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Maximal free sequenes in a Boolean algebraJ.D. MonkAbstrat. We study free sequenes and related notions on Boolean algebras. A freesequene on a BA A is a sequene ha� : � < �i of elements of A, with � an ordinal,suh that for all F;G 2 [�℄<! with F < G we have Q�2F a� �Q�2G �a� 6= 0. A freesequene of length � exists i� the Stone spae Ult(A) has a free sequene of length � inthe topologial sense. A free sequene is maximal i� it annot be extended at the endto a longer free sequene. The main notions studied here are the spetrum funtionfsp(A) = fj�j : A has an in�nite maximal free sequene of length �gand the assoiated min-max funtionf(A) = min(fsp(A)):Among the results are: for in�nite ardinals � � � there is a BA A suh that fsp(A) isthe olletion of all ardinals � with � � � � �; maximal free sequenes in A give rise totowers in homomorphi images of A; a haraterization of fsp(A) for A a weak produt offree BAs; p(A); ��inf(A) � f(A) for A atomless; a haraterization of in�nite BAs whoseStone spaes have an in�nite maximal free sequene; a generalization of free sequenesto free hains over any linearly ordered set, and the relationship of this generalizationto the supremum of lengths of homomorphi images.Keywords: free sequenes, ardinal funtions, Boolean algebrasClassi�ation: 06E05, 06E15, 54A25IntrodutionA free sequene on a BA A is a sequene ha� : � < �i of elements of A, with � anordinal, suh that for all F;G 2 [�℄<! with F < G we haveQ�2F a� �Q�2G�a� 6=0. Here [�℄<! is the olletion of all �nite subsets of �. We write F < G to meanthat � < � for all � 2 F and � 2 G. We take empty produts to equal 1. Thus ifG = ;, then our ondition just says that Q�2F a� 6= 0. So the elements of a freesequene are nonzero, and have the �nite intersetion property (abbreviated �p).Also, for F = ; we get Q�2G�a� 6= 0, so that no �nite sum of elements of a freesequene is equal to 1; in partiular, 1 is not a member of any free sequene.This notion of free sequene is losely related to the usual notion of a freesequene of points in a topologial spae, and to the notion of tightness in atopologial spae. Reall that a sequene hx� : � < �i of points in a spae is free



594 J.D. Monki� for all � < � we have fx� : � < �g \ fx� : � � �g = ;. Given a free sequeneha� : � < �i in the algebrai sense, for eah � < � let F� be an ultra�lter ontainingfx� : � � �g [ f�x� : � < �g; then hF� : � < �i is a free sequene in the Stonespae. And given a free sequene hF� : � < �i in the Stone spae, for eah � < �there is an element x� of the Boolean algebra suh that fF� : � < �g � fG : Gis an ultra�lter and �x� 2 Gg and fF� : � � �g � fG : G is an ultra�lter andx� 2 Gg; then hx� : � < �i is a free sequene in the algebrai sense. Theseproesses are not inverses of eah other, and this gives rise to di�erenes whenonsidering, as we do below, maximal free sequenes.A free sequene as above is maximal i� there is no b 2 A suh that ha� : � <�i_hbi is a free sequene, where ha� : � < �i_hbi is the result of adjoining b atthe end of the sequene ha� : � < �i. Now we de�nefsp(A) = fj�j : A has an in�nite maximal free sequene of length �g;f(A) = min(fsp(A)):This artile studies these two notions, relating them to other funtions de�nedin a similar min-max fashion. Note that maximal free sequenes always exist, byZorn's lemma.We also onsider the topologial version. A free sequene hF� : � < �i ofultra�lters on A is maximal i� there does not exist an ultra�lter G suh thathF� : � < �i_hGi is free. Maximal free sequenes of ultra�lters do not alwaysexist; those BAs in whih they do exist are haraterized in Theorem 3.2.It is natural to generalize the notion of a free sequene by indexing the sequeneby any linear order; we all suh things free hains . Now in the notion of maximalfree hains we allow the possibility of inserting elements at any plae in the hain.Then the supremum of sizes of free hains in A is equal to the supremum oflinearly ordered subsets in homomorphi images of A. f(A) is less or equal to thesmallest size of a maximal free hain on A.Notation. For set-theoretial notation we follow Kunen [80℄. We follow Kop-pelberg [89℄ for Boolean algebrai notation, and Monk [96℄ for more speializednotation onerning ardinal funtions on BAs. For ardinals �; � we use [�; �℄ardto denote the set of all ardinals � suh that � � � � �. Similarly for other inter-vals, like [�; �)ard. Fr(�) is the free BA on � generators. Note that if 0 < a < 1in Fr(�), then there is a unique smallest �nite nonempty set G of generatorssuh that a 2 hGi; this is alled the support of a, denoted by supp(a). We letsupp(0) = supp(1) = ;. Fino(�) denotes the BA of �nite and o�nite subsets of�. A is the ompletion of A. In several plaes we use the following onstrution.Let hAi : i 2 Ii be a system of BAs, with I in�nite. The weak produt Qwi2I Aionsists of all members x of the full produt suh that one of the two setsfi 2 I : xi 6= 0g or fi 2 I : xi 6= 1g



