More on κ -Ohio completeness

D. BASILE

Abstract. We study closed subspaces of κ -Ohio complete spaces and, for κ uncountable cardinal, we prove a characterization for them. We then investigate the behaviour of products of κ -Ohio complete spaces. We prove that, if the cardinal κ^+ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not κ -Ohio complete. As a consequence, we show that, if κ is less than the first weakly inaccessible cardinal, then neither the space ω^{κ^+} , nor the space \mathbb{R}^{κ^+} is κ -Ohio complete.

Keywords: κ-Ohio complete, compactification, subspace, product

Classification: 54D35, 54B05, 54B10

1. Introduction

All spaces under discussion are Tychonoff. For all undefined notions we refer to [6].

The property of κ -Ohio completeness was introduced in [5] and it is a natural generalization of Ohio completeness, which was introduced by Arhangel'skii in [1] to study remainders in compactifications of topological spaces.

Recall that a topological space X is κ -Ohio complete if for every compactification γX of X there exists a G_{κ} -subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{κ} -subset of γX that contains y and misses X.

In [5] particular attention was given to sum theorems for κ -Ohio complete spaces. The aim of this paper is focusing on the behaviour that closed subspaces of κ -Ohio complete spaces and products of κ -Ohio complete spaces have. Indeed it is still an open question whether the κ -Ohio completeness property is closed-hereditary or finitely multiplicative.

The paper is divided in two parts. In the first we investigate the behaviour of closed subspaces. Our main result is a characterization of closed subspaces of κ -Ohio complete spaces, for κ uncountable cardinal. In the second part we study products of κ -Ohio complete spaces. We prove that, if the cardinal κ^+ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not κ -Ohio complete. From this results it follows that, for a large class of cardinals κ , neither the space ω^{κ^+} nor the space \mathbb{R}^{κ^+} is κ -Ohio complete. For more information see [2].

2. Preliminaries

Following the notation of [4] and [5] we say that a compactification γX of a space X is κ -good for X if there exists a G_{κ} -subset S of γX such that $X \subseteq S$ and for every $y \in S \setminus X$, there is a G_{κ} -subset of γX that contains y and misses X. We denote with the symbol $\kappa O(X)$ the collection of all κ -good compactifications of X. Similarly, we say that a G_{κ} -subset of a compactification γX of X is a G_{κ} -good subset for X if it contains X, and if every point of $S \setminus X$ can be separated from X by a G_{κ} -subset of γX . If $\kappa = \omega$ we omit the symbol ω .

Observe that any space is κ -Ohio complete, for some large enough κ . Recall that the Čech-number of a space X, denoted by $\check{C}(X)$, is the smallest cardinality of a collection \mathcal{U} of open subsets of γX such that $X = \bigcap \mathcal{U}$, where γX is any compactification of X. Therefore, if X is any space, it follows that X is $\check{C}(X)$ -Ohio complete. On the other hand, for every infinite cardinal κ , there exist spaces which are not κ -Ohio complete, as it is shown in the next example (see also [4, Example 5.2]).

Example 2.1. Consider the cardinal κ^+ endowed with the discrete topology and its one point-compactification $\kappa^+ \cup \{\infty\}$. The example is the subspace X of the product $Z = (\kappa^+ \cup \{\infty\}) \times (\kappa^+ \cup \{\infty\})$ where $X = (\kappa^+ \times \kappa^+) \cup \{(\infty, \infty)\}$.

If G is a G_{κ} -subset of Z that contains the point (∞, ∞) , then $G \cap (Z \setminus X)$ is non-empty, so X is not a G_{κ} -subset of Z. Similarly, $Z \setminus X$ contains no non-empty G_{κ} -subset of Z; this clearly implies that X is not κ -Ohio complete.

It is worth noting that, for a large class of cardinals κ , the space X we have just constructed has a good compactification, even if it is not κ -Ohio complete. Indeed, assume that κ is a non-measurable cardinal number. Then, the cardinal κ^+ is non-measurable as well, and in this case it is well-known that the discrete space of cardinality κ^+ is realcompact (see [6, Exercise 3.11.D(a)]). It follows that, under this hypothesis, the space X is realcompact (see [6, Exercise 3.11.A]), therefore its Čech-Stone compactification βX is good by [6, Theorem 3.11.10].

