A game and its relation to netweight and D-spaces

GARY GRUENHAGE, PAUL SZEPTYCKI

Abstract. We introduce a two player topological game and study the relationship of the existence of winning strategies to base properties and covering properties of the underlying space. The existence of a winning strategy for one of the players is conjectured to be equivalent to the space have countable network weight. In addition, connections to the class of D-spaces and the class of hereditarily Lindelöf spaces are shown.

Keywords: topological game, network, netweight, weakly separated, D-space

Classification: 54D20, 54E20

1. Introduction

Let us introduce two closely related topological games: Given a space X we let G(X) (resp., G'(X)) denote the following two player game of length ω on X played by SET and POINT. In the first inning of the game:

SET plays $D_0 \subseteq X$ and a neighborhood assignment $\{V_x : x \in D_0\}$, and POINT plays $x_0 \in D_0$.

A play of the game is a sequence $D_0, x_0, \ldots, D_n, x_n, \ldots$, where at inning *n* of the game

SET plays $D_n \subseteq D_{n-1}$, and

POINT plays $x_n \in D_n$.

Let $D = \bigcap \{D_n : n \in \omega\}$. We say *POINT wins in* G(X) if

$$\bigcup\{V_{x_n}:n\in\omega\}\supseteq\bigcup\{V_x:x\in D\}$$

and POINT wins in G'(X) if

$$\bigcup \{V_{x_n} : n \in \omega\} \supseteq D.$$

Otherwise SET wins.

The games G(X) and G'(X) originated in an attempt to understand the relationship between hereditarily Lindelöfness and the D-space property. A T_1 space X is said to be a *D*-space if for each open neighborhood assignment $\{U_x : x \in X\}$ there is a closed and discrete subset $D \subseteq X$ such that $\{U_x : x \in D\}$ covers the space. The notion is due to van Douwen, first studied with Pfeffer in [4], and G. Gruenhage, P. Szeptycki

the open question whether every regular Lindelöf space is a D-space has been attributed to van Douwen [6]. Indeed very few examples of regular spaces with even very weak covering properties that are not D-spaces are known. Recently a Hausdorff example of a hereditarily Lindelöf space that is not a D-space was constructed assuming \Diamond [8]. However, it may be consistent or even a ZFC result that every hereditarily Lindelöf regular space is a D-space.

While the games are closely related to the van Douwen question, a perhaps more interesting question is whether POINT having a winning strategy in G(X)or G'(X) is equivalent to X having countable network weight. Consideration of this question leads us to a generalization of the notion of weakly separated subsets of a space and to an open question of M. Tkachenko. Recall that a subset Y of a space X is *weakly separated* if there is a neighborhood assignment $\{V_y : y \in Y\}$ such that for all $y \neq z$ from Y, if $y \in V_z$ then $z \notin V_y$. Tkachenko asked whether it is consistent that every space with no uncountable weakly separated subspaces has countable network weight [9].

2. Main results

Lemma 1. Suppose SET has no winning strategy in G'(X). Then SET has no winning strategy in G'(Y) in any subspace Y of X.

PROOF: Suppose SET has no winning strategy in G(X), let Y be a subspace of X, and let σ be a strategy for SET in G(Y). We show σ is not winning by defining a corresponding strategy σ^* in G(X) such that σ^* not winning implies σ not winning. Let D_0 and $\{V_x : x \in D_0\}$ be SET's initial play in G(Y) using the strategy σ . For each $x \in D_0$, let V_x^* be an open neighborhood of x in X such that $V_x^* \cap Y = V_x$, and define D_0 and $\{V_x^* : x \in D_0\}$ to be SET's initial play in G(X)using the strategy σ^* . Then if $x_0 \in D_0$ is POINT's initial play in G(X), let D_1 be SET's response using σ if SET pretends x_0 is POINT's play in G(Y), and let this same set D_1 be SET's response to x_0 in G(X). And so on. Since σ^* is not winning, there is a sequence x_0, x_1, \ldots of plays by POINT in G(X) such that

$$\bigcup\{V_{x_n}^*:n\in\omega\}\supseteq D$$

where $D = \bigcap_{n \in \omega} D_n$. But then this same sequence of plays wins for POINT in G(Y). Hence σ is not winning.

