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On nonompat perturbationof nononvex sweeping proessMyelkebir AitalioubrahimAbstrat. We prove a theorem on the existene of solutions of a �rst order fun-tional di�erential inlusion governed by a lass of nononvex sweeping proesswith a nonompat perturbation.Keywords: nononvex sweeping proess, funtional di�erential inlusion, uni-formly �-prox-regular setsClassi�ation: 34A60, 34B15, 47H101. IntrodutionThe aim of this paper is to prove the existene of solutions of the followingnononvex di�erential inlusions8<: _x(t) 2 �NpC(t)(x(t)) + F (t; T (t)x) a.e on [0; � ℄;x(t) = '(t) 8t 2 [�a; 0℄;x(t) 2 C(t) 8t 2 [0; � ℄;(1.1)where C is a nononvex set-valued mapping, NpC(t)(x(t)) denotes a presribednormal one to the set C(t) at x(t), F is a set-valued mapping with nononvexand nonompat values, and ' is a ontinuous funtion.The evolution problem (1.1) is generally alled the sweeping proess. It hasbeen introdued and studied by Moreau (without memory), in the setting whereall sets C(t) are assumed to be onvex (see for example [9℄). Note that, thesweeping proess is related to the modelization of elasto-plasti materials (see forexample [10℄ and [11℄).The di�erential inlusions (1.1), with C(t) onvex or the omplement of theinterior of a onvex set, have been onsidered by several authors (see [4℄, [13℄ andthe referenes therein). Reently, using important properties of uniformly �-prox-regular sets developed in [2℄ and [12℄, the existene of solutions of the sweepingproess with onvex or nononvex perturbation is established (see for example [6℄and [8℄). Remark that, in all the ited papers, the ompatness assumption onthe perturbation is widely used.In this paper, our main purpose is to obtain the existene of solutions of (1.1),in the ase when C(t) is uniformly �-prox-regular and the perturbation F (�; �) is



66 M. Aitalioubrahimnononvex, nonompat, integrably bounded, measurable with respet to the �rstargument and Lipshitz ontinuous with respet to the seond argument.2. Preliminaries and statement of the main resultLet H be a real separable Hilbert spae with the norm k�k and the salar prod-ut h�; �i. For I a segment in R, we denote by C(I;H) the Banah spae of ontinu-ous funtions from I to H equipped with the norm kx(�)k1 := supfkx(t)k; t 2 Ig.For a a positive number, we put Ca := C([�a; 0℄; H) and for any t 2 [0; T ℄, T > 0,we de�ne the operator T (t) from C([�a; T ℄; H) to Ca with (T (t)(x(�)))(s) :=(T (t)x)(s) := x(t + s), s 2 [�a; 0℄. For x 2 H and r > 0 let B(x; r) := fy 2H ; ky � xk < rg be the open ball entered at x with radius r and B(x; r) beits losure and put B = B(0; 1). For ' 2 Ca and r > 0 let Ba('; r) := f 2Ca; k � 'k1 < rg be the open ball entered at ' with radius r and Ba('; r) beits losure. For x 2 H and for nonempty subsets A;B of H we denote dA(x)or d(x;A) the real inffky � xk; y 2 Ag, e(A;B) := supfdB(x);x 2 Ag andH(A;B) = maxfe(A;B); e(B;A)g. For measurability purpose, H (resp. 
 � H)is endowed with the �-algebra B(H) (resp. B(
)) of Borel subsets for the strongtopology and the segment I is endowed with Lebesgue measure and the �-algebraof Lebesgue measurable subsets. A multifuntion is said to be measurable if itsgraph is measurable. For more details on measurability theory, we refer the readerto book of Castaing-Valadier [3℄.We need �rst to reall some notations and de�nitions that will be used in allthe paper.Let V : H ! R[f+1g be a lower semiontinuous funtion and x be any pointwhere V is �nite. The proximal subdi�erential �pV (x) of V at x is the set of ally 2 H , for whih there exist Æ; � > 0 suh that for all x0 2 x+ ÆBhy; x0 � xi � V (x0)� V (x) + �kx0 � xk2:Let S be a nonempty losed subset of H and x be a point in S. We reall(see [5℄) that the proximal normal one of S at x is de�ned by NpS(x) := �p S(x),where  S(�) denotes the indiator funtion of S, i.e.,  S(x) = 0 if x 2 S and +1otherwise.Reall now that for a given � 2℄0;+1℄, a subset S is uniformly �-prox-regular(see [12℄), or equivalently �-proximally smooth (see [5℄), if and only if everynonzero proximal normal to S an be realized by a �-ball, this means that forall �x 2 S and all � 2 NpS(�x) n f0g one has* �k�k ; x� �x+ � 12�kx� �xk2for all x 2 S. We make the onvention 1� = 0 for � = +1. Reall that for� = +1 the uniform �-prox-regularity of S is equivalent to the onvexity of S.



