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More on �-Ohio 
ompletenessD. BasileAbstra
t. We study 
losed subspa
es of �-Ohio 
omplete spa
es and, for � un-
ountable 
ardinal, we prove a 
hara
terization for them. We then investigatethe behaviour of produ
ts of �-Ohio 
omplete spa
es. We prove that, if the
ardinal �+ is endowed with either the order or the dis
rete topology, the spa
e(�+)�+ is not �-Ohio 
omplete. As a 
onsequen
e, we show that, if � is lessthan the �rst weakly ina

essible 
ardinal, then neither the spa
e !�+ , nor thespa
e R�+ is �-Ohio 
omplete.Keywords: �-Ohio 
omplete, 
ompa
ti�
ation, subspa
e, produ
tClassi�
ation: 54D35, 54B05, 54B101. Introdu
tionAll spa
es under dis
ussion are Ty
hono� . For all unde�ned notions we referto [6℄.The property of �-Ohio 
ompleteness was introdu
ed in [5℄ and it is a naturalgeneralization of Ohio 
ompleteness, whi
h was introdu
ed by Arhangel'skii in [1℄to study remainders in 
ompa
ti�
ations of topologi
al spa
es.Re
all that a topologi
al spa
e X is �-Ohio 
omplete if for every 
ompa
ti�
a-tion 
X of X there exists a G�-subset S of 
X su
h that X � S and for everyy 2 S nX , there is a G�-subset of 
X that 
ontains y and misses X .In [5℄ parti
ular attention was given to sum theorems for �-Ohio 
ompletespa
es. The aim of this paper is fo
using on the behaviour that 
losed subspa
esof �-Ohio 
omplete spa
es and produ
ts of �-Ohio 
omplete spa
es have. Indeedit is still an open question whether the �-Ohio 
ompleteness property is 
losed-hereditary or �nitely multipli
ative.The paper is divided in two parts. In the �rst we investigate the behaviourof 
losed subspa
es. Our main result is a 
hara
terization of 
losed subspa
esof �-Ohio 
omplete spa
es, for � un
ountable 
ardinal. In the se
ond part westudy produ
ts of �-Ohio 
omplete spa
es. We prove that, if the 
ardinal �+ isendowed with either the order or the dis
rete topology, the spa
e (�+)�+ is not�-Ohio 
omplete. From this results it follows that, for a large 
lass of 
ardinals �,neither the spa
e !�+ nor the spa
e R�+ is �-Ohio 
omplete. For more informationsee [2℄.



552 D. Basile2. PreliminariesFollowing the notation of [4℄ and [5℄ we say that a 
ompa
ti�
ation 
X of aspa
e X is �-good for X if there exists a G�-subset S of 
X su
h that X � S andfor every y 2 S nX , there is a G�-subset of 
X that 
ontains y and misses X . Wedenote with the symbol �O(X) the 
olle
tion of all �-good 
ompa
ti�
ations of X .Similarly, we say that a G�-subset of a 
ompa
ti�
ation 
X of X is a G�-goodsubset for X if it 
ontains X , and if every point of S nX 
an be separated fromX by a G�-subset of 
X . If � = ! we omit the symbol !.Observe that any spa
e is �-Ohio 
omplete, for some large enough �. Re
allthat the �Ce
h-number of a spa
e X , denoted by �C(X), is the smallest 
ardinalityof a 
olle
tion U of open subsets of 
X su
h that X = TU, where 
X is any
ompa
ti�
ation of X . Therefore, if X is any spa
e, it follows that X is �C(X)-Ohio 
omplete. On the other hand, for every in�nite 
ardinal �, there exist spa
eswhi
h are not �-Ohio 
omplete, as it is shown in the next example (see also [4,Example 5.2℄).Example 2.1. Consider the 
ardinal �+ endowed with the dis
rete topology andits one point-
ompa
ti�
ation �+ [ f1g. The example is the subspa
e X of theprodu
t Z = (�+ [ f1g)� (�+ [ f1g) where X = (�+ � �+) [ f(1;1)g.If G is a G�-subset of Z that 
ontains the point (1;1), then G \ (Z nX) isnon-empty, so X is not a G�-subset of Z. Similarly, Z nX 
ontains no non-emptyG�-subset of Z; this 
learly implies that X is not �-Ohio 
omplete.It is worth noting that, for a large 
lass of 
ardinals �, the spa
e X we havejust 
onstru
ted has a good 
ompa
ti�
ation, even if it is not �-Ohio 
omplete.Indeed, assume that � is a non-measurable 
ardinal number. Then, the 
ardinal�+ is non-measurable as well, and in this 
ase it is well-known that the dis
retespa
e of 
ardinality �+ is real
