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Maximal free sequen
es in a Boolean algebraJ.D. MonkAbstra
t. We study free sequen
es and related notions on Boolean algebras. A freesequen
e on a BA A is a sequen
e ha� : � < �i of elements of A, with � an ordinal,su
h that for all F;G 2 [�℄<! with F < G we have Q�2F a� �Q�2G �a� 6= 0. A freesequen
e of length � exists i� the Stone spa
e Ult(A) has a free sequen
e of length � inthe topologi
al sense. A free sequen
e is maximal i� it 
annot be extended at the endto a longer free sequen
e. The main notions studied here are the spe
trum fun
tionfsp(A) = fj�j : A has an in�nite maximal free sequen
e of length �gand the asso
iated min-max fun
tionf(A) = min(fsp(A)):Among the results are: for in�nite 
ardinals � � � there is a BA A su
h that fsp(A) isthe 
olle
tion of all 
ardinals � with � � � � �; maximal free sequen
es in A give rise totowers in homomorphi
 images of A; a 
hara
terization of fsp(A) for A a weak produ
t offree BAs; p(A); ��inf(A) � f(A) for A atomless; a 
hara
terization of in�nite BAs whoseStone spa
es have an in�nite maximal free sequen
e; a generalization of free sequen
esto free 
hains over any linearly ordered set, and the relationship of this generalizationto the supremum of lengths of homomorphi
 images.Keywords: free sequen
es, 
ardinal fun
tions, Boolean algebrasClassi�
ation: 06E05, 06E15, 54A25Introdu
tionA free sequen
e on a BA A is a sequen
e ha� : � < �i of elements of A, with � anordinal, su
h that for all F;G 2 [�℄<! with F < G we haveQ�2F a� �Q�2G�a� 6=0. Here [�℄<! is the 
olle
tion of all �nite subsets of �. We write F < G to meanthat � < � for all � 2 F and � 2 G. We take empty produ
ts to equal 1. Thus ifG = ;, then our 
ondition just says that Q�2F a� 6= 0. So the elements of a freesequen
e are nonzero, and have the �nite interse
tion property (abbreviated �p).Also, for F = ; we get Q�2G�a� 6= 0, so that no �nite sum of elements of a freesequen
e is equal to 1; in parti
ular, 1 is not a member of any free sequen
e.This notion of free sequen
e is 
losely related to the usual notion of a freesequen
e of points in a topologi
al spa
e, and to the notion of tightness in atopologi
al spa
e. Re
all that a sequen
e hx� : � < �i of points in a spa
e is free



594 J.D. Monki� for all � < � we have fx� : � < �g \ fx� : � � �g = ;. Given a free sequen
eha� : � < �i in the algebrai
 sense, for ea
h � < � let F� be an ultra�lter 
ontainingfx� : � � �g [ f�x� : � < �g; then hF� : � < �i is a free sequen
e in the Stonespa
e. And given a free sequen
e hF� : � < �i in the Stone spa
e, for ea
h � < �there is an element x� of the Boolean algebra su
h that fF� : � < �g � fG : Gis an ultra�lter and �x� 2 Gg and fF� : � � �g � fG : G is an ultra�lter andx� 2 Gg; then hx� : � < �i is a free sequen
e in the algebrai
 sense. Thesepro
esses are not inverses of ea
h other, and this gives rise to di�eren
es when
onsidering, as we do below, maximal free sequen
es.A free sequen
e as above is maximal i� there is no b 2 A su
h that ha� : � <�i_hbi is a free sequen
e, where ha� : � < �i_hbi is the result of adjoining b atthe end of the sequen
e ha� : � < �i. Now we de�nefsp(A) = fj�j : A has an in�nite maximal free sequen
e of length �g;f(A) = min(fsp(A)):This arti
le studies these two notions, relating them to other fun
tions de�nedin a similar min-max fashion. Note that maximal free sequen
es always exist, byZorn's lemma.We also 
onsider the topologi
al version. A free sequen
e hF� : � < �i ofultra�lters on A is maximal i� there does not exist an ultra�lter G su
h thathF� : � < �i_hGi is free. Maximal free sequen
es of ultra�lters do not alwaysexist; those BAs in whi
h they do exist are 
hara
terized in Theorem 3.2.It is natural to generalize the notion of a free sequen
e by indexing the sequen
eby any linear order; we 
all su
h things free 
hains . Now in the notion of maximalfree 
hains we allow the possibility of inserting elements at any pla
e in the 
hain.Then the supremum of sizes of free 
hains in A is equal to the supremum oflinearly ordered subsets in homomorphi
 images of A. f(A) is less or equal to thesmallest size of a maximal free 
hain on A.Notation. For set-theoreti
al notation we follow Kunen [80℄. We follow Kop-pelberg [89℄ for Boolean algebrai
 notation, and Monk [96℄ for more spe
ializednotation 
on
erning 
ardinal fun
tions on BAs. For 
ardinals �; � we use [�; �℄
ardto denote the set of all 
ardinals � su
h that � � � � �. Similarly for other inter-vals, like [�; �)