On nonompat perturbation 67The following propositions summarize some important onsequenes of uniformprox-regularity needed in the sequel.Proposition 2.1 ([12℄). Let S be a nonempty losed subset in H and x 2 S.The following assertions hold.(i) �pd(x; S) = NpS(x) \ B.(ii) Let � 2℄0;+1℄. If S is uniformly �-prox-regular, then for all x 2 Hwith d(x; S) < � one has ProjS(x) 6= ; and �P d(x; S) = �Cd(x; S), where�Cd(x; S) is the Clarke subdi�erential of d(�; S) at x. So, in suh a ase,the subdi�erential �d(x; S) := �P d(x; S) = �Cd(x; S) is a losed onvexset in H .(iii) If S is uniformly �-prox-regular, then for all xi 2 S and all vi 2 NpS(xi)with kvik � � (i = 1; 2) one hashv1 � v2; x1 � x2i � �kx1 � x2k2:As a onsequene of (iii) we get that for uniformly �-prox-regular sets, theproximal normal one to S oinides with all the normal ones ontained in theClarke normal one at all points x 2 S, i.e., NPS (x) = NCS (x). In suh a ase, weput NS(x) := NPS (x) = NCS (x).Proposition 2.2 ([2℄). Let � 2℄0;+1℄ and 
 be an open subset in H and letC : 
 ! 2H be a Hausdor�-ontinuous set-valued mapping. Assume that C hasuniformly �-prox-regular values. Then, the set-valued mapping given by (z; x)!�dC(z)(x) from 
 �H (endowed with the strong topology) to H (endowed withthe weak topology) is upper semiontinuous, whih is equivalent to the uppersemiontinuity of the funtion (z; x) ! �(�dC(z)(x); p) for any p 2 H . Here�(S; p) denotes the support funtion assoiated with S, i.e., �(S; p) = sups2Shs; pi.Let us reall the following lemmas that will be used in the sequel.Lemma 2.3 ([15℄). Let 
 be a nonempty set in H . Assume that F : [a; b℄�
!2H is a multifuntion with nonempty losed values satisfying:� for every x 2 
, F (�; x) is measurable on [a; b℄;� for every t 2 [a; b℄, F (t; �) is (Hausdor�) ontinuous on 
.Then for any measurable funtion x(�) : [a; b℄! 
, the multifuntion F (�; x(�)) ismeasurable on [a; b℄.Lemma 2.4 ([15℄). Let G : [a; b℄ ! 2H be a measurable multifuntion andy(�) : [a; b℄! H a measurable funtion. Then for any positive measurable funtionr(�) : [a; b℄! R+ , there exists a measurable seletion g(�) of G suh that for almostall t 2 [a; b℄ kg(t)� y(t)k � d�y(t); G(t)�+ r(t):Assume that the following hypotheses hold:(H1) C : [0; b℄! 2H is a set-valued map with nonempty ompat values satis-fying



