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More on k-Ohio completeness

D. BASILE

Abstract. We study closed subspaces of k-Ohio complete spaces and, for k un-
countable cardinal, we prove a characterization for them. We then investigate
the behaviour of products of k-Ohio complete spaces. We prove that, if the
cardinal k* is endowed with either the order or the discrete topology, the space
(KZ+)K+ is not k-Ohio complete. As a consequence, we show that, if k is less
than the first weakly inaccessible cardinal, then neither the space w’”'Jr, nor the
ot . .
space R®  is k-Ohio complete.
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1. Introduction

All spaces under discussion are Tychonoff. For all undefined notions we refer
to [6].

The property of k-Ohio completeness was introduced in [5] and it is a natural
generalization of Ohio completeness, which was introduced by Arhangel’skii in [1]
to study remainders in compactifications of topological spaces.

Recall that a topological space X is k-Ohio complete if for every compactifica-
tion vX of X there exists a G-subset S of vX such that X C S and for every
y € S\ X, there is a G-subset of yX that contains y and misses X.

In [5] particular attention was given to sum theorems for xk-Ohio complete
spaces. The aim of this paper is focusing on the behaviour that closed subspaces
of k-Ohio complete spaces and products of k-Ohio complete spaces have. Indeed
it is still an open question whether the k-Ohio completeness property is closed-
hereditary or finitely multiplicative.

The paper is divided in two parts. In the first we investigate the behaviour
of closed subspaces. Our main result is a characterization of closed subspaces
of k-Ohio complete spaces, for k uncountable cardinal. In the second part we
study products of xk-Ohio complete spaces. We prove that, if the cardinal ¥ is
endowed with either the order or the discrete topology, the space (/@L)"Jr is not
k-Ohio complete. From this results it follows that, for a large class of cardinals &,
neither the space w*" nor the space RE" is k-Ohio complete. For more information
see [2].
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2. Preliminaries

Following the notation of [4] and [5] we say that a compactification vX of a
space X is k-good for X if there exists a G-subset S of yX such that X C S and
for every y € S\ X, there is a G-subset of yX that contains y and misses X. We
denote with the symbol KO (X) the collection of all k-good compactifications of X.
Similarly, we say that a G-subset of a compactification yX of X is a G,-good
subset for X if it contains X, and if every point of S\ X can be separated from
X by a G-subset of yX. If Kk = w we omit the symbol w.

Observe that any space is k-Ohio complete, for some large enough . Recall
that the Cech-number of a space X, denoted by C(X), is the smallest cardinality
of a collection U of open subsets of yX such that X = U, where vX is any
compactification of X. Therefore, if X is any space, it follows that X is C(X)-
Ohio complete. On the other hand, for every infinite cardinal k, there exist spaces
which are not x-Ohio complete, as it is shown in the next example (see also [4,
Example 5.2]).

Ezample 2.1. Consider the cardinal k* endowed with the discrete topology and
its one point-compactification ¥ U {co}. The example is the subspace X of the
product Z = (kT U {oo}) x (kT U {oo}) where X = (k* x k) U {(00, 00)}.

If G is a Gy-subset of Z that contains the point (o0, 00), then G N (Z \ X) is
non-empty, so X is not a G-subset of Z. Similarly, Z\ X contains no non-empty
G -subset of Z; this clearly implies that X is not k-Ohio complete.

It is worth noting that, for a large class of cardinals x, the space X we have
just constructed has a good compactification, even if it is not k-Ohio complete.
Indeed, assume that k is a non-measurable cardinal number. Then, the cardinal
k%1 is non-measurable as well, and in this case it is well-known that the discrete
space of cardinality xT is realcompact (see [6, Exercise 3.11.D(a)]). It follows
that, under this hypothesis, the space X is realcompact (see [6, Exercise 3.11.A]),
therefore its Cech-Stone compactification SX is good by [6, Theorem 3.11.10].

This means that, for a fixed cardinal &, if the Cech-Stone compactification of
a space X is k-good for X, the space X need not be k-Ohio complete. On the
other hand, if a space X has a k-good compactification vX, then the Cech-Stone
compactification X of X is always k-good for X, as it is shown in the next
proposition.

Proposition 2.2. Let X be a space and let yX € kO(X). Then {§X : §X € C(X)
and 60X >~vX} C kO(X).