Theorem 2. If SET has no winning strategy in G(X) or G'(X), then X is hereditarily Lindelöf and hereditarily a D-space.

PROOF: First note that if SET has no winning strategy in G(X), then SET has no winning strategy in G'(X) either, since a win for SET in G'(X) is a win in G(X) too. Thus it suffices to show that SET having no winning strategy in G'(X)implies X is hereditarily a Lindelöf D-space.

Suppose then that X has no winning strategy in G'(X). By the lemma, we only need to prove X is Lindelöf and a D-space, which we do by showing that if $\{U_x : x \in X\}$ is a neighborhood assignment, then there is a countable closed

discrete set D such that $\{U_x : x \in D\}$ covers X. Consider the strategy for SET, with initial play $D_0 = X$ and the given neighborhood assignment, and where at the *n*th inning, SET plays $D_n = X \setminus \bigcup_{i < n} U_{x_i}$ where $(x_i : i < n)$ is the sequence of POINT's plays up to that point. Since this strategy is not winning for SET, there is a sequence of points $\{x_n : n \in X\}$ such that $x_n \notin \bigcup \{U_{x_i} : i < n\}$ and $\{U_{x_n} : n \in \omega\}$ covers all of X. It follows that if $D = \{x_n : n \in \omega\}$, then D is closed discrete and $\{U_x : x \in D\}$ covers X.

Proposition 3. If X has a countable network, then POINT has a winning strategy in G(X).

PROOF: Let $\mathcal{F} = \{F_n : n \in \omega\}$ be a network for X. We describe a strategy for POINT. Suppose that SET plays $D_0 \subseteq X$ and $\{V_x : x \in D_0\}$. Then POINT plays some $x_0 \in D_0$ such that $V_{x_0} \supset F_{n_0}$, where n_0 is least possible. At inning k > 0 of the game, choose n_k minimal such that $n_k \notin \{n_i : i < k\}$ and there is an $x_k \in D_k$ with $V_{x_k} \supset F_{n_k}$; then POINT plays x_k . To see that POINT wins this play of the game, let $D = \bigcap_{n \in \omega} D_n$ and let $y \in \bigcup \{V_x : x \in D\}$. Then for some $m \in \omega$ and $x \in D$, $y \in F_m \subset V_x$. Then by the way the n_i 's were chosen, we must have $m = n_k$ for some k, and hence $y \in \bigcup_{i \in \omega} V_{x_i}$. So POINT wins the game. \Box

We conjecture that the converse to Proposition 3 is also true:

Question 1. If POINT has a winning strategy in G(X) or G'(X), does it follow that X has a countable network?

As indicated by this question, we also do not know of a space X in which POINT has a winning strategy in G'(X) but not in G(X). A counterexample to Question 1 would need to be a hereditarily Lindelöf space without a countable network. Most (all?) known examples of such spaces can be shown to have the property that POINT does not have a winning strategy. Indeed, this is closely related to the Tkachenko's question whether consistently every space with no uncountable weakly separated subset has a countable network ([9]; see also Problem 378, [7]). The following generalization of weak separation will help us show that POINT has no winning strategy in certain examples of hereditarily Lindelöf spaces.

Definition 4. A subset A of a hereditarily Lindelöf topological space (X, τ) is dually weakly separated, if there is another hereditarily Lindelöf topology τ' on X and two neighborhood assignments $\{V_x : x \in A\} \subseteq \tau$ and $\{W_x : x \in A\} \subseteq \tau'$ such that

(1) $x \in V_x \cap W_x$ for all $x \in A$, and

(2) for all $x \neq y$ in A, if $y \in W_x$ then x is not in the τ' closure of V_y .