Maximal free sequenes in a Boolean algebra 595is �nite; the orresponding set is then alled the support of x, and is denoted bysupp(x); x is alled of type I if fi 2 I : xi 6= 0g is �nite, of type II otherwise.If A is a BA and a 2 A, then S(a) = fF 2 Ult(A) : a 2 Fg. Thus S is theStone isomorphism from A onto the BA of lopen sets in the Stone spae Ult(A)If L is a linear order, then Intalg(L) is the interval algebra over L (perhapsafter adjoining a �rst element to L). Any element x of Intalg(L) has the form[a0; b0) [ : : : [ [am�1; bm�1), with a0 < b0 < � � � < bm�1 � 1. (Here 1 is notin L.) The intervals [ai; bi) are alled the omponents of x.1. fspNote that if a is an atom of A, then hai is a maximal free sequene. Thisexplains our restrition to in�nite � in the de�nitions of fsp and f.Theorem 1.1. (i) If ha� : x < �i is a stritly dereasing sequene of elementsof a BA A, with 1 > a0, then it is a free sequene.(ii) Any in�nite BA has an in�nite free sequene.Proof: For (i), suppose that F;G � � are �nite, with F < G. If F = ; 6= G,then Q�2F a� � Q�2G�a� = �a� 6= 0, where � is the least member of G. IfF 6= ; = G, then Q�2F a� �Q�2G�a� = a� 6= 0, where � is the greatest memberof F . If F 6= ; 6= G, then Q�2F a� �Q�2G�a� = a� � �a� 6= 0, where � is thegreatest member of F and � is the least member of G.(ii) learly follows from (i). �Theorem 1.2. For any in�nite ardinal �, fsp(Fino(�)) = f!g.Proof: By Theorem 1.1, Fino(�) has a free sequene of length !. Now supposethat ha� : � < �i is a free sequene in Fino(�), with !1 � �; we want to get aontradition.(1) Eah a� , � < !1, is o�nite.For, suppose that � < !1 and a� is �nite. Then there exist �; � with � < � < � <!1 and a� \ a� = a� \ a�. Then a� \ a� \ �a� = 0, ontradition.Now by (1), there is a � 2 [!1℄!1 suh that h�a� : � 2 �i forms a �-system,say with kernel b. Take � < � < � all in �. Thena� \ �a� \ �a� = a� \ b = 0;ontradition. �Theorem 1.3. fsp(Fr(�)) = f�g.Proof: It suÆes to show that if ha� : � < �i is a free sequene with � < �,then it an be extended. Let X be a set of free generators of Fr(�). Choosex 2 XnS�<� supp(a�). Then ha� : � < �i_hxi is still free. �The following simple proposition will frequently be used in what follows.



596 J.D. MonkProposition 1.4. A free sequene ha� : � < �i of elements of A is maximal i�for every b 2 A one of the following onditions holds.(i) There is a �nite F � � suh that Q�2F a� � b = 0.(ii) There exist �nite F;G � � suh that F < G and Q�2F a� �Q�2G�a� ��b = 0.Proof: Suppose that ha� : � < �i is maximal, and b 2 A. Then ha� : � < �i_hbiis no longer free. Let a� = b. Then there exist �nite F;G � � + 1 suh thatF < G and Q�2F a� �Q�2G�a� = 0. Sine ha� : � < �i itself is free we musthave � 2 F [ G. If � 2 F , then � is the largest element of F , G = ;, and (i)holds with Fnf�g in plae of F . If � 2 G, then � is the largest element of G, and(ii) holds with Gnf�g in plae of G.The onverse is lear. �From results about attainment of tightness in Chapter 12 of Monk [96℄ weobtain the following upper bound on members of fsp(A). Reall that t(A) is thetightness of A, whih is the supremum of the lengths of free sequenes in A.Proposition 1.5. (i) If A has a free sequene of in�nite length �, then there isa � 2 fsp(A) suh that j�j � �.(ii) If there is a free sequene ha� : � < �i suh that j�j is the largest size ofany free sequene in A, then j�j 2 fsp(A).(iii) If t(A) is a suessor ardinal or a limit ardinal of o�nality > !, thent(A) 2 fsp(A), and in fat t(A) is the largest member of fsp(A). �Proposition 1.6. Suppose that ha� : � < �i is a stritly dereasing sequene ofelements of a BA A suh that fa� : � < �g generates an ultra�lter on A. Thenha� : � < �i is a maximal free sequene.Proof: ha� : � < �i is a free sequene by Theorem 1.1. Clearly it is maximal. �Later we will see that p(A) � f(A) for any atomless BA A. Now Kunenshowed in exerise (A10) of VIII in Kunen [80℄ that there is a model of ZFCwith the ontinuum large and with P(!)=�n having an ultra�lter generated bya stritly dereasing sequene of length !1. Thus by Proposition 1.6 we havef(P(!)=�n) = u(P(!)=�n) < 2! in this model. We do not have any furtherinformation about f(P(!)=�n).Proposition 1.7. Suppose that � and � are in�nite ordinals, A has a maximalfree sequene of length �, and B has a free sequene of length �. Then A�B hasa maximal free sequene of length � + �.Proof: Let hb� : � < �i be a free sequene in B, and let ha� : � < �i be