For the simple proof see [3, Proposition 4.3].

3. A characterization of closed subspaces of k-Ohio complete spaces

In [3] we asked whether closed subspaces of Ohio complete spaces are again
Ohio complete. Unfortunately we do not know the answer, as we do not know
whether closed subspaces of k-Ohio complete spaces are again k-Ohio complete.
However, there are some positive results; we will prove them in this section.
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Proposition 2.2 asserts that if a space X has a k-good compactification y.X,
then every compactification greater than or equal to X (with respect to the
order <) is k-good for X. However, if a space is a closed subspace of a x-Ohio
complete space, then a sort of complementary property holds, as we are going to
show. The formulation of the result is new, but it has actually been proved in [3].
We include the proof for completeness sake.

Lemma 3.1. Let Y be a closed subspace of X. Fix a compactification aX of X
and let vY = ver. Then, for every compactification 6Y of Y such that §Y < ~Y,
there exists some compactification 9 X of X such that 0Y = v and oX < aX.

ProorF: Fix a compactification dY of Y such that Y < ~vY. Hence, there exists
a continuous map f : vY — §Y such that f(y) = y, for every y € Y. Consider
the adjunction space Z = aX Uy Y. Clearly Z is a compact Hausdorff space,
since it is the image of the compact space aX @ ¢Y under a closed continuous
function, that is, the natural quotient mapping m. Observe that 7 is closed since
f is closed (see for instance [6, p.94]).

First we shall prove that X, considered as a subspace of Z, has the original
topology, by showing that 7]X : X — 7(X) is a homeomorphism. To verify that
w[X is one-to-one, pick two different points z,y € X. Observe that, since Y is
closed in X, we have (YY'\Y)NX = (). There are three different cases to consider.
Ifz,y € X\Y we have z,y € aX \ 7Y and then, by construction, the equivalence
classes of z and y are {z} and {y} respectively. If z € X \ Y and y € Y, the
equivalence classes of  and y are {z} and {y} U f~1(y), respectively. Finally, if
z,y € Y, the equivalence classes of x and y are {z} U f~!(z) and {y} U f~'(v),
respectively. In all cases we have w(z) # n(y). This proves that 7 [ X is one-to-one.

We will now prove that «[X is closed. As we observed before 7 is closed. Let
D be a closed subspace of X, then we may find a closed subset C' of aX & §Y,
such that D = C'N X. It follows that 7(D) = a(CNX) =x(C)N X is a closed
subset of X. This shows that 7[X is a homeomorphism.

In a similar way we can prove that §Y as a subspace of Z has the original
topology. It follows that Y7 = sv.

Since the space Z is clearly a compactification of X such that Z < aX, we are
done. O

Given a space X we say that a compactification vX of X is very k-good if
{6X :6X € C(X) and 6X < ~vX} C kO(X). In particular, if vX is a very x-good
compactification for X, then every compactification § X of X such that §X < ~X,
is very k-good for X.

Theorem 3.2. Let Y be a closed subspace of a space X. Assume that X has a
very k-good compactification aX. ThenvY =Y (closure in aX) is a very k-good
compactification for Y.

ProorF: Fix a compactification dY of YV such that Y < ~Y. By Lemma 3.1,
there exists a compactification pX of X such that §Y = v*¥ and oX < aX.
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Since aX is a very k-good compactification for X, the compactification X is
k-good for X. Let S be a Gy-subset of X that is k-good for X. Then the set
SNY is G,-good for Y. This completes the proof. O

An application of Theorem 3.2 is the following result, which shows that x-Ohio
completeness is hereditary with respect to closed and C*-embedded subspaces
(see also [3]).

Corollary 3.3. Let Y be a closed C*-embedded subspace of a k-Ohio complete
space X. Then Y is k-Ohio complete.

PrOOF: Closures are taken in SX. It follows from Theorem 3.2 that Y is a very
k-good compactification for Y. But Y = Y, by [6, Corollary 3.6.7]. This proves
that Y is k-Ohio complete. O

Corollary 3.4. Let Y be a closed subspace of a k-Ohio complete normal space X .
Then Y is k-Ohio complete.

If A C X, a continuous function f : X — A is called a retraction of X onto A,
if f(z) =z for all z € A. In this case A is called a retract of X.

