
omplete Boolean algebra B (see [7℄). We take X to be the Stonespa
e of B . Thus X is a 
ompa
t Hausdor� extremally dis
onne
ted spa
e. Fora 2 B let [a℄ = fx 2 X : a 2 xg. The sets [a℄ are 
losed and open subsets of X .Moreover, for ea
h dense subset D of B , [D℄ = f[a℄ : a 2 Dg is a �-base for X .



466 A. SzymanskiLet us show that !1 is not a �-
aliber of X . Towards this goal, for ea
h n < !,one 
an 
onstru
t Rn so that:(1) Rn � [P (F; �)℄, Rn is a pairwise disjoint family, and SRn is dense in X ;(2) if m < n, then Rn is a re�nement of Rm; moreover, if [(s; F )℄ 2 Rm,[(t; E)℄ 2 Rn, and [(t; E)℄ � [(s; F )℄, then jtj > jsj.Let P = SfRn : n < !g. Clearly, P is a point-!1 open family in X . We shallshow that ea
h non-empty open subset of X is interse
ted by exa
tly � elementsof P .Assume not. There exists (s; F ) 2 P (F; �) su
h that [(s; F )℄ interse
ts lessthan � elements of P . Hen
eA = F \\ fE : [(t; E)℄ 2 P and [(s; F )℄ \ [(t; E)℄ 6= ;g 2 F:Pi
k arbitrary � 2 A. Then (s[ f�g; A� (�+1)) 2 P (F; �) and (s[ f�g; A�(� + 1)) < (s; F ). Noti
e that if [(t; E)℄ 2 P , [(s; F )℄ \ [(t; E)℄ 6= ;, and s 6= t,then (s [ f�g; A � (� + 1)) is in
ompatible with (t; E). Consequently, by (2),[(s [ f�g; A � (� + 1))℄ is disjoint with ea
h element of Rn, whenever n > jsj.This 
ontradi
ts (1).Let us show that X is �-Baire for ea
h � < �. Let fN� : � < �g be a familyof nowhere dense subsets of X , where � < �. Fix (s; F ) 2 P (F; �) and setD� = f(t; E) 2 P (F; �) : (t; E) � (s; F ) and [(s; F )℄ \N� = ;g :Ea
h of the sets D�, � < �, is dense in (s; F ). By Lemma 2, for ea
h � < �there exists E� 2 F su
h that f0 < n < ! : s [ [E�℄n � pr(D�)g is in�nite. SetE = TfE� : � < �g and Ln = f� < � : s [ [E℄n � pr(D�)g for ea
h 0 < n < !.Then E 2 F and � = SfLn : 0 < n < !g. Let n(0) < n(1) < : : : n(i) < : : : besu
h that � = SfLn(i) : i < !g and Ln(i) 6= ; for ea
h i < !.Pi
k a subset s0 of E of size n(0). For ea
h � 2 Ln(0) sele
t F� 2 F so that(s [ s0; F�) 2 D� and set �0 = E \TfF� : � 2 Ln(0)g. Thus (s [ s0;�0) � (s; F )and [(s [ s0;�0)℄ \N� = ; for ea
h � 2 Ln(0).Pi
k a subset s1 of �0 of size n(1) � n(0). For ea
h � 2 Ln(1) sele
t F� 2 Fso that (s [ s0 [ s1; F�) 2 D� and set �1 = �0 \ TfF� : � 2 Ln(1)g. Thus(s [ s0 [ s1;�1) � (s [ s0;�0) and [(s [ s0 [ s1;�1)℄ \N� = ; for ea
h � 2 Ln(1).Pi
k a subset s2 of �1 of size n(2) � n(1). For ea
h � 2 Ln(2) sele
t F� 2 Fso that (s [ s0 [ s1 [ s2; F�) 2 D� and set �2 = �1 \ TfF� : � 2 Ln(2)g. Thus(s [ s0 [ s1 [ s2;�2) � (s [ s0 [ s1;�1) and [(s [ s0 [ s1 [ s2;�2)℄ \N� = ; forea
h � 2 Ln(2).The 
onstru
