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Hyperplane se
tion OP20 of the 
omplexCayley plane as the homogeneous spa
e F4=P4Karel Pazourek, V��t Tu�
ek, Peter FranekAbstra
t. We prove that the ex
eptional 
omplex Lie group F4 has a transitivea
tion on the hyperplane se
tion of the 
omplex Cayley plane OP2. Althoughthe result itself is not new, our proof is elementary and 
onstru
tive. We use anexpli
it realization of the ve
tor and spin a
tions of Spin(9; C ) � F4. Moreover,we identify the stabilizer of the F4-a
tion as a paraboli
 subgroup P4 (withLevi fa
tor B3T1) of the 
omplex Lie group F4. In the real 
ase we obtain ananalogous realization of F4(�20)=P4.Keywords: Cayley plane, o
tonioni
 
onta
t stru
ture, twistor �bration, para-boli
 geometry, Severi varieties, hyperplane se
tion, ex
eptional geometryClassi�
ation: Primary 32M12; Se
ondary 14M171. Introdu
tionThe real o
tonioni
 proje
tive plane OP2R, also 
alled Cayley plane or o
taveplane, has been thoroughly treated in the literature. It appears in numerous
ontexts. It is a proje
tive plane where the Desargues axiom does not hold. Itwas �rstly 
onsidered by Ruth Moufang [21℄, who found a relation of the so 
alledlittle Desargues axiom and the alternativity of the 
oordinate ring. It is wellknown that OP2R is a Riemanian symmetri
 manifold F4=Spin(9). Due to itsrelation to the ex
eptional Jordan algebra J3(O), there is also a 
onne
tion ofthis plane to a model of quantum me
hani
s 
onsidered by Neumann, Jordan andWigner [14℄. More re
ently, the authors of [7℄ show that the Cayley plane 
onsistsof normalized solutions of a Dira
 equation. For more details and 
onne
tionswith physi
s we refer to the arti
le by Baez [3℄.It is possible to mimi
 the 
onstru
tion of 
lassi
al proje
tive plane RP2 viaequivalen
e 
lasses of triples (see [11℄) also in the 
ase of OP2R, but usually Freuden-thal's approa
h via the ex
eptional Jordan algebra J3(O) is used. The idea is thatlines in spa
e 
orrespond to proje
tors with one-dimensional image. Hen
e theCayley plane 
an be de�ned as elements of (real) proje
tivization of J3(O) of rankThe se
ond author was supported by GA�CR 201/09/H012 and by SVV-2011-263317.The third author was supported by MSM 0021620839 and GA�CR 201/08/397. He was alsosupported by Institutional Resear
h Plan AV0Z10300504 \Computer S
ien
e for the InformationSo
iety: Models, Algorithms, Appli
ations".



536 K. Pazourek, V. Tu�
ek, P. Franekone. Now the rank for o
tonioni
 matri
es is a bit tri
ky due to the nonasso
ia-tivity and requires the de�nition of Jordan 
ross produ
t of these matri
es. Fordetails we refer to Ja
obson's monograph [13℄. There one 
an also �nd a 
lassi�-
ation of orbits of the automorphism group of J3(O) (whi
h is F4) from whi
h itfollows that OP2R is a homogeneous spa
e. (The isotropy subgroup is determinedfor example in [10℄, [22℄.)In fa
t, Ja
obson's book [13℄ treats o
tonioni
 algebras over general �eld andhen
e we get the de�nition of the 
omplex Cayley plane OP2 as well. This spa
eis also of geometri
 interest, as it is an ex
eptional member of the Severi varieties| the unique extremal varieties for se
ant defe
ts. For details see [18℄, [19℄.Now, let us 
onsider the interse
tion of the 
omplex Cayley plane OP2 withthe hyperplane given by tra
eless matri
es J0 := fA 2 J3(OC ) jTrA = 0g. Theresulting spa
e is studied in [18℄, [19℄, where the authors 
all it the generi
 hyper-plane se
