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More on �-Ohio ompletenessD. BasileAbstrat. We study losed subspaes of �-Ohio omplete spaes and, for � un-ountable ardinal, we prove a haraterization for them. We then investigatethe behaviour of produts of �-Ohio omplete spaes. We prove that, if theardinal �+ is endowed with either the order or the disrete topology, the spae(�+)�+ is not �-Ohio omplete. As a onsequene, we show that, if � is lessthan the �rst weakly inaessible ardinal, then neither the spae !�+ , nor thespae R�+ is �-Ohio omplete.Keywords: �-Ohio omplete, ompati�ation, subspae, produtClassi�ation: 54D35, 54B05, 54B101. IntrodutionAll spaes under disussion are Tyhono� . For all unde�ned notions we referto [6℄.The property of �-Ohio ompleteness was introdued in [5℄ and it is a naturalgeneralization of Ohio ompleteness, whih was introdued by Arhangel'skii in [1℄to study remainders in ompati�ations of topologial spaes.Reall that a topologial spae X is �-Ohio omplete if for every ompati�a-tion X of X there exists a G�-subset S of X suh that X � S and for everyy 2 S nX , there is a G�-subset of X that ontains y and misses X .In [5℄ partiular attention was given to sum theorems for �-Ohio ompletespaes. The aim of this paper is fousing on the behaviour that losed subspaesof �-Ohio omplete spaes and produts of �-Ohio omplete spaes have. Indeedit is still an open question whether the �-Ohio ompleteness property is losed-hereditary or �nitely multipliative.The paper is divided in two parts. In the �rst we investigate the behaviourof losed subspaes. Our main result is a haraterization of losed subspaesof �-Ohio omplete spaes, for � unountable ardinal. In the seond part westudy produts of �-Ohio omplete spaes. We prove that, if the ardinal �+ isendowed with either the order or the disrete topology, the spae (�+)�+ is not�-Ohio omplete. From this results it follows that, for a large lass of ardinals �,neither the spae !�+ nor the spae R�+ is �-Ohio omplete. For more informationsee [2℄.



552 D. Basile2. PreliminariesFollowing the notation of [4℄ and [5℄ we say that a ompati�ation X of aspae X is �-good for X if there exists a G�-subset S of X suh that X � S andfor every y 2 S nX , there is a G�-subset of X that ontains y and misses X . Wedenote with the symbol �O(X) the olletion of all �-good ompati�ations of X .Similarly, we say that a G�-subset of a ompati�ation X of X is a G�-goodsubset for X if it ontains X , and if every point of S nX an be separated fromX by a G�-subset of X . If � = ! we omit the symbol !.Observe that any spae is �-Ohio omplete, for some large enough �. Reallthat the �Ceh-number of a spae X , denoted by �C(X), is the smallest ardinalityof a olletion U of open subsets of X suh that X = TU, where X is anyompati�ation of X . Therefore, if X is any spae, it follows that X is �C(X)-Ohio omplete. On the other hand, for every in�nite ardinal �, there exist spaeswhih are not �-Ohio omplete, as it is shown in the next example (see also [4,Example 5.2℄).Example 2.1. Consider the ardinal �+ endowed with the disrete topology andits one point-ompati�ation �+ [ f1g. The example is the subspae X of theprodut Z = (�+ [ f1g)� (�+ [ f1g) where X = (�+ � �+) [ f(1;1)g.If G is a G�-subset of Z that ontains the point (1;1), then G \ (Z nX) isnon-empty, so X is not a G�-subset of Z. Similarly, Z nX ontains no non-emptyG�-subset of Z; this learly implies that X is not �-Ohio omplete.It is worth noting that, for a large lass of ardinals �, the spae X we havejust onstruted has a good ompati�ation, even if it is not �-Ohio omplete.Indeed, assume that � is a non-measurable ardinal number. Then, the ardinal�+ is non-measurable as well, and in this ase it is well-known that the disretespae of ardinality �+ is realompat (see [6, Exerise 3.11.D(a)℄). It followsthat, under this hypothesis, the spae X is realompat (see [6, Exerise 3.11.A℄),therefore its �Ceh-Stone ompati�ation �X is good by [6, Theorem 3.11.10℄.This means that, for a �xed ardinal �, if the �Ceh-Stone ompati�ation ofa spae X is �-good for X , the spae X need not be �-Ohio omplete. On theother hand, if a spae X has a �-good ompati�ation X , then the �Ceh-Stoneompati�ation �X of X is always �-good for X , as it is shown in the nextproposition.Proposition 2.2. LetX be a spae and let X 2 �O(X). Then fÆX : ÆX 2 C(X)and ÆX � Xg � �O(X).For the simple proof see [3, Proposition 4.3℄.3. A haraterization of losed subspaes of �-Ohio omplete spaesIn [3℄ we asked whether losed subspaes of Ohio omplete spaes are againOhio omplete. Unfortunately we do not know the answer, as we do not knowwhether losed subspaes of �-Ohio omplete spaes are again �-Ohio omplete.However, there are some positive results; we will prove them in this setion.



