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Commutative subloop-free loopsMartin Beaudry�, Louis Mar
handAbstra
t. We des
ribe, in a 
onstru
tive way, a family of 
ommutative loops ofodd order, n � 7, whi
h have no nontrivial subloops and whose multipli
ationgroup is isomorphi
 to the alternating group An.Keywords: loops, multipli
ation group, alternating groupClassi�
ation: 20N05, 20D061. Introdu
tionWe say that a �nite loop is subloop-free whenever it does not have propersubloops, that is, other than itself and the trivial one-element loop. For example,a redu
ed subsquare-free latin square (also 
alled N1 latin square) is the Cayleytable of a subloop-free loop. Subsquare-free latin squares are proved to exist forevery n not of the form 2i3j , with i; j � 1 [13℄, and are 
onje
tured to exist forevery n � 5. It is also fairly easy to build a subloop-free loop of any order n � 5by an ad ho
 method, su
h as spe
ifying the top half of a Cayley table (a bottomhalf always exists [11℄) where the entries equal to the identity are lo
ated in su
ha way that the table 
annot be 
ompleted in any way that 
reates the table ofa subloop.While it is well-known that the 
y
li
 groups of prime order are the only �niteasso
iative subloop-free loops, it turns out that �nite, nonasso
iative subloop-free loops are numerous and diverse. We substantiate this statement by provingthat, for every odd n � 7, there exist subloop-free loops whi
h simultaneouslysatisfy the 
onditions of being 
ommutative and having a multipli
ation groupisomorphi
 to the alternating group An.Theorem 1.1. For every odd n � 7, there exists a 
ommutative subloop-freeloop of order n whose multipli
ation group is the alternating group An.We leave aside the loops of even order. Indeed, it is a well-known fa
t, that ina symmetri
 n�n latin square the number of o

urren
es of a given obje
t on thediagonal has the same parity as n; applying this to the identity element impliesthat every 
ommutative loop of even order has a subgroup isomorphi
 to Z2.We refer the reader to [3℄, [6℄, [16℄ for detailed ba
kground on loops. In thisarti
le, all loops are �nite. Let G be a loop of order n; its operation is denoted�Corresponding author.



474 M. Beaudry, L. Mar
handby an asterisk, e.g. a � b = 
. To ea
h loop element a we asso
iate its right andleft translations , Ra and La respe
tively, de�ned by Ra(b) = b � a and La(b) =a � b. Both mappings are permutations of G. The translations generate M(G) =hf La; Ra j a 2 G gi, the multipli
ation group of G. Note that in a 
ommutativeloop, we have La = Ra for every a; we then speak of the translation of a and usethe notation La.Our des
riptions and proofs use only basi
 notions and fa
ts on groups andpermutations; they 
an be found in fundamental texts su
h as [12℄, [18℄ and weassume that they are familiar to the reader.We denote by G = f0; 1; : : : ; n� 1g the underlying set of a loop G of order n.To make our des
riptions simpler, we write them as if G were a subset of N anduse relations and operations usually en
ountered in these 
ontexts, su
h as \�"and \+". We denote by Sn the symmetri
 group overG and by An the alternatinggroup, whi
h is the set of all even permutations of G. In this arti
le we identifyan even permutation by verifying that its 
y
li
 representation 
ontains an evennumber of 
y
les of even length.We regard the multipli
ation groupM(G) as a subset of Sn; we therefore writestatements like \M(G) = Sn" instead of \M(G) is isomorphi