This means that, for a fixed cardinal κ , if the Cech-Stone compactification of a space X is κ -good for X, the space X need not be κ -Ohio complete. On the other hand, if a space X has a κ -good compactification γX , then the Čech-Stone compactification βX of X is always κ -good for X, as it is shown in the next proposition.

Proposition 2.2. Let X be a space and let $\gamma X \in \kappa \mathcal{O}(X)$. Then $\{\delta X : \delta X \in \mathcal{C}(X)$ and $\delta X \geq \gamma X\} \subseteq \kappa \mathcal{O}(X)$.

For the simple proof see [3, Proposition 4.3].

3. A characterization of closed subspaces of κ -Ohio complete spaces

In [3] we asked whether closed subspaces of Ohio complete spaces are again Ohio complete. Unfortunately we do not know the answer, as we do not know whether closed subspaces of κ -Ohio complete spaces are again κ -Ohio complete. However, there are some positive results; we will prove them in this section. Proposition 2.2 asserts that if a space X has a κ -good compactification γX , then every compactification greater than or equal to γX (with respect to the order \leq) is κ -good for X. However, if a space is a closed subspace of a κ -Ohio complete space, then a sort of complementary property holds, as we are going to show. The formulation of the result is new, but it has actually been proved in [3]. We include the proof for completeness sake.

Lemma 3.1. Let Y be a closed subspace of X. Fix a compactification αX of X and let $\gamma Y = \overline{Y}^{\alpha X}$. Then, for every compactification δY of Y such that $\delta Y \leq \gamma Y$, there exists some compactification ϱX of X such that $\delta Y = \overline{Y}^{\varrho X}$ and $\varrho X \leq \alpha X$.

PROOF: Fix a compactification δY of Y such that $\delta Y \leq \gamma Y$. Hence, there exists a continuous map $f: \gamma Y \to \delta Y$ such that f(y) = y, for every $y \in Y$. Consider the adjunction space $Z = \alpha X \cup_f \delta Y$. Clearly Z is a compact Hausdorff space, since it is the image of the compact space $\alpha X \oplus \delta Y$ under a closed continuous function, that is, the natural quotient mapping π . Observe that π is closed since f is closed (see for instance [6, p. 94]).

First we shall prove that X, considered as a subspace of Z, has the original topology, by showing that $\pi \upharpoonright X : X \to \pi(X)$ is a homeomorphism. To verify that $\pi \upharpoonright X$ is one-to-one, pick two different points $x, y \in X$. Observe that, since Y is closed in X, we have $(\gamma Y \setminus Y) \cap X = \emptyset$. There are three different cases to consider. If $x, y \in X \setminus Y$ we have $x, y \in \alpha X \setminus \gamma Y$ and then, by construction, the equivalence classes of x and y are $\{x\}$ and $\{y\}$ respectively. If $x \in X \setminus Y$ and $y \in Y$, the equivalence classes of x and y are $\{x\}$ and $\{y\} \cup f^{-1}(y)$, respectively. Finally, if $x, y \in Y$, the equivalence classes of x and y are $\{x\}$ and $\{y\} \cup f^{-1}(x)$ and $\{y\} \cup f^{-1}(y)$, respectively. In all cases we have $\pi(x) \neq \pi(y)$. This proves that $\pi \upharpoonright X$ is one-to-one.

We will now prove that $\pi \upharpoonright X$ is closed. As we observed before π is closed. Let D be a closed subspace of X, then we may find a closed subset C of $\alpha X \oplus \delta Y$, such that $D = C \cap X$. It follows that $\pi(D) = \pi(C \cap X) = \pi(C) \cap X$ is a closed subset of X. This shows that $\pi \upharpoonright X$ is a homeomorphism.

In a similar way we can prove that δY as a subspace of Z has the original topology. It follows that $\overline{Y}^Z = \delta Y$.

Since the space Z is clearly a compactification of X such that $Z \leq \alpha X$, we are done.

Given a space X we say that a compactification γX of X is very κ -good if $\{\delta X : \delta X \in \mathcal{C}(X) \text{ and } \delta X \leq \gamma X\} \subseteq \kappa \mathcal{O}(X)$. In particular, if γX is a very κ -good compactification for X, then every compactification δX of X such that $\delta X \leq \gamma X$, is very κ -good for X.