tion goes on. Consequently, we get a nested downward sequen
ef(s [ s0 [ s1 [ � � � [ sk;�k)g1k=0 of elements of P (F; �) su
h that[(s [ s0 [ s1 � � � [ sk;�k)℄ \[fN� : � 2 Ln(k)g = ;
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h k 2 !. Sin
e (s [ s0;�0) � (s; F ),; 6=\f[(s [ s0 [ s1 � � � [ sk;�k)℄ : k 2 !g � [(s; F )℄�[fN� : � < �g: �Following A. Fedeli [5℄, a 
ardinal number � is a very weak 
aliber of a spa
eX if for every open point-� family P of 
ardinality at most � and for every non-empty open set G � X there exists a non-empty open set V � G su
h thatjfU 2 P : V \ U 6= ;gj < �. It is easy to see (
f. [4℄ or Lemma 4) that if X isa �-(semi)Baire spa
e, then � is a very weak 
aliber of X . In [5℄, 4218, Fedeliwrites: \It would be interesting, for a regular 
ardinal �, to know whether thereexists a spa
e whi
h has very weak 
aliber � but has not �-
aliber2 �." The spa
eX 
onstru
ted in Theorem 2 is su
h a spa
e for the measurable 
ardinal �.Problem 1. Constru
t a 
onsistent example of small 
ardinality, e.g., by using apre
ipitous ideal on !2, or even an example in ZFC, of a spa
e X that is �-Baireand !1 is not a �-
aliber of X , for some regular 
ardinal � > !1.2. �-
alibers of some spa
esA spa
e X is 
alled �-semibaire if for ea
h family fE� : � < �g of nowheredense subsets of X and for ea
h non-empty open subset U of X there exists A � �,jAj = �, su
h that U �SfE� : � 2 Ag 6= ;.Observe that any �-Baire spa
e is a �-semibaire spa
e and that any !-semibairespa
e is also a Baire spa
e. Thus !-semibaire = Baire. Let us noti
e also thefollowing lemmas.Lemma 3. Let fE� : � < �g be a family of nowhere dense subsets of X su
hthat E� � E� whenever � � � < �. If the set SfE� : � < �g 
ontains a non-empty open subset of X , then X is not a �-semibaire spa
e for any 
ardinal � of
o�nality �.Lemma 4. Let X be a �-semibaire spa
e and let P be a point-� open family inX su
h that P � �. If G � X non-empty open set, then there exists a non-emptyopen set V � G su
h that jfU 2 P : V \ U 6= ;gj < �. Thus � is a very weak
aliber of X .Proof: If jPj < �, then there is nothing to prove. If jPj = �, faithfully index P ,say P = fU� : � < �g, and set E� = G�SfU� : � � � < �g. Thus fE� : � < �gis a nested upward family of 
losed subset of G su
h that SfE� : � < �g = G.Sin
e X is �-semibaire, there must exist an � < � and a non-empty open set Vsu
h that V � E�. Sin
e E� interse
ts at most j�j < � elements of the family P ,V does too and we are done. �Proposition 1. If � is a regular 
ardinal and � is a �-
aliber of X , then X is a�-semibaire spa
e.2The original has weak 
aliber .