Maximal free sequenes in a Boolean algebra 597a maximal free sequene in A. For any � < � + � we de�ne� = 8><>: (1; b�) if � < �;(1; 0) if � = �;(a� ; 0) if � = � + 1 + �:We laim that h� : � < � + �i is as desired.To show that h� : � < � + �i is free, suppose that F and G are �nite subsetsof � + � with F < G; we want to show thatY�2F � � Y�2G�� 6= 0:If F � �, this is true via the b�'s; otherwise it is true via the a�'s.For maximality, suppose that (d; e) 2 A�B; we want to apply 1.4. By 1.4 forA, we have two possibilities.Case 1. There is a �nite F � � suh thatQ�2F a� �d = 0. Let H = f�+1+� :� 2 Fg. Then Q�2H � � (d; e) = (0; 0).Case 2. There are �nite F;G � � suh that F < G and Q�2F a� �Q�2G�a� ��d = 0. Let H = f�g [ f� + 1 + � : � 2 Fg and K = f� + 1 + � : � 2 Gg. ThenH < K, andY�2H � � Y�2K�� � (�d;�e) = (1; 0) � Y�2F(a� ; 0) � Y�2G(�a� ; 1) � (�d;�e) = (0; 0):�By t0(A) we mean the least ardinal greater than the size of eah free sequeneof A.Corollary 1.8. If t0(A) � t0(B), then [f(A); t0(B))ard � fsp(A�B). �Corollary 1.9. fsp(A) � fsp(A�B), for any BA B. �Proposition 1.10. fsp(Q�2F Fr(�)) = [minF;maxF ℄ard if F is a nonempty�nite set of in�nite ardinals.Proof: By 1.3, 1.8, and 1.9 it suÆes to show that Q�2F Fr(�) does not have amaximal free sequene of length less than minF . So, suppose that ha� : � < �iis a maximal free sequene in Q�2F Fr(�) with � < minF . For eah � 2 F letx� be a free generator of Fr(�) not in the support of any a�(�). Suppose thatH < G are �nite subsets of � and Q�2H a� �Q�2G�a� � �x� = 0. Then learlyQ�2H a� �Q�2G�a� = 0, ontradition. Similarly for the other possibility in 1.4.�



598 J.D. MonkIn onnetion with these results, notie that if hx� : � < �i is a system of freegenerators of A, then this system is a maximal free sequene. In fat, it is learlya free sequene. To show that it is maximal, suppose that b 2 A; we hek theonditions of 1.4. We may assume that b 6= 0; 1. Then there is a �nite M � �and a � � M2 suh thatb =X"2� Y�2M x"(�)� and hene � b = X"2M2n� Y�2M x"(�)� :If 8" 2 � 9� 2 M ["(�) = 0℄, then 1.4(i) holds with F = M . Otherwise, 8" 2M2n� 9� 2M ["(�) = 0℄, and 1.4(ii) holds with F =M and G = ;.For any � suh that � � � < �+, we an enumerate the free generators ofFr(�) in a sequene of length � with no repetitions. Then the argument of theprevious paragraph shows that this sequene is maximal free. Thus maximal freesequenes an have length a suessor ordinal, and lengths with o�nality lessthan size.Now we an show that fsp(A�B) is not in general equal to fsp(A)[fsp(B). Forexample, fsp(Fr(!)�Fr(!2)) = f!; !1; !2g, but fsp(Fr(!))[fsp(Fr(!2)) = f!; !2g.Proposition 1.11. fsp(P(�)) = [!; 2�℄ard for any in�nite ardinal �.Proof: First we show that f(P(!)) = !. For eah m 2 ! let am = !n(m+ 1).Thus ham : m 2 !i is stritly dereasing, and so by Theorem 1.1 it is a freesequene inP(!). Note that f0g = !na0 and fm+1g = amnam+1 for all m 2 !.Now if b 2 P(!) and b 6= ;, hoose n 2 b. If n = 0, then �a0 � �b = 0, and ifn = m+ 1, then am � �am+1 � �b = 0. It follows that ham : m 2 !i is a maximalfree sequene. So we have shown that f(P(!)) = !.Write � = M [N with jM j = ! and jN j = �. Then P(�) �=P(M)�P(N).Moreover,P(N) has an independent subset of size 2�, and hene a free sequene ofthat size. So our result follows from Proposition 1.6 and the preeding paragraph.�Proposition 1.12. Let L be a linear ordering.(i) If ha� : � < �i is a stritly inreasing sequene with lub b, with � a limitordinal, then h[a� ; b) : � < �i is a maximal free sequene in Intalg(L).(ii) If ha� : � < �i is a stritly dereasing sequene with glb b, with � a limitordinal, then h[b; a�) : � < �i is a maximal free sequene in Intalg(L).(iii) Suppose that ha� : � < �i is stritly inreasing, hb� : � < �i is stritlydereasing, 8� < �[a� < b�℄, and there is no element  2 L suh that8� < �[a� <  < b� ℄. Then h[a� ; b�) : � < �i is a maximal free sequenein Intalg(L).Proof: (i): Let x be any nonzero element of Intalg(L). We onsider two ases.