ompa
t (see [6, Exer
ise 3.11.D(a)℄). It followsthat, under this hypothesis, the spa
e X is real
ompa
t (see [6, Exer
ise 3.11.A℄),therefore its �Ce
h-Stone 
ompa
ti�
ation �X is good by [6, Theorem 3.11.10℄.This means that, for a �xed 
ardinal �, if the �Ce
h-Stone 
ompa
ti�
ation ofa spa
e X is �-good for X , the spa
e X need not be �-Ohio 
omplete. On theother hand, if a spa
e X has a �-good 
ompa
ti�
ation 
X , then the �Ce
h-Stone
ompa
ti�
ation �X of X is always �-good for X , as it is shown in the nextproposition.Proposition 2.2. LetX be a spa
e and let 
X 2 �O(X). Then fÆX : ÆX 2 C(X)and ÆX � 
Xg � �O(X).For the simple proof see [3, Proposition 4.3℄.3. A 
hara
terization of 
losed subspa
es of �-Ohio 
omplete spa
esIn [3℄ we asked whether 
losed subspa
es of Ohio 
omplete spa
es are againOhio 
omplete. Unfortunately we do not know the answer, as we do not knowwhether 
losed subspa
es of �-Ohio 
omplete spa
es are again �-Ohio 
omplete.However, there are some positive results; we will prove them in this se
tion.
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ompleteness 553Proposition 2.2 asserts that if a spa
e X has a �-good 
ompa
ti�
ation 
X ,then every 
ompa
ti�
ation greater than or equal to 
X (with respe
t to theorder �) is �-good for X . However, if a spa
e is a 
losed subspa
e of a �-Ohio
omplete spa
e, then a sort of 
omplementary property holds, as we are going toshow. The formulation of the result is new, but it has a
tually been proved in [3℄.We in
lude the proof for 
ompleteness sake.Lemma 3.1. Let Y be a 
losed subspa
e of X . Fix a 
ompa
ti�
ation �X of Xand let 
Y = Y �X . Then, for every 
ompa
ti�
ation ÆY of Y su
h that ÆY � 
Y ,there exists some 
ompa
ti�
ation %X of X su
h that ÆY = Y %X and %X � �X .Proof: Fix a 
ompa
ti�
ation ÆY of Y su
h that ÆY � 
Y . Hen
e, there existsa 
ontinuous map f : 
Y ! ÆY su
h that f(y) = y, for every y 2 Y . Considerthe adjun
tion spa
e Z = �X [f ÆY . Clearly Z is a 
ompa
t Hausdor� spa
e,sin
e it is the image of the 
ompa
t spa
e �X � ÆY under a 
losed 
ontinuousfun
tion, that is, the natural quotient mapping �. Observe that � is 
losed sin
ef is 
losed (see for instan
e [6, p. 94℄).First we shall prove that X , 
onsidered as a subspa
e of Z, has the originaltopology, by showing that ��X : X ! �(X) is a homeomorphism. To verify that��X is one-to-one, pi
k two di�erent points x; y 2 X . Observe that, sin
e Y is
losed in X , we have (
Y nY )\X = ;. There are three di�erent 
ases to 
onsider.If x; y 2 X nY we have x; y 2 �X n
Y and then, by 
onstru
tion, the equivalen
e
lasses of x and y are fxg and fyg respe
tively. If x 2 X n Y and y 2 Y , theequivalen
e 
lasses of x and y are fxg and fyg [ f�1(y), respe
tively. Finally, ifx; y 2 Y , the equivalen
e 
lasses of x and y are fxg [ f�1(x) and fyg [ f�1(y),respe
tively. In all 
ases we have �(x) 6= �(y). This proves that ��X is one-to-one.We will now prove that ��X is 
losed. As we observed before � is 
losed. LetD be a 
losed subspa
e of X , then we may �nd a 
losed subset C of �X � ÆY ,su
h that D = C \X . It follows that �(D) = �(C \X) = �(C) \ X is a 
losedsubset of X . This shows that ��X is a homeomorphism.In a similar way we 
an prove that ÆY as a subspa
e of Z has the originaltopology. It follows that Y Z = ÆY .Sin
e the spa
e Z is 
learly a 
ompa
ti�
ation of X su
h that Z � �X , we aredone. �Given a spa
e X we say that a 
ompa
ti�
ation 
X of X is very �-good iffÆX : ÆX 2 C(X) and ÆX � 
Xg � �O(X). In parti
ular, if 
X is a very �-good
ompa
ti�
ation for X , then every 
ompa
ti�
ation ÆX of X su
h that ÆX � 
X ,is very �-good for X .Theorem 3.2. Let Y be a 
losed subspa
e of a spa
e X . Assume that X has avery �-good 
ompa
ti�
ation �X . Then 
Y = Y (
losure in �X) is a very �-good
ompa
ti�
ation for Y .Proof: Fix a 
ompa
ti�
ation ÆY of Y su
h that ÆY � 
Y . By Lemma 3.1,there exists a 
ompa
ti�
ation %X of X su
h that ÆY = Y %X and %X � �X .