468 A. SzymanskiProof: Suppose to the 
ontrary that there exist nowhere dense sets E�, � < �,and a non-empty open set G su
h that G � SfE� : � 2 Ag for ea
h A � � su
hthat jAj = �. Then P = fG � 
lE� : � < �g is a point-� family of dense opensubsets of G, and thus ea
h non-empty open subset of G interse
ts every elementof P . Sin
e � is a �-
aliber of X , P has to be of 
ardinality less than �. Sin
e �is a regular 
ardinal, there exists A � �, jAj = �, su
h that 
lE� \G = 
lE� \Gfor ea
h �; � 2 A. Let 
 2 A. Then G \ SfE� : � 2 Ag � 
lE
 6= G;a 
ontradi
tion. �In light of Proposition 1, while trying to establish that a regular 
ardinal � is a�-
aliber of X , it is ne
essary to assume that the spa
e X is a �-semibaire spa
e.Following Comfort and Negrepontis [1℄, the Souslin number of X , S(X), isthe smallest 
ardinal � su
h that no family of pairwise disjoint non-empty opensubsets of X has � elements. Spa
es with the Souslin number !1 are usually 
alled


 spa
es . By the theorem of Erd�os-Tarski theorem [1℄, if X is an in�nite spa
e,then S(X) is an un
ountable regular 
ardinal.Theorem 3. Let � be a regular in�nite 
ardinal and let X be a �-semibaire spa
esu
h that S(X) � �+. Then � is a �-
aliber of X .Proof: Let P be a point-� open family in X and let G be a non-empty opensubset of X . Assume to the 
ontrary that for ea
h non-empty open subset V ofG, jfU 2 P : U \ V 6= ;gj � �. By Lemma 4,(+) If V is a non-empty open subset of G, then jfU 2 P : U \ V 6= ;gj > �.For ea
h � < � we are going to de�ne R� and f� so that:(1) R� is a family of pairwise disjoint non-empty opens subsets of X andSR� is dense in G;(2) f� is a one-to-one fun
tion and Dom(f�) = SfR� : � � �g andRange(f�) � P ;(3) f�(W ) �W for ea
h W 2 Dom(f�);(4) f� � f� if � < � < �.Suppose that R� and f� have already been de�ned for ea
h � < �, where� < �. Set Q = P �Sff�(R�) : � < �g. Noti
e that sin
e jf�(R�)j � � for ea
h� < �, the family Q also satis�es 
ondition (+). We pro
eed to 
onstru
ting R�and f�.Let fU� : � < �g be an enumeration of Q. We set W0 = U0 \ G and W� =[G � 
l(SfU� : � < �g)℄ \ U� for ea
h �, 0 < � < �. Clearly, the open sets W�,� < �, are pairwise disjoint and, be
ause of property (+), SfW� : � < �g is adense subset of G. Finally, we set R� = fW� : � < � and W� 6= ;g and f� =Sff� : � < �g [ f(W�; U�) : � < � and W� 6= ;g. One 
an easily see that R�and f� satisfy the 
onditions (1){(4) for every � � �; the 
onstru
tion is �nished.Sin
e X is �-semibaire, there exists A � �, jAj = �, su
h that G � SfE� :� 2 Ag 6= ;, where E� denotes the nowhere dense set G � SR�. Pi
k a pointp from the set G \ TfSR� : � 2 Ag. For every � 2 A let W� be the unique
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ontains p. Thus p 2 Tff�(W�) : � 2 Ag. It would followfrom 
ondition (2) that jU 2 P : p 2 U j � �; a 
ontradi
tion. �Theorem 4. If X is a �-semibaire spa
e and S(X) � �, then � is a �-
aliberof X .Proof: Suppose to the 
ontrary that there exist a point-� open family P in Xand a non-empty open set G � X su
h that if V is a non-empty open subset of G,then(�) jfU 2 P : U \ V 6= ;gj � �:By Theorem 3, � is a singular 
ardinal. Sin
e S(X) is a regular 
ardinal, S(X) <�. Virtually the same way as in the proof of Theorem 3, one 
an 
onstru
tR� andf� for every � < � (the 
onstru
tion goes through sin
e the 
ardinality of everyR� is < S(X) < � and be
ause of 
ondition (�)). This leads to a 
ontradi
tionwith P being point-�. �From Proposition 1 and Theorem 3 we get the followingCorollary 1. Let � be a regular in�nite 
ardinal and let X be a spa
e su
h thatS(X) � �+. X is a �-semibaire spa
e if and only if � is a �-
aliber of X .Let N� denote the remainder of the �Ce
h-Stone 
ompa
ti�
ation of a 
ountabledis
rete spa
e. If p = 2! (e.g., assuming Martin's axiom), then N� is a 2!-Bairespa