ard. Fr(�) is the free BA on � generators. Note that if 0 < a < 1in Fr(�), then there is a unique smallest �nite nonempty set G of generatorssu
h that a 2 hGi; this is 
alled the support of a, denoted by supp(a). We letsupp(0) = supp(1) = ;. Fin
o(�) denotes the BA of �nite and 
o�nite subsets of�. A is the 
ompletion of A. In several pla
es we use the following 
onstru
tion.Let hAi : i 2 Ii be a system of BAs, with I in�nite. The weak produ
t Qwi2I Ai
onsists of all members x of the full produ
t su
h that one of the two setsfi 2 I : xi 6= 0g or fi 2 I : xi 6= 1g
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es in a Boolean algebra 595is �nite; the 
orresponding set is then 
alled the support of x, and is denoted bysupp(x); x is 
alled of type I if fi 2 I : xi 6= 0g is �nite, of type II otherwise.If A is a BA and a 2 A, then S(a) = fF 2 Ult(A) : a 2 Fg. Thus S is theStone isomorphism from A onto the BA of 
lopen sets in the Stone spa
e Ult(A)If L is a linear order, then Intalg(L) is the interval algebra over L (perhapsafter adjoining a �rst element to L). Any element x of Intalg(L) has the form[a0; b0) [ : : : [ [am�1; bm�1), with a0 < b0 < � � � < bm�1 � 1. (Here 1 is notin L.) The intervals [ai; bi) are 
alled the 
omponents of x.1. fspNote that if a is an atom of A, then hai is a maximal free sequen
e. Thisexplains our restri
tion to in�nite � in the de�nitions of fsp and f.Theorem 1.1. (i) If ha� : x < �i is a stri
tly de
reasing sequen
e of elementsof a BA A, with 1 > a0, then it is a free sequen
e.(ii) Any in�nite BA has an in�nite free sequen
e.Proof: For (i), suppose that F;G � � are �nite, with F < G. If F = ; 6= G,then Q�2F a� � Q�2G�a� = �a� 6= 0, where � is the least member of G. IfF 6= ; = G, then Q�2F a� �Q�2G�a� = a� 6= 0, where � is the greatest memberof F . If F 6= ; 6= G, then Q�2F a� �Q�2G�a� = a� � �a� 6= 0, where � is thegreatest member of F and � is the least member of G.(ii) 
learly follows from (i). �Theorem 1.2. For any in�nite 
ardinal �, fsp(Fin
o(�)) = f!g.Proof: By Theorem 1.1, Fin
o(�) has a free sequen
e of length !. Now supposethat ha� : � < �i is a free sequen
e in Fin
o(�), with !1 � �; we want to get a
ontradi
tion.(1) Ea
h a� , � < !1, is 
o�nite.For, suppose that � < !1 and a� is �nite. Then there exist �; � with � < � < � <!1 and a� \ a� = a� \ a�. Then a� \ a� \ �a� = 0, 
ontradi
tion.Now by (1), there is a � 2 [!1℄!1 su
h that h�a� : � 2 �i forms a �-system,say with kernel b. Take � < � < � all in �. Thena� \ �a� \ �a� = a� \ b = 0;
ontradi
tion. �Theorem 1.3. fsp(Fr(�)) = f�g.Proof: It suÆ
es to show that if ha� : � < �i is a free sequen
e with � < �,then it 
an be extended. Let X be a set of free generators of Fr(�). Choosex 2 XnS�<� supp(a�). Then ha� : � < �i_hxi is still free. �The following simple proposition will frequently be used in what follows.



596 J.D. MonkProposition 1.4. A free sequen
e ha� : � < �i of elements of A is maximal i�for every b 2 A one of the following 
onditions holds.(i) There is a �nite F � � su
h that Q�2F a� � b = 0.(ii) There exist �nite F;G � � su
h that F < G and Q�2F a� �Q�2G�a� ��b = 0.Proof: Suppose that ha� : � < �i is maximal, and b 2 A. Then ha� : � < �i_hbiis no longer free. Let a� = b. Then there exist �nite F;G � � + 1 su
h thatF < G and Q�2F a� �Q�2G�a� = 0. Sin
e ha� : � < �i itself is free we musthave � 2 F [ G. If � 2 F , then � is the largest element of F , G = ;, and (i)holds with Fnf�g in pla
e of F . If � 2 G, then � is the largest element of G, and(ii) holds with Gnf�g in pla
e of G.The 
onverse is 
lear. �From results about attainment of tightness in Chapter 12 of Monk [96℄ weobtain the following upper bound on members of fsp(A). Re
all that t(A) is thetightness of A, whi
h is the supremum of the lengths of free sequen
es in A.Proposition 1.5. (i) If A has a free sequen
e of in�nite length �, then there isa � 2 fsp(A) su
h that j�j � �.(ii) If there is a free sequen
e ha� : � < �i su
h that j�j is the largest size ofany free sequen
e in A, then j�j 2 fsp(A).(iii) If t(A) is a su

essor 
ardinal or a limit 
ardinal of 
o�nality > !, thent(A) 2 fsp(A), and in fa
t t(A) is the largest member of fsp(A). �Proposition 1.6. Suppose that ha� : � < �i is a stri
tly de
reasing sequen
e ofelements of a BA A su
h that fa� : � < �g generates an ultra�lter on A. Thenha� : � < �i is a maximal free sequen
e.Proof: ha� : � < �i is a free sequen
e by Theorem 1.1. Clearly it is maximal. �Later we will see that p(A) � f(A) for any atomless BA A. Now Kunenshowed in exer
ise (A10) of VIII in Kunen [80℄ that there is a model of ZFCwith the 