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e �X is a very �-good 
ompa
ti�
ation for X , the 
ompa
ti�
ation %X is�-good for X . Let S be a G�-subset of %X that is �-good for X . Then the setS \ ÆY is G�-good for Y . This 
ompletes the proof. �An appli
ation of Theorem 3.2 is the following result, whi
h shows that �-Ohio
ompleteness is hereditary with respe
t to 
losed and C�-embedded subspa
es(see also [3℄).Corollary 3.3. Let Y be a 
losed C�-embedded subspa
e of a �-Ohio 
ompletespa
e X . Then Y is �-Ohio 
omplete.Proof: Closures are taken in �X . It follows from Theorem 3.2 that Y is a very�-good 
ompa
ti�
ation for Y . But Y = �Y , by [6, Corollary 3.6.7℄. This provesthat Y is �-Ohio 
omplete. �Corollary 3.4. Let Y be a 
losed subspa
e of a �-Ohio 
omplete normal spa
eX .Then Y is �-Ohio 
omplete.If A � X , a 
ontinuous fun
tion f : X ! A is 
alled a retra
tion of X onto A,if f(x) = x for all x 2 A. In this 
ase A is 
alled a retra
t of X .Corollary 3.5. (1) Every 
lopen subspa
e of a �-Ohio 
omplete spa
e is �-Ohio 
omplete.(2) Every retra
t of a �-Ohio 
omplete spa
e is �-Ohio 
omplete.Proof: This follows from the fa
t that 
lopen subspa
es and retra
ts are 
losedand C�-embedded subspa
es. �Unfortunately this does not answer to the following:Question 3.6. Is �-Ohio 
ompleteness a 
losed-hereditary property?Theorem 3.2 implies in parti
ular that a 
losed subspa
e of a �-Ohio 
ompletespa
e has some very �-good 
ompa
ti�
ation. It is pretty natural to ask whetherthe 
onverse is true, that is, whether, given a spa
e having a very �-good 
om-pa
ti�
ation, it 
an be embedded as a 
losed subspa
e in some �-Ohio 
ompletespa
e.The following theorem shows that, if � is an un
ountable 
ardinal number, theanswer is yes.Theorem 3.7. Let � be an un
ountable 
ardinal number. The following state-ments are equivalent.(1) Y is a 
losed subspa
e of a �-Ohio 
omplete spa
e X .(2) There exists a very �-good 
ompa
ti�
ation 
Y of Y .Proof: (1) ) (2) follows from Theorem 3.2.(2) ) (1). Fix a very �-good 
ompa
ti�
ation 
Y of Y . Consider the ordinalspa
e !1+1 and let Z be the spa
e (!1+1)� 
Y , and let X be the subspa
e of Zgiven by �!1 � 
Y � [ f!1g � Y:
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ompleteness 555Then Y is 
learly a 
losed subspa
e of X , so to prove the theorem it suÆ
es toshow that X is �-Ohio 
omplete.First observe that �X = Z. Indeed, note that �(!1�
Y ) = (!1+1)�
Y = Z.This 
an be found in [6, Problem 3.12.20(
)℄. Sin
e !1 � 
Y � X � Z, it followsthat �X = Z by [6, Corollary 3.6.9℄.To show that X is �-Ohio 
omplete, �x a 
ompa
ti�
ation �X of X . Then�X � �X = Z. So we may �x a 
ontinuous fun
tion f : Z ! �X su
h thatf � X is the identity on X . We let g be the restri
tion of f to the set f!1g� 
Y .Note that sin
e the remainder �X nX is 
ontained in the domain of g, it followsthat the remainder �X n X is 
ontained in the range of g. So the range of g isgiven by W = (!1 � Y ) [ (�X nX):Clearly, the fun
tion g witnesses the fa
t that W � 
Y . By assumption it followsthat W is a �-good 
ompa
ti�
ation for f!1g�Y , so we may �x a G�-subset S of�X su
h that every point in (W \S)n (f!1g�Y ) 
an be separated from f!1g�Yby a G�-subset of W .Now let S0 = (!1 � 
Y ) [ S. Sin
e !1 � 
Y is lo
ally 
ompa
t, it is an opensubset of �X and therefore S0 is aG�-subset of �X . We 
laim that S0 is aG�-goodsubset for X .So pi
k an arbitrary point p 2 S0 nX . Then p 2 S n (f!1g� Y ). By the 
hoi
eof S, there is a G�-subset T of W su