Corollary 3.5. (1) Every clopen subspace of a k-Ohio complete space is k-
Ohio complete.
(2) Every retract of a k-Ohio complete space is k-Ohio complete.

PROOF: This follows from the fact that clopen subspaces and retracts are closed
and C*-embedded subspaces. O

Unfortunately this does not answer to the following:
Question 3.6. Is k-Ohio completeness a closed-hereditary property?

Theorem 3.2 implies in particular that a closed subspace of a k-Ohio complete
space has some very k-good compactification. It is pretty natural to ask whether
the converse is true, that is, whether, given a space having a very k-good com-
pactification, it can be embedded as a closed subspace in some x-Ohio complete
space.

The following theorem shows that, if k is an uncountable cardinal number, the
answer is yes.

Theorem 3.7. Let k be an uncountable cardinal number. The following state-
ments are equivalent.

(1) Y is a closed subspace of a k-Ohio complete space X .

(2) There exists a very k-good compactification vY of Y.

Proo¥F: (1) = (2) follows from Theorem 3.2.

(2) = (1). Fix a very k-good compactification 7Y of Y. Consider the ordinal
space wy +1 and let Z be the space (w;+1) X 7Y, and let X be the subspace of Z
given by

(w1 x7Y) U{wi} x Y.



More on k-Ohio completeness

Then Y is clearly a closed subspace of X, so to prove the theorem it suffices to
show that X is k-Ohio complete.

First observe that 3X = Z. Indeed, note that 8(w; x7Y) = (w1 +1) xvY = Z.
This can be found in [6, Problem 3.12.20(c)]. Since w; x 7Y C X C Z, it follows
that 8X = Z by [6, Corollary 3.6.9].

To show that X is k-Ohio complete, fix a compactification aX of X. Then
aX < pX = Z. So we may fix a continuous function f : Z — aX such that
f I X is the identity on X. We let g be the restriction of f to the set {w;} x 7Y
Note that since the remainder X \ X is contained in the domain of g, it follows
that the remainder aX \ X is contained in the range of g. So the range of g is
given by

W= (w1 xY)U (aX \ X).
Clearly, the function g witnesses the fact that W < ~Y. By assumption it follows
that W is a k-good compactification for {w;} X Y, so we may fix a Gy-subset S of
aX such that every point in (WNS)\ ({w1} xY) can be separated from {w;} xY
by a G-subset of W.

Now let S’ = (w; x vY) U S. Since w; x 7Y is locally compact, it is an open
subset of X and therefore S’ is a G-subset of aX. We claim that S’ is a Gx-good
subset for X.

So pick an arbitrary point p € S'\ X. Then p € S\ ({wi} xY). By the choice
of S, there is a Gy-subset T" of W such that p € T and TN ({w1} x Y) = 0.
Now note that w; x Y is the union of w;-many compact subspaces and therefore
aX \ (wy x7Y) = W is a Gy, -subset and hence a G-subset of aX. But then
T is also a G-subset of aX. Since T is disjoint from X, this set separates the
point p from X. This completes the proof. d

Question 3.8. Does the equivalence of Theorem 3.7 also hold for k = w?

4. Products of k-Ohio complete spaces

As we said in the introduction we do not know whether x-Ohio completeness is
finitely multiplicative. Actually, we do not know if even the product of a k-Ohio
complete space with a compact space is again k-Ohio complete. However, there
is some relation between these questions and Question 3.6, as the next theorem
shows (see also [3, Theorem 3.4]):

Theorem 4.1. Let & be an infinite cardinal number. Consider the following
statements.

(1) Preimages of k-Ohio complete spaces under perfect mappings are x-Ohio
complete.

(2) The product of a k-Ohio complete space and a compact space is always
k-Ohio complete.

(3) Every closed subspace of a k-Ohio complete space is k-Ohio complete.

Then (1) & (2) = (3).
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Proor: To prove that (1) = (2), let X be a x-Ohio complete space and K be a
compact space. Then 7y : X x K — X is a perfect mapping, so the hypothesis
implies that X x K is k-Ohio complete.

For (2) = (3), let Y be a closed subspace of a x-Ohio complete space X.
Consider the product Z = X x §Y and its subspace A(Y). By [6, Theorem 3.6.1],
Y is C*-embedded in fY. From this fact it easily follows that A(Y) is a C*-
embedded copy of Y in Z. Since A(Y) is also closed in Z, by Corollary 3.3 it
follows that if Z is k-Ohio complete then so is Y.