Theorem 3.2. Let Y be a closed subspace of a space X. Assume that X has a very κ -good compactification αX . Then $\gamma Y = \overline{Y}$ (closure in αX) is a very κ -good compactification for Y.

PROOF: Fix a compactification δY of Y such that $\delta Y \leq \gamma Y$. By Lemma 3.1, there exists a compactification ρX of X such that $\delta Y = \overline{Y}^{\rho X}$ and $\rho X \leq \alpha X$.

Since αX is a very κ -good compactification for X, the compactification ρX is κ -good for X. Let S be a G_{κ} -subset of ρX that is κ -good for X. Then the set $S \cap \delta Y$ is G_{κ} -good for Y. This completes the proof.

An application of Theorem 3.2 is the following result, which shows that κ -Ohio completeness is hereditary with respect to closed and C^* -embedded subspaces (see also [3]).

Corollary 3.3. Let Y be a closed C^* -embedded subspace of a κ -Ohio complete space X. Then Y is κ -Ohio complete.

PROOF: Closures are taken in βX . It follows from Theorem 3.2 that \overline{Y} is a very κ -good compactification for Y. But $\overline{Y} = \beta Y$, by [6, Corollary 3.6.7]. This proves that Y is κ -Ohio complete.

Corollary 3.4. Let Y be a closed subspace of a κ -Ohio complete normal space X. Then Y is κ -Ohio complete.

If $A \subseteq X$, a continuous function $f: X \to A$ is called a *retraction* of X onto A, if f(x) = x for all $x \in A$. In this case A is called a *retract* of X.

Corollary 3.5. (1) Every clopen subspace of a κ -Ohio complete space is κ -Ohio complete.

(2) Every retract of a κ -Ohio complete space is κ -Ohio complete.

PROOF: This follows from the fact that clopen subspaces and retracts are closed and C^* -embedded subspaces.

Unfortunately this does not answer to the following:

Question 3.6. Is κ -Ohio completeness a closed-hereditary property?

Theorem 3.2 implies in particular that a closed subspace of a κ -Ohio complete space has some very κ -good compactification. It is pretty natural to ask whether the converse is true, that is, whether, given a space having a very κ -good compactification, it can be embedded as a closed subspace in some κ -Ohio complete space.

The following theorem shows that, if κ is an uncountable cardinal number, the answer is yes.

Theorem 3.7. Let κ be an uncountable cardinal number. The following statements are equivalent.

(1) Y is a closed subspace of a κ -Ohio complete space X.

(2) There exists a very κ -good compactification γY of Y.

PROOF: $(1) \Rightarrow (2)$ follows from Theorem 3.2.

(2) \Rightarrow (1). Fix a very κ -good compactification γY of Y. Consider the ordinal space ω_1+1 and let Z be the space $(\omega_1+1) \times \gamma Y$, and let X be the subspace of Z given by

$$(\omega_1 \times \gamma Y) \cup \{\omega_1\} \times Y.$$

554

Then Y is clearly a closed subspace of X, so to prove the theorem it suffices to show that X is κ -Ohio complete.

First observe that $\beta X = Z$. Indeed, note that $\beta(\omega_1 \times \gamma Y) = (\omega_1 + 1) \times \gamma Y = Z$. This can be found in [6, Problem 3.12.20(c)]. Since $\omega_1 \times \gamma Y \subseteq X \subseteq Z$, it follows that $\beta X = Z$ by [6, Corollary 3.6.9].

To show that X is κ -Ohio complete, fix a compactification αX of X. Then $\alpha X \leq \beta X = Z$. So we may fix a continuous function $f : Z \to \alpha X$ such that $f \upharpoonright X$ is the identity on X. We let g be the restriction of f to the set $\{\omega_1\} \times \gamma Y$. Note that since the remainder $\beta X \setminus X$ is contained in the domain of g, it follows that the remainder $\alpha X \setminus X$ is contained in the range of g. So the range of g is given by

$$W = (\omega_1 \times Y) \cup (\alpha X \setminus X).$$

Clearly, the function g witnesses the fact that $W \leq \gamma Y$. By assumption it follows that W is a κ -good compactification for $\{\omega_1\} \times Y$, so we may fix a G_{κ} -subset S of αX such that every point in $(W \cap S) \setminus (\{\omega_1\} \times Y)$ can be separated from $\{\omega_1\} \times Y$ by a G_{κ} -subset of W.