More on �-Ohio ompleteness 553Proposition 2.2 asserts that if a spae X has a �-good ompati�ation X ,then every ompati�ation greater than or equal to X (with respet to theorder �) is �-good for X . However, if a spae is a losed subspae of a �-Ohioomplete spae, then a sort of omplementary property holds, as we are going toshow. The formulation of the result is new, but it has atually been proved in [3℄.We inlude the proof for ompleteness sake.Lemma 3.1. Let Y be a losed subspae of X . Fix a ompati�ation �X of Xand let Y = Y �X . Then, for every ompati�ation ÆY of Y suh that ÆY � Y ,there exists some ompati�ation %X of X suh that ÆY = Y %X and %X � �X .Proof: Fix a ompati�ation ÆY of Y suh that ÆY � Y . Hene, there existsa ontinuous map f : Y ! ÆY suh that f(y) = y, for every y 2 Y . Considerthe adjuntion spae Z = �X [f ÆY . Clearly Z is a ompat Hausdor� spae,sine it is the image of the ompat spae �X � ÆY under a losed ontinuousfuntion, that is, the natural quotient mapping �. Observe that � is losed sinef is losed (see for instane [6, p. 94℄).First we shall prove that X , onsidered as a subspae of Z, has the originaltopology, by showing that ��X : X ! �(X) is a homeomorphism. To verify that��X is one-to-one, pik two di�erent points x; y 2 X . Observe that, sine Y islosed in X , we have (Y nY )\X = ;. There are three di�erent ases to onsider.If x; y 2 X nY we have x; y 2 �X nY and then, by onstrution, the equivalenelasses of x and y are fxg and fyg respetively. If x 2 X n Y and y 2 Y , theequivalene lasses of x and y are fxg and fyg [ f�1(y), respetively. Finally, ifx; y 2 Y , the equivalene lasses of x and y are fxg [ f�1(x) and fyg [ f�1(y),respetively. In all ases we have �(x) 6= �(y). This proves that ��X is one-to-one.We will now prove that ��X is losed. As we observed before � is losed. LetD be a losed subspae of X , then we may �nd a losed subset C of �X � ÆY ,suh that D = C \X . It follows that �(D) = �(C \X) = �(C) \ X is a losedsubset of X . This shows that ��X is a homeomorphism.In a similar way we an prove that ÆY as a subspae of Z has the originaltopology. It follows that Y Z = ÆY .Sine the spae Z is learly a ompati�ation of X suh that Z � �X , we aredone. �Given a spae X we say that a ompati�ation X of X is very �-good iffÆX : ÆX 2 C(X) and ÆX � Xg � �O(X). In partiular, if X is a very �-goodompati�ation for X , then every ompati�ation ÆX of X suh that ÆX � X ,is very �-good for X .Theorem 3.2. Let Y be a losed subspae of a spae X . Assume that X has avery �-good ompati�ation �X . Then Y = Y (losure in �X) is a very �-goodompati�ation for Y .Proof: Fix a ompati�ation ÆY of Y suh that ÆY � Y . By Lemma 3.1,there exists a ompati�ation %X of X suh that ÆY = Y %X and %X � �X .