We finally prove that (2) = (1). Since (2) = (3), it follows from [6, Theo-
rem 3.7.26] that (1) holds. O

Therefore, if Question 4.2 below has a positive answer, then Question 3.6 has
a positive answer as well.

Question 4.2. Is the product of a k-Ohio complete space with a compact space
again k-Ohio complete?

On the other hand, it is straightforward to see that if a product space is k-Ohio
complete, then each of its factors is k-Ohio complete as well.

Proposition 4.3. Let X = [],_, X, be a k-Ohio complete space. Then, for
every a < T, the space X, is k-Ohio complete.

ProoF: Note that every X, is a retract of X. Now it suffices to apply Corol-
lary 3.5(2). O

The following results show that the product of k-many k-Ohio complete spaces
has many k-good compactifications.

Lemma 4.4. Let {X, : a < k} be a family of spaces. For every a < k, let S,
be a G-subset of X,. Then H(K,i S, is a G,.-subset of X = H(KH X,

Proposition 4.5. Let {X, : @ < k} be a family of spaces. For every a < &, let
YaXa € KO(Xy). Then [], ., 7aXa € €O(]] Xa)-

a<k

PrOOF: Since v, X, € K0(X,), for every a < k there exists a G-subset S, of
YaXo Wwhich is k-good with respect to X,. By Lemma 4.4, the set [],_, S is
a Gy-subset of J],_, 7aXq that clearly contains J] X,. We will show that
[I.<. Sa is k-good with respect to [T, ., Xa-

So, pick a point p = (pa)a<k € [[ocr Sa \ [lacy Xa- Then, for some § < &,
we have pg € Sz \ Xj3. Therefore, there exists a G ,-subset Tz of 75X containing
ps and missing Xg. The set Z = wgl(Tg) is a G-subset of [[,.,.vaXa that
X4. This proves the proposition. d

a<kK

contains p and misses [], .,

The proof of the preceding proposition is based on the fact that the intersection
of k-many G;-subsets is again a G-subset. Since this property may fail for larger
intersections, we might expect that Proposition 4.5 does not generalize to products
with k*-many factors. The next proposition shows that in fact this is the case.
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Proposition 4.6. Let Y be the cardinal k™ endowed with either the discrete or
the order topology, and consider its one-point compactification wY =Y U {oo}.
Then (wY)*" is not a k-good compactification for Y.

PRrROOF: Observe that the point oo is not a G-subset of wY. Hence, Ve s
Gr-dense in (wY)"". But its remainder (wY)®" \ Y*" is G,-dense in (wY)*" as

well. So (wY)*" cannot be a k-good compactification for Y. O

Corollary 4.7. If the cardinal kT is endowed with either the order or the discrete
topology, the space (/ﬁ)’iJr is not k-Ohio complete.

An application of this result is that the limit of an inverse system of x-Ohio
complete spaces need not be k-Ohio complete.

Proposition 4.8. The limit of an inverse system of k-Ohio complete spaces need
not be k-Ohio complete.

Proor: If a < k*, then it follows from [9, Proposition 1.10] that C((kT)*) <
la| < k. So it is clear that (k) is k-Ohio complete. Now observe that (k1)*

can be seen as the inverse limit of the system {(x*)*, 7§, "}, where 7§ : (k*)* —
(kT)# is the usual projection. O

Remark 4.9. Let us remark that the behaviour of the space (f»ﬁL)"Jr can be dif-
ferent if we consider k™ endowed with the discrete or with the order topology.
Indeed, if &™ has the discrete topology, then, for a large class of cardinals (namely
all non-measurable cardinals &, see [6, Exercise 3.11.D(a)]), the space (I€+)N+ is
realcompact and then it has a k-good compactification.

If we now consider k* with the order topology and we assume that K = w,
then the space w{’* is pseudocompact (see, for example [6, Exercise 3.12.21.(e)]).
By a well-known result of Glicksberg ([7]), we have S(wS") = (Bw;)“*. Since
fw; = wi+1, Proposition 4.6 implies that 8(wi™") is not a good compactification
for wi’*. Therefore, it follows by Proposition 2.2, that w;* does not have any good

compactification.