 to Sn".For a given loop, most of our work is done on its Cayley table, where rows and
olumns are labelled with the loop's elements, and where entry [a; b℄ 
ontains thevalue a � b. It is well known that a �nite groupoid is a loop i� its Cayley table isa redu
ed latin square; it is 
ommutative i� the table is symmetri
.The notion of multipli
ation group of a loop was introdu
ed by Albert [1℄. Theproperties of this group have been the obje
t of extensive study, in parti
ular thequestion of whi
h groups 
an be the multipli
ative group of a nonasso
iative loop.The multipli
ation group of almost every quasigroup of order n is Sn [4℄, [10℄, andit is 
onje
tured that the same holds for loops [5℄. Among those multipli
ationgroups other than Sn, the alternating group An 
an be found for almost everyorder [8℄; out result is thus an alternate proof of this statement for the loops ofodd order n � 7. Conversely, it was proved that 
ertain groups 
annot be themultipli
ation group of a loop, for example the linear groups PSL(2; q) [17℄.2. Proof of the theoremWe prove the theorem by building a family of appropriate loops for n = 37 andea
h n � 43. The smaller values of n are dealt with in the Appendix, where wegive an example of a loop for every odd order n � 41 not 
overed by our proof.The rest of this se
tion is stru
tured as follows. First, we build a n�n symmet-ri
 partially de�ned latin square, whi
h we 
all the template, and we show thatit 
an be 
ompleted to yield the Cayley table of a 
ommutative subloop-free loopwhose multipli
ation group has An as a subgroup, provided that an additional
onstraint is respe
ted. Next, we show how to �ll the template in order to ensurethat M(G) = An.From now on, let n = 2p + 1. We denote by [i; j℄ the 
ell lo
ated at theinterse
tion of row i and 
olumn j. We 
all an entry the 
ontent of this 
ell and
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e the table we build is symmetri
, we only spe
ify [i; j℄for i � j.The template is obtained from a totally unspe
i�ed n�n table in several steps.The �rst step 
onsists in �lling most of the 
ells as if we were building the Cayleytable of the 
y
li
 group Zn.� For all i; j su
h that i+j � n�1 or i+j � n+6, let [i; j℄ = i+j (mod n).Next, three of these entries are modi�ed, as follows:� [1; 2℄ = 0; [1; p+ 2℄ = 3; [p+ 4; n� 1℄ = 5.Still unde�ned is the width-6 region 
onsisting of those 
ells [i; j℄ for whi
h i � jand n � i+ j � n+5; we 
all it the 
orridor . Now we partially de�ne the 
ontentof the 
orridor by spe
ifying, on and above the diagonal, a total of 57 entriestaken from the set f0; 1; 2; 3; 4; 5g, with two ex
eptions:� [1; n� 1℄ = p+ 3; [p+ 2; p+ 4℄ = p+ 3.For the 55 other entries, we refer the reader to Figure 1, where the top right partof the template is displayed for n = 37. (With the sole ex
eption of position[1; 2℄, the top left part is identi
al to its 
ounterpart in the Cayley table of Zn.)In this �gure, the entries below the main diagonal are not represented. Theentries in those 
ells where the template is identi
al to the table of Zn, i.e. thosewhere [i; j℄ � i + j (mod n), are printed in standard font. Unspe
i�ed entriesare identi�ed with a question mark \?"; they form a set of 
ontiguous 
ells, theunde�ned zone. The remaining 59 entries are printed in boldfa
e; all of them
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handex