tion and denote it by OP20. It is a total spa
e of a 
ertain twistor �brationover the real Cayley plane (see [2℄, [8℄). Be
ause OP20 is a 
omplex proje
tive vari-ety, the stabilizer is a paraboli
 subgroup of F4. The authors of [18℄ state that theisomorphism OP20 = F4=P4 is suggested by `geometri
 folding'. A rigorous proofof this isomorphism 
an be gleaned from [13℄. This proof however requires a lotof the theory of nonasso
iative algebras, most notably the Jordan 
oordinizationtheorem. Quite a short proof 
an be given using the Borel �xed point theorem.In a hope to make OP20 more a

essible to geometri
ally in
lined audien
e, wepresent a 
onstru
tive proof of the transitivity of the a
tion of F4 on OP20 basedon the representation theory of 
omplex spin groups. From the theory of nonas-so
iative algebras only Artin's theorem is needed. Following the approa
h of [10℄,we expli
itly realize the spin groups Spin(9; C ) and Spin(8; C ) as subgroups of F4and we use the des
ription of their a
tions to �nd the redu
tion of an arbitraryelement to a previously 
hosen one.It is well known that the Cartan geometry modeled on the pair (F4;P4) is rigid,i.e. any regular normal Cartan geometry of this type is lo
ally isomorphi
 to thehomogeneous model. The real version of this pair 
orresponding to the groupF(�20)4 appears as a 
onformal in�nity of the Einstein spa
e OH2 [4℄. The geom-etry obtained is 
alled `o
tonioni
-
onta
t', be
ause there is a naturally de�nedeight-dimensional maximally nonintegrable subbundle of the tangent bundle. The
onta
t geometry in the 
lassi
al sense (studied for example in [15℄, [16℄) is alsopresent among the homogeneous spa
es of the group F4 | namely the one whoseisotropy group is the paraboli
 subgroup 
orresponding to the other `outer' simpleroot of the Lie algebra of f4.After some ne
essary de�nitions in Se
tion 2, we des
ribe expli
itly the presen-tations of Spin(9; C ) and Spin(8; C ) inside of End(O2 )
R C in Se
tion 3. We alsoexpli
itly des
ribe ve
tor and spinor representations of Spin(9; C ) in su
h a waythat their image is inside F4. Se
tion 3 
ontinues with the proof of the transitivityof the a
tion of F4 on OP20. We 
on
lude by dealing with the real 
ase. In thelast se
tion we 
ompute the stabilizer of a point.
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omplex Cayley plane as the homogeneous spa
e F4=P4 5372. Notations and de�nitions2.1 Complexi�ed o
tonions and the hyperplane se
tion. For a 
ompre-hensive referen
e on o
tonioni
 algebras over any �eld we refer to [22℄. Wedenote by O the o
tonioni
 algebra over the �eld of 
omplex numbers. The
omplex-valued `norm' on O is denoted by N . The algebra O is normed (N(ab) =N(a)N(b)) but it fails to be a division ring, sin
e N is isotropi
. This algebra isnot asso
iative. Nevertheless, it is alternative, whi
h means that the trilinear form(
alled the asso
iator) [u; v; w℄ 7! (uv)w � u(vw) is 
ompletely skew-symmetri
.Later on we will use the so 
alled Artin's theorem whi
h states that any subalge-bra of an alternative algebra generated by two elements is asso
iative. It followsthat produ
ts involving only two elements 
an be written without parenthesisunambiguously.The symbol Lu denotes the operator of left multipli
ation by u, i.e. Lu(v) := uvfor any v 2 O . Note that LuLv 6= Luv in general due to the nonasso
iativity ofo
tonioni
 algebras.Sin
e there is up to isomorphism only one o
tonioni
 algebra over C we 