68 M. Aitalioubrahim(a) for eah t 2 [0; b℄, C(t) is �-prox-regular for some �xed � 2℄0;+1℄;(b) there exists an absolutely ontinuous funtion v : [0; b℄ ! R suhthat ���d(x;C(t)) � d(x;C(s))��� � jv(t)� v(s)jfor all x 2 H and s; t 2 [0; b℄;(H2) F : [0; b℄ � Ca ! 2H is a set-valued map with nonempty losed valuessatisfying(i) for eah  2 Ca, t 7! F (t;  ) is measurable;(ii) there is a funtion m(�) 2 L1([0; b℄;R+ ) suh that for all t 2 [0; b℄ andfor all  1;  2 2 CaH�F (t;  1); F (t;  2)� � m(t)k 1 �  2k1;(iii) for all bounded subset S of Ca, there exist two funtions gS(�); pS(�) 2L1([0; b℄;R+) suh that for all t 2 [0; b℄ and for all  2 SkF (t;  )k := supy2F (t; ) kyk � gS(t) + pS(t)k k1:We established the following result:Theorem 2.5. If assumptions (H1) and (H2) are satis�ed, then for all ' 2 Casuh that '(0) 2 C(0), there exist T > 0, r > 0, and a ontinuous funtionx(�) : [�a; T ℄ ! H , that is absolutely ontinuous on [�a; T ℄ suh that x(�) issolution of 8<: _x(t) 2 �NC(t)(x(t)) + F (t; T (t)x) a.e on [0,T℄;x(t) = '(t) 8t 2 [�a; 0℄;x(t) 2 C(t) 8t 2 [0; T ℄;and satis�esk _x(t)k � j _v(t)j+ g(t) + p(t)(k'k1 + r); for almost all t 2 [0; T ℄:3. Proof of the main resultFix ' 2 Ca suh that '(0) 2 C(0). Let r > 0 and g(�); p(�) 2 L1([0; b℄;R+) besuh that(3.1) kF (t;  )k � g(t) + p(t)k k1 8(t;  ) 2 [0; b℄�Ba('; r):Let T1 > 0 be suh that(3.2) Z T10 �2g(t) + 2p(t)(k'k1 + r) + j _v(t)j� dt < inf nr2 ; �2o:



On nonompat perturbation 69The idea of suh T1 has been used in [7℄. For " > 0 set(3.3)�(") = sup( 2℄0; "℄ : ����� R t2t1 �j _v(s)j+ 2g(s) + 2p(s)(k'k1 + r)� ds����� < ";and k'(t1)� '(t2)k < " if jt1 � t2j < ):Put(3.4) T = minnT1; 12�(r2); bo:We will used the following lemma to prove the main result.Lemma 3.1. If assumptions (H1) and (H2) are satis�ed, then for all n 2 N� andfor all y(�) 2 L1([0; T ℄; H), there exist a ontinuous mapping xn(�) : [�a; T ℄! H ,a step funtions �n(�); ��n(�) : [0; T ℄! [0; T ℄ and fn(�) 2 L1([0; T ℄; H) suh that� fn(t) 2 F (t; T (�n(t))xn), xn(��n(t)) 2 C(��n(t)), for all t 2 [0; T ℄;� kfn(t)� y(t)k � d(y(t); F (t; T (�n(t))xn)) + 1n for all t 2 [0; T ℄;� � _xn(t)� fn(t)� 2 �N�C(��n(t)); xn(��n(t))� for almost all t 2 [0; T ℄;� k _xn(t)�fn(t)k � j _v(t)j+g(t)+p(t)(r+k'k1) for almost every t 2 [0; T ℄.Proof: Fix n 2 N� and let y(�) : [0; T ℄! H be a measurable funtion. Considera sequene (Pn)n of subdivisions of [0; T ℄:Pn = n0 = tn0 < tn1 < � � � < tni < � � � < tn2n = Towhere tni = i T2n , 0 < i < 2n. Let us de�ne a sequene (xn)n of approximatesolutions as follows. Set xn(s) = '(s) for all s 2 [�a; 0℄. Put xn0 = '(0) 2 C(tn0 ).In view of Lemma 2.4, there exists a funtion fn0 2 L1([0; tn1 ℄; H) suh that fn0 (t) 2F (t; T (0)xn) and kfn0 (t)� y(t)k � d�y(t); F (t; T (0)xn)�+ 1nfor all t 2 [0; tn1 ℄. By (H1), (3.1) and (3.2), we havedC(tn1 ) xn0 + Z tn1tn0 fn0 (s) ds! � dC(tn0 ) xn0 + Z tn1tn0 fn0 (s) ds!+ jv(tn1 )� v(tn0 )j� Z tn1tn0 kfn0 (s)k ds+ Z tn1tn0 j _v(s)j ds