Note that if $\tau = \tau'$ in the previous definition then we obtain, for regular spaces, a statement equivalent to "A is weakly separated".

Proposition 5. Suppose POINT has a winning strategy in G'(X) on a space (X, τ) . Then no uncountable subset of X is dually weakly separated with respect to any hereditarily Lindelöf topology τ' .

PROOF: Suppose that σ is a strategy for POINT, and by Theorem 2 we may assume that (X, τ) is hereditarily Lindelöf. By way of contradiction suppose that τ' is another hereditarily Lindelöf topology on X and $A \subseteq X$ is uncountable and $\{V_x : x \in A\} \subseteq \tau$ and $\{W_x : x \in A\} \subseteq \tau'$ witness that A is dually weakly separated.

Fix M an elementary submodel of some H_{κ} for κ sufficiently large such that M contains everything relevant. Fix $z \in X \setminus M$. For each $x \in X$, let y_x be POINT's response to an opening play of $D_0^x = W_x \setminus \{x\}$. Let $U_x = (W_x \setminus \overline{V_{y_x}})$ (here the closure is taken wrt τ' . The sets U_x form a τ' -open cover of X, so has a countable subcover $\{U_x : x \in A_0\}$. By elementarity we may assume that $A_0 \in M$ and since it is an open cover, we may find $x_0 \in A_0$ such that $z \in U_{x_0}$ and so $z \in D_0^{x_0}$. For each $x \in D_0^{x_0}$ let $D_1^x = D_0^{x_0} \cap (W_x \setminus \{x\})$ and let y_x^1 be POINT's response to this play where POINT follows its strategy σ . By assumption, we have that the sets $U_x^1 = W_x \setminus \overline{V_y_x^1}$ form a τ' -open cover of $D_0^{x_0}$. Since X must be hereditarily Lindelöf, it follows that we have a countable A_1 such that $\{U_x : x \in A_1\}$ covers $D_0^{x_0}$. By elementarity, we may assume that $A_1 \in M$, and may find $x_1 \in A_1$ with $z \in U_r^1$. It follows that $z \in D_1^{x_1}$. Continuing in this fashion we find a sequence of plays by SET of the form $D_n = D_n^{x_n} = D_{n-1}^{x_{n-1}} \cap W_{x_n} \setminus \{x_n\}$ with the property that for all $n, z \in D_n$ and $z \notin V_{y_{n}^n}$ where $y_{x_n}^n$ is POINT's response to this play D_n . This implies that the play is losing for POINT, so POINT does not have a winning strategy.

Proposition 5 can be used to show that POINT has no winning strategy on many interesting examples of heredetarily Lindelöf spaces: For example, for any space with an uncountable weakly separated subspace (e.g., any uncountable subspace of the Sorgenfrey line or any L-space), POINT has no winning strategy.

There are consistent examples of hereditarily Lindelöf spaces with no uncountable weakly separated subspaces, yet using Proposition 5 we can see that POINT has no winning strategy.

Example 1. We recall an example mentioned in [5, p. 303]. An uncountable set of reals E is called 2-*entangled* if every uncountable monotone function from a subset of E to E has a fixed point. Such sets exist assuming CH and are consistent with MA+ \neg CH [2]. Now let f be any uncountable one-to-one function from a subset of E to E with no fixed point, and consider the plane with the topology τ refining the usual Euclidean topology by adding "bowtie" neighborhoods of the form $V_{(x_1,x_2)} = \{y : y_1 \leq x_1 \text{ and } x_2 \leq y_2 \text{ or } y_1 \geq x_1 \text{ and } x_2 \geq y_2\}$. Let X be the graph of f as a subspace of the plane with this topology, and let X' be the graph of f with the topology τ' obtained by rotating the bowtie neighborhoods by 90 degrees. Both X and X' are hereditarily Lindelöf, but neither has a countable network because $\{(x, x) : x \in f\}$ is easily seen to be a discrete subspace of $X \times X'$. Now note that if B(x) is a bowtie neighborhood of x in τ , and B'(x) its rotation by 90°, then $\{(B(x), B'(x)) : x \in f\}$ witnesses that X is dually weakly separated. So POINT has no winning strategy in G'(X).