anthink of O in the following way: O = OR 
 C = OR 
R C , where OR is the
lassi
al real algebra of o
tonions ([3℄). The multipli
ation on this tensor produ
tis 
anoni
ally de�ned by(o1 
 z1)(o2 
 z2) := o1o2 
 z1z2 for o1; o2 2 O ; z1 ; z2 2 Cand 
onjugation is given by o
 z := �o
 z.The multipli
ation of an arbitrary element o
z 2 O by a 
omplex number w isunderstood in the sense of multipli
ation by element 1
w, i.e. w(o
z) := o
(wz).We identify the elements of R 
 C with 
omplex numbers under the 
anoni
alisomorphism r 
 w 7! rw, for r 2 R, w 2 C . The real and imaginary parts ofo
 z are de�ned to be (< o)
 z and (= o)
 z, where < o and = o are the real andpurely imaginary part of o respe
tively.The mentioned 
omplex valued quadrati
 form N is given byN(o
 z) := o�ozz; o 2 O ; z 2 C :Following Springer [22℄, we denote by h�; �i the double of the bilinear form asso
i-ated to N , hx; yi = N(x+y)�N(x)�N(y). An o
tonion u 2 O is pure imaginaryif and only if hu; 1i = 0.For later use, we will re
ord here several useful identities whi
h hold in anyo
tonioni
 algebra and whose proof 
an also be found in [22℄hxy; zi = hy; �xzix(�xy) = N(x)y(1a) u(�xy) + x(�uy) = hu; xiy(1b) u(�x(uy)) = ((u�x)u)y:(1
)
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ek, P. FranekDue to the nonasso
iativity of the algebras involved we need to make 
lear dis-tin
tion between asso
iative algebras of C -linear endomorphisms, whi
h we denoteby End, and the possibly nonasso
iative algebras of n � n matri
es with entriesin some algebra F whi
h are denoted by M(n; F).The 
onjugation on O naturally de�nes the 
onjugation on M(n;O). The
onjugate of an element A 2 M(n;O) is denoted by �A. The symbol Herm(n;O)stands for the set of n� n hermitian matri
es over O , i.e.Herm(n;O) = fA 2M(n;O)j �AT = Ag:We denote the subspa
e of tra
e-free matri
es by lower index Herm0(n;O). Alltensor produ
ts in this arti
le are taken over the real numbers.The 
omplex ex
eptional Jordan algebra J3(O) is the ve
tor spa
e Herm(3;O)endowed with the symmetri
 produ
t Æ : Herm(3;O)�Herm(3;O) ! Herm(3;O)de�ned by A ÆB := 12 (AB +BA).Now we de�ne the basi
 obje
t of our interest.De�nition 2.1.1. The hyperplane se
tion of the 
omplex Cayley plane OP20 isthe proje
tivization over C of the following subset of J3(O)
OP20 := �A 2 Herm(3; O)�� A2 = 0; trA = 0; A 6= 0	 :2.2 The spin groups. For an n-dimensional 
omplex ve
tor spa
e V and anondegenerate quadrati
 form N on V, we denote the 
orresponding Cli�ordalgebra by C`(V; N) (our 
onvention is vv = �N(v)). The spin group of C`(V; N)is denoted by Spin(V; N). It is generated inside C`(V; N) by produ
ts uv, u; v 2 Vwhere N(u) = N(v) = 1. By Spin(n; C ) we denote the spin group asso
iated tothe standard quadrati
 form Pni=1 z2i on C n .For w 2 C we de�ne the generalized 
omplex sphereSn�1(w) = f0 6= z 2 V jN(z) = w2g:As a 
onsequen
e of Witt's theorem we haveLemma 2.2.1. The group Spin(n; C ) a
ts transitively via the ve
tor representa-tion on the generalized 
omplex spheres.2.3 Complex Lie algebra f4. The 
omplex ex
eptional Lie group F4 
an bede�ned as the automorphism group of the 
omplex ex
eptional Jordan algebra(J3(O); Æ) (see [22℄). In other words F4 is the subgroup of GL(27; C ) su
h thatg 2 F4 if and only if g(A ÆB) = gA Æ gB for every A;B 2 Herm(3;O).The a
tion of F4 preserves the tra
e on Herm(3;O). This 
an be easily seenfrom the equality TrA = 13Tr (B 7! A ÆB):