ontinuum large and with P(!)=�n having an ultra�lter generated bya stri
tly de
reasing sequen
e of length !1. Thus by Proposition 1.6 we havef(P(!)=�n) = u(P(!)=�n) < 2! in this model. We do not have any furtherinformation about f(P(!)=�n).Proposition 1.7. Suppose that � and � are in�nite ordinals, A has a maximalfree sequen
e of length �, and B has a free sequen
e of length �. Then A�B hasa maximal free sequen
e of length � + �.Proof: Let hb� : � < �i be a free sequen
e in B, and let ha� : � < �i be
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es in a Boolean algebra 597a maximal free sequen
e in A. For any � < � + � we de�ne
� = 8><>: (1; b�) if � < �;(1; 0) if � = �;(a� ; 0) if � = � + 1 + �:We 
laim that h
� : � < � + �i is as desired.To show that h
� : � < � + �i is free, suppose that F and G are �nite subsetsof � + � with F < G; we want to show thatY�2F 
� � Y�2G�
� 6= 0:If F � �, this is true via the b�'s; otherwise it is true via the a�'s.For maximality, suppose that (d; e) 2 A�B; we want to apply 1.4. By 1.4 forA, we have two possibilities.Case 1. There is a �nite F � � su
h thatQ�2F a� �d = 0. Let H = f�+1+� :� 2 Fg. Then Q�2H 
� � (d; e) = (0; 0).Case 2. There are �nite F;G � � su
h that F < G and Q�2F a� �Q�2G�a� ��d = 0. Let H = f�g [ f� + 1 + � : � 2 Fg and K = f� + 1 + � : � 2 Gg. ThenH < K, andY�2H 
� � Y�2K�
� � (�d;�e) = (1; 0) � Y�2F(a� ; 0) � Y�2G(�a� ; 1) � (�d;�e) = (0; 0):�By t0(A) we mean the least 
ardinal greater than the size of ea
h free sequen
eof A.Corollary 1.8. If t0(A) � t0(B), then [f(A); t0(B))
ard � fsp(A�B). �Corollary 1.9. fsp(A) � fsp(A�B), for any BA B. �Proposition 1.10. fsp(Q�2F Fr(�)) = [minF;maxF ℄
ard if F is a nonempty�nite set of in�nite 
ardinals.Proof: By 1.3, 1.8, and 1.9 it suÆ
es to show that Q�2F Fr(�) does not have amaximal free sequen
e of length less than minF . So, suppose that ha� : � < �iis a maximal free sequen
e in Q�2F Fr(�) with � < minF . For ea
h � 2 F letx� be a free generator of Fr(�) not in the support of any a�(�). Suppose thatH < G are �nite subsets of � and Q�2H a� �Q�2G�a� � �x� = 0. Then 
learlyQ�2H a� �Q�2G�a� = 0, 
ontradi
tion. Similarly for the other possibility in 1.4.�



598 J.D. MonkIn 
onne
tion with these results, noti
e that if hx� : � < �i is a system of freegenerators of A, then this system is a maximal free sequen
e. In fa
t, it is 
learlya free sequen
e. To show that it is maximal, suppose that b 2 A; we 
he
k the
onditions of 1.4. We may assume that b 6= 0; 1. Then there is a �nite M � �and a � � M2 su
h thatb =X"2� Y�2M x"(�)� and hen
e � b = X"2M2n� Y�2M x"(�)� :If 8" 2 � 9� 2 M ["(�) = 0℄, then 1.4(i) holds with F = M . Otherwise, 8" 2M2n� 9� 2M ["(�) = 0℄, and 1.4(ii) holds with F =M and G = ;.For any � su
h that � � � < �+, we 
an enumerate the free generators ofFr(�) in a sequen
e of length � with no repetitions. Then the argument of theprevious paragraph shows that this sequen
e is maximal free. Thus maximal freesequen
es 
an have length a su

essor ordinal, and lengths with 
o�nality lessthan size.Now we 
an show that fsp(A�B) is not in general equal to fsp(A)[fsp(B). Forexample, fsp(Fr(!)�Fr(!2)) = f!; !1; !2g, but fsp(Fr(!))[fsp(Fr(!2)) = f!; !2g.Proposition 1.11. fsp(P(�)) = [!; 2�℄
ard for any in�nite 
ardinal �.Proof: First we show that f(P(!)) = !. For ea
h m 2 ! let am = !n(m+ 1).Thus ham : m 2 !i is stri
tly de
reasing, and so by Theorem 1.1 it is a freesequen
e inP(!). Note that f0g = !na0 and fm+1g = amnam+1 for all m 2 !.Now if b 2 P(!) and b 6= ;, 
hoose n 2 b. If n = 0, then �a0 � �b = 0, and ifn = m+ 1, then am � �am+1 � �b = 0. It follows that ham : m 2 !i is a maximalfree sequen
e. So we have shown that f(P(!)) = !.Write � = M [N with jM j = ! and jN j = �. Then P(�) �=P(M)�P(N).Moreover,P(N) has an independent subset of size 2�, and hen
e a free sequen
e ofthat size. So our result follows from Proposition 1.6 and the pre
eding paragraph.�Proposition 1.12. Let L be a linear ordering.(i) If ha� : � < �i is a stri
tly in
reasing sequen
e with lub b, with � a limitordinal, then h[a� ; b) : � < �i is a maximal free sequen
e in Intalg(L).(ii) If ha� : � < �i is a stri
tly de
reasing sequen
e with glb b, with � a limitordinal, then h[b; a�) : � < �i is a maximal free sequen
e in Intalg(L).(iii) Suppose that ha� : � < �i is stri
tly in
reasing, hb� : � < �i is stri
tlyde
reasing, 8� < �[a� < b�℄, and there is no element 
 2 L su
h that8� < �[a� < 
 < b� ℄. Then h[a� ; b�) : � < �i is a maximal free sequen
ein Intalg(L).Proof: (i): Let x be any nonzero element of Intalg(L). We 
onsider two 
ases.