Example 2. K. Ciesielski constructed an example of space with network weight ω_2 but any subspace of cardinality ω_1 has a countable network [3]. Clearly, no uncountable subset of this space could be weakly separated, however, the entire space is dually weakly separated. The example is obtained by forcing a generic graph on $F: [\omega_2]^{\leq 2} \to 2$ with the stipulation that $F(\{x\}) = 0$ for every $x \in X = \omega_2$. Then $\tau = \tau_F$ is the topology obtained by taking the sets $U_{x,i}^F = \{y : F(\{x,y\}) = i\}$ as a subbasis. Ciesielski constructs a further forcing extension where this topology is the required example. To see that this space is dually weakly separated, define another function $G: [\omega_2]^{\leq 2} \to 2$ by $G(\{x, y\}) = F(\{x, y\})$ for all $x \neq y$ and $G(\{x\}) = 1$ for all $x \in X$. Defining a subbasis with respect to G in the same way, one obtains an alternate topology $\tau' = \tau_G$. The proof that τ' is hereditarily Lindelöf is the same as Ciesielski's proof for τ . Note that $U_{x,1}^G = (X \setminus U_{x,0}^F) \cup \{x\}$. So, $U_{x,1}^G$ is τ -closed. By symmetry, it also follows that each $U_{x,0}^F$ is τ' -closed. Also, if $y \in U_{x,1}^G$ and $x \neq y$ then $F(\{x, y\}) = G(\{x, y\}) = 1$, so $y \notin U_{x,0}^F$. So y is not in the τ' closure of $U_{x,0}^F$. Therefore the sets $W_x = U_{x,1}^G$, $V_x = U_{x,0}^F$ form a dual weak separation of X.

Question 2. If a hereditarily Lindelöf space includes no uncountable dually weakly separated subset, must it have a countable network?

If so, then POINT having a winning strategy implies countable network weight. Finally, we point out that being hereditarily Lindelöf is not characterized by SET not having a winning strategy:

Proposition 6. SET has a winning strategy on the Sorgenfrey line.

PROOF: For each $x \in \mathbb{R}$, let $U_x = [x, \infty)$. Let SET play as follows: $D_0 = (0, \infty)$ and $\{U_x : x \in (0, \infty)\}$ is the opening play. Assume that in the *n*th inning, SET and POINT have played a sequence $\{D_i, x_i : i \leq n\}$ such that $D_i = (y_i, x_{i-1})$ where $0 = y_0 < y_1 < \cdots < y_n < x_{n-1} < \cdots < x_0$. Then if point responds by choosing $x_n \in D_n = (y_n, x_{n-1})$, SET responds with $D_{n+1} = (y_{n+1}, x_n)$. Using compactness, it is easy to see that this is a winning strategy for SET. \Box

Of course, the square of the Sorgenfrey line is not Lindelöf. And, moreover, the example of [8] is a T_2 example of a space with the property that every subspace has each finite power Lindelöf, but it is not a D-space. This raises the natural question whether X^{ω} being hereditarily Lindelöf implies that X is a D-space, or even more:

Question 3. If X is regular and X^{ω} is hereditarily Lindelöf, is it the case that SET has no winning strategy in G(X)?

Of course, if X^n is hereditarily Lindelöf for each n, then so is X^{ω} , however, the assumptions of the following question might be weaker than the previous.

Question 4. Suppose X that is regular and for every subspace $Y \subseteq X$, we have every finite power of Y is Lindelöf. Does it follow that SET has no winning strategy in G(X)?

If we only assume Hausdorff in the previous question then we have a consistent negative answer [8].