e (
f. [8℄). Hen
e By Theorem 3,Corollary 2. If p = 2!, then 2! is a �-
aliber of N� .Corollary 3. For a regular in�nite 
ardinal � and for arbitrary spa
e X thefollowing 
onditions are equivalent:(a) � is a 
aliber of X ;(b) S(X) � � and for ea
h in
reasing sequen
e fE� : � < �g of nowheredense subsets of X , SfE� : � < �g is a boundary subset of X ;(
) S(X) � � and � is a �-
aliber of X ;(d) S(X) � � and X is �-semibaire.Proof: The equivalen
e (a) !(b) is known (
f. [8℄).The equivalen
e (
) !(d) has been established in Theorem 3.The impli
ation (a)�!(d) is proved in Proposition 1. We shall prove theimpli
ation (
)�!(a).Assume that � is a �-
aliber of X and that the 
ardinality of any 
ellular familyin X is < �. Let P = fU� : � < �g be a family of non-empty open subsets ofX . Assume to the 
ontrary that for ea
h A � �, jAj = �, TfU� : � 2 Ag = ;.Thus P is a point-� open family in X . Let R be a maximal 
ellular family in Xsu
h that ea
h member of R interse
ts < � members of P . Sin
e � is a �-
aliberof X , SR is a dense subset of X . Let PV = fU 2 P : U \ V 6= ;g. Clearly,SfPV : V 2 Rg = P and jPV j < � for ea
h V 2 R. Sin
e we have assumed that� is a regular 
ardinal, jPj < �; a 
ontradi
tion. �



470 A. SzymanskiCorollary 4 (F. Tall [14℄). If X is 


 !1-Baire spa
e, then !1 is a 
aliber of X .Corollary 5. If � is a regular 
ardinal and X is a �-semibaire spa
e su
h thatS(X) � �+, then ea
h open point-� family in X has 
ardinality � �.Proof: Let P be an open point-� family in X . Let R be a maximal 
ellularfamily in X su
h that ea
h member of R interse
ts < � members of P . ByTheorem 3, SR is a dense subset of X . Let PV = fU 2 P : U \V 6= ;g. Clearly,SfPV : V 2 Rg = P and jPV j < � for ea
h V 2 R. Sin
e jRj � � and � is aregular 
ardinal, jPj � �. �A �-base for X is a family C of non-empty open subsets of X su
h that ea
hnon-empty open subset of X 
ontains a member of the family C. The 
ardinalnumber �w(X) = inffjCj : Q is a �-base for Xg is 
alled the �-weight of X .Theorem 5. If � is a regular 
ardinal number and X is a �-semibaire Hausdor�spa
e su
h that �w(X) � �+, then � is a �-
aliber of X .Proof: Assume otherwise. Then there exist a point-� open family P in X anda non-empty open set G � X su
h that if V is a non-empty open subset of G,then jfU 2 P : U \ V 6= ;gj � �. In fa
t, by Lemma 4, we 
an assume thatjfU 2 P : U \ V 6= ;gj � �+, and, by Theorem 3, that S(V ) � �++.Let Q be a �-base for X su
h that jQj � �+ and let C = fU 2 Q : ; 6= U � Gg.Sin
e S(G) � �++, jCj = �+. Index faithfully C, say C = fW� : � < �+g. Sin
ejfU 2 P : U \ V 6= ;gj � �+ whenever V is a non-empty open subset of G, one
an (by indu
tion) easily 
onstru
t a one-to-one fun
tion f : �+ ! P so that:(�) For ea
h � < �+, V� =W� \ f (�) 6= ;.The 
ondition (�) implies that the family fV� : � < �+g is both a point-� openfamily in X and a �-base for G. For ea
h � < �+, let fV�� : � < �g be a familyof pairwise disjoint non-empty open subsets of X su
h that V�� � V� for ea
h� < �. We set F� = G�SfV�� : � < �+ and � � � < �g. Then fF� : � < �g isa nested upward sequen
e of 
losed subsets of G. To get a 
ontradi
tion, we aregoing to show that ea
h set F� is nowhere dense and that SfF� : � < �g = G.To prove that F� is nowhere dense, take any non-empty open set V � G.There exists � < �+ su
h that V� � V . So, if � < �, then ; 6= V�� � V andV�� \ F� = ;.To prove that the sets F� , � < �, 
over G, take any point y 2 G. For ea
h� < �+, let y(�) = 0 in 
ase y =2 SfV�� : � < �g, or in 
ase y 2 SfV�� : � < �g,let y(�) be the unique � su
h that y 2 V�� . Sin
e the family fV� : � < �+g is apoint-� family, there are less than � non-zero y(�)'s. Sin
e � is a regular 
ardinalnumber, there exists � < � su
h that y(�) < � for ea
h � < �+. �A
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