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Manifold-valued generalizedfuntions in full Colombeau spaesMihael Kunzinger, Eduard NigshAbstrat. We introdue the notion of generalized funtion taking values in asmooth manifold into the setting of full Colombeau algebras. After deriving anumber of haraterization results we also introdue a orresponding onept ofgeneralized vetor bundle homomorphisms and, based on this, provide a de�ni-tion of tangent map for suh generalized funtions.Keywords: algebras of generalized funtions, manifold-valued generalized fun-tions, full Colombeau algebrasClassi�ation: Primary 46F30; Seondary 46T30, 26E151. IntrodutionWhen studying geometrial problems in the presene of singularities, lineardistributional geometry (e.g., [20℄, [25℄) has a number of natural limitations, inpartiular onerning nonlinear operations (tensor alulus, urvature). For thisreason, nonlinear theories of generalized funtions based on Colombeau's on-strution ([3℄, [4℄, [10℄, [23℄) have been extended by various authors (e.g., [6℄, [7℄,[10℄, [17℄, [27℄) to a nonlinear distributional geometry apable of extending thedistributional approah to ertain nonlinear situations, in partiular in the settingof pseudo-Riemannian geometry.A major obstale for modeling geometrial objets like, e.g., ows of singularvetor �elds or geodesis of distributional spae-time metris in linear distributiontheory is the absene of a onept of generalized funtion taking values in a di�er-entiable manifold. In the speial Colombeau setting, this problem was addressedin [16℄, [18℄; the resulting theory has found a number of appliations both in thetheory of generalized funtions and in mathematial physis (f. [8℄, [10℄, [19℄).While speial Colombeau algebras have been suessfully applied to many si-tuations where a natural way of regularizing is available, they do not in generalpossess a anonial embedding of the spae of distributions. In many applia-tions, partiularly in General Relativity, however, it is desirable to work in thesetting of suh a anonial embedding. Indeed, the guiding priniple of GeneralRelativity is oordinate invariane (general ovariane), so it appears natural toalso onsider ovariant regularization proedures when modelling singularities inthis ontext. Without a anonial embedding of distributions, in order to obtain



520 M. Kunzinger, E. Nigsha ovariant result it is neessary to expliitly hek oordinate invariane of theresults thus ahieved. This has been done in a number of ases, most prominentlyin the alulation of the distributional urvature of osmi strings, see [2℄, [29℄.Built-in oordinate independene of the entire onstrution allows to avoid thisadditional step. For an in-depth disussion we refer to [26℄.While already introdued in [3℄, [4℄, the full setting originally was not di�eo-morphism invariant, hene did not lend itself to appliations in geometry. Overthe past 15 years, however, the theory has been restrutured in order to inor-porate oordinate invariane, �rst in the salar ase ([5℄, [9℄, [11℄, [13℄, [14℄) andreently also in the tensorial setting ([12℄, [28℄). So far, however, this theory doesnot allow to onsider generalized funtions taking values in smooth manifolds.The present artile supplies the neessary onstrutions to �ll this gap.The plan of the paper is as follows. In Setion 2 we introdue some basinotations and reall those parts of the loal and global theory of full Colombeaualgebras neessary for our approah. In Setion 3 we introdue manifold-valued ge-neralized funtions in this ontext. We haraterize moderateness and equivalenefor these generalized funtions, the basi idea being to redue these properties tothe orresponding ones of salar valued Colombeau funtions via ompositionwith smooth funtions on the target manifold. Finally, in Setion 4 we introduegeneralized vetor bundle homomorphisms and give analogous haraterizations.As a main example we de�ne the tangent map of any manifold-valued Colombeaugeneralized funtion.2. Preliminaries and notationThroughout this artile the lettersX and Y will represent smooth paraompatHausdor� manifolds of dimensions dimX = n and dimY = m. A vetor bundleE over X with projetion �E will be denoted by �E : E ! X , as typial vetorbundles we will use �E : E ! X and �F : F ! Y with dimensions n0 andm0 of the �bers, respetively. Hom(E;F ) (Hom(E;F )) denotes the spae of(ompatly supported) vetor bundle homomorphisms from E to F . 
n (U) isthe spae of ompatly supported n-forms on U , an open subset of a manifoldor of Rn . For any open set U � Rn we de�ne �̂ : 
n(U) ! C1(U) to bethe linear isomorphism assigning to an n-form ! 2 
n (U) the smooth funtionx 7! !(x)(e1; : : : ; en) on U , where f e1; : : : ; en g is the Eulidean basis in Rn .Generally, our bakground referene for di�erential geometry is [1℄. Calulus ofsmooth funtions on in�nite-dimensional loally onvex spaes is understood inthe sense of the so-alled onvenient alulus of [15℄. Br(x) for r > 0 and x 2 Rndenotes the open ball of radius r around x in Rn , pri is the projetion of a produtonto the ith fator. Finally, we assume the reader to be familiar with the loaland global full di�eomorphism invariant Colombeau algebras Gd(
) and Ĝ(X)and the orresponding symbols for basi spaes and subspaes of moderate andnegligible funtions (Ed(
), EdM (
), N d(
); Ê(X), ÊM (X), N̂ (X), f. [11℄), aswell as the spaes Aq(
) and Âq(X) whih are used in the onstrution.