ept [1; 20℄ and [22; 36℄ are lo
ated in the 
orridor. Note that here, p+ 3 = 21(see positions [1; 36℄ and [20; 22℄).Two regions within the 
orridor are highlighted by borders drawn around them;they 
onsist of 15 positions ea
h, and their shape and 
ontent are identi
al. We
all them butter
ies . Observe that both ends of the unde�ned zone are delimitedwith a butter
y.Loops de�ned by 
ompleting this template have two useful properties; we pro-
eed with their statements and proofs.Lemma 2.1. If a loop has a Cayley table 
onsistent with the template and if italso satis�es the 
onstraint that [i; j℄ 6= 0 in every position where i+ j = n, thenit is subloop-free.Proof: Let k 2 G and let hki denote the subloop it generates; we show thathki = G for every k 6= 0. We �rst 
onsider k = 2: it is readily seen from the abovespe
i�
ations that [2; j℄ = j + 2 for every 2 � j � n � 3, whi
h implies that 2generates all even values between 2 and n� 1. Next, [2; n� 1℄ = 3, and from thisall odd values between 5 and n� 2 
an be generated. Finally, [2; n� 2℄ = 1 and[2; 1℄ = 0 yield h2i = G. Next, sin
e [1; 1℄ = 2, it follows that h1i = G. Reasoningas in the 
ase k = 2, it is easily veri�ed that hki = G for 3 � k � 7.In the 
enter of the template we observe [p + 1; p+ 1℄ = 3, [p + 2; p+ 2℄ = 5,[p+3; p+3℄ = 1, [p+4; p+4℄ = 7; therefore, hp+1i = hp+2i = hp+3i = hp+4i = G.Next, hn � 1i = G follows from the observation that [n; j℄ = j � 1 for everyp + 5 � j � n� 1, therefore p + 4 2 hn � 1i. Also, sin
e [p; p℄ = n� 1, we havehpi = G.We deal with the other k 2 G by indu
tion. Sin
e [k; k℄ < k for every k � p+4,we only have to 
onsider the 
ase 8 � k � p � 1. For every su
h k and every1 � j � n�k�1 we have [k; j℄ = k+ j, so that we know that every tk+ j � n�1belongs to hki as soon as we have veri�ed that j 2 hki. If n is a multiple of k,then we apply this to j = k and t = n=k � 1; the entry [k; n � k℄ is subje
t tothe 
ondition of the lemma's statement, whi
h yields [k; n � k℄ 2 f1; 2; 3; 4; 5g.Otherwise k does not divide n, i.e. n = (s+1)k� t with 0 < t < k. We are done if[k; sk℄ is nonzero. Otherwise the entry [k; sk℄ = 0 is in the 
orridor, whi
h meansn � k + sk � n+ 5. Sin
e the entries [k; n � k℄; : : : ; [k; n� 1℄ are a permutationof f0; : : : ; k � 1g, it suÆ
es to show that there is at least one ` 2 hki su
h thatn� k � ` � n� 1 and ` 6= sk. Sin
e k � p� 1 and n = 2p+1, we have s > 1 andn < 2sk < 2n. Therefore [sk; sk℄ = 2sk (mod n) = tk+ j for some 0 < j < k. Bythe above reasoning, we 
an take ` = rk + j for an appropriate r � t. �Lemma 2.2. If the Cayley table of an order-n loop G is 
onsistent with thetemplate, then An is a subgroup of M(G).Proof: By de�nition, M(G) is a transitive permutation group, and it is eas-ily veri�ed that the absen
e of a nontrivial subloop in G implies that M(G) isprimitive. By a theorem of Jordan (see [18, Theorem 13.9℄), An is a subgroupof any primitive group of degree n whi
h 
ontains a 3-
y
le. Let G be a loop as



Commutative subloop-free loops 477L2 = � 0 1 2 3 4 � � � n� 4 n� 3 n� 2 n� 12 0 4 5 6 � � � n� 2 n� 1 1 3 �L3 = � 0 1 2 3 � � � n� 5 n� 4 n� 3 n� 2 n� 13 4 5 6 � � � n� 2 n� 1 1 2 0 �Figure 2. Permutations L2 and L3in the lemma's statement. Consider the left translations L2 and L3 of 2 and 3,respe
tively; they are totally de�ned by the template and are depi
ted, in matrixnotation, on Figure 2. The reader 
an verify that both permutations 
onsist of aunique 
y