70 M. Aitalioubrahim� Z tn1tn0 �g(s) + p(s)k'k1 + j _v(s)j� ds� �2 :As C has uniformly �-prox-regular values, by Proposition 2.1, we haveProjC(tn1 ) xn0 + Z tn1tn0 fn0 (s) ds! 6= ;:Then, one an hoose a point xn1 inProjC(tn1 ) xn0 + Z tn1tn0 fn0 (s) ds!:Note that xn1 2 C(tn1 ) andxn1 � xn0 + Z tn1tn0 fn0 (s) ds! = dC(tn1 ) xn0 + Z tn1tn0 fn0 (s) ds!� Z tn1tn0 �g(s) + p(s)k'k1 + j _v(s)j� ds:Remark thatkxn1 � '(0)k � xn1 � xn0 + Z tn1tn0 fn0 (s) ds!+ Z tn1tn0 kfn0 (s)k ds� Z tn1tn0 �2g(s) + 2p(s)k'k1 + j _v(s)j� ds� r2 :Then xn1 2 B('(0); r). Now, setxn(t) = xn0 + �(t) � �(tn0 )�(tn1 )� �(tn0 ) xn1 � xn0 � Z tn1tn0 fn0 (s) ds!+ Z ttn0 fn0 (s) dsfor all t 2 [tn0 ; tn1 ℄, where�(t) = Z t0 �j _v(s)j+ g(s) + p(s)(r + k'k1)� ds; 8t 2 [0; T ℄:



On nonompat perturbation 71So for all t 2 [tn0 ; tn1 ℄kxn(t)� '(0)k � �(t)� �(tn0 )�(tn1 )� �(tn0 )xn1 � xn0 � Z tn1tn0 fn0 (s) ds+ Z ttn0 kfn0 (s)k ds� �(t) � �(tn0 ) + Z ttn0 g(s) + p(t)k'k1 ds� Z ttn0 �j _v(s)j+ 2g(s) + 2p(s)(r + k'k1)� ds� r2whih is equivalent to xn(t) 2 B('(0); r2 ) for all t 2 [tn0 ; tn1 ℄. Now, we haveto estimate k(T (tn1 )xn)(s) � '(s)k for eah s 2 [�a; 0℄. If �tn1 � s � 0, thentn1 + s 2 [0; tn1 ℄. Thus, by the fat that jsj � tn1 � T < �( r2 ), we havek(T (tn1 )xn)(s) � '(s)k = kxn(tn1 + s)� '(s)k� kxn(tn1 + s)� '(0)k+ k'(s)� '(0)k� r:If �a � s � �tn1 , then tn1 + s 2 [�a; 0℄ andk(T (tn1 )xn)(s)� '(s)k = k'(tn1 + s)� '(s)k� r:Therefore, T (tn1 )xn 2 Ba('(�); r).We reiterate this proess for onstruting sequenes (fni (�))i; (xni )i satisfying,for all 0 � i � 2n � 1 and for all t 2 [tni ; tni+1℄, the following assertions:(3.5) fni (t) 2 F (t; T (tni )xn); xn0 2 C(tn0 ); xni+1 2 C(tni+1) \B('(0); r);(3.6) xn(t) 2 B('(0); r); T (tni )xn 2 Ba('(�); r);(3.7) kfni (t)� y(t)k � d�y(t); F (t; T (tni )xn)�+ 1n ;(3.8) xni+1 2 ProjC(tni+1) xni + Z tni+1tni fni (s) ds!;(3.9) xni+1� xni +Z tni+1tni fni (s) ds! � Z tni+1tni �j _v(s)j+g(s)+p(s)(r+k'k1)� ds;



72 M. Aitalioubrahim(3.10) xn(t) = xni + �(t)� �(tni )�(tni+1)� �(tni ) xni+1�xni �Z tni+1tni fni (s) ds!+Z ttni fni (s) ds:Now, we de�ne the funtions �n(�); ��n(�) : [0; T ℄! [0; T ℄ and fn(�)2L1([0; T ℄; H)by setting for all t 2 [tni ; tni+1[��n(t) = tni+1; ��n(T ) = T; fn(t) = fni (t);and for all t 2℄tni ; tni+1℄ �n(t) = tni ; �n(0) = 0:We laim that xn(�) is absolutely ontinuous. Indeed, for all 0 � i � 2n � 1 andfor all t and s in [tni ; tni+1℄, s < t, one hasxn(t)� xn(s) = �(t)� �(s)�(tni+1)� �(tni ) xni+1 � xni � Z tni+1tni fni (s) ds!