Manifold-valued generalized funtions in full Colombeau spaes 521Given a mapping R 2 C1(Â0(X) �X;Y ) and harts (V; ') in X and (W; )in Y , we de�ne the loal expression of R with respet to these harts asRW;V :=  ÆR Æ (('� Æ �̂�1)� '�1):This is a smooth funtion from ((�̂Æ'�)�')((Â0(V )�V )\R�1(W )) � A0(Rn )�Rn into  (W ) � Rm .Similarly, for vetor bundles E ! X and F ! Y we onsider a mappings 2 C1(Â0(X)�E;F ) suh that for eah �xed ! the mapping s(!; �) is a vetorbundle homomorphism from E to F . We de�ne the loal expression of s withrespet to vetor bundle harts (V;�) in E and (W;	) in F over harts ' of Xand  of Y as sW;V := 	 Æ s Æ (('� Æ �̂�1)���1);whih is a smooth funtion from ((�̂Æ'�)��)((Â0(V )���1E (V ))\s�1(��1F (W )))into 	(W ). Beause (pr1 ÆsW;V )('; x; �) does not depend on � it makes sense tode�ne s(1)W;V ('; x) := (pr1 ÆsW;V )('; x; 0):This is a smooth funtion from the set of all pairs (�; x) 2 A0('(V )) � '(V )satisfying �F (s('�(�̂�1(�));��1(x; 0))) 2 W into  (W ) � Rm . The de�nitionof s(1)W;V is ompatible with a hange of hart; the mapping thus de�ned on themanifold and having s(1)W;V as loal expression shall be denoted by s 2 C1(Â0(X)�X;Y ).Next we note that pr2 ÆsW;V is smooth into Rm0 and linear in the third variable.By the exponential law [15, 3.12℄ it orresponds to a smooth mapping denoted bys(2)W;V from ((�̂ Æ'�)��)(Â0(V )� ��1E (V )) \ s�1(��1F (W )) into L(Rn0 ;Rm0 ), thespae of all linear mappings from Rn0 to Rm0 . With this we an write the loalexpression of s in the formsW;V (�; x; �) = (s(1)W;V (�; x); s(2)W;V (�; x) � �)for all (�; x; �) in its domain of de�nition.In ase the target manifold is some �nite-dimensional real spae we use theidentity hart and simply write RV instead of RW;V . Similarly, if F is a trivialvetor bundle over a �nite-dimensional real spae we write sV , s(1)V and s(2)V ,aordingly.The spaes of smoothing kernels eAq(X) are de�ned in [10, De�nition 3.3.5℄.Their loal equivalents are the spaes of loal smoothing kernels eAq(
) on subsets
 of Rn as de�ned in [22, De�nition 4.3℄:De�nition 1. (1) A mapping ~� 2 C1(I�
;A0(
)) is alled a loal smooth-ing kernel on 
 if it satis�es the following onditions:(i) 8K �� 
 9 "0 > 0; C > 0 8x 2 K 8 " � "0: supp ~�("; x) �B"C(x) � 
.



522 M. Kunzinger, E. Nigsh(ii) 8K �� 
 8�; � 2 Nn0 the asymptoti estimate ���(��y ��x+y ~�)("; x)(y)���= O("�n�j�j) holds uniformly for x 2 K and y 2 
.The spae of all loal smoothing kernels on 
 is denoted by eA0(
).(2) For eah k 2 N, eAk(
) is the subset of eA0(
) onsisting of all ~� suhthat for all f 2 C1(
) and all ompat subsets K of 
 the estimate���f(x)� R
 f(y)~�("; x)(y) dy��� = O("k+1) holds uniformly for x 2 K.On eah hart (V; ') in X there is an isomorphism eAq(V ) �= eAq('(V )) realizedby the mapping � 7! ~� := �̂ Æ '� Æ� Æ (id�'�1).Using the loal haraterization of moderateness and negligibility establishedin [11, Theorems 4.3 and 4.4℄ one immediately obtains that loal smoothing ker-nels are suitable test objets for the loal di�eomorphism invariant Colombeaualgebra Gd, resulting in the following loal haraterization of moderateness andnegligibility in Ê(X) (f. [10, Theorems 3.3.15 and 3.3.16℄):Proposition 2. (i) R 2 Ê(X) is moderate if and only if for all harts (V; ')in X , 8K �� '(V ) 8 k 2 N0 9N 2 N 8 ~� 2 eA0('(V )):supx2K D(k)(RV (~�("; x); x)) = O("�N ):(ii) R 2 ÊM (X) is negligible if and only if for all harts (V; ') in X , 8K �� 