Now let $S' = (\omega_1 \times \gamma Y) \cup S$. Since $\omega_1 \times \gamma Y$ is locally compact, it is an open subset of αX and therefore S' is a G_{κ} -subset of αX . We claim that S' is a G_{κ} -good subset for X.

So pick an arbitrary point $p \in S' \setminus X$. Then $p \in S \setminus (\{\omega_1\} \times Y)$. By the choice of S, there is a G_{κ} -subset T of W such that $p \in T$ and $T \cap (\{\omega_1\} \times Y) = \emptyset$. Now note that $\omega_1 \times \gamma Y$ is the union of ω_1 -many compact subspaces and therefore $\alpha X \setminus (\omega_1 \times \gamma Y) = W$ is a G_{ω_1} -subset and hence a G_{κ} -subset of αX . But then T is also a G_{κ} -subset of αX . Since T is disjoint from X, this set separates the point p from X. This completes the proof. \Box

Question 3.8. Does the equivalence of Theorem 3.7 also hold for $\kappa = \omega$?

4. Products of κ -Ohio complete spaces

As we said in the introduction we do not know whether κ -Ohio completeness is finitely multiplicative. Actually, we do not know if even the product of a κ -Ohio complete space with a compact space is again κ -Ohio complete. However, there is some relation between these questions and Question 3.6, as the next theorem shows (see also [3, Theorem 3.4]):

Theorem 4.1. Let κ be an infinite cardinal number. Consider the following statements.

- (1) Preimages of κ -Ohio complete spaces under perfect mappings are κ -Ohio complete.
- (2) The product of a κ-Ohio complete space and a compact space is always κ-Ohio complete.
- (3) Every closed subspace of a κ -Ohio complete space is κ -Ohio complete.

Then $(1) \Leftrightarrow (2) \Rightarrow (3)$.

PROOF: To prove that $(1) \Rightarrow (2)$, let X be a κ -Ohio complete space and K be a compact space. Then $\pi_X : X \times K \to X$ is a perfect mapping, so the hypothesis implies that $X \times K$ is κ -Ohio complete.

For (2) \Rightarrow (3), let Y be a closed subspace of a κ -Ohio complete space X. Consider the product $Z = X \times \beta Y$ and its subspace $\Delta(Y)$. By [6, Theorem 3.6.1], Y is C^{*}-embedded in βY . From this fact it easily follows that $\Delta(Y)$ is a C^{*}embedded copy of Y in Z. Since $\Delta(Y)$ is also closed in Z, by Corollary 3.3 it follows that if Z is κ -Ohio complete then so is Y.

We finally prove that $(2) \Rightarrow (1)$. Since $(2) \Rightarrow (3)$, it follows from [6, Theorem 3.7.26] that (1) holds.

Therefore, if Question 4.2 below has a positive answer, then Question 3.6 has a positive answer as well.

Question 4.2. Is the product of a κ -Ohio complete space with a compact space again κ -Ohio complete?

On the other hand, it is straightforward to see that if a product space is κ -Ohio complete, then each of its factors is κ -Ohio complete as well.

Proposition 4.3. Let $X = \prod_{\alpha < \tau} X_{\alpha}$ be a κ -Ohio complete space. Then, for every $\alpha < \tau$, the space X_{α} is κ -Ohio complete.

PROOF: Note that every X_{α} is a retract of X. Now it suffices to apply Corollary 3.5(2).

The following results show that the product of κ -many κ -Ohio complete spaces has many κ -good compactifications.

Lemma 4.4. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a family of spaces. For every $\alpha < \kappa$, let S_{α} be a G_{κ} -subset of X_{α} . Then $\prod_{\alpha < \kappa} S_{\alpha}$ is a G_{κ} -subset of $X = \prod_{\alpha < \kappa} X_{\alpha}$.