554 D. BasileSine �X is a very �-good ompati�ation for X , the ompati�ation %X is�-good for X . Let S be a G�-subset of %X that is �-good for X . Then the setS \ ÆY is G�-good for Y . This ompletes the proof. �An appliation of Theorem 3.2 is the following result, whih shows that �-Ohioompleteness is hereditary with respet to losed and C�-embedded subspaes(see also [3℄).Corollary 3.3. Let Y be a losed C�-embedded subspae of a �-Ohio ompletespae X . Then Y is �-Ohio omplete.Proof: Closures are taken in �X . It follows from Theorem 3.2 that Y is a very�-good ompati�ation for Y . But Y = �Y , by [6, Corollary 3.6.7℄. This provesthat Y is �-Ohio omplete. �Corollary 3.4. Let Y be a losed subspae of a �-Ohio omplete normal spaeX .Then Y is �-Ohio omplete.If A � X , a ontinuous funtion f : X ! A is alled a retration of X onto A,if f(x) = x for all x 2 A. In this ase A is alled a retrat of X .Corollary 3.5. (1) Every lopen subspae of a �-Ohio omplete spae is �-Ohio omplete.(2) Every retrat of a �-Ohio omplete spae is �-Ohio omplete.Proof: This follows from the fat that lopen subspaes and retrats are losedand C�-embedded subspaes. �Unfortunately this does not answer to the following:Question 3.6. Is �-Ohio ompleteness a losed-hereditary property?Theorem 3.2 implies in partiular that a losed subspae of a �-Ohio ompletespae has some very �-good ompati�ation. It is pretty natural to ask whetherthe onverse is true, that is, whether, given a spae having a very �-good om-pati�ation, it an be embedded as a losed subspae in some �-Ohio ompletespae.The following theorem shows that, if � is an unountable ardinal number, theanswer is yes.Theorem 3.7. Let � be an unountable ardinal number. The following state-ments are equivalent.(1) Y is a losed subspae of a �-Ohio omplete spae X .(2) There exists a very �-good ompati�ation Y of Y .Proof: (1) ) (2) follows from Theorem 3.2.(2) ) (1). Fix a very �-good ompati�ation Y of Y . Consider the ordinalspae !1+1 and let Z be the spae (!1+1)� Y , and let X be the subspae of Zgiven by �!1 � Y � [ f!1g � Y:



More on �-Ohio ompleteness 555Then Y is learly a losed subspae of X , so to prove the theorem it suÆes toshow that X is �-Ohio omplete.First observe that �X = Z. Indeed, note that �(!1�Y ) = (!1+1)�Y = Z.This an be found in [6, Problem 3.12.20()℄. Sine !1 � Y � X � Z, it followsthat �X = Z by [6, Corollary 3.6.9℄.To show that X is �-Ohio omplete, �x a ompati�ation �X of X . Then�X � �X = Z. So we may �x a ontinuous funtion f : Z ! �X suh thatf � X is the identity on X . We let g be the restrition of f to the set f!1g� Y .Note that sine the remainder �X nX is ontained in the domain of g, it followsthat the remainder �X n X is ontained in the range of g. So the range of g isgiven by W = (!1 � Y ) [ (�X nX):Clearly, the funtion g witnesses the fat that W � Y . By assumption it followsthat W is a �-good ompati�ation for f!1g�Y , so we may �x a G�-subset S of�X suh that every point in (W \S)n (f!1g�Y ) an be separated from f!1g�Yby a G�-subset of W .Now let S0 = (!1 � Y ) [ S. Sine !1 � Y is loally ompat, it is an opensubset of �X and therefore S0 is aG�-subset of �X . We laim that S0 is aG�-goodsubset for X .So pik an arbitrary point p 2 S0 nX . Then p 2 S n (f!1g� Y ). By the hoieof S, there is a G�-subset T of W suh that p 2 T and T \ (f!1g � Y ) = ;.Now note that !1� Y is the union of !1-many ompat subspaes and therefore�X n (!1 � Y ) = W is a G!1-subset and hene a G�-subset of �X . But thenT is also a G�-subset of �X . Sine T is disjoint from X , this set separates thepoint p from X . This ompletes the proof. �Question 3.8. Does the equivalene of Theorem 3:7 also hold for � = !?4. Produts of �-Ohio omplete spaesAs we said in the introdution we do not know whether �-Ohio ompleteness is�nitely multipliative. Atually, we do not know if even the produt of a �-Ohioomplete spae with a ompat spae is again �-Ohio omplete. However, thereis some relation between these questions and Question 3.6, as the next theoremshows (see also [3, Theorem 3.4℄):Theorem 4.1. Let � be an in�nite ardinal number. Consider the followingstatements.(1) Preimages of �-Ohio omplete spaes under perfet mappings are �-Ohioomplete.(2) The produt of a �-Ohio omplete spae and a ompat spae is always�-Ohio omplete.(3) Every losed subspae of a �-Ohio omplete spae is �-Ohio omplete.Then (1), (2)) (3).