8 k 2 N0 8m 2 N 9 q 2 N 8 ~� 2 eAq('(V )):supx2K D(k)(RV (~�("; x); x)) = O("m):3. Manifold-valued generalized funtionsWe begin with the following de�nitions of the basi spae of manifold-valuedgeneralized funtions and an appropriate notion of -boundedness that is based onthe orresponding notion of the speial algebra (f. [16℄, [18℄). For the full algebraone has to replae the index set by Â0(X) and the quanti�er \for small "" bythe appropriate asymptotis used throughout the onstrution of full Colombeaualgebras.De�nition 3. Ê [X;Y ℄ := C1(Â0(X)�X;Y ) is the basi spae of (full) Colom-beau generalized funtions on X taking values in Y .An element of the basi spae Ê [X;Y ℄ is alled -bounded if it asymptotiallymaps ompat sets to ompat sets, more preisely:De�nition 4. R 2 Ê [X;Y ℄ is alled -bounded if(1) 8K �� X 9L �� Y 8� 2 eA0(X)9 "0 > 0 8 " < "0 8 p 2 K : R(�("; p); p) 2 L:



Manifold-valued generalized funtions in full Colombeau spaes 523In partiular, for Y = R or K the above gives a de�nition of -boundedness forelements of Ê(X).For the quotient onstrution we reall that a generalized funtion S 2 Ê(X)is de�ned to be moderate (see [11, De�nition 3.10℄) if(2) 8K ��M 8 l 2 N0 9N 2 N 8X1; : : : ; Xl 2 X(M) 8� 2 eA0(X) :supp2K jLX1 : : : LXlS(�("; p); p)j = O("�N );where X(M) denotes the spae of smooth vetor �elds on X . In loal notationthis ondition is equivalent to(3) 8 harts (V; ') in X 8K �� V 8� 2 Nn0 9N 2 N 8 ~� 2 eA0('(U)) :supx2'(K) �����SU (~�("; x); x)��� = O("�N ):By analogy to the de�nition of moderateness for manifold-valued generalizedfuntions in the speial setting ([16, De�nition 2.2℄) and ondition (3) we are ledto the following de�nition of moderateness in Ê [X;Y ℄.De�nition 5. An element R 2 Ê [X;Y ℄ is alled moderate if(i) R is -bounded,(ii) for all harts (V; ') in X and (W; ) in Y , all L �� V and L0 �� Wand all k 2 N0 there exists N 2 N suh that for all ~� 2 eA0('(V ))the estimate kD(k)(RW;V (~�("; x); x))k = O("�N ) holds uniformly for x 2'(L) \ RW;V (~�("; �); �)�1( (L0)).By ÊM [X;Y ℄ we denote the spae of all moderate elements of Ê [X;Y ℄.In order to obtain an equivalene relation for the quotient we adapt [16, De�-nition 2.4℄:De�nition 6. Two elements R;S 2 ÊM [X;Y ℄ are alled equivalent (denoted byR � S) if(i) for any Riemannian metri h on Y , 8K �� X 9N 2 N0 8� 2 eAN (X):(4) supp2K dh(R(�("; p); p); S(�("; p); p))! 0 ("! 0);(ii) for all harts (V; ') in X and (W; ) in Y , all L �� V and L0 ��W andall k 2 N0 and m 2 N there exists N 2 N0 suh that for all ~� 2 eAN ('(V ))we have the estimatekD(k)(RW;V (~�("; x); x)) �D(k)(SW;V (~�("; x); x))k = O("m)uniformly forx 2 '(L) \ RW;V (~�("; �); �)�1( (L0)) \ SW;V (~�("; �); �)�1( (L0)):



524 M. Kunzinger, E. NigshIf R, S satisfy (i) and (ii) for k = 0 we all them equivalent of order 0, writtenR �0 S.Remark 7. De�nition 6(i) is formulated with respet to the distane funtiondh indued by some Riemannian metri h on M . Beause both R and S are-bounded it does not matter whih Riemannian metri is hosen (f., e.g., [10,Lemma 3.2.5℄).De�nition 8. The quotient Ĝ[X;Y ℄ := ÊM [X;Y ℄= � is alled the spae of (full)Colombeau generalized funtions on X taking values in Y .For R 2 ÊM [X;Y ℄ we denote by [R℄ its equivalene lass in Ĝ[X;Y ℄.With these de�nitions one an show the analogues of [18, Propositions 3.1and 3.2℄:Proposition 9. Let R 2 Ê [X;Y ℄. The following onditions are equivalent:(i) R is -bounded;(ii) f ÆR is -bounded for all f 2 C1(Y ).Proof: (i)) (ii) is lear.