le of length n, that L2(x) = x+2 for all x =2 f1; n� 2; n� 1g, and thatL3(x) = x+3 for all x =2 fn� 3; n� 2; n� 1g. The permutations � = L2 ÆL3 and� = L3 Æ L2 di�er only on elements 2, 3 and 6, and ��1 Æ � = (2 3 6). �Finally, we give a 
riterion to de
ide whether the translation of a loop elementis an even permutation.Lemma 2.3. For every i 2 f6; : : : ; n�2g other than p+2 and p+4, the translationLi is an even permutation i� the table entries [i; n� i℄ to [i; n� i+ 5℄ 
onstitutean even permutation of f0; 1; 2; 3; 4; 5g.Proof: Consider the translation Li, i 2 f6; : : : ; n�2gnfp+2; p+4g. Taking its
omposition with the mapping x 7! x� i (mod n), whi
h is an even permutation,yields a permutation with �xed points everywhere ex
ept in the set fn � i; n �i+ 1; : : : ; n� i+ 5g. �The translations not 
overed by this lemma are fully spe
i�ed by the template.Verifying that they have even parity is done for L4 and L5 by the above reasoning;meanwhile, L2 and L3 
onsist of a unique 
y
le of odd length, and L1 
onsists ofa 3-
y
le and two other 
y
les of equal parity. Reasoning as above shows that the
ompositions (5 p + 3) Æ Ln�1, (3 p + 3) Æ Lp+2 and (5 p + 3) Æ Lp+4 are oddpermutations.To 
omplete the proof of the theorem, it suÆ
es to show how to �ll ea
h lineand 
olumn of the unde�ned zone with an even permutation of f0; 1; 2; 3; 4; 5g,while respe
ting the 
ondition that [i; n � i℄ 6= 0 for all i 6= 0. For this wede�ne a spe
ial type of patterns whi
h we 
all blo
ks . A blo
k of index m is anarray of 6(m + 1) + 9 
ells lo
ated on six 
onse
utive antidiagonals; there arem + 1 
omplete rows (six 
ells ea
h) and 9 
ells pla
ed on 5 in
omplete rows.Every entry is de�ned, every 
omplete row and 
olumn is an even permutationof f0; 1; 2; 3; 4; 5g, and the ends of this array 
onstitute two disjoint 
opies of thebutter
y. Two blo
ks 
an be 
ombined to build a larger blo
k, by making the topright butter
y of one blo
k overlap with the bottom left butter
y of the other,as illustrated in Figure 3. Combining two blo
ks of orders m and q, respe
tively,
reates a blo
k of order m+ q.Thus, �lling the template is simply done by inserting a blo
k whi
h �ts theunde�ned zone. Rows 7 to p� 1 in the table 
oin
ide with the m+1 fully de�ned
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hand B13 3 � � �& 2 1 � � �3 1 0 � � �2 1 0 4 � � �1 0 2 3 5 � � �1 3 4 0 5 23 2 0 1 5 41 2 0 5 3 42 0 1 3 4 53 1 5 0 4 21 2 0 3 4 5B10 1 2 0 3 4 5& 3 0 4 1 5 21 2 3 0 5 41 0 5 2 3 41 3 2 0 4 53 2 0 4 1 51 2 0 5 3 42 0 1 3 4 53 1 5 0 4 21 2 0 3 4 54 52Figure 3. Con
atenation of blo
ks B10 and B13rows in the blo
k, so that its order is m = p � 8, or 
onversely n = 2m + 17.Experimentally, we found that the 
olle
tion of blo
ksB10; B13; B14; B15; B16; B17; B18; B19; B21; B22,depi
ted on Figure 3 and in the Appendix, enables us to de�ne a loop withM(G) = An for n = 37 (built from B10) and for every odd n � 43. Ea
h full rowand 
olumn in these blo
ks is an even permutation of f0; 1; 2; 3; 4; 5g. Also, sin
e0 never o

urs at a position [i; n� i℄, the loops built from these blo
ks satisfy the
ondition of Lemma 2.1. In other words, a loop built from the template and ourlist of blo
ks is subloop-free, 
ommutative, and su
h that M(G) = An. �Corollary 2.4. For every odd n � 7, there exists a 
ommutative subloop-freeloop G whi
h satis�es M(G) = Sn.Proof: For the smaller values of n, we generated by 
omputer 
ommutativesubloop-free loops 