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omponent [
; d) of x we have b � 
 or d < b. Clearly thenthere is a � < � su
h that [a� ; b)\ [
; d) = ; for every 
omponent [
; d) of x. Hen
e[a� ; b) \ x = ;, as desired in 1.4.Case 2. There is a 
omponent [
; d) of x su
h that 
 < b � d. Then there is a� < � su
h that [a� ; b) � [
; d) � x. So [a� ; b) � �x = ;, again as desired in 1.4.The proof of (ii) is similar, but (iii) is more 
ompli
ated. Clearly h[a� ; b�) : � <�i is a free sequen
e in Intalg(L). Now suppose that x is a nonzero element ofIntalg(L). If for every 
omponent [
; d) of x there is a � < � su
h that b� < 
 ord < a�, then there is a � < � su
h that x \ [a� ; b�) = ;, as desired. So, supposethat there is a 
omponent [
; d) of x su
h that for every � < � we have 
 � b� anda� � d. Then by the hypothesis of (iii) there is a � < � su
h that [a� ; b�) � [
; d).Hen
e [a� ; b�)nx = ;, as desired. �The following proposition gives a 
onne
tion between maximal free sequen
esin a BA A and towers in homomorphi
 images of A.Proposition 1.13. Suppose that ha� : � < �i is a maximal free sequen
e inan atomless BA A. For ea
h � � � let F� be an ultra�lter 
ontaining the setfa� : � < �g [ f�a� : � � � < �g. Let I = fx 2 A : 8� � �[�x 2 F� ℄g. Then Iis an ideal in A and 0 < [a� ℄I < [a� ℄I < 1 if � < � < �. Moreover, if � is a limitordinal, then Q�<�[a� ℄I = 0, while if � = � + 1 then [a� ℄I is an atom of A=I .Proof: Clearly I is an ideal on A. Now suppose that � < � < �. If � � � anda� � �a� 2 F� , then � < �, hen
e also � < � and so a� 2 F� , 
ontradi
tion. Hen
e8� � �[�(a� � �a�) 2 F� ℄, and so a� � �a� 2 I and 
onsequently [a� ℄I � [a�℄I .Suppose that [a�℄I = [a� ℄I . Then a� � �a� 2 I , and so �a� + a� 2 F�+1. Alsoa� 2 F�+1, so a� 2 F�+1. Sin
e � + 1 � �, this is a 
ontradi
tion.Thus we have shown that [a�℄I < [a�℄I if � < � < �. If [a� ℄I = 0, thena� 2 I . But a� 2 F�, 
ontradi
tion. If [a� ℄I = 1, then �a� 2 I . But �a� 2 F0,
ontradi
tion.Now suppose that 0 < [b℄I < [a� ℄I for all � < �. By the maximality of ha� :� < �i there are then two possibilities. If Q�2F a� � b = 0 for some �nite subsetF of �, then [b℄I = 0, 
ontradi
tion. Suppose that Q�2F a� �Q�2G�a� � �b = 0,where F < G are �nite subsets of �. If � is the greatest member of F and � is thesmallest member of G, then [a� ℄I ��[a�℄I � [b℄I � [a� ℄I , so that [a� ℄I ��[a�℄I = 0,
ontradi
tion. If � is the greatest member of F and G = ;, then [a�℄I � �[b℄I = 0,hen
e [a�℄I � [b℄I < [a� ℄i, 
ontradi
tion. If � is the smallest element of G andF = ;, then �[a� ℄I � �[b℄I = 0, so �[a� ℄I � [b℄I � [a� ℄I , so that �[a� ℄I = 0,
ontradi
tion. �Proposition 1.14. Suppose that hAi : i 2 !i is a system of in�nite BAs.(i) Suppose that i0 2 !, and � is a 
ardinal su
h that ! � � < t0(Ai0 ). ThenB def= Qwi2! Ai has a maximal free sequen
e of size �.



600 J.D. Monk(ii) fsp(B) � [!; �)
ard, where � is the least 
ardinal su
h that no Ai has afree sequen
e of size �.(iii) With � as in (ii), if 
f(�) > ! then fsp(B) = [!; �)
ard, while if 
f(�) = !then fsp(B) = [!; �℄
ard.(iv) f(B) = !.Proof: We may assume that i0 = 0. Let hx� : � < �i be a free sequen
e in A0.We now de�ne a sequen
e ha� : � < �+ !i of elements of B. For � < �, leta�(i) = � x� if i = 0;1 if i > 0:For any n 2 ! de�ne a�+n bya�+n(i) = � 0 if i � n;1 if n < i:Then ha� : � < �+ !i is a free sequen
e. In fa
t, suppose that F;G 2 [� + !℄<!and F < G; we want to show that Q�2F a� �Q�2G�a� 6= 0. If F � �, then(Q�2F a� �Q�2G�a�)(0) 6= 0 sin
e hx� : � < �i is a free sequen
e. If F 6� �, then(Q�2F a� �Q�2G�a�)(n+ 1) 6= 0 if �+ n is the greatest member of F . To showthat ha� : � < �+ !i is maximal, let b 2 B be given. Choose n greater than ea
helement in the support of b. If b is of type I, then a�+n � b = 0. If b is of type II,then a�+n � �b = 0.(ii){(iv) are immediate from (i). �Proposition 1.15. Suppose that � is an un
ountable 
ardinal, and h�� : � < �iis a system of in�nite 
ardinals. Let A =Qw�<� Fr(��). Then(i) [min�<� �� ; sup�<� ��)
ard � fsp(A).(ii) If min�<� �� � � and 
f(sup�<� ��) > !, thenfsp(A) = [min�<� �� ; sup�<� ��)
ard.(iii) If min�<� �� � � and 
f(sup�<� ��) = !, thenfsp(A) = �min�<� �� ; sup�<� ���
ard.(iv) If � < min�<� �� and 
f(sup�<� ��) > !, then fsp(A) = [�; sup�<� ��)
ard.(iv) If � < min�<� �� and 
f(sup�<� ��) = !, then fsp(A) = [�; sup�<� �� ℄
ard.(v) If min�<� �� � �, then f(A) = min�<� ��.(vi) If � < min�<� �� , then f(A) = �.Proof: (i) is 
lear by 1.6 and 1.9. Next we show:(1) Every maximal free sequen
e in A has size at least minf�;min�<� ��g.For, suppose that hf� : � < �i is a free sequen
e in A with � < minf�;min�<� ��g.We want to show that it is not maximal. We 
onsider two 
ases.