(ii)) (i): Let � : Y ! RN be a Whitney embedding and let K �� X . Byassumption there are ompat sets Li �� R suh that 8� 2 eA0(X) 9 "0 > 0 8 " <"0: (pri Æ� ÆR)(�("; p); p) 2 Li for all p 2 K. This implies that (� ÆR)(�("; p); p)is ontained in a ompat set for the same �, ", and p, from whih the laim isimmediate. �Note that | in ontrast to the situation in the speial algebra | it doesnot seem to be the ase that moderateness of f Æ R for all f 2 C1(Y ) implies-boundedness of R.Proposition 10. Let R 2 Ê [X;Y ℄. The following statements are equivalent:(a) R 2 ÊM [X;Y ℄.(b) (i) R is -bounded,(ii) f ÆR 2 ÊM (X) for all f 2 D(Y ).() (i) R is -bounded,(ii) f ÆR 2 ÊM (X) for all f 2 C1(Y ).Proof: ()) (b) is lear.(b)) (a): Let harts (V; ') in X and (W; ) in Y , ompat subsets L �� Vand L0 �� W , k 2 N0 and ~� 2 eA0('(V )) be given. Choose f 2 D(Y )m withsupp f � W and f =  in a neighborhood of L0 and set fj := prj Æf and j := prj Æ . Then for any x 2 '(L \ RW;V (~�("; �); �)�1( (L0))) the equality j Æ ( �1 ÆRW;V (~�("; �); �)) = fj Æ ( �1 ÆRW;V (~�("; �); �))= (fj ÆR)W (~�("; �); �)



Manifold-valued generalized funtions in full Colombeau spaes 525holds in a neighborhood of x. Beause fj Æ R is moderate the result follows bydi�erentiating.(a)) (): Let f 2 C1(Y ) and K �� X . Without loss of generality we mayassume K �� V for some hart (V; ') in X . Beause R is -bounded we mayhoose L �� Y suh that8� 2 eA0(X) 9 "0 > 0 8 " < "0 8 p 2 K : R(�("; p); p) 2 L:We over L by harts (Wl;  l) in Y with 1 � l � s and write L = Ssl=1 L0l withL0l �� Wl for eah l. Now given any � 2 eA0(X), for all small " and eah p 2 Kthere is l suh that R(�("; p); p) 2 L0l and thus(f ÆR)V (~�("; '(p)); '(p)) = (f Æ  �1l ) ÆRWl;V (~�("; '(p)); '(p));where ~� := �̂Æ'� Æ�Æ(id�'�1). For any k 2 N, applying De�nition 5 to L := K,L0 := L0l, (Wl;  l) we obtain "1 = min1�l�s "l1, N = max1�l�sNl suh thatsupx2'(K)D(k)(f ÆR)V (~�("; x); x) = O("�N );hene f ÆR is moderate. �The following result haraterizes the equivalene relation � in ÊM [X;Y ℄.Theorem 11. Let R;S 2 ÊM [X;Y ℄. The following statements are equivalent.(i) R � S.(ii) R �0 S.(iii) For every Riemannian metri h on Y ,(5) 8K �� X 8m 2 N 9N 2 N0 8� 2 eAN (X) :supp2K dh(R(�("; p); p); S(�("; p); p)) = O("m) ("! 0):(iv) (f ÆR� f Æ S) 2 N̂ (X) for all f 2 D(Y ).(v) (f ÆR� f Æ S) 2 N̂ (X) for all f 2 C1(Y ).Proof: (i)) (ii) is lear.(ii)) (iii): Suppose that (iii) is violated. Then there exists some Riemannianmetri h on Y , some ompat subset K of X , and some m0 2 N0 suh that:8n 2 N0 9�n 2 eAn(X) 8 k 2 N0 9 "nk suh that "nk & 0 (k ! 1) 9 pnk 2 Kwith(6) dh(R(�n("nk; pnk); pnk); S(�n("nk; pnk); pnk)) > "m0nk 8 k:By De�nition 6(i) there exists some N suh that for all n � N we have(7) dh(R(�n("nk; pnk); pnk); S(�n("nk; pnk); pnk))! 0 (k !1):



526 M. Kunzinger, E. NigshBy assumption, both R and S are -bounded. Hene there is a ompat sub-set L of Y suh that 8n 2 N0 9 �n > 0 8 " < �n 8 p 2 K: R(�n("; p); p),S(�n("; p); p) 2 L. For eah n � N hoose some kn suh that "nk < �n for allk � kn. Then for eah n � N and eah k � kn, both R(�n("nk; pnk); pnk) andS(�n("nk; pnk); pnk) are elements of L.Sine L is ompat we may assume, passing to subsequenes if neessary, thatfor eah n � N the sequenes (R(�n("nk; pnk); pnk))k , (S(�n("nk; pnk); pnk))kare onvergent. By (7) they have the same limit qn 2 L. Again by passing to asubsequene we may additionally suppose that qn ! q 2 L.Choose a hart (W; ) around q with  (q) = 0 and  (W ) = Br(0). For n,k suÆiently large, R(�n("nk; pnk); pnk), S(�n("nk; pnk); pnk) 2  �1(Br=2(0)).Choose a Riemannian metri g on Y suh that  �(gjBr=2) is the standard Eu-lidean metri on Rm . Sine R �0 S by assumption we onlude from De�ni-tion 6(ii) thatdg(R(�n("nk; pnk); pnk); S(�n("nk; pnk); pnk))� k ÆR(�n("nk; pnk); pnk)�  Æ S(�n("nk; pnk); pnk)k � "2m0nkfor n, k suÆiently large. Sine for some C > 0, dh(q1; q2) � Cdg(q1; q2) for allq1; q2 2 L (f. [10, Lemma 3.2.5℄), this ontradits (6).