Proposition 4.5. Let $\{X_{\alpha} : \alpha < \kappa\}$ be a family of spaces. For every $\alpha < \kappa$, let $\gamma_{\alpha}X_{\alpha} \in \kappa \mathcal{O}(X_{\alpha})$. Then $\prod_{\alpha < \kappa} \gamma_{\alpha}X_{\alpha} \in \kappa \mathcal{O}(\prod_{\alpha < \kappa} X_{\alpha})$.

PROOF: Since $\gamma_{\alpha}X_{\alpha} \in \kappa \mathcal{O}(X_{\alpha})$, for every $\alpha < \kappa$ there exists a G_{κ} -subset S_{α} of $\gamma_{\alpha}X_{\alpha}$ which is κ -good with respect to X_{α} . By Lemma 4.4, the set $\prod_{\alpha < \kappa} S_{\alpha}$ is a G_{κ} -subset of $\prod_{\alpha < \kappa} \gamma_{\alpha}X_{\alpha}$ that clearly contains $\prod_{\alpha < \kappa} X_{\alpha}$. We will show that $\prod_{\alpha < \kappa} S_{\alpha}$ is κ -good with respect to $\prod_{\alpha < \kappa} X_{\alpha}$.

So, pick a point $p = (p_{\alpha})_{\alpha < \kappa} \in \prod_{\alpha < \kappa} S_{\alpha} \setminus \prod_{\alpha < \kappa} X_{\alpha}$. Then, for some $\beta < \kappa$, we have $p_{\beta} \in S_{\beta} \setminus X_{\beta}$. Therefore, there exists a G_{κ} -subset T_{β} of $\gamma_{\beta} X_{\beta}$ containing p_{β} and missing X_{β} . The set $Z = \pi_{\beta}^{-1}(T_{\beta})$ is a G_{κ} -subset of $\prod_{\alpha < \kappa} \gamma_{\alpha} X_{\alpha}$ that contains p and misses $\prod_{\alpha < \kappa} X_{\alpha}$. This proves the proposition.

The proof of the preceding proposition is based on the fact that the intersection of κ -many G_{κ} -subsets is again a G_{κ} -subset. Since this property may fail for larger intersections, we might expect that Proposition 4.5 does not generalize to products with κ^+ -many factors. The next proposition shows that in fact this is the case. **Proposition 4.6.** Let Y be the cardinal κ^+ endowed with either the discrete or the order topology, and consider its one-point compactification $\omega Y = Y \cup \{\infty\}$. Then $(\omega Y)^{\kappa^+}$ is not a κ -good compactification for Y^{κ^+} .

PROOF: Observe that the point ∞ is not a G_{κ} -subset of ωY . Hence, Y^{κ^+} is G_{κ} -dense in $(\omega Y)^{\kappa^+}$. But its remainder $(\omega Y)^{\kappa^+} \setminus Y^{\kappa^+}$ is G_{κ} -dense in $(\omega Y)^{\kappa^+}$ as well. So $(\omega Y)^{\kappa^+}$ cannot be a κ -good compactification for Y^{κ^+} .

Corollary 4.7. If the cardinal κ^+ is endowed with either the order or the discrete topology, the space $(\kappa^+)^{\kappa^+}$ is not κ -Ohio complete.

An application of this result is that the limit of an inverse system of κ -Ohio complete spaces need not be κ -Ohio complete.

Proposition 4.8. The limit of an inverse system of κ -Ohio complete spaces need not be κ -Ohio complete.

PROOF: If $\alpha < \kappa^+$, then it follows from [9, Proposition 1.10] that $\check{C}((\kappa^+)^{\alpha}) \leq |\alpha| \leq \kappa$. So it is clear that $(\kappa^+)^{\alpha}$ is κ -Ohio complete. Now observe that $(\kappa^+)^{\kappa^+}$ can be seen as the inverse limit of the system $\{(\kappa^+)^{\alpha}, \pi^{\alpha}_{\beta}, \kappa^+\}$, where $\pi^{\alpha}_{\beta} : (\kappa^+)^{\alpha} \to (\kappa^+)^{\beta}$ is the usual projection.