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tion OP20 of the 
omplex Cayley plane as the homogeneous spa
e F4=P4 539It is easy to verify that the a
tion of O(3; C ) on Herm(3;O) given byO(3; C ) 3 g 7�! (A 7! gAgT ); A 2 Herm(3;O)de�nes an inje
tive group homomorphism O(3; C ) ,! F4.Now we present basi
 fa
ts about the 
omplex simple Lie algebra f4 of thegroup F4. We shall use these fa
ts as well as the properties of the root system ofthe Lie algebra f4 in the last se
tion of this text. Details 
an be found in [5℄.There exist a 
hoi
e of the Cartan subalgebra h of f4, an orthonormal (withrespe
t to the Killing form of f4) basis f�ig4i=1 of h� and a 
hoi
e of simple roots� = ��1 = �2 � �3; �2 = �3 � �4; �3 = �4; �4 = 12(�1 � �2 � �3 � �4)� :In this 
onvention the Dynkin diagram is�1 �2 �3 �4 .The set � determines the set of positive roots �+. For any root �, we de�nethe 
oroot H� 2 h by �(H�) = 2h�; �i=2h�; �i, where h ; i is the Killing form.The fundamental weights f$ig4i=1 are de�ned as the dual basis to the simple
oroots. We denote the irredu
ible representation of f4 with the highest weight �by %�.3. A
tion of F4 on 
OP20In this se
tion we expli
itly des
ribe the group Spin(9; C ) as a multipli
ativesubgroup of End(O2 )
 C and 
onstru
t its representation on Herm(3;O). Usingthis representation, we prove that F4 a
ts transitively on the hyperplane se
tion
OP20. The s
alar multipli
ation on the algebra End(O2 )
 C a
ts only on the �rstpart of the tensor produ
t, i.e. w � (A
 z) = (wA)
 z for w; z 2 C , A 2 End(O2 ).3.1 Realisation of Spin(9; C ). First we need an auxiliary result 
on
erning theCli�ord algebra C`(O ; N).Lemma 3.1.1. The map � : O ! End(O2 ) given byu 7�! � 0 Lu�L�u 0 �
an be uniquely extended to the isomorphism of 
omplex asso
iative algebrasC`(O ; N) ' End(O2 ).Proof: Easy 
al
ulation and (1a) shows that �(u)�(u) = �N(u) Id. Using theuniversal property of Cli�ord algebras and the fa
t that the algebra C`(8; C ) issimple (see [9℄), we immediately get the result. �
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ek, P. FranekLet V9 be the 
omplex ve
tor spa
e C � O . We de�ne the quadrati
 form N 0by (r; u) 7! r2 + N(u). Let � : V9 ! End(O2 ) 
 C be the homomorphism ofve
tor spa
es given by � : (r; u) 7�! � r LuL�u �r�
 {;where { denotes the imaginary unit in C .Proposition 3.1.2. The Cli�ord algebra C`(V9; N 0) is isomorphi
 (as an asso-
iative algebra) to End(O2 )
 C .Proof: It is known (see e.g. [9℄) that C`(V9; N 0) 'M(16; C )�M(16; C ). Cal
u-lation and (1a) shows that �(r; u)�(r; u) = �N 0(r; u) Id. The universal mappingproperty of Cli�ord algebras gives us the following 
ommutative diagramV9 � ''OOOOOOOOOOOOO i // M(16; C ) �M(16; C )f��End(O2 )
 C :Be
ause �(�1; 0)�(0; u) = �(u) 
 1, we see that the image of f generates thesubalgebra End(O2 )
 1. The equality�A BC D�
 { = �1 00 �1�
 { � � A B�C �D�
 1implies that the image of f generates the whole algebra End(O2 ) 
 C . Sin
ethe dimensions of the 
onsidered algebras are the same, it follows that f is anisomorphism. �Lemma 3.1.3. The spin group Spin(V9 ; N 0) is generated (inside End(O2 ) 
 C )by elements of the formgr;u := � r �LuL�u r �
 1; r 2 C ; u 2 O ; r2 + u�u = 1:Proof: The spin group is by de�nition generated by produ
ts of the form�(r; u)�(s; v), where N 0(r; u) = N 0(s; v) = 1. Sin
e gr;u = �(r; u)�(�1; 0) and�(r; u)�(s; v) = gr;ug�s;v, the lemma follows. �For brevity we will identify A
 1 2 End(O2 )