(iii)) (ii): We �rst note that (i) of De�nition 6 is obvious. To show (ii) ofDe�nition 6 for k = 0, let L �� V for (V; ') some hart in X and L0 �� W for(W; ) a hart in Y . Let us �rst assume that L0 is ontained in a onvex (in thesense of [24℄) set W 0 with W 0 ��W . Let m 2 N and hoose an N suitable for Land m aording to (iii). Let � 2 eAN (X) and "0 > 0 suh that for all " < "0 andall p 2 L dh(R(�("; p); p); S(�("; p); p)) < "m :Now let " < "0 and p 2 L be suh that R(�("; p); p), S(�("; p); p) 2 L0. Byonvexity, dh(R(�("; p); p); S(�("; p); p)) = Z 10 k0"(s)kh ds ;where " : [0; 1℄! W 0 is the unique geodesi in W 0 onneting R(�("; p); p) andS(�("; p); p). Sine W 0 is relatively ompat there exists some C > 0 suh thatk�k � CkT (q) �1(�)kh for all q 2 W 0 and all � 2 Rm (with k k the Eulideannorm on Rm ). Thusk ÆR(�("; p); p)�  Æ S(�("; p); p)k � Z 10 k( Æ ")0(s)k ds� C Z 10 k0"(s)kh ds ;whih gives the result in this ase.



Manifold-valued generalized funtions in full Colombeau spaes 527For general L0 we write L0 = Ski=1 L0i with L0i ��Wi,Wi onvex andWi ��Wfor all i. Given m 2 N let N be as in (iii) and let � 2 eAN (X). Pik "0 > 0 suhthat for all p 2 L and all " < "0dh(R(�("; p); p); S(�("; p); p)) < min1�i�k dh(L0i; �Wi) :Then if " < "0 and p 2 L is suh that R(�("; p); p), S(�("; p); p) 2 L0 there existsan i 2 f1; : : : ; kg with R(�("; p); p), S(�("; p); p) 2Wi. By what has been shownabove this entails the laim.(ii)) (iv): By [11, Corollary 4.5℄, it suÆes to show that, given any f 2 D(Y ),for eah K �� X and eah m 2 N 9N 2 N0 8� 2 eAN (X) 9 "0 > 0 8 " < "08 p 2 K: jf ÆR(�("; p); p)� f Æ S(�("; p); p)j < "m :To this end we �rst observe that sine R, S are -bounded there exists someL �� Y suh that for all � 2 eA0(X) 9 "0 > 0 8 " < "0 8 p 2 K: R(�("; p); p),S(�("; p); p) 2 L. We over L by open sets W 0l suh that W 0l �� Wl, where(Wl;  l) is a hart in Y for l = 1; : : : ; s.By (i) in De�nition 6 there is N 2 N0 suh that for given � 2 eAN (X) wemay assume "0 to be so small that for any p 2 K and any " < "0 there is anl 2 f1; : : : ; sg with R(�("; p); p), S(�("; p); p) 2 W 0l (this follows as in (ii)) (iii)).Thus,jf ÆR(�("; p); p)� f Æ S(�("; p); p)j= j(f Æ  �1l ) Æ  l ÆR(�("; p); p)� (f Æ  �1l ) Æ  l Æ S(�("; p); p)j :By [16, Lemma 2.5℄, there exists a onstant C > 0 (depending exlusively on  l,f and L) suh that this last expression an be estimated by k l ÆR(�("; p); p)� l ÆS(�("; p); p)k. By (ii) from De�nition 6 this onludes this part of the proof.(iv)) (i): We �rst show (i) from De�nition 6. Using a Whitney-embeddingwe may suppose that Y � Rm0 . Let K �� X . Sine R and S are -bounded,there exists some L �� Y suh that for all � 2 eA0(X) 9 "0 > 0 8 " < "0 8 p 2 K:R(�("; p); p), S(�("; p); p) 2 L.Fix i 2 1; : : : ;m0. Denoting by pri : Rm0 ! R the i-th projetion, pik somef 2 D(Y ) suh that f = pri in a neighborhood of L. Applying (iv) to this f weobtain the existene of some Ni 2 N0 suh that for all � 2 eANi(X) 9 0 < "i < "08 " < "i 8 p 2 K: jpri ÆR(�("; p); p)� pri Æ S(�("; p); p)j < " :Setting �N := maxfNi j 1 � i � m0g this implies that for any � 2 eA �N (X) andany Æ > 0 there exists some �" > 0 suh that 8 " < �" 8 p 2 K:(8) kR(�("; p); p)� S(�("; p); p)k < Æ ;