556 D. BasileProof: To prove that (1) ) (2), let X be a �-Ohio omplete spae and K be aompat spae. Then �X : X �K ! X is a perfet mapping, so the hypothesisimplies that X �K is �-Ohio omplete.For (2) ) (3), let Y be a losed subspae of a �-Ohio omplete spae X .Consider the produt Z = X��Y and its subspae �(Y ). By [6, Theorem 3.6.1℄,Y is C�-embedded in �Y . From this fat it easily follows that �(Y ) is a C�-embedded opy of Y in Z. Sine �(Y ) is also losed in Z, by Corollary 3.3 itfollows that if Z is �-Ohio omplete then so is Y .We �nally prove that (2) ) (1). Sine (2) ) (3), it follows from [6, Theo-rem 3.7.26℄ that (1) holds. �Therefore, if Question 4.2 below has a positive answer, then Question 3.6 hasa positive answer as well.Question 4.2. Is the produt of a �-Ohio omplete spae with a ompat spaeagain �-Ohio omplete?On the other hand, it is straightforward to see that if a produt spae is �-Ohioomplete, then eah of its fators is �-Ohio omplete as well.Proposition 4.3. Let X = Q�<� X� be a �-Ohio omplete spae. Then, forevery � < � , the spae X� is �-Ohio omplete.Proof: Note that every X� is a retrat of X . Now it suÆes to apply Corol-lary 3.5(2). �The following results show that the produt of �-many �-Ohio omplete spaeshas many �-good ompati�ations.Lemma 4.4. Let fX� : � < �g be a family of spaes. For every � < �, let S�be a G�-subset of X�. Then Q�<� S� is a G�-subset of X =Q�<�X�.Proposition 4.5. Let fX� : � < �g be a family of spaes. For every � < �, let�X� 2 �O(X�). Then Q�<� �X� 2 �O(Q�<�X�).Proof: Sine �X� 2 �O(X�), for every � < � there exists a G�-subset S� of�X� whih is �-good with respet to X�. By Lemma 4.4, the set Q�<� S� isa G�-subset of Q�<� �X� that learly ontains Q�<�X�. We will show thatQ�<� S� is �-good with respet to Q�<�X�.So, pik a point p = (p�)�<� 2 Q�<� S� nQ�<�X�. Then, for some � < �,we have p� 2 S� nX�. Therefore, there exists a G�-subset T� of �X� ontainingp� and missing X�. The set Z = ��1� (T�) is a G�-subset of Q�<� �X� thatontains p and misses Q�<�X�. This proves the proposition. �The proof of the preeding proposition is based on the fat that the intersetionof �-many G�-subsets is again a G�-subset. Sine this property may fail for largerintersetions, we might expet that Proposition 4.5 does not generalize to produtswith �+-many fators. The next proposition shows that in fat this is the ase.