 C with A 2 End(O2 ) from nowon; i.e. gr;u = � r �LuL�u r � :
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e F4=P4 5413.2 Representations of Spin(V9; N 0). We will use the following de
ompositionof Herm(3;O)0�r1 �x1 �x2x1 r2 x3x2 �x3 r31A = 0�r1 0 00 0 00 0 01A+0� 0 �x1 �x2x1 0 0x2 0 01A+0�0 0 00 s x30 �x3 �s1A+0�0 0 00 t 00 0 t1Ain order to de�ne the a
tion of Spin(V9; N 0) on it. In other words | we take theC -linear isomorphism Herm(3;O) ! C � O2 � Herm0(2;O) � C and we endowea
h of the spa
es in the de
omposition with an a
tion of Spin(V9; N 0). The O2summand will be the spinor part and we will 
all the Herm(2;O)0 summand theve
tor part .Lemma 3.2.1. Let � be the linear isomorphism between the spa
e of tra
e-freehermitian matri
es Herm0(2;O) and �(V9) de�ned by� : �s x�x �s� 7! � s LxL�x �s�
 {and let %V be the ve
tor representation of Spin(V9; N 0).If we de�ne the representation of Spin(V9 ; N 0) on Herm0(2;O) by �V (g)a :=��1(%V (g)�(a)), the following formula holds for the generators gr;u of Spin(V9 ; N 0)�V (gr;u)�s x�x �s� = ��r �u�u r ��s x�x �s��� r u��u r�= �s�r2 �N(u)�� rhx; ui 2rsu+ r2x� u�xu2rs�u+ r2�x� �ux�u �s�r2 �N(u)�+ rh�x; �ui� :(2)Proof: The ve
tor representation of Spin(V9; N 0) is given by v 7! gvg�1 wherev is an element of �(V9) and g 2 Spin(V9 ; N 0). For gr;u = �(r; u)�(�1; 0) we getg�1r;u = gr;�u.Thus we have the following formula for �V (gr;u) evaluated on v = � s LxL�x �s �
 {�s�r2 �N(u)�� r(LuL�x + LxL�u) 2rsLu + r2Lx � LuL�xLu2rsL�u + r2L�x � L�uLxL�u �s�r2 �N(u)�+ r(L�uLx + L�xLu)�
 {:From (1b) we have LuL�x + LxL�u = Lhx;ui. With the help of the �rst Moufangidentity (1
) we may substitute LuL�xLu = L(u�x)u. Applying the isomorphism �to the result gives the expression for �V (gr;u)��1(v) whi
h agrees with (2). �The spinor representation of Spin(V9; N 0) a
ts on O2 by (see Chapter 6 of [9℄for details) �S(gr;u)(x1; x2) = � r �LuL�u r ��x1x2� = �rx1 � ux2�ux1 + rx2� :We let the Spin(V9; N 0) a
t on the rest of the summands of Herm(3;O) triviallyand denote the resulting a
tion by �.



542 K. Pazourek, V. Tu�
ek, P. FranekProposition 3.2.2. The representation � is faithful and preserves the Jordanprodu
t. In other words Spin(V9; N 0) ' Im(�) is a subgroup of F4.Proof: Sin
e the spinor representation �S is faithful, the representation � isfaithful as well. In order to prove that this a
tion preserves the Jordan produ
twe introdu
e the following three by three hermitian matrixGr;u = 0�1 0 00 r �u0 �u r 1A 2 Herm(3;O);where (r; u) 2 V9 is of unit norm. Straightforward 
al
ulations reveal that G�1r;u =Gr;�u and that Gr;uAG�1r;u gives the expression for the a
tion of �(gr;u) on A.Moreover the expression Gr;uAG�1r;u is unambiguous for any A 2 Herm(3;O).Put g = gr;u, G = Gr;u for simpli
ity. For ea
h A 2 Herm(3;O) we have(�(g)A)(�(g)A) = (GAG�1)(GAG�1):Let us suppose for a moment that (GAG�1)(GAG�1) = G(A(G�1G)A)G�1.Then we would have (�(g)A)(�(g)A) = �(g)(A2)(3)for any A 2 Herm(3;O). Using this equality for A+B instead of A we would geton the left hand side(�(g)(A+B)) (�(g)(A+B)) = ��(g)A+ �(g)B���(g)A+ �(g)B�= (�(g)A)2 + (�(g)A)(�(g)B)+ (�(g)B)(�(g)A) + (�(g)B)2;while the right hand side would equal�(g) �(A+B)2� = �(g)(A2) + �(g)(AB) + �(g)(BA) + �(g)(B2):Using (3) for �(g)(A2) and �(g)(B2) we would get that(�(g)A)(�(g)B) + (�(g)B)(�(g)A) = �(g)(AB +BA):So we only need to prove that we 
an rearrange the bra