Maximal free sequen
es in a Boolean algebra 601Case 1. There is a � < � su
h that f� is of type I. De�ne g to be of type I,and to have support equal to that of f�, with g(i) a free generator of Fr(�i) notin the support of any element ff�(i) : � < �g, for ea
h i in its support. We 
laimthat hf� : � < �i_hgi is still free. If not, there are two possibilities.Sub
ase 1:1. There is a �nite F � � su
h that Q�2F f� � g = 0. We mayassume that � 2 F , and this easily gives a 
ontradi
tion.Sub
ase 1:2. There are �nite subsets F < G of � su
h that Q�2F f� �Q�2G�f� � �g = 0. Then by the 
hoi
e of g, for every i 2 supp(g) we have(Q�2F f� �Q�2G�f�)(i) = 0, while for i =2 supp(g) we have0�Y�2F f� � Y�2G�f�1A (i) = 0�Y�2F f� � Y�2G�f�1A (i) � 1= 0�Y�2F f� � Y�2G�f�1A (i) � (�g)(i)= 0;hen
e Q�2F f� �Q�2G�f� = 0, 
ontradi
tion.Case 2. Every f� is of type II. Choose i 2 InS�<� supp(f�), and let g be su
hthat g(i) is a free generator of Fr(�i), with g(j) = 0 for all j 6= i. Again we 
laimthat hf� : � < �i_hgi is still free. If not, there are two possibilities.Sub
ase 2:1. There is a �nite F � � su
h that Q�2F f� �g = 0 orQ�2F f� ��g = 0. But 0�Y�2F f� � g1A (i) = g(i) 6= 0;
ontradi
tion; similarly for Q�2F f� � �g.Sub
ase 2:2. There are �nite subset F < G of � su
h Q�2F f� �Q�2G�f� ��g = 0. Then G 6= ; be
ause of the Case 2 
ondition, and0�Y�2F f� � Y�2G�f�1A (i) = 0sin
e G 6= ;, while for j 6= i,0�Y�2F f� � Y�2G�f�1A (j) = 0�Y�2F f� � Y�2G�f�1A (j) � 1= 0�Y�2F f� � Y�2G�f�1A (j) � �g(j) = 0;
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e Q�2F f� �Q�2G�f� = 0, 
ontradi
tion.This proves (1).Now (ii) and (iii) follow by 12.1 and 12.2 of Monk [96℄.(2) If � � � < �0, then there is a maximal free sequen
e of length � + �+ 1.To prove this, let hx� : � < �0i enumerate free generators of Fr(�0).For �; � < � we de�ne f�(�) = 8><>: x� if � = 0;0 if � = 1 + �;1 otherwise:For � < � and � < � de�nef�+�(�) = � x�+� if � = 0;1 otherwise:Finally, for � < � de�ne f�+�(�) = � 0 if � = 0;1 otherwise:Clearly hf� : � � � + �i is a free sequen
e. Now suppose that g 2 Qw�<� Fr(��).Let F = f� < � : 1 + � 2 supp(g)g. Choose " 2 2 so that g" is of type I. ThenQ�2F f� � f�+� � g" = 0. So hf� : � � � + �i is maximal.Thus (2) holds, and (iv) and (v) follow.(vi) and (vii) are immediate from the pre
eding 
onditions. �This proposition shows that any interval of 
ardinals 
an appear as fsp(A) forsome atomless BA A, subje
t only to the 
o�nality 
ondition indi
ated. Thisleaves open the question whether fsp(A) is always an interval of 
ardinals.2. fWe now 
on
entrate on the least member f(A) of fsp(A). This is a 
ardinalsimilar to many others studied espe
ially forP(!)=�n. Most of our results relatef to other fun
tions, namely to ��inf , p, t, smm, and i, whose de�nitions we re
allbelow.By Corollary 1.8 we have



Maximal free sequen
es in a Boolean algebra 603Corollary 2.1. f(A�B) � minff(A); f(B)g. �A subset X of a BA A is independent i�8F;G 2 [X ℄<! 24F \G = ; ! Yx2F x � Yy2G�y 6= 035 :As is well-known, X is independent i� it is a set of free generators for the subal-gebra whi
h it generates. We de�nei(A) = minfjX j : X is a maximal independent subset of Ag:Proposition 2.2. If A and B are atomless and f(A�B) = !, then i(A) = ! ori(B) = !.Proof: Suppose not: f(A � B) = ! < minfi(A); i(B)g. Let h(a� ; b�) : � < �ibe a maximal free sequen
e in A�B, with � an in�nite 
ountable ordinal. Thenfa� : � < �g is 
ontained in a 
ountable atomless subalgebra A0 of A. Say thatX is an independent set of generators of A0. Then X is not maximal independentin A, so there is a 
 2 AnX su
h that X [ f
g is still independent. Hen
e
 � x 6= 0 6= �
 � x for every nonzero element x of A0. Similarly we get a 
ountableatomless subalgebra B0 of B and an element d 2 B su
h that fb� : � < �g � B0and d � y 6= 0 6= �d � y for every nonzero y 2 B0. Now by the maximality ofh(a� ; b�) : � < �i we have two 
ases.Case 1. (
; d)�Q�2F (a� ; b�) = (0; 0) for some �nite subset F of �. By symmetrysay that Q�2F a� 6= 0. Then 
 �Q�2F a� = 0, 
ontradi
tion.Case 2. (
; d) �Q�2F (a� ; b�) �Q�2G�(a�; b�) = (0; 0) for some �nite subsetsF;G of � with F < G. A similar 
ontradi
tion is rea
hed. �Proposition 2.3. Suppose that � is an un
ountable 
ardinal and I is any non-empty set. Let A = I Fr(�). Then f(A) = �.Proof: Suppose that ha� : � < �i is a free sequen
e in A, with � in�nite but withj�j < �. For ea