onsistent with the template and observed that the vast ma-jority of them satisfyM(G) = Sn. For the larger orders, we leave it to the readerto modify the blo
ks B10 to B22, in order to make ea
h of them 
ontain at leastone odd permutation of f0; 1; 2; 3; 4; 5g. �3. Con
lusionAs a preliminary step in this resear
h, we 
omputed M(G) for all loops of size6 to 8 using data from [14℄ and [9℄, and identi�ed those whi
h were subloop-free.Our results are summarized in Figure 4. Among them, we noti
ed a loop of size8 for whi
h M(G) is neither Sn nor An; this multipli
ation group has order 1344
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ation groupn of loops Sn An Zn Other5 2 1 0 1 06 28 28 0 0 07 9 906 9 904 1 1 08 43 803 136 43 799 370 3 765 0 1Figure 4. Multipli
ation group of subloop-free loops, orders 5 to 80 1 2 3 4 5 6 70 0 1 2 3 4 5 6 71 1 2 3 0 5 6 7 42 2 4 7 6 1 3 0 53 3 6 1 5 2 7 4 04 4 0 5 7 6 2 3 15 5 7 0 4 3 1 2 66 6 5 4 2 7 0 1 37 7 3 6 1 0 4 5 2Figure 5. Loop of order 8 with M(G) = AL(8).and is denoted AL(8) in the 
ompendium [7℄. The Cayley table of this loop isdisplayed in Figure 5.The vast majority of nonasso
iative subloop-free loops of small order satisfyM(G) = Sn, and it is likely to be the same for every order. In this arti
le,however, we proved that for every odd order n � 7, there exist a 
ommutativesubloop-free loop whose multipli
ation group is An. This result, alongside withthe identi�
ation of the order-8 loop mentioned above, suggests that subloop-freeloops of larger order deserve further investigation.A
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Commutative subloop-free loops 481AppendixAppendix A. Small subloop-free loopsWe display in full the Cayley tables of 
ommutative subloop-free loops of orders7 to 13 su
h that M(G) = An.0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 80 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 7 81 1 2 0 4 3 6 5 1 1 2 0 4 5 3 7 8 62 2 0 3 5 6 4 1 2 2 0 6 1 3 7 8 4 53 3 4 5 6 1 2 0 3 3 4 1 5 7 8 0 6 24 4 3 6 1 5 0 2 4 4 5 3 7 8 6 1 2 05 5 6 4 2 0 1 3 5 5 3 7 8 6 1 2 0 46 6 5 1 0 2 3 4 6 6 7 8 0 1 2 4 5 37 7 8 4 6 2 0 5 3 18 8 6 5 2 0 4 3 1 70 1 2 3 4 5 6 7 8 9 100 0 1 2 3 4 5 6 7 8 9 101 1 2 0 4 5 6 3 8 9 10 72 2 0 3 7 8 1 5 9 10 4 63 3 4 7 8 1 2 9 10 5 6 04 4 5 8 1 7 9 10 2 6 0 35 5 6 1 2 9 10 8 3 0 7 46 6 3 5 9 10 8 4 0 7 2 17 7 8 9 10 2 3 0 6 4 1 58 8 9 10 5 6 0 7 4 1 3 29 9 10 4 6 0 7 2 1 3 5 810 10 7 6 0 3 4 1 5 2 8 90 1 2 3 4 5 6 7 8 9 10 11 120 0 1 2 3 4 5 6 7 8 9 10 11 121 1 2 0 4 5 6 7 3 9 10 11 12 82 2 0 3 5 6 7 1 9 10 11 12 8 43 3 4 5 1 7 9 8 10 11 12 6 2 04 4 5 6 7 8 1 10 11 12 3 2 0 95 5 6 7 9 1 10 11 12 4 8 0 3 26 6 7 1 8 10 11 12 2 5 0 4 9 37 7 3 9 10 11 12 2 6 0 4 8 5 18 8 9 10 11 12 4 5 0 7 2 3 1 69 9 10 11 12 3 8 0 4 2 5 1 6 710 10 11 12 6 2 0 4 8 3 1 9 7 511 11 12 8 2 0 3 9 5 1 6 7 4 1012 12 8 4 0 9 2 3 1 6 7 5 10 11Appendix B. Blo
ks for loops of large orderIn this se
tion, we display the blo
ks B13 to B22 used in the proof of thetheorem; blo
k B10 
an be seen on Figure 3. Ex
ept for B13, we show only theentries spe
i�
 to the blo
ks, i.e. those lo
ated between the butter
ies. Blo
ks arerepresented as arrays where ea
h row 
orresponds to an antidiagonal in the Cayleytable, and ea
h 
olumn to a 
olumn in the Cayley table. Expressed otherwise: ifthe entry lo
ated at [a; b℄ in the array is at position [i; j℄ in the Cayley table, thenposition [a; b+ 1℄ 
orresponds to [i� 1; j + 1℄, and [a+ 1; b℄ to [i+ 1; j℄.