Remark 4.9. Let us remark that the behaviour of the space $(\kappa^+)^{\kappa^+}$ can be different if we consider κ^+ endowed with the discrete or with the order topology. Indeed, if κ^+ has the discrete topology, then, for a large class of cardinals (namely all non-measurable cardinals κ , see [6, Exercise 3.11.D(a)]), the space $(\kappa^+)^{\kappa^+}$ is realcompact and then it has a κ -good compactification.

If we now consider κ^+ with the order topology and we assume that $\kappa = \omega$, then the space $\omega_1^{\omega_1}$ is pseudocompact (see, for example [6, Exercise 3.12.21.(e)]). By a well-known result of Glicksberg ([7]), we have $\beta(\omega_1^{\omega_1}) = (\beta\omega_1)^{\omega_1}$. Since $\beta\omega_1 = \omega_1 + 1$, Proposition 4.6 implies that $\beta(\omega_1^{\omega_1})$ is not a good compactification for $\omega_1^{\omega_1}$. Therefore, it follows by Proposition 2.2, that $\omega_1^{\omega_1}$ does not have any good compactification.

A natural question is then whether the space ω^{κ^+} is or is not κ -Ohio complete. Observe that the argument used in Proposition 4.6 cannot be applied to ω^{κ^+} : every product compactification of ω^{κ^+} is indeed even good. This is a consequence of the next proposition. We will however answer our question in Corollary 4.16 below.

Recall that the compact covering number of a space X, denoted by $\operatorname{kcov}(X)$, is the smallest cardinality of a collection \mathcal{K} of compact subsets of X such that $X = \bigcup \mathcal{K}$. It is well-known and easy to show that for a space X and for any compactification γX of X, we have $\operatorname{kcov}(\gamma X \setminus X) = \check{C}(X)$.

Proposition 4.10. Let $X = \prod_{\alpha < \kappa} X_{\alpha}$, where $\operatorname{kcov}(X_{\alpha}) \leq \lambda$ for every $\alpha < \kappa$, and let $\gamma_{\alpha}X_{\alpha} \in \mathfrak{C}(X_{\alpha})$, for every $\alpha < \kappa$. Then $\prod_{\alpha < \kappa} \gamma_{\alpha}X_{\alpha} \in \lambda \mathfrak{O}(X)$.

D. Basile

PROOF: Let $Z = \prod_{\alpha < \kappa} \gamma_{\alpha} X_{\alpha}$. We will show that Z itself is the good G_{λ} -subset we are looking for. Note that, since $\operatorname{kcov}(X_{\alpha}) \leq \lambda$, the remainder $\gamma_{\alpha} X_{\alpha} \setminus X_{\alpha}$ is a G_{λ} -subset of $\gamma_{\alpha} X_{\alpha}$, for every $\alpha < \kappa$.

Now, fix a point $x = (x_{\alpha})_{\alpha < \kappa} \in Z \setminus X$. So, there exists some $\alpha < \kappa$ such that $x_{\alpha} \in \gamma_{\alpha} X_{\alpha} \setminus X_{\alpha}$. The set $W = \pi_{\alpha}^{-1}(\gamma_{\alpha} X_{\alpha} \setminus X_{\alpha})$, is a G_{λ} -subset of Z that misses X. This completes the proof.

Corollary 4.11. If a product space has σ -compact factors, then any compactification of its product is good.

This raises the question whether spaces like ω^{κ^+} or \mathbb{R}^{κ^+} are κ -Ohio complete or not. Furthermore it turns out that finding a non κ -good compactification for such spaces is not trivial.

Nevertheless, using Proposition 4.6, which is a very simple but very useful result, we will be able to prove that, if κ is less than the first weakly inaccessible cardinal, neither ω^{κ^+} nor \mathbb{R}^{κ^+} is κ -Ohio complete.

Theorem 4.12. If X contains a closed copy of the space κ^+ , endowed either with the discrete or the order topology, then X^{κ^+} is not κ -Ohio complete.

PROOF: Let us prove the theorem assuming that X contains a closed copy of the discrete space of cardinality κ^+ . The other case is analogous. Since X contains a closed copy of κ^+ , the space X^{κ^+} contains a closed copy of $(\kappa^+)^{\kappa^+}$. Assume, striving for a contradiction, that X^{κ^+} is κ -Ohio complete and let $Z = (\gamma X)^{\kappa^+}$, where γX is any compactification of X. Closures are taken in Z.