h that p 2 T and T \ (f!1g � Y ) = ;.Now note that !1� 
Y is the union of !1-many 
ompa
t subspa
es and therefore�X n (!1 � 
Y ) = W is a G!1-subset and hen
e a G�-subset of �X . But thenT is also a G�-subset of �X . Sin
e T is disjoint from X , this set separates thepoint p from X . This 
ompletes the proof. �Question 3.8. Does the equivalen
e of Theorem 3:7 also hold for � = !?4. Produ
ts of �-Ohio 
omplete spa
esAs we said in the introdu
tion we do not know whether �-Ohio 
ompleteness is�nitely multipli
ative. A
tually, we do not know if even the produ
t of a �-Ohio
omplete spa
e with a 
ompa
t spa
e is again �-Ohio 
omplete. However, thereis some relation between these questions and Question 3.6, as the next theoremshows (see also [3, Theorem 3.4℄):Theorem 4.1. Let � be an in�nite 
ardinal number. Consider the followingstatements.(1) Preimages of �-Ohio 
omplete spa
es under perfe
t mappings are �-Ohio
omplete.(2) The produ
t of a �-Ohio 
omplete spa
e and a 
ompa
t spa
e is always�-Ohio 
omplete.(3) Every 
losed subspa
e of a �-Ohio 
omplete spa
e is �-Ohio 
omplete.Then (1), (2)) (3).



556 D. BasileProof: To prove that (1) ) (2), let X be a �-Ohio 
omplete spa
e and K be a
ompa
t spa
e. Then �X : X �K ! X is a perfe
t mapping, so the hypothesisimplies that X �K is �-Ohio 
omplete.For (2) ) (3), let Y be a 
losed subspa
e of a �-Ohio 
omplete spa
e X .Consider the produ
t Z = X��Y and its subspa
e �(Y ). By [6, Theorem 3.6.1℄,Y is C�-embedded in �Y . From this fa
t it easily follows that �(Y ) is a C�-embedded 
opy of Y in Z. Sin
e �(Y ) is also 
losed in Z, by Corollary 3.3 itfollows that if Z is �-Ohio 
omplete then so is Y .We �nally prove that (2) ) (1). Sin
e (2) ) (3), it follows from [6, Theo-rem 3.7.26℄ that (1) holds. �Therefore, if Question 4.2 below has a positive answer, then Question 3.6 hasa positive answer as well.Question 4.2. Is the produ
t of a �-Ohio 
omplete spa
e with a 
ompa
t spa
eagain �-Ohio 
omplete?On the other hand, it is straightforward to see that if a produ
t spa
e is �-Ohio
omplete, then ea
h of its fa
tors is �-Ohio 
omplete as well.Proposition 4.3. Let X = Q�<� X� be a �-Ohio 
omplete spa
e. Then, forevery � < � , the spa
e X� is �-Ohio 
omplete.Proof: Note that every X� is a retra
t of X . Now it suÆ
es to apply Corol-lary 3.5(2). �The following results show that the produ
t of �-many �-Ohio 
omplete spa
eshas many �-good 
ompa
ti�
ations.Lemma 4.4. Let fX� : � < �g be a family of spa
es. For every � < �, let S�be a G�-subset of X�. Then Q�<� S� is a G�-subset of X =Q�<�X�.Proposition 4.5. Let fX� : � < �g be a family of spa
es. For every � < �, let
�X� 2 �O(X�). Then Q�<� 
�X� 2 �O(Q�<�X�).Proof: Sin
e 
�X� 2 �O(X�), for every � < � there exists a G�-subset S� of
�X� whi
h is �-good with respe
t to X�. By Lemma 4.4, the set Q�<� S� isa G�-subset of Q�<� 
�X� that 
learly 
ontains Q�<�X�. We will show thatQ�<� S� is �-good with respe
t to Q�<�X�.So, pi
k a point p = (p�)�<� 2 Q�<� S� nQ�<�X�. Then, for some � < �,we have p� 2 S� nX�. Therefore, there exists a G�-subset T� of 
�X� 
ontainingp� and missing X�. The set Z = ��1� (T�) is a G�-subset of Q�<� 
�X� that
ontains p and misses Q�<�X�. This proves the proposition. �The proof of the pre
eding proposition is based on the fa
t that the interse
tionof �-many G�-subsets is again a G�-subset. Sin
e this property may fail for largerinterse
tions, we might expe
t that Proposition 4.5 does not generalize to produ
tswith �+-many fa
tors. The next proposition shows that in fa
t this is the 
ase.