+ Z ts fni (s) ds:Then, by (3.1) and (3.9) we getkxn(t)� xn(s)k = �(t)� �(s)�(tni+1)� �(tni )xni+1 � xni � Z tni+1tni fni (s) ds+ Z ts �g(�) + p(�)(k'k1 + r)� d�� �(t)� �(s) + Z ts �g(�) + p(�)(k'k1 + r)� d�:Hene kxn(t)� xn(s)k � Z ts j _v(�)j + 2g(�) + 2p(�)(r + k'k1) d�:(3.11)By addition this last inequality holds for all s; t 2 [0; T ℄ with s < t. Hene xn(�)is absolutely ontinuous. Remark that for all 0 � i � 2n� 1 and for almost everyt in [tni ; tni+1℄,(3.12) _xn(t) = _�(t)�(tni+1)� �(tni ) xni+1 � xni � Z tni+1tni fni (s) ds!+ fn(t):Then, by (3.9) we obtain for almost every t 2 [0; T ℄k _xn(t)� fn(t)k � j _v(t)j+ g(t) + p(t)(k'k1 + r):Observe that by onstrution, we have fn(t) 2 F (t; T (�n(t))xn) andkfn(t)� y(t)k � d�y(t); F (t; T (�n(t))xn)�+ 1n



On nonompat perturbation 73for all t 2 [0; T ℄. Also, by onstrution and the relation (3.8), we have for almostevery t 2 [0; T ℄ � _xn(t)� fn(t)� 2 �N�C(��n(t)); xn(��n(t))�:Then the proof is omplete. �Proof of the Theorem. In view of Lemma 3.1, we an de�ne indutivelysequenes (fn(�))n�1 � L1([0; T ℄; H), (xn(�))n�1 � C([�a; T ℄; H) and(�n(�))n�1; (��n(�))n�1 � S([0; T ℄; [0; T ℄); where S([0; T ℄; [0; T ℄) denotes the spaeof step funtions from [0; T ℄ into [0; T ℄; suh that(1) fn(t) 2 F (t; T (�n(t))xn), xn(��n(t)) 2 C(��n(t)), for all t 2 [0; T ℄;(2) kfn+1(t)�fn(t)k � d(fn(t); F (t; T (�n+1(t))xn+1))+ 1n+1 for all t 2 [0; T ℄;(3) ( _xn(t)� fn(t)) 2 �N(C(��n(t)); xn(��n(t))) for almost all t 2 [0; T ℄;(4) k _xn(t)�fn(t)k � j _v(t)j+g(t)+p(t)(k'k1+r) for almost every t 2 [0; T ℄.For all t 2 [0; T ℄, there exists 0 � i � 2n � 1 suh that t 2 [tni ; tni+1℄. By (H1) and(3.11), we haved(xn(t); C(t)) � kxn(t)� xn(tni )k+ d(xn(tni ); C(t))� Z ttni �j _v(s)j+ 2g(s) + 2p(s)(k'k1 + r)� ds+ jv(t) � v(tni )j:The right term of the above inequality onverges to 0 if n ! +1. This and theompatness of C(t) ensure that the set fxn(t); n � 1g is relatively ompat in H .Moreover, from (4) we deduek _xn(t)k � j _v(t)j+ 2g(t) + 2p(t)(k'k1 + r)for almost every t 2 [0; T ℄. Then, by Arzela-Asoli's theorem (see [1℄), we anselet a subsequene, again denoted by (xn(�))n whih onverges uniformly to anabsolutely ontinuous funtion x(�) on [0; T ℄, moreover _xn(�) onverges weakly to_x(�) in L1([0; T ℄; H). Also, sine all funtions xn(�) agree with '(�) on [�a; 0℄, wean obviously say that xn(�) onverges uniformly to x(�) on [�a; T ℄, if we extendx(�) in suh a way that x(�) � '(�) on [�a; 0℄. Additionally, observe that xn(��n(t))onverges uniformly to x(t) on [0; T ℄. Indeed, by (3.11) for all t 2 [0; T ℄, we havekxn(��n(t)) � x(t)k � kxn(��n(t)) � xn(t)k+ kxn(t)� x(t)k� Z ��n(t)t �j _v(s)j+ 2g(s) + 2p(s)(r + k'k1)� ds+ kxn(t)� x(t)k:The right term of the above inequality onverges to 0, it follows xn(��n(�)) on-verges uniformly to x(�) on [0; T ℄. Therefore, as d(xn(t); C(t)) onverges to 0 on