More on �-Ohio ompleteness 557Proposition 4.6. Let Y be the ardinal �+ endowed with either the disrete orthe order topology, and onsider its one-point ompati�ation !Y = Y [ f1g.Then (!Y )�+ is not a �-good ompati�ation for Y �+ .Proof: Observe that the point 1 is not a G�-subset of !Y . Hene, Y �+ isG�-dense in (!Y )�+ . But its remainder (!Y )�+ n Y �+ is G�-dense in (!Y )�+ aswell. So (!Y )�+ annot be a �-good ompati�ation for Y �+ . �Corollary 4.7. If the ardinal �+ is endowed with either the order or the disretetopology, the spae (�+)�+ is not �-Ohio omplete.An appliation of this result is that the limit of an inverse system of �-Ohioomplete spaes need not be �-Ohio omplete.Proposition 4.8. The limit of an inverse system of �-Ohio omplete spaes neednot be �-Ohio omplete.Proof: If � < �+, then it follows from [9, Proposition 1.10℄ that �C((�+)�) �j�j � �. So it is lear that (�+)� is �-Ohio omplete. Now observe that (�+)�+an be seen as the inverse limit of the system f(�+)�; ��� ; �+g, where ��� : (�+)� !(�+)� is the usual projetion. �Remark 4.9. Let us remark that the behaviour of the spae (�+)�+ an be dif-ferent if we onsider �+ endowed with the disrete or with the order topology.Indeed, if �+ has the disrete topology, then, for a large lass of ardinals (namelyall non-measurable ardinals �, see [6, Exerise 3.11.D(a)℄), the spae (�+)�+ isrealompat and then it has a �-good ompati�ation.If we now onsider �+ with the order topology and we assume that � = !,then the spae !!11 is pseudoompat (see, for example [6, Exerise 3.12.21.(e)℄).By a well-known result of Gliksberg ([7℄), we have �(!!11 ) = (�!1)!1 . Sine�!1 = !1+1, Proposition 4.6 implies that �(!!11 ) is not a good ompati�ationfor !!11 . Therefore, it follows by Proposition 2.2, that !!11 does not have any goodompati�ation.A natural question is then whether the spae !�+ is or is not �-Ohio omplete.Observe that the argument used in Proposition 4.6 annot be applied to !�+ :every produt ompati�ation of !�+ is indeed even good. This is a onsequeneof the next proposition. We will however answer our question in Corollary 4.16below.Reall that the ompat overing number of a spae X , denoted by kov(X),is the smallest ardinality of a olletion K of ompat subsets of X suh thatX = SK. It is well-known and easy to show that for a spae X and for anyompati�ation X of X , we have kov(X nX) = �C(X).Proposition 4.10. Let X = Q�<�X�, where kov(X�) � � for every � < �,and let �X� 2 C(X�), for every � < �. Then Q�<� �X� 2 �O(X).



558 D. BasileProof: Let Z =Q�<� �X�. We will show that Z itself is the good G�-subsetwe are looking for. Note that, sine kov(X�) � �, the remainder �X� nX� isa G�-subset of �X�, for every � < �.Now, �x a point x = (x�)�<� 2 Z nX . So, there exists some � < � suh thatx� 2 �X� nX�. The set W = ��1� (�X� nX�), is a G�-subset of Z that missesX . This ompletes the proof. �Corollary 4.11. If a produt spae has �-ompat fators, then any ompati�-ation of its produt is good.This raises the question whether spaes like !�+ or R�+ are �-Ohio ompleteor not. Furthermore it turns out that �nding a non �-good ompati�ation forsuh spaes is not trivial.Nevertheless, using Proposition 4.6, whih is a very simple but very usefulresult, we will be able to prove that, if � is less than the �rst weakly inaessibleardinal, neither !�+ nor R�+ is �-Ohio omplete.Theorem 4.12. If X ontains a losed opy of the spae �+, endowed eitherwith the disrete or the order topology, then X�+ is not �-Ohio omplete.Proof: Let us prove the theorem assuming that X ontains a losed opy of thedisrete spae of ardinality �+. The other ase is analogous. Sine X ontainsa losed opy of �+, the spae X�+ ontains a losed opy of (�+)�+ . Assume,striving for a ontradition, that X�+ is �-Ohio omplete and let Z = (X)�+ ,where X is any ompati�ation of X . Closures are taken in Z.Our hypothesis, ombined with Theorem 3.2, imply that (�+)�+ is a very �-good ompati�ation for (�+)�+ . Sine (�+)�+ � (!�+)�+ , the latter produtis a �-good ompati�ation for (�+)�+ , whih is a ontradition with Proposi-tion 4.6. �From the proof of Theorem 4.12 we get the following:Corollary 4.13. If X ontains a losed opy of the spae �+, endowed eitherwith the disrete or the order topology, then no ompati�ation of X�+ of theform (X)�+ an be very �-good for X�+ .Reall that an unountable ardinal is alled weakly inaessible if it is a regularlimit ardinal. We denote by � the �rst weakly inaessible ardinal.Corollary 4.14. Assume that � < �. If X�+ is �-Ohio omplete, then X isountably ompat.Proof: Observe at �rst that if � < �, then �+ < �. If X were not ountablyompat, then X�+ would ontain a losed opy of !�+ . Sine �+ < �, the power!�+ ontains a losed opy of the disrete spae �+, by [8℄. Then X�+ wouldontain a losed opy of �+, whih is a ontradition with Theorem 4.12. �Question 4.15. Can we improve Corollary 4:14 substituting `ountably ompat'by `ompat'?
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