Maximal free sequenes in a Boolean algebra 599Case 1. For every omponent [; d) of x we have b �  or d < b. Clearly thenthere is a � < � suh that [a� ; b)\ [; d) = ; for every omponent [; d) of x. Hene[a� ; b) \ x = ;, as desired in 1.4.Case 2. There is a omponent [; d) of x suh that  < b � d. Then there is a� < � suh that [a� ; b) � [; d) � x. So [a� ; b) � �x = ;, again as desired in 1.4.The proof of (ii) is similar, but (iii) is more ompliated. Clearly h[a� ; b�) : � <�i is a free sequene in Intalg(L). Now suppose that x is a nonzero element ofIntalg(L). If for every omponent [; d) of x there is a � < � suh that b� <  ord < a�, then there is a � < � suh that x \ [a� ; b�) = ;, as desired. So, supposethat there is a omponent [; d) of x suh that for every � < � we have  � b� anda� � d. Then by the hypothesis of (iii) there is a � < � suh that [a� ; b�) � [; d).Hene [a� ; b�)nx = ;, as desired. �The following proposition gives a onnetion between maximal free sequenesin a BA A and towers in homomorphi images of A.Proposition 1.13. Suppose that ha� : � < �i is a maximal free sequene inan atomless BA A. For eah � � � let F� be an ultra�lter ontaining the setfa� : � < �g [ f�a� : � � � < �g. Let I = fx 2 A : 8� � �[�x 2 F� ℄g. Then Iis an ideal in A and 0 < [a� ℄I < [a� ℄I < 1 if � < � < �. Moreover, if � is a limitordinal, then Q�<�[a� ℄I = 0, while if � = � + 1 then [a� ℄I is an atom of A=I .Proof: Clearly I is an ideal on A. Now suppose that � < � < �. If � � � anda� � �a� 2 F� , then � < �, hene also � < � and so a� 2 F� , ontradition. Hene8� � �[�(a� � �a�) 2 F� ℄, and so a� � �a� 2 I and onsequently [a� ℄I � [a�℄I .Suppose that [a�℄I = [a� ℄I . Then a� � �a� 2 I , and so �a� + a� 2 F�+1. Alsoa� 2 F�+1, so a� 2 F�+1. Sine � + 1 � �, this is a ontradition.Thus we have shown that [a�℄I < [a�℄I if � < � < �. If [a� ℄I = 0, thena� 2 I . But a� 2 F�, ontradition. If [a� ℄I = 1, then �a� 2 I . But �a� 2 F0,ontradition.Now suppose that 0 < [b℄I < [a� ℄I for all � < �. By the maximality of ha� :� < �i there are then two possibilities. If Q�2F a� � b = 0 for some �nite subsetF of �, then [b℄I = 0, ontradition. Suppose that Q�2F a� �Q�2G�a� � �b = 0,where F < G are �nite subsets of �. If � is the greatest member of F and � is thesmallest member of G, then [a� ℄I ��[a�℄I � [b℄I � [a� ℄I , so that [a� ℄I ��[a�℄I = 0,ontradition. If � is the greatest member of F and G = ;, then [a�℄I � �[b℄I = 0,hene [a�℄I � [b℄I < [a� ℄i, ontradition. If � is the smallest element of G andF = ;, then �[a� ℄I � �[b℄I = 0, so �[a� ℄I � [b℄I � [a� ℄I , so that �[a� ℄I = 0,ontradition. �Proposition 1.14. Suppose that hAi : i 2 !i is a system of in�nite BAs.(i) Suppose that i0 2 !, and � is a ardinal suh that ! � � < t0(Ai0 ). ThenB def= Qwi2! Ai has a maximal free sequene of size �.



600 J.D. Monk(ii) fsp(B) � [!; �)ard, where � is the least ardinal suh that no Ai has afree sequene of size �.(iii) With � as in (ii), if f(�) > ! then fsp(B) = [!; �)ard, while if f(�) = !then fsp(B) = [!; �℄ard.(iv) f(B) = !.Proof: We may assume that i0 = 0. Let hx� : � < �i be a free sequene in A0.We now de�ne a sequene ha� : � < �+ !i of elements of B. For � < �, leta�(i) = � x� if i = 0;1 if i > 0:For any n 2 ! de�ne a�+n bya�+n(i) = � 0 if i � n;1 if n < i:Then ha� : � < �+ !i is a free sequene. In fat, suppose that F;G 2 [� + !℄<!and F < G; we want to show that Q�2F a� �Q�2G�a� 6= 0. If F � �, then(Q�2F a� �Q�2G�a�)(0) 6= 0 sine hx� : � < �i is a free sequene. If F 6� �, then(Q�2F a� �Q�2G�a�)(n+ 1) 6= 0 if �+ n is the greatest member of F . To showthat ha� : � < �+ !i is maximal, let b 2 B be given. Choose n greater than eahelement in the support of b. If b is of type I, then a�+n � b = 0. If b is of type II,then a�+n � �b = 0.(ii){(iv) are immediate from (i). �Proposition 1.15. Suppose that � is an unountable ardinal, and h�� : � < �iis a system of in�nite ardinals. Let A =Qw�<� Fr(��). Then(i) [min�<� �� ; sup�<� ��)ard � fsp(A).(ii) If min�<� �� � � and f(sup�<� ��) > !, thenfsp(A) = [min�<� �� ; sup�<� ��)ard.(iii) If min�<� �� � � and f(sup�<� ��) = !, thenfsp(A) = �min�<� �� ; sup�<� ���ard.(iv) If � < min�<� �� and f(sup�<� ��) > !, then fsp(A) = [�; sup�<� ��)ard.(iv) If � < min�<� �� and f(sup�<� ��) = !, then fsp(A) = [�; sup�<� �� ℄ard.(v) If min�<� �� � �, then f(A) = min�<� ��.(vi) If � < min�<� �� , then f(A) = �.Proof: (i) is lear by 1.6 and 1.9. Next we show:(1) Every maximal free sequene in A has size at least minf�;min�<� ��g.For, suppose that hf� : � < �i is a free sequene in A with � < minf�;min�<� ��g.We want to show that it is not maximal. We onsider two ases.