Our hypothesis, combined with Theorem 3.2, imply that $(\kappa^+)^{\kappa^+}$ is a very κ good compactification for $(\kappa^+)^{\kappa^+}$. Since $(\kappa^+)^{\kappa^+} \ge (\omega \kappa^+)^{\kappa^+}$, the latter product
is a κ -good compactification for $(\kappa^+)^{\kappa^+}$, which is a contradiction with Proposition 4.6.

From the proof of Theorem 4.12 we get the following:

Corollary 4.13. If X contains a closed copy of the space κ^+ , endowed either with the discrete or the order topology, then no compactification of X^{κ^+} of the form $(\gamma X)^{\kappa^+}$ can be very κ -good for X^{κ^+} .

Recall that an uncountable cardinal is called weakly inaccessible if it is a regular limit cardinal. We denote by θ the first weakly inaccessible cardinal.

Corollary 4.14. Assume that $\kappa < \theta$. If X^{κ^+} is κ -Ohio complete, then X is countably compact.

PROOF: Observe at first that if $\kappa < \theta$, then $\kappa^+ < \theta$. If X were not countably compact, then X^{κ^+} would contain a closed copy of ω^{κ^+} . Since $\kappa^+ < \theta$, the power ω^{κ^+} contains a closed copy of the discrete space κ^+ , by [8]. Then X^{κ^+} would contain a closed copy of κ^+ , which is a contradiction with Theorem 4.12.

Question 4.15. Can we improve Corollary 4.14 substituting 'countably compact' by 'compact'?

In [3] we showed that the answer is yes for $\kappa = \omega$.

Corollary 4.16. If $\kappa < \theta$, then neither ω^{κ^+} nor \mathbb{R}^{κ^+} is κ -Ohio complete.

Corollary 4.17. If $\kappa < \theta$, then no compactification of ω^{κ^+} (resp. \mathbb{R}^{κ^+}) of the form Z^{κ^+} is very κ -good for ω^{κ^+} (resp. \mathbb{R}^{κ^+}).

Question 4.18. Let $\kappa < \theta$. Does exist some very κ -good compactification for ω^{κ^+} (resp. \mathbb{R}^{κ^+})?

By Theorem 3.7 this question is equivalent to the question whether, if κ^+ is strictly less than the first weakly inaccessible cardinal, the space ω^{κ^+} (resp. \mathbb{R}^{κ^+}) can be embedded as a closed subspace in some κ -Ohio complete space. Moreover, let us point out that if Question 4.15 has a positive answer, then Question 4.18 has a negative answer.

Actually, to answer in the negative to Question 4.18 it would be enough to show that the space $(\kappa^+)^{\kappa^+}$, where κ^+ is endowed with the discrete topology does not have any very κ -good compactification. Unfortunately we do not know the answer to this.

References

- Arhangel'skii A.V., Remainders in compactifications and generalized metrizability properties, Topology Appl. 150 (2005), 79-90.
- [2] Basile D., κ-Ohio completenss and related problems, Doctoral Thesis, Vrije Universiteit, Amsterdam, 2009.
- [3] Basile D., van Mill J., Ohio completeness and products, Topology Appl. 155 (2008), no. 4, 180-189.
- [4] Basile D., van Mill J., Ridderbos G.J., Sum theorems for Ohio completeness, Colloq. Math. 113 (2008), 91-104.
- [5] Basile D., van Mill J., Ridderbos G.J., κ-Ohio completeness, J. Math. Soc. Japan 61 (2009), no. 4, 1293-1301.
- [6] Engelking R., General Topology, second ed., Heldermann, Berlin, 1989.
- [7] Glicksberg I., Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382.
- [8] Mycielski J., α-incompactness of N^α, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 12 (1964), 437-438.
- [9] Okunev O., Tamariz-Mascarúa A., On the Čech number of $C_p(X)$, Topology Appl. 137 (2004), no. 1–3, 237–249; IV Iberoamerican Conference on Topology and its Applications.

Università degli Studi di Catania, Dipartimento di Matematica e Informatica, Viale Andrea Doria 6, 95125 Catania, Italy

E-mail: basile@dmi.unict.it

(*Received* May 25, 2011)