h i 2 I , let bi be a free generator of Fr(�) not inS�<� supp(a�(i)).Clearly ha� : � < �i_hbi is still free.Now the Proposition follows by 2.1. �We now 
onsider the relationship of f to other 
ardinals. See Monk [01℄ forde�nitions and ba
kground. There are many problems here, so we do not attemptto list all of them, but we formulate some important ones. We restri
t ourselvesto atomless BAs.For our �rst result we need some terminology and notation. A weak partitionof a BA A is a system of pairwise disjoint elements of A with sum 1. We 
all itweak be
ause we do not assume that all entries are nonzero. A subset X of A is



604 J.D. Monkm-dense, where m is a positive integer, i� for every weak partition hai : i < miof A there exist an x 2 X+ and an i < m su
h that x � ai. We de�ne��inf(A) = minfjX j : X is m-dense for every m � 2g:The notation here 
omes from a topologi
al equivalent. The �-
hara
ter of apoint x is the smallest size of a 
olle
tion U of open sets su
h that ea
h openneighborhood of x 
ontains some element of U . Then ��inf(A) is equivalentlyde�ned as the least �-
hara
ter of any ultra�lter on A, thus applying the topo-logi
al de�nition to the Stone spa
e of A. The equivalen
e is proved in Bal
ar,Simon [91℄. Further important fa
ts about ��inf 
an be found in Bal
ar, Simon[92℄ and Dow, Stepr�ans, Watson [96℄.Proposition 2.4. ��inf(A) � f(A) for any atomless BA A.Proof: Suppose that ha� : � < �i is a maximal free sequen
e. Suppose that2 � m < !. We 
laim that8<:Y�2F a� : F 2 [�℄<!9=; [8<:Y�2F a� � Y�2G�a� : F;G 2 [�℄<! ; F < G9=;is m-dense. To see this, let hbi : i < mi be a weak partition of A. If there is ani < m su
h that Q�2F a� �Q�2G�a� � �bi = 0 for some �nite F < G, this is asdesired. If for every i < m there is a �nite Fi su
h that Q�2Fi a� � bi = 0, thenwith G = Si<m Fi we haveY�2G a� = 0�Y�2Ga�1A � (b0 + � � �+ bm�1) = 0;
ontradi
tion. �For any BA A, letp(A) = minfjX j :XX = 1 and XF 6= 1 for all �nite F � Xg:Theorem 2.5. p(A) � f(A) for any atomless BA A.Proof: Let ha� : � < �i be a maximal free sequen
e, with � an in�nite ordinal.Clearly Q�2F a� 6= 0, for every �nite F � �. Suppose that 0 6= b � a� for every� < �. Choose u with 0 < u < b. First suppose that Q�2G a� � u = 0 for some�nite G � �. Now u < b � Q�2G a�, so u = 0, 
ontradi
tion. Suppose thatQ�2G a� � Q�2H �a� � �u = 0 with �nite G < H . If H 6= ;, 
hoose � 2 H .Then u < b � a� , so �a� < �u, and it follows that Q�2G a� � Q�2H �a� =Q�2G a� �Q�2H �a� � �u = 0, 
ontradi
tion. Hen
e H = ;. Hen
e Q�2G a� �u < b �Q�2G a�, 
ontradi
tion. �



Maximal free sequen
es in a Boolean algebra 605Example 2.6. There is an atomless BA A su
h that f(A) < i(A). This is analgebra A of M
Kenzie, Monk [04℄: with ! < � < � both regular, A has a stri
tlyde
reasing sequen
e of length � whi
h generates an ultra�lter, while i(A) = �.See Proposition 1.6.We de�neu(A) = minfjX j : X generates a nonprin
ipal ultra�lter on Ag:Perhaps the most interesting problems 
on
erning f are whether there is an atom-less BA A su
h that f(A) < u(A), or one su
h that u(A) < f(A).A subset X of A is ideal independent i�8x 2 X8F 2 [Xnfxg℄<! 24x � Yy2F �y 6= 035 :We de�ne smm(A) = minfjX j : X is ideal independent in Ag:For an example with f < smm, see Monk [08℄, proof of Theorem 2.13, and Exam-ple 2.6 above. Another interesting problem is whether there is an atomless BA Asu
h that smm(A) < f(A).A tower in a BA A is a subset of Anf1g well-ordered by the Boolean ordering,with sum 1.Example 2.7. There is an atomless BA A su
h that f(B) < t(B). Let A =!1 Fr(�)w with � > !1, and see Proposition 8(ii) of Monk [01℄ and Proposi-tion 1.15.Proposition 2.8. f(A) � t(A) for any atomless interval A.Proof: By Proposition 1.11, using Proposition 41 of Monk [01℄. �Proposition 2.9. f(A) = ! for A superatomi
.Proof: Let a 2 A be su
h that a=at(A) is an atom. Let hb� : � < �i enumerateall of the atoms below a. For ea
h i < ! let 
i = a ��P0<j�i bj , and let 
! = b0.Thus h
i : i 2 !i is stri
tly de
reasing, and so it is a free sequen
e. We 
laim thatit is maximal. For, let d 2 A be given. Sin
e 
! � d = 0 or 
! ��d = 0, maximalityfollows. �Sin
e interval algebras do not have un
ountable independent subsets, there isno interval algebra A su
h that f(A) < i(A). Sin
e a superatomi
 algebra doesnot have an in�nite independent subset, there is no superatomi
 algebra A su
hthat f(A) < i(A).