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ompleteness 557Proposition 4.6. Let Y be the 
ardinal �+ endowed with either the dis
rete orthe order topology, and 
onsider its one-point 
ompa
ti�
ation !Y = Y [ f1g.Then (!Y )�+ is not a �-good 
ompa
ti�
ation for Y �+ .Proof: Observe that the point 1 is not a G�-subset of !Y . Hen
e, Y �+ isG�-dense in (!Y )�+ . But its remainder (!Y )�+ n Y �+ is G�-dense in (!Y )�+ aswell. So (!Y )�+ 
annot be a �-good 
ompa
ti�
ation for Y �+ . �Corollary 4.7. If the 
ardinal �+ is endowed with either the order or the dis
retetopology, the spa
e (�+)�+ is not �-Ohio 
omplete.An appli
ation of this result is that the limit of an inverse system of �-Ohio
omplete spa
es need not be �-Ohio 
omplete.Proposition 4.8. The limit of an inverse system of �-Ohio 
omplete spa
es neednot be �-Ohio 
omplete.Proof: If � < �+, then it follows from [9, Proposition 1.10℄ that �C((�+)�) �j�j � �. So it is 
lear that (�+)� is �-Ohio 
omplete. Now observe that (�+)�+
an be seen as the inverse limit of the system f(�+)�; ��� ; �+g, where ��� : (�+)� !(�+)� is the usual proje
tion. �Remark 4.9. Let us remark that the behaviour of the spa
e (�+)�+ 
an be dif-ferent if we 
onsider �+ endowed with the dis
rete or with the order topology.Indeed, if �+ has the dis
rete topology, then, for a large 
lass of 
ardinals (namelyall non-measurable 
ardinals �, see [6, Exer
ise 3.11.D(a)℄), the spa
e (�+)�+ isreal
ompa
t and then it has a �-good 
ompa
ti�
ation.If we now 
onsider �+ with the order topology and we assume that � = !,then the spa
e !!11 is pseudo
ompa
t (see, for example [6, Exer
ise 3.12.21.(e)℄).By a well-known result of Gli
ksberg ([7℄), we have �(!!11 ) = (�!1)!1 . Sin
e�!1 = !1+1, Proposition 4.6 implies that �(!!11 ) is not a good 
ompa
ti�
ationfor !!11 . Therefore, it follows by Proposition 2.2, that !!11 does not have any good
ompa
ti�
ation.A natural question is then whether the spa
e !�+ is or is not �-Ohio 
omplete.Observe that the argument used in Proposition 4.6 
annot be applied to !�+ :every produ
t 
ompa
ti�
ation of !�+ is indeed even good. This is a 
onsequen
eof the next proposition. We will however answer our question in Corollary 4.16below.Re
all that the 
ompa
t 
overing number of a spa
e X , denoted by k
ov(X),is the smallest 
ardinality of a 
olle
tion K of 
ompa
t subsets of X su
h thatX = SK. It is well-known and easy to show that for a spa
e X and for any
ompa
ti�
ation 
X of X , we have k
ov(
X nX) = �C(X).Proposition 4.10. Let X = Q�<�X�, where k
ov(X�) � � for every � < �,and let 
�X� 2 C(X�), for every � < �. Then Q�<� 
�X� 2 �O(X).