The Star Game. Analyzing Arhangel'skii and Buzyakova's proof that spaces with a point countable base are D-spaces, L. Aurichi defined a topological game, called *the star game*, as follows (see [1]). Given a space X with basis \mathcal{B} , PLAYER I chooses $x_0 \in X$ and PLAYER II chooses $A_0 \subseteq X$ and basic open sets $\{V_x : x \in A_0 \cup \{x_0\}\}$ such that $x \in V_x$ for each x. At stage α , having chosen $\{x_{\xi} : \xi < \alpha\}$ and $\{A_{\xi} : \xi < \alpha\}$:

If $\{x_{\xi} : \xi < \alpha\}$ is not closed discrete, then I wins if $\bigcup_{\xi < \alpha} A_{\xi}$ does not include all limit point of $\{x_{\xi} : \xi < \alpha\}$, otherwise II wins.

If $\{x_{\xi} : \xi < \alpha\}$ is closed discrete and $\{V_{x_{\xi}} : \xi < \alpha\}$ covers X, then I wins.

Otherwise, the game continues and I chooses $x_{\alpha} \in X \setminus \{x_{\xi} : \xi < \alpha\}$ and II chooses A_{α} along with neighborhoods $V_x \in \mathcal{B}$ for each $x \in \{x_{\alpha}\} \cup A_{\alpha}$ subject to the rule that if $x \in (\{x_{\alpha}\} \cup A_{\alpha}) \cap (\bigcup_{\xi < \alpha} A_{\xi})$ then V_x fixed at stage α is the same as the V_x chosen in the previous stage of the game.

Theorem 7 ([1]). If X has a point countable base, then PLAYER I has a winning strategy in the star game. If PLAYER II has no winning strategy in the star game on a space X then X is a D-space.

Theorem 8. If POINT has a winning strategy in the game G'(X), then PLAYER II has no winning strategy in the star game.

PROOF: Suppose that POINT has a winning strategy in the game G'(X), and PLAYER II in the star game employs some fixed strategy. We define a response by PLAYER I that will defeat this strategy. Let $f: \omega \to \omega$ be any function such that f(n) < n for all n > 0, and $f^{-1}(k)$ is infinite for all $k \in \omega$.

In inning n = 0, PLAYER I plays any $x_0 \in X$. Let A_0 and the neighborhood assignment $\{V_x : x \in A_0 \cup \{x_0\}\}$ be PLAYER II's response following her strategy.

Now consider $A_0 \setminus V_{x_0}$ with the neighborhood assignment given from II's move in the star game as SET's first move in a game G'(X), which we will call the 0th auxiliary game, and let x_1 be POINT's reply in G'(X) to this move using her winning strategy, and let it also be I's reply to II's first move in the star game.

At stage n > 0 of the star game, we have a partial play $x_0, A_0, x_1, \ldots, x_{n-1}$, A_{n-1} . We have also defined partial plays (some of which may be empty) ending in a move of POINT in n auxiliary games of type G'(X). We will also have the neighborhoods V_{x_i} , i < n, chosen by II's strategy, and I's plays $\{x_i\}_{i < n}$ will always be such that $x_i \notin \bigcup_{i < i} V_{x_i}$.

Define I's response x_n to this partial play as follows. Suppose f(n) = k. We then extend the kth auxiliary game by one round. If it has not started yet, let $A_k \setminus \bigcup_{i < n} V_{x_i}$ with the neighborhood assignment given from the star game be SET's first move in G'(X). If it has started, and B is SET's last move in that game, then let $B \setminus \bigcup_{i < n} V_{x_i}$ be SET's next move. Now let x_n be POINT's reply in G'(X) as well as I's reply to the given partial play of the star game. (If SET's

move defined as above happens to be empty, then let x_n be an arbitrary element of $X \setminus \bigcup_{i < n} V_{x_i}$.)