528 M. Kunzinger, E. Nigshwith k k the Eulidean norm on Rm0 . Denoting by g the Riemannian metrion Y indued by the standard Eulidean metri on Rm0 , it follows from [27,Lemma A.1℄, that there exists a onstant C > 0 suh that dg(q1; q2) � Ckq1� q2kfor all q1; q2 2 L. Sine dh, in turn, an be estimated by dg on L (as in (ii)) (iii)above), (8) therefore implies (i) from De�nition 6.To also show (ii) from that de�nition, let L be a ompat subset of some hart(V; ') in X and L0 �� W for some hart (W; ) in Y . Let j 2 f1; : : : ;mgand hoose fj 2 D(Y ) suh that fj =  j in a neighborhood of L0. By (iv),fj Æ R � fj Æ S 2 N̂ (X). Therefore, given k and m in N0 there exists someNj 2 N0 suh that for all ~� 2 eANj ('(V )) there is some "j > 0 suh that for all" < "j and all x 2 '(L),kD(k)(fj ÆRV (~�("; x); x)) �D(k)(fj Æ SV (~�("; x); x))k � "m :For N := maxfNj j 1 � j � mg and due to our hoie of fj , this implies thelaim.(v)) (iv) is obvious.(iv)) (v): Using -boundedness of R and S this immediately follows by mul-tiplying any given f 2 C1(Y ) with a suitable ompatly supported ut-o� fun-tion. �As was already indiated in the proofs of Proposition 9 and Theorem 11, itis sometimes advantageous to view the target manifold as embedded into someambient Rm0 . We next analyze this situation in some more detail (f. [19℄ for aorresponding disussion in the speial Colombeau setting).De�nition 12. Let Y be a (regular) submanifold of Rm0 . Then ~G[X;Y ℄ is de-�ned to be the subspae of Ĝ(X)m0 onsisting of those elements that possess arepresentative R satisfying(i) R(Â0(X)�X) � Y ,(ii) 8K �� X 9L �� Y 8� 2 eA0(X) 9 "0 > 0 8 " < "08 p 2 K R(�("; p); p) 2 L.Thus we want the representative to map X into Y and to be -bounded. Thenext result shows that for Y embedded into Rm0 , ~G[X;Y ℄ is indeed isomorphi toĜ[X;Y ℄.Proposition 13. Let i : Y ,! Rm0 be an embedding. Then the map i� :Ĝ[X;Y ℄! ~G[X; i(Y )℄, i�(R) = i ÆR is a bijetion that ommutes with restritionto open subsets. In partiular, if Y is a regular submanifold of Rm0 we mayidentify Ĝ[X;Y ℄ and ~G[X;Y ℄.Proof: Let R 2 ÊM [X;Y ℄. Then by Proposition 10, for eah 1 � j � m0,ij ÆR 2 Ê(X). Moreover, (i) and (ii) from De�nition 12 are obviously satis�ed. IfR;S 2 ÊM [X;Y ℄ and R � S then Theorem 11 implies that (ij ÆR�ij ÆS) 2 N̂ (X)



Manifold-valued generalized funtions in full Colombeau spaes 529for eah j. Thus i�(R) = i�(S) in Ĝ(X)m0 , so i� is well-de�ned. It is lear fromthe de�nitions that i� ommutes with restritions to open sets.Suppose that [i�R℄ = [i�S℄ for R, S 2 ÊM [X;Y ℄. Then for eah j, (ij Æ R �ij Æ S) 2 N̂ (X). Using the Riemannian metri i�g indued on Y by the standardEulidean metri on Rm0 it now follows exatly as in the proof of Theorem 11,(iv)) (i) that R � S. Hene i� is injetive.Finally, to see that i� is surjetive, suppose that R 2 ÊM (X)m0 satis�es (i) and(ii) from De�nition 12. Then by Proposition 10, i�1 ÆR is an element of ÊM [X;Y ℄whose image under i� is R. �Finally, we note that the spae C1(X;Y ) an naturally be embedded intoĜ[X;Y ℄ via the map � : C1(X;Y ) ,! Ĝ[X;Y ℄f 7! [(!; p) 7! f(p)℄:4. Generalized vetor bundle homomorphismsAs a natural next step in the development of a theory of manifold-valued gene-ralized funtions we now introdue a suitable notion of generalized vetor bundlehomomorphisms. Again we take our motivation for the onrete form of thede�nitions below from the ase of speial Colombeau algebras ([16℄, [18℄).De�nition 14. ÊVB[E;F ℄ is the set of all s 2 C1( eA0(X) � E;F ) suh thats(!; �) 2 Hom(E;F ) for eah ! 