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�X�. We will show that Z itself is the good G�-subsetwe are looking for. Note that, sin
e k
ov(X�) � �, the remainder 
�X� nX� isa G�-subset of 
�X�, for every � < �.Now, �x a point x = (x�)�<� 2 Z nX . So, there exists some � < � su
h thatx� 2 
�X� nX�. The set W = ��1� (
�X� nX�), is a G�-subset of Z that missesX . This 
ompletes the proof. �Corollary 4.11. If a produ
t spa
e has �-
ompa
t fa
tors, then any 
ompa
ti�-
ation of its produ
t is good.This raises the question whether spa
es like !�+ or R�+ are �-Ohio 
ompleteor not. Furthermore it turns out that �nding a non �-good 
ompa
ti�
ation forsu
h spa
es is not trivial.Nevertheless, using Proposition 4.6, whi
h is a very simple but very usefulresult, we will be able to prove that, if � is less than the �rst weakly ina

essible
ardinal, neither !�+ nor R�+ is �-Ohio 
omplete.Theorem 4.12. If X 
ontains a 
losed 
opy of the spa
e �+, endowed eitherwith the dis
rete or the order topology, then X�+ is not �-Ohio 
omplete.Proof: Let us prove the theorem assuming that X 
ontains a 
losed 
opy of thedis
rete spa
e of 
ardinality �+. The other 
ase is analogous. Sin
e X 
ontainsa 
losed 
opy of �+, the spa
e X�+ 
ontains a 
losed 
opy of (�+)�+ . Assume,striving for a 
ontradi
tion, that X�+ is �-Ohio 
omplete and let Z = (
X)�+ ,where 
X is any 
ompa
ti�
ation of X . Closures are taken in Z.Our hypothesis, 
ombined with Theorem 3.2, imply that (�+)�+ is a very �-good 
ompa
ti�
ation for (�+)�+ . Sin
e (�+)�+ � (!�+)�+ , the latter produ
tis a �-good 
ompa
ti�
ation for (�+)�+ , whi
h is a 
ontradi
tion with Proposi-tion 4.6. �From the proof of Theorem 4.12 we get the following:Corollary 4.13. If X 
ontains a 
losed 
opy of the spa
e �+, endowed eitherwith the dis
rete or the order topology, then no 
ompa
ti�
ation of X�+ of theform (
X)�+ 
an be very �-good for X�+ .Re
all that an un
ountable 
ardinal is 
alled weakly ina

essible if it is a regularlimit 
ardinal. We denote by � the �rst weakly ina

essible 
ardinal.Corollary 4.14. Assume that � < �. If X�+ is �-Ohio 
omplete, then X is
ountably 
ompa
t.Proof: Observe at �rst that if � < �, then �+ < �. If X were not 
ountably
ompa
t, then X�+ would 
ontain a 
losed 
opy of !�+ . Sin
e �+ < �, the power!�+ 
ontains a 
losed 
opy of the dis
rete spa
e �+, by [8℄. Then X�+ would
ontain a 
losed 
opy of �+, whi
h is a 
ontradi
tion with Theorem 4.12. �Question 4.15. Can we improve Corollary 4:14 substituting `
ountably 
ompa
t'by `
ompa
t'?



More on �-Ohio 
ompleteness 559In [3℄ we showed that the answer is yes for � = !.Corollary 4.16. If � < �, then neither !�+ nor R�+ is �-Ohio 
omplete.Corollary 4.17. If � < �, then no 
ompa
ti�
ation of !�+ (resp. R�+ ) of theform Z�+ is very �-good for !�+ (resp. R�+ ).Question 4.18. Let � < �. Does exist some very �-good 
ompa
ti�
ation for!�+ (resp. R�+ )?By Theorem 3.7 this question is equivalent to the question whether, if �+ isstri
tly less than the �rst weakly ina

essible 
ardinal, the spa
e !�+ (resp. R�+ )
an be embedded as a 
losed subspa
e in some �-Ohio 
omplete spa
e. Moreover,let us point out that if Question 4.15 has a positive answer, then Question 4.18has a negative answer.A
tually, to answer in the negative to Question 4.18 it would be enough toshow that the spa
e (�+)�+ , where �+ is endowed with the dis
rete topology doesnot have any very �-good 
ompa
ti�
ation. Unfortunately we do not know theanswer to this. Referen
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