A natural question is then whether the space w*" is or is not k-Ohio complete.
Observe that the argument used in Proposition 4.6 cannot be applied to we
every product compactification of w*" is indeed even good. This is a consequence
of the next proposition. We will however answer our question in Corollary 4.16
below.

Recall that the compact covering number of a space X, denoted by kcov(X),
is the smallest cardinality of a collection X of compact subsets of X such that
X = UK. It is well-known and easy to show that for a space X and for any
compactification yX of X, we have keov(yX \ X) = C(X).

Proposition 4.10. Let X =[] _, X,, where kcov(X,) < X for every a < &,
and let v, Xo € C(Xy), for every a < k. Then [], ., YaXa € AO(X).
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PrRoOOF: Let Z = H(KH YaXa. We will show that Z itself is the good G y-subset
we are looking for. Note that, since kcov(X,) < A, the remainder v, X, \ X, is
a G\-subset of v, X, for every a < k.

Now, fix a point = (24 )a<ks € Z \ X. So, there exists some a < & such that
To € YaXa \ Xo. The set W = 75 (74 Xa \ Xa), is a Gy-subset of Z that misses
X. This completes the proof. O

Corollary 4.11. If a product space has o-compact factors, then any compactifi-
cation of its product is good.

This raises the question whether spaces like w*" or R*" are k-Ohio complete
or not. Furthermore it turns out that finding a non k-good compactification for
such spaces is not, trivial.

Nevertheless, using Proposition 4.6, which is a very simple but very useful
result, we will be able to prove that, if x is less than the first weakly inaccessible
cardinal, neither w*" nor R*" is k-Ohio complete.

Theorem 4.12. If X contains a closed copy of the space kT, endowed either
with the discrete or the order topology, then X*" is not k-Ohio complete.

PROOF: Let us prove the theorem assuming that X contains a closed copy of the
discrete space of cardinality k™. The other case is analogous. Since X contains
a closed copy of kT, the space X*" contains a closed copy of (n*)’#. Assume,
striving for a contradiction, that X*" is k-Ohio complete and let Z = ('yX)“+,
where X is any compactification of X. Closures are taken in Z.

Our hypothesis, combined with Theorem 3.2, imply that (k+)r* is a very s-
good compactification for (k¥)%". Since (kT)5* > (wxt)*", the latter product
is a k-good compactification for (x7)%", which is a contradiction with Proposi-
tion 4.6. g

From the proof of Theorem 4.12 we get the following:

Corollary 4.13. If X contains a closed copy of the space k1, endowed either
with the discrete or the order topology, then no compactification of X ~* of the
form (WX)“Jr can be very k-good for X~ .

Recall that an uncountable cardinal is called weakly inaccessible if it is a regular
limit cardinal. We denote by 6 the first weakly inaccessible cardinal.

Corollary 4.14. Assume that k < 6. If X*" is k-Ohio complete, then X is
countably compact.

Proor: Observe at first that if x < 6, then kT < 6. If X were not countably
compact, then X*" would contain a closed copy of w*" . Since Kt < 6, the power
w*" contains a closed copy of the discrete space k¥, by [8]. Then X+ would

contain a closed copy of kT, which is a contradiction with Theorem 4.12. O

Question 4.15. Can we improve Corollary 4.14 substituting ‘countably compact’
by ‘compact’?
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In [3] we showed that the answer is yes for K = w.
Corollary 4.16. If k < 6, then neither w*" nor R*" is k-Ohio complete.

Corollary 4.17. If r < 6, then no compactification of w" (resp. R“+) of the
form Z*" is very k-good for w*" (resp. R").

Question 4.18. Let k < 6. Does exist some very k-good compactification for
wr" (resp. RE)?

By Theorem 3.7 this question is equivalent to the question whether, if x* is
strictly less than the first weakly inaccessible cardinal, the space wr" (resp. R“+)
can be embedded as a closed subspace in some x-Ohio complete space. Moreover,
let us point out that if Question 4.15 has a positive answer, then Question 4.18
has a negative answer.

Actually, to answer in the negative to Question 4.18 it would be enough to
show that the space (n+)"+, where kT is endowed with the discrete topology does
not have any very k-good compactification. Unfortunately we do not know the
answer to this.
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