Note that at stage ω all the auxiliary games will have been completed, and every play by POINT in these games will be among the x_n 's. Since POINT used her winning strategy, and SET's plays in the *k*th auxiliary game have the form A_k minus some finite union of the V_{x_i} 's, it follows that $A_k \subset \bigcup_{n \in \omega} V_{x_n}$ for all $k \in \omega$.

Since $x_n \notin \bigcup_{i < n} V_{x_i}$, any limit point of the x_n 's lies outside of $\bigcup_{n \in \omega} V_{x_n}$. Since $\bigcup_{n \in \omega} V_{x_n}$ contains all of the A_n 's, if $\{x_n\}_{n \in \omega}$ has a limit point, it is not in any A_n and hence Player I has won the game. If on the other hand $\{x_n\}_{n \in \omega}$ is closed discrete, then either the V_{x_n} 's cover X, in which case I again wins, or the game continues.

If the game continues, for the next ω rounds Player I continues similarly to the first ω rounds. That is, I first chooses any $x_{\omega} \in X \setminus \bigcup_{n \in \omega} V_{x_n}$. II plays A_{ω} and a neighborhood assignment $\{V_x : x \in A_\omega \cup \{x_\omega\}\}$. Then consider $A_\omega \setminus \bigcup_{n \leq \omega} V_{x_n}$ with the neighborhood assignment given from II's move in the star game as SET's first move in the ω th auxiliary game G'(X), and let $x_{\omega+1}$ be POINT's reply in G'(X) to this move using her winning strategy, and let it also be I's reply to II's ω th move in the star game. And so on out to stage $\omega + \omega$. If the game is still not over, continue in like manner.

Since we are assuming POINT has a winning strategy in G'(X), X is hereditarily Lindelöf and the game must end at some countable stage α . If $\{x_{\beta}\}_{\beta < \alpha}$ is closed discrete and the game is over, then I has won. If $\{x_{\beta}\}_{\beta < \alpha}$ has a limit point, then since $x_{\beta} \notin \bigcup_{\gamma < \beta} V_{x_{\gamma}}$, and for $\beta < \alpha$, $\{x_{\gamma}\}_{\gamma < \beta}$ is closed discrete, any limit point of the x_{β} 's lies outside of $\bigcup_{\beta < \alpha} V_{x_{\beta}}$. But then said limit point cannot be in any A_{β} since (arguing as in the first ω rounds) A_{β} is covered by the $V_{x_{\gamma}}$'s, $\gamma < \alpha$. So I wins again and Player II's strategy is defeated.

References

- Aurichi L., D-spaces, topological games and selection principles, Topology Proc. 36 (2010), 107-122.
- [2] Abraham U., Shelah S., Martin's Axiom does not imply that every two ℵ₁-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176.
- [3] Ciesielski K., On the netweight of subspaces, Fund. Math. 117 (1983), no. 1, 37-46.
- [4] van Douwen E.K., Pfeffer W.F., Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), no. 2, 371-377.
- [5] Gruenhage G., Cosmicity of cometrizable spaces, Trans. Amer. Math. Soc. 313 (1989), 301-315.
- [6] Gruenhage G., A survey of D-spaces, Contemporary Mathematics 533 (2011), 13-28.
- [7] Gruenhage G., Moore J., Perfect compacta and basis problems in topology, in Open Problems in Topology II, Elsevier, Amsterdam, 2007, pp. 151-159.
- [8] Soukup D., Szeptycki P.J., A counterexample in the theory of D-spaces, preprint.

G. Gruenhage, P. Szeptycki

- [9] Tkachenko M.G., Chains and cardinals, Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546-549; English translation: Soviet Math. Dokl. 19 (1978), 382-385.
- [10] Todorcevic S., Partition Problems in Topology, Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, AL 36830, USA

E-mail: garyg@auburn.edu

Department of Mathematics and Statistics, York University, Toronto, ON, Canada M3J $1\mathrm{P3}$

E-mail: szeptyck@yorku.ca

(Received July 5,2011)