kets in the expression(GAG�1)(GAG�1). From the Artin's theorem it follows that(u1au2)(u3au4) = u1(a(u2u3)a)u4;where ui are elements of the linear span of fr; u; �ug and a 2 O is arbitrary. Usingthe same tri
k as above and writing this equality for a+ b instead of a we get(u1au2)(u3bu4) + (u1bu2)(u3au4) = u1(a(u2u3)b)u4 + u1(b(u2u3)a)u4:
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tion OP20 of the 
omplex Cayley plane as the homogeneous spa
e F4=P4 543The equation((GAG�1)(GAG�1))a;b= 12 Xi;j;:::;m(Ga;iAi;jG�1j;k)(Gk;lAl;mG�1m;b) + (Ga;lAl;mG�1m;k)(Gk;iAi;jG�1j;b )and the fa
t that Gi;j are from the linear span of fr; u; �ug imply(GAG�1)(GAG�1) = G(A(G�1G)A)G�1 = GA2G�1: �Remark 3.2.3. One 
ould de�ne the representation � dire
tly using the matrixGr;u. It is however not 
lear that the expression Gr;uAG�1r;u de�nes a representa-tion due to the nonasso
iativity of the produ
t of Herm(3;O).3.3 The subgroup Spin(8; C ). The usual presentation of spin groups gives (seeLemma 3.1.1) the following set of generators of Spin(O ; N)���LuL�v 00 �L�uLv� ��� u; v 2 O ; N(u) = N(v) = 1� :One 
an obtain matri
es of this form as produ
ts g0;ug0;v whi
h means that thesegenerators are in fa
t elements of Spin(V9 ; N 0). The formula for the restri
tionof �V to the subgroup Spin(O ; N)(4) �V ��LuL�v 00 L�uLv��� s x3�x3 �s� = � s u(�vx3�v)u�u(v�x3v)�u �s �is easily proved using (2).Analogously, the a
tion of Spin(O ; N) on O2 is given by(5) �S ��LuL�v 00 L�uLv���x1x2� = �u(�vx1)�u(vx2)� ;whi
h is the dire
t sum of two inequivalent spinor representations of Spin(O ; N).Please note that the quadrati
 form N is invariant with respe
t to all the threeinequivalent a
tions of Spin(O ; N) on the ve
tor spa
e O .3.4 Transitivity of the F4 a
tion on 
OP20.Lemma 3.4.1. Let A = 0��2t �x1 �x2x1 t+ s �x3x2 x3 t� s1Abe an element of 
OP20. Then the ve
tor part of A is isotropi
 (i.e. s2+N(x3) = 0)if and only if N(x1) = N(x2) = 0 and if and only if t = 0.



544 K. Pazourek, V. Tu�
ek, P. FranekProof: The statement is a straightforward 
onsequen
e of the fa
t that diagonalelements of A2 must equal zero. �Theorem 3.4.2. The group F4 a
ts transitively on 
OP20. For every A 2 
OP20there exists g 2 F4 su
h that(6) g �A = 0�{ 1 01 �{ 00 0 01A :Proof: First we suppose that A 2 
OP20 has nonisotropi
 ve
tor part. In su
h 
asewe 
an use Lemma 2.2.1 to prove that there exists an element h1 2 Spin(V9; N 0)su
h that �(h1)A = 0�r1 �x1 �x2x1 r2 0x2 0 r31A , with r1; r2; r3 2 C ; x1; x2 2 O :Let us denote �(h1) =: g1 2 F4. The matrix (g1 �A)2 has the form(7) 0�r21 +N(x1) +N(x2) �x1(r1 + r2) �x2(r1 + r3)x1(r1 + r2) r22 +N(x2) x1�x2x2(r1 + r3) x2�x1 r23 +N(x2)1A :This is a zero matrix, in parti
ular N(x1)N(x2) = N(x1�x2) = 0, so x1 and x2
annot be both non-isotropi
. On the other hand, they 
annot be both isotropi
be
ause of Lemma 3.4.1.Assume �rst that N(x1) 6= 0 and N(x2) = 0. The a
tion of Spin(O ; N) pre-serves the ve
tor part � r2 00 r3 � of g1 � A be
ause of (4). Leth2 := �(0;�1)�(0; x1pN(x1) ) 2 Spin(O ; N)and �(h2) =: g2 2 F4. By (5), g2 sends the spinor part x1�x2 of g1 �A to x01�x02where x01 = pN(x1) 2 C and x02 = 1pN(x1)x1x2. The matrix (g2g1 � A)2 hasthe same form as (7) with x1 and x2 substituted by x01 and x02. It is still a zeromatrix and its (2; 3)-position 0 = x01�x02 implies x02 = 0 (x01 is a nonzero 
omplexnumber). The other positions of this matrix imply 0 = r23 + N(x02), so r3 = 0,and r21 +N(x01) = r21 + (x01)2 = 0, sog2g1 � A = 0��{w w 0w �{w 00 0 01Afor some 0 6= w 2 C .