Maximal free sequenes in a Boolean algebra 601Case 1. There is a � < � suh that f� is of type I. De�ne g to be of type I,and to have support equal to that of f�, with g(i) a free generator of Fr(�i) notin the support of any element ff�(i) : � < �g, for eah i in its support. We laimthat hf� : � < �i_hgi is still free. If not, there are two possibilities.Subase 1:1. There is a �nite F � � suh that Q�2F f� � g = 0. We mayassume that � 2 F , and this easily gives a ontradition.Subase 1:2. There are �nite subsets F < G of � suh that Q�2F f� �Q�2G�f� � �g = 0. Then by the hoie of g, for every i 2 supp(g) we have(Q�2F f� �Q�2G�f�)(i) = 0, while for i =2 supp(g) we have0�Y�2F f� � Y�2G�f�1A (i) = 0�Y�2F f� � Y�2G�f�1A (i) � 1= 0�Y�2F f� � Y�2G�f�1A (i) � (�g)(i)= 0;hene Q�2F f� �Q�2G�f� = 0, ontradition.Case 2. Every f� is of type II. Choose i 2 InS�<� supp(f�), and let g be suhthat g(i) is a free generator of Fr(�i), with g(j) = 0 for all j 6= i. Again we laimthat hf� : � < �i_hgi is still free. If not, there are two possibilities.Subase 2:1. There is a �nite F � � suh that Q�2F f� �g = 0 orQ�2F f� ��g = 0. But 0�Y�2F f� � g1A (i) = g(i) 6= 0;ontradition; similarly for Q�2F f� � �g.Subase 2:2. There are �nite subset F < G of � suh Q�2F f� �Q�2G�f� ��g = 0. Then G 6= ; beause of the Case 2 ondition, and0�Y�2F f� � Y�2G�f�1A (i) = 0sine G 6= ;, while for j 6= i,0�Y�2F f� � Y�2G�f�1A (j) = 0�Y�2F f� � Y�2G�f�1A (j) � 1= 0�Y�2F f� � Y�2G�f�1A (j) � �g(j) = 0;



602 J.D. Monkhene Q�2F f� �Q�2G�f� = 0, ontradition.This proves (1).Now (ii) and (iii) follow by 12.1 and 12.2 of Monk [96℄.(2) If � � � < �0, then there is a maximal free sequene of length � + �+ 1.To prove this, let hx� : � < �0i enumerate free generators of Fr(�0).For �; � < � we de�ne f�(�) = 8><>: x� if � = 0;0 if � = 1 + �;1 otherwise:For � < � and � < � de�nef�+�(�) = � x�+� if � = 0;1 otherwise:Finally, for � < � de�ne f�+�(�) = � 0 if � = 0;1 otherwise:Clearly hf� : � � � + �i is a free sequene. Now suppose that g 2 Qw�<� Fr(��).Let F = f� < � : 1 + � 2 supp(g)g. Choose " 2 2 so that g" is of type I. ThenQ�2F f� � f�+� � g" = 0. So hf� : � � � + �i is maximal.Thus (2) holds, and (iv) and (v) follow.(vi) and (vii) are immediate from the preeding onditions. �This proposition shows that any interval of ardinals an appear as fsp(A) forsome atomless BA A, subjet only to the o�nality ondition indiated. Thisleaves open the question whether fsp(A) is always an interval of ardinals.2. fWe now onentrate on the least member f(A) of fsp(A). This is a ardinalsimilar to many others studied espeially forP(!)=�n. Most of our results relatef to other funtions, namely to ��inf , p, t, smm, and i, whose de�nitions we reallbelow.By Corollary 1.8 we have



Maximal free sequenes in a Boolean algebra 603Corollary 2.1. f(A�B) � minff(A); f(B)g. �A subset X of a BA A is independent i�8F;G 2 [X ℄<! 24F \G = ; ! Yx2F x � Yy2G�y 6= 035 :As is well-known, X is independent i� it is a set of free generators for the subal-gebra whih it generates. We de�nei(A) = minfjX j : X is a maximal independent subset of Ag:Proposition 2.2. If A and B are atomless and f(A�B) = !, then i(A) = ! ori(B) = !.Proof: Suppose not: f(A � B) = ! < minfi(A); i(B)g. Let h(a� ; b�) : � < �ibe a maximal free sequene in A�B, with � an in�nite ountable ordinal. Thenfa� : � < �g is ontained in a ountable atomless subalgebra A0 of A. Say thatX is an independent set of generators of A0. Then X is not maximal independentin A, so there is a  2 AnX suh that X [ fg is still independent. Hene � x 6= 0 6= � � x for every nonzero element x of A0. Similarly we get a ountableatomless subalgebra B0 of B and an element d 2 B suh that fb� : � < �g � B0and d � y 6= 0 6= �d � y for every nonzero y 2 B0. Now by the maximality ofh(a� ; b�) : � < �i we have two ases.Case 1. (; d)�Q�2F (a� ; b�) = (0; 0) for some �nite subset F of �. By symmetrysay that Q�2F a� 6= 0. Then  �Q�2F a� = 0, ontradition.Case 2. (; d) �Q�2F (a� ; b�) �Q�2G�(a�; b�) = (0; 0) for some �nite subsetsF;G of � with F < G. A similar ontradition is reahed. �Proposition 2.3. Suppose that � is an unountable ardinal and I is any non-empty set. Let A = I Fr(�). Then f(A) = �.Proof: Suppose that ha� : � < �i is a free sequene in A, with � in�nite but withj�j < �. For eah i 2 I , let bi be a free generator of Fr(�) not inS�<� supp(a�(i)).Clearly ha� : � < �i_hbi is still free.Now the Proposition follows by 2.1. �We now onsider the relationship of f to other ardinals. See Monk [01℄ forde�nitions and bakground. There are many problems here, so we do not attemptto list all of them, but we formulate some important ones. We restrit ourselvesto atomless BAs.For our �rst result we need some terminology and notation. A weak partitionof a BA A is a system of pairwise disjoint elements of A with sum 1. We all itweak beause we do not assume that all entries are nonzero. A subset X of A is