2 eA0(X).The appropriate notions of moderateness and negligibility are as follows.De�nition 15. s 2 ÊVB[E;F ℄ is alled moderate if(i) s 2 ÊM [X;Y ℄,(ii) for all vetor bundle harts (V;�) in E and (W;	) in F , all L �� Vand L0 �� W and all k 2 N0 there exists N 2 N suh that for all~� 2 eA0('(V )) there exists some "0 > 0 suh that, for all " < "0,D(k)(s(2)W;V (~�("; x); x)) � "�N , uniformly forx 2 '(L) \ sW;V (~�("; �); �)�1( (L0)).By ÊVBM [X;Y ℄ we denote the spae of all moderate elements of ÊVB[X;Y ℄.De�nition 16. Two elements s; t 2 ÊVBM [E;F ℄ are alled vb-equivalent (denotedby s �vb t) if(i) s � t in ÊM [X;Y ℄,(ii) for all vetor bundle harts (V;�) in E and (W;	) in F , all L �� V andL0 ��W and all k 2 N0 and m 2 N there exists q 2 N0 suh that for all~� 2 eAq('(V )) there exists "0 > 0 suh that for all " < "0:D(k)((s(2)W;V � t(2)W;V )(~�("; x); x)) � "�N



530 M. Kunzinger, E. Nigshuniformly forx 2 '(L) \ sW;V (~�("; �); �)�1( (L0)) \ tW;V (~�("; �); �)�1( (L0)):By �vb0 we denote the orresponding relation where (ii) only holds for k = 0.De�nition 17. HomĜ [E;F ℄ := ÊVB[E;F ℄= �vb is the spae of generalized vetorbundle homomorphisms from E to F .Consider s 2 ÊVB[E;R � Rm0 ℄ and let (V;�) be a vetor bundle hart in E.From sV (�; x; �) = (s(1)V (�; x); s(2)V (�; x) � �) one an diretly read o� the followingharaterization of moderateness and negligibility for this simple form of the rangespae.Lemma 18. Let s 2 ÊVB[E;R � Rm0 ℄.(i) s 2 ÊVBM [E;R � Rm0 ℄ if and only if s is -bounded and for eah vetorbundle hart (V;�) in E, s(1)V 2 EM ('(V )) and s(2)V 2 EM ('(V ))m0�n0 .(ii) For s; t 2 ÊVBM [E;R � Rm0 ℄, s �vb t if and only if s(1)V � t(1)V 2 N ('(V ))and s(2)V � t(2)V 2 N ('(V )) for eah vetor bundle hart (V;�) in E.From (ii) and [10, Theorem 2.5.4℄ it follows that �vb and �vb0 oinide onÊVB[E;R � Rm0 ℄. Moreover, by [10, Theorems 3.3.15 and 3.3.16℄ one an replae\s(1)V 2 EM ('(V ))" by \s 2 ÊM (X)" and \s(1)V � t(1)V 2 N ('(V ))" by \s � t 2N̂ (X)", respetively, in Lemma 18.Next, we derive some intrinsi haraterizations of the spaes just de�ned.Proposition 19. Let s 2 ÊVB[E;F ℄. The following statements are equivalent.(a) s 2 ÊVBM [E;F ℄.(b) (i) s is -bounded,(ii) f̂ Æ s 2 ÊVBM [E;R � Rm0 ℄ for all f̂ 2 Hom(F;R � Rm0 ).() (i) s is -bounded,(ii) f̂ Æ s 2 ÊVBM [E;R � Rm0 ℄ for all f̂ 2 Hom(F;R � Rm0 ).Proof: (a)) (): We �rst note that s is -bounded by De�nition 15. For (ii), byLemma 18 we �rst have to show that f̂ Æ s is -bounded and an element of ÊM (X).Beause s 2 ÊM [X;Y ℄, Proposition 9 implies -boundedness of f̂ Æ s = f̂ Æs, whileProposition 10 implies its moderateness.It remains to show that for eah vetor bundle hart (V;�) in E, (f̂ Æ s)(2)Vis in EM ('(V ))m0�n0 . For the moderateness test let ~� 2 eA0('(V )), k 2 N0 andL �� V be given. Choose L0 �� Y suh that 8� 2 eA0(X) 9 "0 > 0 8 " < "08 p 2 L: s(�("; p); p) 2 L0. Cover L0 by vetor bundle harts (Wl;	l) in F andwrite L0 = SL0l with L0l ��Wl. For " < "0 we then have(9) L =[l L \ (s(('� Æ �̂�1)(~�("; '(�)); �)))�1(Wl):



Manifold-valued generalized funtions in full Colombeau spaes 531For any (�; x) 2 ((�̂ Æ '�)� ')((Â0(V )� V ) \ s�1(Wl)) we an write(10) (f̂ Æ s)(2)V (�; x) = f̂ (2)Wl (s(1)Wl;V (�; x)) � s(2)Wl;V (�; x):In partiular, (10) holds for the pair (~�("; x); x) withx 2 (s(('� Æ �̂�1)(~�("; �)); '�1(�)))�1(Wl):Beause the latter is an open set this even holds for all x0 in a neighborhood of x.In order to obtain the required moderateness estimate we have to estimate deriva-tives of (f̂ Æ s)(2)V (�("; x); x) uniformly for x 2 '(L). Now by the deomposition(9) of L, on eah of the sets '(L \ (s(('� Æ �̂�1)(~�("; '(�)); �))�1(Wl)) we an useequation (10), by whih the laim follows from moderateness of f̂ (2)Wl , s(2)Wl;V and-boundedness of s(1).