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e F4=P4 545The 
ase N(x1) = 0, N(x2) 6= 0 leads in a similar way to a matrix of theform ��{w 0 w0 0 0w 0 �{w �, 0 6= w 2 C , whi
h 
an be transformed by the orthogonalmatrix � 1 0 00 0 10 1 0� to the previous one. One 
an get rid of the sign ambiguity with� 0 1 01 0 00 0 1� and the matrix � {w w 0w �{w 00 0 0� 
an be transformed to the 
anoni
al form (6)by 
onjugating by the orthogonal matrix0B� 1pw 0 �{p1�wpw�{(1�w)pw pw �p1�wpw{p1� w p1� w 1 1CA :So, g3g2g1 �A has the 
anoni
al form (6), where g3 is some element in the imageof the embedding O(3; C ) ,! F4 de�ned in Se
tion 2.3.If A has isotropi
 but nonzero ve
tor part, then the pre
eding lemma impliesthat the topleft element of A is 0. Using Lemma 2.2.1 we 
an �nd an element g0 2�(Spin(V9 ; N 0)) � F4 su
h that g0 � A = � 0 �x1 �x2x1 {w wx2 w �{w � where w 6= 0. Conjugationby � 0 1 01 0 00 0 1� leads to a matrix whose top left element is {w 6= 0. By the previouslemma, su
h a matrix has nonisotropi
 ve
tor part and we have redu
ed this 
aseto the already solved one.Finally, suppose that A has zero ve
tor part, A = � 0 �x1 �x2x1 0 0x2 0 0 �. This matrix isnonzero by de�nition. If x2 6= 0, then the a
tion of � 0 1 01 0 00 0 1� transforms it to amatrix with nonzero ve
tor part. The 
ase x1 6= 0 is treated similarly. �Remark 3.4.3. We see from the proof that in order to prove transitivity of F4on OP20, it is suÆ
ient to 
onsider only dis
rete subgroup of O(3; C ) isomorphi
 toS3 | a permutation group on three letters. This is a manifestation of the trialityprin
iple.Now we prove that the 
one 
OP20 over OP20 is a smooth manifold.Proposition 3.4.4. The spa
e 
OP20 is a smooth manifold of dimension 32.Proof: Let as de�ne the smooth map f : Herm(3;O)0 ! Herm(3;O)0 byf(A) := A2. We use the impli
it fun
tion theorem to show that 
OP20 = f�1(0)nf0gis a smooth manifold. The di�erential of f at A is easily proved to be B 7! 2AÆB.We already know that F4 a
ts transitively on f�1(0) n f0g = 
OP20 and so we havedimker(B 7! AÆB) = dimker �B 7! g �(AÆ(g�1 �B))� = dimker �B 7! (g �A)ÆB�for any g 2 F4. So, the di�erential df of f has 
onstant rank on the set f�1(0)nf0gand 
OP20 is a smooth manifold.
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ek, P. FranekThe kernel of the di�erential of f at the 
anoni
al point (6) equals8<:0�{<(x1) x1 x2�x1 �{<(x1) �{x2�x2 �{�x2 2<(x1)1A������x1; x2 2 O9=;and is isomorphi
 to the tangent spa
e of 
OP20 at that point. �3.5 The real 
ase. By 
hoosing an appropriate involution on J3(OC ) we geta model for F(�20)4 =P4 | i.e. the 
onformal in�nity of the Einstein spa
e OH2 .A

ording to Yokota [23℄ the following real subalgebra of J3(OC )8<:A 2 J3(OC ) : I1AT I1 = A; I1 = 0��1 0 00 1 00 0 11A9=;= 8<:0� r1 x1 x2�x1 r2 x3�x2 x3 r31A : xi 2 OR; ri 2 R9=;has F(�20)4 as its automorphism group. By restri
ting the map � to R � OR weget presentation of Spin(9;R) and the restri
tion of our representation � mapsSpin(9;R) into F(�20)4 . Instead of O(3; C ) we have the 
ompa
t orthogonal groupO(3;R).The model of F(�20)4 =P4 is given by the same equations as in the 
omplex 
ase.Sin
e there are no isotropi
 elements in the ve
tor part, the proof of transitivity isnow mu
h simpler. By transitivity of SO(9;R) on spheres we 
an map any elementof our model to a matrix of the form � �2t x1 x2�x1 t+s 0�x2 0 t�s�. The square of this matrixhas to be zero by de�nition whi
h for diagonal elements gives three equations thatyield easily t2 � s2 = 0. The 
ase t = �s leads to x1 = 0 and 
an be redu
ed tothe 
ase of t = s by 
onjugation with � 1 0 00 0 10 1 0�.The 
ase t = s gives x2 = 0 and we 
an easily �nd an a
tion of Spin(8;R) thatmaps x1 to a positive real number whi
h gives us a matrix in the form � �r x 0�x r 00 0 0�,where all the entries are real and r2 = x2. We 
an redu
e the 
ase r = �x to the
ase r = x by 
onjugation with � 0 1 01 0 00 0 1�. Thus we 
an map an arbitrary elementA from our real Jordan algebra, su
h that TrA = 0 and A2 = 0, to a matrix ofthe form ��x x 0�x x 00 0 0� where x is a positive real number. This shows that F(�20)4 hastransitive a
tion on the real proje
tivization of the appropriate set.