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Commutative subloop-free loops 483Appendix C. Subloop-free loops of intermediate orderWe give examples of 
ommutative subloop-free loops of odd order n, 15 �n � 41 and n 6= 37, whi
h satisfy M(G) = An. To obtain them, we made anexhaustive sear
h from a template where most of the 
orridor was left unde�ned,the rest being identi
al to the des
ription given in the arti
le. For ea
h order n,we display the upper half of the 
orridor of one of our results; we represent allentries from the main diagonal (entries printed in boldfa
e) up to and in
ludingrow 3. 1 0 3 1 2 1 1 3 2 1 13 2 1 0 3 0 3 2 2 1 0 0 2n = 15 5 0 2 1 2 1 n = 17 0 0 0 5 3 3 01 2 3 5 4 2 5 5 3 3 2 4 24 4 4 3 0 4 4 4 4 0 15 10 0 5 4 1 11 2 5 5 41 0 3 1 2 1 13 2 1 0 3 0 0 2n = 19 5 0 2 1 2 3 3 01 2 3 5 4 5 4 24 4 4 3 2 0 15 12 0 5 4 5 43 1 0 3 1 2 1 11 2 2 1 0 3 0 0 2n = 21 0 1 0 2 1 2 3 3 05 5 4 3 5 4 5 4 24 2 5 4 3 2 0 13 13 4 0 5 4 5 41 0 2 4 1 1 2 1 13 2 1 1 3 0 0 3 0 2n = 23 5 3 3 0 2 3 2 4 0 01 0 0 2 3 1 5 3 3 24 2 5 5 5 0 2 5 15 14 4 4 4 4 5 4 41 1 3 2 5 1 1 2 1 13 2 2 1 1 0 3 3 0 0 2n = 25 0 0 0 0 3 2 0 2 3 3 05 5 3 3 2 0 1 4 5 4 24 4 4 4 4 4 3 2 0 11 15 2 5 5 5 5 4 5 41 1 2 3 1 1 0 2 2 1 13 2 0 1 0 5 2 1 1 0 0 2n = 27 0 3 2 3 2 3 3 3 3 3 3 05 5 0 4 0 1 0 0 4 5 4 24 4 5 3 4 4 4 5 2 0 11 16 2 4 5 5 5 2 4 5 41 0 2 4 1 1 2 3 3 2 1 13 2 1 1 3 0 0 1 1 1 0 0 2n = 29 5 3 3 0 2 3 5 0 0 5 3 3 01 0 0 2 3 1 2 2 4 2 2 4 24 2 5 5 5 0 4 3 3 4 0 15 17 4 4 4 4 5 5 4 5 5 41 1 3 2 5 1 1 1 1 4 2 0 13 2 2 1 1 0 3 2 0 3 1 1 2 2n = 31 0 0 0 0 3 2 0 3 2 0 3 3 3 05 5 3 3 2 0 3 2 0 3 2 0 0 24 4 4 4 4 4 4 5 5 5 5 5 11 18 2 5 5 5 5 1 4 4 4 4 4
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