()) (b) is lear.(b)) (a): We �rst have to show that s is moderate. Using Proposition 10we have to establish that, given any f 2 D(Y ), f Æ s is moderate. For this wehoose any ompatly supported vetor bundle homomorphism f̂ 2 Hom(E;F )suh that f̂ = f . Then f̂ Æ s is moderate by assumption, whih implies thatf̂ Æ s = f Æ s is moderate.For the seond part, take vetor bundle harts (V;�) in E and (W;	) in F ,L �� V and L0 �� W . Choose an open, relatively ompat neighborhood U ofL0 in W . For any l 2 f 1; : : : ;m g hoose f̂l 2 Hom(F;R � Rm0 ) suh thatf̂lj��1F (U) = (prl� idRm0) Æ	j��1F (U):Let x 2 '(L)\sW;V (~�("; �); �)�1( (L0)). Then for x0 in a suitable neighborhoodof x we have(11) (f̂l Æ s)(2)V (~�("; x); x) = s(2)W;V (~�("; x); x)from whih the desired estimates follow. �Theorem 20. Let s; t 2 ÊVBM [E;F ℄. The following statements are equivalent:(i) s �vb t,(ii) s �vb0 t,(iii) f̂ Æ s �vb f̂ Æ t in ÊVBM [E;R � Rm0 ℄ for all f̂ 2 Hom(F;R � Rm0 ),(iv) f̂ Æ s �vb f̂ Æ t in ÊVBM [E;R � Rm0 ℄ for all f̂ 2 Hom(F;R � Rm0 ).Proof: (i)) (ii) is lear.(ii)) (iv): Let f̂ 2 Hom(F;R � Rm0 ). By Lemma 18 we have to establishnegligibility estimates of order zero for (f̂ Æ s)(1)V � (f̂ Æ t)(1)V (equivalently, forf̂ Æ s � f̂ Æ t) and (f̂ Æ s)(2)V � (f̂ Æ t)(2)V . Fix L �� V for testing and hooseL0 �� Y suh that 8� 2 eA0(X) 9 "0 > 0 8 "0 < 0 8 p 2 L: s(�( p); p)) 2 L0



532 M. Kunzinger, E. Nigshand t(�("; p); p) 2 L0. Cover L0 by vetor bundle harts (Wl;	l) in F and hooseopen sets L0l with L0l ��Wl and L0 � Sl L0l.By Theorem 11 for every Riemannian metri h on Y 9N 2 N0 suh that8� 2 eAN (X) supp2L dh(s(�("; p); p); t(�("; p); p)) onverges to 0 when " ! 0,hene there exists some "1 < "0 suh that for all " � "1 and p 2 L there exists lsuh that both s(�("; p); p) and t(�("; p); p) are ontained in L0l. Now for the �rstestimate, s �vb0 t implies s � t by de�nition, and thus f̂ Æ s� f̂ Æ t = f̂ Æs� f̂ Æt 2N̂ (X) is implied by Theorem 11.For the seond estimate, the norm of(f̂ Æ s)(2)V (~�("; x); x) � (f̂ Æ t)(2)V (~�("; x); x)needs to be estimated on '(L) and givenm 2 N it should have, for some q, growthof O("m) for all ~� 2 eAq('(V )). But this follows from the assumptions using aonstrution idential to that of (a)) () of the previous proposition and [16,Lemma 2.5℄.(iv)) (iii) is lear.(iii)) (i) Given any f 2 D(Y ), hoose f̂ 2 Hom(F;R � Rm0 ) with f̂ = f ;from the assumption we have f Æ s � f Æ t whih together with Theorem 11 gives(i) of De�nition 16. A onstrution as in the proof of Proposition 19 (a)) ()employing a representation of both s(2)W;V and t(2)W;V as in equation (11) immediatelygives (ii) of De�nition 16. �As in the ase of manifold-valued generalized funtions also for vetor bundlehomomorphisms we have a natural embedding of smooth maps, again denotedby �: � : Hom(E;F ) ,! HomĜ [E;F ℄s 7! [(!; p) 7! s(p)℄:Based on these notions we may now de�ne the tangent map of any [R℄ 2 Ĝ[X;Y ℄as an appropriate generalized vetor bundle homomorphism:De�nition 21. For any [R℄ 2 Ĝ[X;Y ℄ we de�ne the tangent map of [R℄ as thelass of (!; p) 7! Tp(R(!; �)) in HomĜ [TX; TY ℄.It is immediate from the de�nitions that this gives a well-de�ned map. More-over, for f 2 C1(X;Y ) and R = �(f) it follows that T (�(f)) = �(Tf). To seethis it suÆes to note that � loally ommutes with derivation by [11, Setioin 5℄.Aknowledgment. This work was supported by projets P20525, P23714 andY237 of the Austrian Siene Fund FWF.
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