604 J.D. Monkm-dense, where m is a positive integer, i� for every weak partition hai : i < miof A there exist an x 2 X+ and an i < m suh that x � ai. We de�ne��inf(A) = minfjX j : X is m-dense for every m � 2g:The notation here omes from a topologial equivalent. The �-harater of apoint x is the smallest size of a olletion U of open sets suh that eah openneighborhood of x ontains some element of U . Then ��inf(A) is equivalentlyde�ned as the least �-harater of any ultra�lter on A, thus applying the topo-logial de�nition to the Stone spae of A. The equivalene is proved in Balar,Simon [91℄. Further important fats about ��inf an be found in Balar, Simon[92℄ and Dow, Stepr�ans, Watson [96℄.Proposition 2.4. ��inf(A) � f(A) for any atomless BA A.Proof: Suppose that ha� : � < �i is a maximal free sequene. Suppose that2 � m < !. We laim that8<:Y�2F a� : F 2 [�℄<!9=; [8<:Y�2F a� � Y�2G�a� : F;G 2 [�℄<! ; F < G9=;is m-dense. To see this, let hbi : i < mi be a weak partition of A. If there is ani < m suh that Q�2F a� �Q�2G�a� � �bi = 0 for some �nite F < G, this is asdesired. If for every i < m there is a �nite Fi suh that Q�2Fi a� � bi = 0, thenwith G = Si<m Fi we haveY�2G a� = 0�Y�2Ga�1A � (b0 + � � �+ bm�1) = 0;ontradition. �For any BA A, letp(A) = minfjX j :XX = 1 and XF 6= 1 for all �nite F � Xg:Theorem 2.5. p(A) � f(A) for any atomless BA A.Proof: Let ha� : � < �i be a maximal free sequene, with � an in�nite ordinal.Clearly Q�2F a� 6= 0, for every �nite F � �. Suppose that 0 6= b � a� for every� < �. Choose u with 0 < u < b. First suppose that Q�2G a� � u = 0 for some�nite G � �. Now u < b � Q�2G a�, so u = 0, ontradition. Suppose thatQ�2G a� � Q�2H �a� � �u = 0 with �nite G < H . If H 6= ;, hoose � 2 H .Then u < b � a� , so �a� < �u, and it follows that Q�2G a� � Q�2H �a� =Q�2G a� �Q�2H �a� � �u = 0, ontradition. Hene H = ;. Hene Q�2G a� �u < b �Q�2G a�, ontradition. �



Maximal free sequenes in a Boolean algebra 605Example 2.6. There is an atomless BA A suh that f(A) < i(A). This is analgebra A of MKenzie, Monk [04℄: with ! < � < � both regular, A has a stritlydereasing sequene of length � whih generates an ultra�lter, while i(A) = �.See Proposition 1.6.We de�neu(A) = minfjX j : X generates a nonprinipal ultra�lter on Ag:Perhaps the most interesting problems onerning f are whether there is an atom-less BA A suh that f(A) < u(A), or one suh that u(A) < f(A).A subset X of A is ideal independent i�8x 2 X8F 2 [Xnfxg℄<! 24x � Yy2F �y 6= 035 :We de�ne smm(A) = minfjX j : X is ideal independent in Ag:For an example with f < smm, see Monk [08℄, proof of Theorem 2.13, and Exam-ple 2.6 above. Another interesting problem is whether there is an atomless BA Asuh that smm(A) < f(A).A tower in a BA A is a subset of Anf1g well-ordered by the Boolean ordering,with sum 1.Example 2.7. There is an atomless BA A suh that f(B) < t(B). Let A =!1 Fr(�)w with � > !1, and see Proposition 8(ii) of Monk [01℄ and Proposi-tion 1.15.Proposition 2.8. f(A) � t(A) for any atomless interval A.Proof: By Proposition 1.11, using Proposition 41 of Monk [01℄. �Proposition 2.9. f(A) = ! for A superatomi.Proof: Let a 2 A be suh that a=at(A) is an atom. Let hb� : � < �i enumerateall of the atoms below a. For eah i < ! let i = a ��P0<j�i bj , and let ! = b0.Thus hi : i 2 !i is stritly dereasing, and so it is a free sequene. We laim thatit is maximal. For, let d 2 A be given. Sine ! � d = 0 or ! ��d = 0, maximalityfollows. �Sine interval algebras do not have unountable independent subsets, there isno interval algebra A suh that f(A) < i(A). Sine a superatomi algebra doesnot have an in�nite independent subset, there is no superatomi algebra A suhthat f(A) < i(A).