606 J.D. Monk3. Free sequen
es of ultra�ltersRe
all from the introdu
tion that there is also a topologi
al notion of freesequen
e, so also a notion of maximal free sequen
e of ultra�lters. Note that thestraightforward method of 
onstru
ting a maximal free sequen
e of ultra�lters,namely adding new ultra�lters at the end, one by one, breaks down at limitstages. The results in this se
tion explain why this happens.Proposition 3.1. A free sequen
e hF� : � < �i of ultra�lters on a BA A ismaximal i� fF� : � < �g is dense in Ult(A). (Ult(A) is the Stone spa
e of A, andwe are dealing here with free sequen
es in the topologi
al sense.)Proof: Suppose that hF� : � < �i is a free sequen
e of ultra�lters. For ),suppose that fF� : � < �g is not dense; let G 2 Ult(A)nfF� : � < �g. We 
laimthat hF� : � < �i_hGi is free. Let F� = G. Suppose that � < � + 1. If � = �,the desired 
on
lusion is 
lear. Suppose that � < �, and H 2 fF� : � < �g \fF� : � � � < �g [ fGg. So � 6= 0. Sin
e G =2 fF� : � < �g, alsoG =2 fF� : � < �g,and hen
e H 6= G. Let a 2 HnG. Then for any b 2 H we have S(b � a) \ fF� :� � � < �g 6= ;. Thus H 2 fF� : � < �g \ fF� : � � �g, 
ontradi
tion.The impli
ation ( is 
lear. �Theorem 3.2. For any in�nite BA A the following 
onditions are equivalent:(i) A has a maximal free sequen
e of ultra�lters;(ii) A is atomi
, and there exist an in�nite 
ardinal � and an isomorphismf of Intalg(�) into A su
h that ff(f�g) : � < �g is the set of all atomsof A.Proof: (ii))(i): Assume (ii). For ea
h � < � let F� be the prin
ipal ultra�ltergenerated by f(f�g). To show that hF� : � < �i is free, suppose that � < �.Then fF� : � < �g � S([0; �)) and fF� : � � � < �g � S([�; �)). This provesfreeness. To prove denseness, for ea
h nonzero a 2 A, 
hoose � < � su
h thatf(f�g) � a. Then F� 2 S(a), as desired.(i))(ii): Let hF� : � < �i be a maximal free sequen
e in A, with � an in�niteordinal.Suppose that A is not atomi
. By denseness, there is a smallest � < � su
hthat F� has an atomless element a as a member. By freeness, let y 2 A be su
hthat fF� : � � �g � S(y) and fF� : � < � < �g � S(�y). Then a �y 2 F� . Chooseb su
h that 0 < b < a � y and b 2 F� . Then the element a � y � �b is atomless, andsin
e it is � y, it must be a member of some F� with � < �, 
ontradi
tion.Therefore, A is atomi
. By denseness, for ea
h atom a of A there is a �a < �su
h that a 2 F�a . So F�a is the prin
ipal ultra�lter generated by fag. Thisimplies that �a 6= �b for a 6= b. Thus � is a one-one fun
tion, so ��1 has itsnatural meaning. Let h
� : � < �i enumerate in in
reasing order the set f�a : aan atom of Ag. Here � is an in�nite ordinal sin
e A is in�nite. Now by freeness,
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es in a Boolean algebra 607for ea
h � < � 
hoose h(�) 2 A su
h that fF� : � < 
�g � S(h(�)) and fF� :
� � � < �g � S(�h(�)).(1) If � < � , then h(�) � h(�).For, suppose to the 
ontrary, and let a be an atom � h(�) � �h(�). Say �a = 
� .Now a 2 F�a = F
� and a � h(�), so h(�) 2 F
� . It follows that 
� < 
� , and so� < �. Hen
e � < � . Therefore F
� 2 S(h(�)). But a � �h(�) and a 2 F
� , so�h(�) 2 F
� , 
ontradi
tion.(2) h(0) = 0.Suppose not, and let a be an atom � h(0). Now F�a = F
� for some � < �. Sin
ea 2 F�a , it follows that h(0) 2 F
� . Hen
e 
� < 
0, 
ontradi
tion.(3) h is one-one.For, suppose that � < � and h(�) = h(�). Then 
� < 
� , and so F
� 2 S(h(�)) =S(h(�)), hen
e 
� < 
� , 
ontradi
tion.(4) If � = Æ + 1 for some Æ, then h(Æ) 6= 1.For, we have fF� : 
Æ � � < �g � S(�h(Æ)), so F
Æ 2 S(�h(Æ)), hen
e�h(Æ) 6= 0,and (4) holds.(5) If � + 1 < �, then ��1(
�) � h(� + 1) � �h(�).For, let a = ��1(
�). Now F
� 2 S(h(� + 1)), so h(� + 1) 2 F
� . But alsoa 2 F�a = F
� , so a � h(� + 1) 2 F
� . Hen
e a � h(� + 1), sin
e a is an atom.Also, F
� 2 S(�h(�)), so �h(�) 2 F
� and so a � �h(�). Thus (5) holds.The last part of this argument gives(6) If � = � + 1, then ��1(
�) � �h(�).(7) If � + 1 < �, then ��1(
�) = h(� + 1) � �h(�).In fa
t, let a be an atom � h(� + 1) � �h(�). Say �a = 
�. Now by (5) and (6) itfollows that � = �, so (7) holds.Similarly, we get(8) If � = � + 1, then ��1(
�) = �h(�).Now we de�ne f([0; �)) = h(�) for all � < �. Then by the above and Remark 15.2of Koppelberg [89℄, f extends to an isomorphism g of Intalg(�) into A. Now let� < �. If � + 1 < �, theng(f�g) = g([0; � + 1)n[0; �)) = f([0; � + 1)) � �f([0; �)) = h(� + 1) � �h(�);giving an atom of A by (7). Similarly, if � = � + 1, theng(f�g) = g([0;1)n[0; �)) = �f(0; �) = �h(�);again giving an atom.Clearly every atom of A is obtained in one of these two ways. �



608 J.D. Monk4. Free 
hainsA natural generalization of the notion of free sequen
e is as follows. A free
hain for a BA A is an ordered pair (L; a) su
h that L is a linear order, a 2 LA,and for any F;G 2 [L℄<!, if F < G then Q�2F a� �Q�2G�a� 6= 0. We say that(L; a) is a free 
hain over L.In this se
tion we investigate this notion, and in the next se
tion we 
onsidermaximal free 
hains.First we de�ne a related topologi
al notion. Let X be a topologi
al spa
e.A free 
hain for X is an ordered pair (L; x) su
h that L is a linear order, x 2 LX ,and for any � 2 L, fx� : � < �g \ fx� : � � �g = ;:As in the 
ase of sequen
es, a BA A has a free 
hain (L; a) i� Ult(A) has a free
hain (L; x).For any BA A, we de�neLengthH+(A) = supfLength(B) : B is a homomorphi
 image of Ag:Proposition 4.1. For any in�nite BA A we haveLengthH+(A) = supfjLj : A has a free 
hain (L; a)g:Proof: The proof is just a modi�
ation of the proof of Theorem 4.21 ofMonk [96℄. For �, suppose that (L; a) is a free 
hain in A; we will �nd an ideal Iof A su
h that A=I has a 
hain of size jLj. For ea
h � 2 L let F� be an ultra�lteron A su
h that fa� : � < �g [ f�a� : � � � 2 Lg � F� . Let Y = fF� : � 2 Lg,and let I = fx 2 A : Y � S(�x)g. Clearly I is an ideal in A. We 
laim that(1) 8�; � 2 L[� < � ! a�=I < a�=I ℄.To prove this, suppose that � < �. To show that a� � �a� 2 I , take any � 2 L.If � < �, then also � < � and so a� 2 F�, and it follows that �a� + a� 2 F�, sothat F� 2 S(�a� + a�). If � � �, then �a� 2 F� and again F� 2 S(�a� + a�). Soa� � �a� 2 I . Thus a�=I < a�=I ℄. Also, a� 2 F� and �a� 2 F� , so it follows thata�=I 6= a�=I . Thus (1) holds.Conversely, suppose that I is an ideal in A and ha�=I : � 2 Li is a 
hain in A=I .Let � <L � i� a�=I < a�=I . This makes L into a linear order. We may assumethat a0=I 6= 0 and no a�=I is equal to 1. We 
laim then that h�a� : � 2 Li is afree 
hain. For, suppose that F;G 2 [L℄<! with F < G. Then if both F and Gare nonempty, we have0�Y�2F �a� � Y�2G a�1A =I = Y�2F (�(a�=I)) � Y�2G(a�=I) = �(a�=I) � (a�=I);



Maximal free sequen
es in a Boolean algebra 609where � is the largest element of F and � is the smallest element of G. So�(a�=I) � (a�=I) 6= 0, and hen
e Q�2F �a� �Q�2G a� 6= 0. The 
ase when oneof F;G is empty is treated similarly. �Note that in Intalg(R) every in�nite free sequen
e is 
ountable, while there areun
ountable free 
hains.5. Maximal free 
hainsZorn's lemma 
an be applied to obtain maximal free 
hains, for example by
onsidering linear orders on subsets of jAj+. We now de�nef
hnspe
t(A) = fjLj : A has an in�nite maximal free 
hain over Lg;f
hnmm(A) = min(f
hnspe
t(A)):Proposition 5.1. f
hnspe
t(Fin
o(�)) = f!g for any in�nite 
ardinal �.Proof: This holds by Proposition 5.1 and Corollary 5.29 of Rosenstein [82℄. �Proposition 5.2. f
hnspe
t(Fr(�)) = f�g for any in�nite 
ardinal �. �Proposition 5.3. Suppose that (I; a) is a free 
hain in A. Then the following
onditions are equivalent.(i) (I; a) is maximal.(ii) For all b 2 A and all M;N � I , if M < N and M [ N = I , then thereexist �nite F � M and G � N su
h that one of the following 
onditionsholds:(a) Q�2F a� � b �Q�2G�a� = 0;(b) Q�2F a� � �b �Q�2G�a� = 0. �Note here that one of M;N;F;G 
an be empty.Proposition 5.4. Suppose that (L; a) is an in�nite maximal free 
hain in A, and(M; b) is an in�nite maximal free 
hain in B. Assume that M \ L = ;, and letm be a set not in M [ L. Order M [ fmg [ L in the natural order M < m < L.Then A�B has a maximal free 
hain of the form (M [ fmg [ L; 
).Proof: De�ne 
� = 8><>: (1; b�) if � 2M;(1; 0) if � = m;(a� ; 0) if � 2 L:Then h
� : � 2 M [ fmg [ Li is a free 
hain. In fa
t, suppose that F;G 2[M [ fmg [L℄<! with F < G. If F �M , then Q�2F 
� �Q�2G�
� 6= 0 be
auseof the b�'s, and if F 6�M , then Q�2F 
� �Q�2G�
� 6= 0 be
ause of the a�'s.



610 J.D. MonkNow for maximality, suppose that C < D with C [ D = M [ fmg [ L, and(e0; e1) 2 A�B.Case 1. C �M . Apply maximal freeness of the b�'s to the pair (C;D \M) toobtain �nite F � C and G � D \M su
h that e1 �Q�2F b� �Q�2G�b� = 0 or�e1 �Q�2F b� �Q�2G�b� = 0. Then (e0; e1) �Q�2F 
� �Q�2G�
� � (0; 1) = (0; 0)or �(e0; e1) �Q�2F 
� �Q�2G�
� � (0; 1) = (0; 0).Case 2. C 6�M . Here one 
an use the maximal freeness of the a� 's similarly.�Proposition 5.5. f(A) � f
hnmm(A) for any in�nite BA A. �There are many problems 
on
erning f
hnmm.A
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