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e F4=P4 5474. Des
ription of the stabilizer of the F4 a
tionIn this se
tion we will identify the stabilizer of OP20 as a 
on
rete paraboli
subgroup of F4.Lemma 4.0.1. There exists up to isomorphism only one irredu
ible representa-tion % of the group F4 su
h that1 < dimC % � 26:The highest weight of this representation is $4 = �1.Proof: Let �; � 2 h� be two integral dominant weights, � 6= 0. By a dire
tappli
ation of the Weyl dimensional formula (see Goodman, Walla
h [9℄), weobtain that dim %�+� > dim %�. Using the program LiE [20℄, we get dim �$1 = 52,dim %$2 = 1274, dim %$3 = 273 and dim %$4 = 26. By the previous inequality,we see that there is only one irredu
ible 26-dimensional representations of the Liealgebra f4. �Sin
e dimJ0 = 26 and all �nite dimensional representation of the simple Liegroup F4 are 
ompletely redu
ible, we obtain immediately the following.Proposition 4.0.2. The restri
tion to the de�ning representation of F4 on J0 =Herm(3;O)0 is isomorphi
 to the 26-dimensional irredu
ible representation %�1 .It is 
lear from de�nition that OP20 is a proje
tive variety. A

ording toHumphreys [12℄ this implies that the stabilizer group of any point is a para-boli
 subgroup of F4. Sin
e any paraboli
 subgroup 
ontains Borel subgroup, itfollows that the points of the variety are lines spanned by highest weight ve
tors.For a �xed 
hoi
e of the Cartan subalgebra h and simple roots � there is a1� 1 
orresponden
e between isomorphism 
lasses of paraboli
 subalgebras p � gand subsets � � � of the set � of simple roots des
ribed e.g. in [6, Chapter 3℄.We will denote the paraboli
 subalgebra 
orresponding to � = f�ig by pi.Be
ause the highest weight of J0 is �1, the following theorem follows dire
tlyfrom [6, Theorem 3.2.5℄. Its proof is not diÆ
ult | it is based on the fa
t that forea
h X 2 g� one 
an �nd Y 2 g�� su
h that [Y;X ℄ = H�, where H�(�) = h�; �iand the fa
t that the set of weights is invariant under the a
tion of Weyl group.Theorem 4.0.3. Let P be the stabilizer of a point p 2 OP20 with respe
t to thea
tion of the group F4. Then the Lie algebra p of the group P is isomorphi
 to p4.Remark 4.0.4. We see that 
OP20 is the F4-orbit of the highest weight ve
torin J0. Points in 
OP20 are exa
tly all possible highest weight ve
tors for thisrepresentation, 
orresponding to di�erent 
hoi
es of h and �+. The real 
ase 
anbe treated in similar manner with analogous results. See [6℄ for details.Remark 4.0.5. From the 
omputation of the harmoni
 
urvature (as done forexample in [17℄, also see [6℄) one 
an prove that the homogeneous spa
e doesnot admit 
urved deformations in the sense of regular normal Cartan geometries.
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ek, P. FranekHowever, if one relaxes the regularity 
ondition there are some deformations ofthis stru
ture [1℄.A
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