606 J.D. Monk3. Free sequenes of ultra�ltersReall from the introdution that there is also a topologial notion of freesequene, so also a notion of maximal free sequene of ultra�lters. Note that thestraightforward method of onstruting a maximal free sequene of ultra�lters,namely adding new ultra�lters at the end, one by one, breaks down at limitstages. The results in this setion explain why this happens.Proposition 3.1. A free sequene hF� : � < �i of ultra�lters on a BA A ismaximal i� fF� : � < �g is dense in Ult(A). (Ult(A) is the Stone spae of A, andwe are dealing here with free sequenes in the topologial sense.)Proof: Suppose that hF� : � < �i is a free sequene of ultra�lters. For ),suppose that fF� : � < �g is not dense; let G 2 Ult(A)nfF� : � < �g. We laimthat hF� : � < �i_hGi is free. Let F� = G. Suppose that � < � + 1. If � = �,the desired onlusion is lear. Suppose that � < �, and H 2 fF� : � < �g \fF� : � � � < �g [ fGg. So � 6= 0. Sine G =2 fF� : � < �g, alsoG =2 fF� : � < �g,and hene H 6= G. Let a 2 HnG. Then for any b 2 H we have S(b � a) \ fF� :� � � < �g 6= ;. Thus H 2 fF� : � < �g \ fF� : � � �g, ontradition.The impliation ( is lear. �Theorem 3.2. For any in�nite BA A the following onditions are equivalent:(i) A has a maximal free sequene of ultra�lters;(ii) A is atomi, and there exist an in�nite ardinal � and an isomorphismf of Intalg(�) into A suh that ff(f�g) : � < �g is the set of all atomsof A.Proof: (ii))(i): Assume (ii). For eah � < � let F� be the prinipal ultra�ltergenerated by f(f�g). To show that hF� : � < �i is free, suppose that � < �.Then fF� : � < �g � S([0; �)) and fF� : � � � < �g � S([�; �)). This provesfreeness. To prove denseness, for eah nonzero a 2 A, hoose � < � suh thatf(f�g) � a. Then F� 2 S(a), as desired.(i))(ii): Let hF� : � < �i be a maximal free sequene in A, with � an in�niteordinal.Suppose that A is not atomi. By denseness, there is a smallest � < � suhthat F� has an atomless element a as a member. By freeness, let y 2 A be suhthat fF� : � � �g � S(y) and fF� : � < � < �g � S(�y). Then a �y 2 F� . Chooseb suh that 0 < b < a � y and b 2 F� . Then the element a � y � �b is atomless, andsine it is � y, it must be a member of some F� with � < �, ontradition.Therefore, A is atomi. By denseness, for eah atom a of A there is a �a < �suh that a 2 F�a . So F�a is the prinipal ultra�lter generated by fag. Thisimplies that �a 6= �b for a 6= b. Thus � is a one-one funtion, so ��1 has itsnatural meaning. Let h� : � < �i enumerate in inreasing order the set f�a : aan atom of Ag. Here � is an in�nite ordinal sine A is in�nite. Now by freeness,



Maximal free sequenes in a Boolean algebra 607for eah � < � hoose h(�) 2 A suh that fF� : � < �g � S(h(�)) and fF� :� � � < �g � S(�h(�)).(1) If � < � , then h(�) � h(�).For, suppose to the ontrary, and let a be an atom � h(�) � �h(�). Say �a = � .Now a 2 F�a = F� and a � h(�), so h(�) 2 F� . It follows that � < � , and so� < �. Hene � < � . Therefore F� 2 S(h(�)). But a � �h(�) and a 2 F� , so�h(�) 2 F� , ontradition.(2) h(0) = 0.Suppose not, and let a be an atom � h(0). Now F�a = F� for some � < �. Sinea 2 F�a , it follows that h(0) 2 F� . Hene � < 0, ontradition.(3) h is one-one.For, suppose that � < � and h(�) = h(�). Then � < � , and so F� 2 S(h(�)) =S(h(�)), hene � < � , ontradition.(4) If � = Æ + 1 for some Æ, then h(Æ) 6= 1.For, we have fF� : Æ � � < �g � S(�h(Æ)), so FÆ 2 S(�h(Æ)), hene�h(Æ) 6= 0,and (4) holds.(5) If � + 1 < �, then ��1(�) � h(� + 1) � �h(�).For, let a = ��1(�). Now F� 2 S(h(� + 1)), so h(� + 1) 2 F� . But alsoa 2 F�a = F� , so a � h(� + 1) 2 F� . Hene a � h(� + 1), sine a is an atom.Also, F� 2 S(�h(�)), so �h(�) 2 F� and so a � �h(�). Thus (5) holds.The last part of this argument gives(6) If � = � + 1, then ��1(�) � �h(�).(7) If � + 1 < �, then ��1(�) = h(� + 1) � �h(�).In fat, let a be an atom � h(� + 1) � �h(�). Say �a = �. Now by (5) and (6) itfollows that � = �, so (7) holds.Similarly, we get(8) If � = � + 1, then ��1(�) = �h(�).Now we de�ne f([0; �)) = h(�) for all � < �. Then by the above and Remark 15.2of Koppelberg [89℄, f extends to an isomorphism g of Intalg(�) into A. Now let� < �. If � + 1 < �, theng(f�g) = g([0; � + 1)n[0; �)) = f([0; � + 1)) � �f([0; �)) = h(� + 1) � �h(�);giving an atom of A by (7). Similarly, if � = � + 1, theng(f�g) = g([0;1)n[0; �)) = �f(0; �) = �h(�);again giving an atom.Clearly every atom of A is obtained in one of these two ways. �



608 J.D. Monk4. Free hainsA natural generalization of the notion of free sequene is as follows. A freehain for a BA A is an ordered pair (L; a) suh that L is a linear order, a 2 LA,and for any F;G 2 [L℄<!, if F < G then Q�2F a� �Q�2G�a� 6= 0. We say that(L; a) is a free hain over L.In this setion we investigate this notion, and in the next setion we onsidermaximal free hains.First we de�ne a related topologial notion. Let X be a topologial spae.A free hain for X is an ordered pair (L; x) suh that L is a linear order, x 2 LX ,and for any � 2 L, fx� : � < �g \ fx� : � � �g = ;:As in the ase of sequenes, a BA A has a free hain (L; a) i� Ult(A) has a freehain (L; x).For any BA A, we de�neLengthH+(A) = supfLength(B) : B is a homomorphi image of Ag:Proposition 4.1. For any in�nite BA A we haveLengthH+(A) = supfjLj : A has a free hain (L; a)g:Proof: The proof is just a modi�ation of the proof of Theorem 4.21 ofMonk [96℄. For �, suppose that (L; a) is a free hain in A; we will �nd an ideal Iof A suh that A=I has a hain of size jLj. For eah � 2 L let F� be an ultra�lteron A suh that fa� : � < �g [ f�a� : � � � 2 Lg � F� . Let Y = fF� : � 2 Lg,and let I = fx 2 A : Y � S(�x)g. Clearly I is an ideal in A. We laim that(1) 8�; � 2 L[� < � ! a�=I < a�=I ℄.To prove this, suppose that � < �. To show that a� � �a� 2 I , take any � 2 L.If � < �, then also � < � and so a� 2 F�, and it follows that �a� + a� 2 F�, sothat F� 2 S(�a� + a�). If � � �, then �a� 2 F� and again F� 2 S(�a� + a�). Soa� � �a� 2 I . Thus a�=I < a�=I ℄. Also, a� 2 F� and �a� 2 F� , so it follows thata�=I 6= a�=I . Thus (1) holds.Conversely, suppose that I is an ideal in A and ha�=I : � 2 Li is a hain in A=I .Let � <L � i� a�=I < a�=I . This makes L into a linear order. We may assumethat a0=I 6= 0 and no a�=I is equal to 1. We laim then that h�a� : � 2 Li is afree hain. For, suppose that F;G 2 [L℄<! with F < G. Then if both F and Gare nonempty, we have0�Y�2F �a� � Y�2G a�1A =I = Y�2F (�(a�=I)) � Y�2G(a�=I) = �(a�=I) � (a�=I);



Maximal free sequenes in a Boolean algebra 609where � is the largest element of F and � is the smallest element of G. So�(a�=I) � (a�=I) 6= 0, and hene Q�2F �a� �Q�2G a� 6= 0. The ase when oneof F;G is empty is treated similarly. �Note that in Intalg(R) every in�nite free sequene is ountable, while there areunountable free hains.5. Maximal free hainsZorn's lemma an be applied to obtain maximal free hains, for example byonsidering linear orders on subsets of jAj+. We now de�nefhnspet(A) = fjLj : A has an in�nite maximal free hain over Lg;fhnmm(A) = min(fhnspet(A)):Proposition 5.1. fhnspet(Fino(�)) = f!g for any in�nite ardinal �.Proof: This holds by Proposition 5.1 and Corollary 5.29 of Rosenstein [82℄. �Proposition 5.2. fhnspet(Fr(�)) = f�g for any in�nite ardinal �. �Proposition 5.3. Suppose that (I; a) is a free hain in A. Then the followingonditions are equivalent.(i) (I; a) is maximal.(ii) For all b 2 A and all M;N � I , if M < N and M [ N = I , then thereexist �nite F � M and G � N suh that one of the following onditionsholds:(a) Q�2F a� � b �Q�2G�a� = 0;(b) Q�2F a� � �b �Q�2G�a� = 0. �Note here that one of M;N;F;G an be empty.Proposition 5.4. Suppose that (L; a) is an in�nite maximal free hain in A, and(M; b) is an in�nite maximal free hain in B. Assume that M \ L = ;, and letm be a set not in M [ L. Order M [ fmg [ L in the natural order M < m < L.Then A�B has a maximal free hain of the form (M [ fmg [ L; ).Proof: De�ne � = 8><>: (1; b�) if � 2M;(1; 0) if � = m;(a� ; 0) if � 2 L:Then h� : � 2 M [ fmg [ Li is a free hain. In fat, suppose that F;G 2[M [ fmg [L℄<! with F < G. If F �M , then Q�2F � �Q�2G�� 6= 0 beauseof the b�'s, and if F 6�M , then Q�2F � �Q�2G�� 6= 0 beause of the a�'s.
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