74 M. Aitalioubrahim[0; T ℄, we onlude that x(t) 2 C(t) for all t 2 [0; T ℄. On the other hand, fort 2 [0; T ℄ and y 2 C(t), we have by (H1)dC(��n(t))(y) � jv(��n(t))� v(t)j;thus supy2C(t) dC(��n(t))(y) � jv(��n(t))� v(t)j:By the same way we an prove thatsupy2C(��n(t)) dC(t)(y) � jv(��n(t))� v(t)j:Hene H�C(��n(t)); C(t)� � jv(��n(t)) � v(t)j;onsequently, C(��n(t)) onverges to C(t).Claim 3.2. T (�n(t))xn onverges to T (t)x in Ca.Proof: Let us denote the modulus ontinuity of a funtion  (�) de�ned on aninterval I of R by!( (�); I; �) := sup(k (t)�  (s)k; s; t 2 I; js� tj < �):Let " > 0 and let t; t0 2 [0; T ℄, assume that 0 � t0 � t < �( "2 ). By (3.3) and(3.11), we havekxn(t)� xn(t0)k � Z t0t �j _v(s)j+ 2g(s) + 2p(s)(k'k1 + r)� ds� "2 :Hene !�xn(�); [0; T ℄; �("2)� � "2 :Also for t; t0 2 [�a; 0℄ suh that jt0 � tj < �( "2 ), we have by (3.3)k'(t)� '(t0)k < "2 :Then !�'(�); [�a; 0℄; �("2)� � "2 :



On nonompat perturbation 75Now, let t 2 [0; T ℄. Sine �n(t) onverges to t, there exists n0 2 N suh that forall n � n0, j�n(t)� tj < �( "2 ). Then, for all n � n0kT (�n(t))xn � T (t)xnk1 = sup�a�s�0 kxn(�n(t) + s)� xn(t+ s)k� !�xn(�); [�a; T ℄; �("2)�� !�'(�); [�a; 0℄; �("2)�+ !�xn(�); [0; T ℄; �("2)�� ";hene kT (�n(t))xn � T (t)xnk1 onverges to 0 as n ! +1. Therefore, sine theuniform onvergene of xn(�) to x(�) on [�a; T ℄ implies that T (t)xn onverges toT (t)x uniformly on [�a; 0℄, we dedue that(3.13) T (�n(t))xn onverges to T (t)x in Ca:On the other hand, from (1) and (2) we deduekfn+1(t)� fn(t)k � H�F (t; T (�n(t))xn); F (t; T (�n+1(t))xn+1)�+ 1n+ 1� m(t)kT (�n(t))xn � T (�n+1(t))xn+1k1 + 1n+ 1 :(3.14)By (3.13), kT (�n(t))xn � T (�n+1(t))xn+1k1 onverges to 0, thus the right termof the relation (3.14) onverges to 0. Hene (fn(t))n�1 is a Cauhy sequene and(fn(�))n�1 onverges pointwise to f(�). Moreover, observe that by (1),d�f(t); F (t; T (t)x)� � kf(t)� fn(t)k+H�F (t; T (�n(t))xn); F (t; T (t)x)�� kf(t)� fn(t)k+m(t)kT (�n(t))xn � T (t)xk1:Sine fn(t) onverges to f(t) and by (3.13) the last term onverges to 0. So thatf(t) 2 F (t; T (t)x) for all t 2 [0; T ℄.Now, we an apply Castaing tehniques (see for example [14℄). The weakonvergene of _xn(�) to _x(�) in L1([0; T ℄; H) and the Mazur's Lemma entail_x(t)� f(t) 2\n �on _xm(t)� fm(t) : m � no; for a.e. on [0; T ℄:For any t 2 [0; T ℄ and y 2 Hhy; _x(t)� f(t)i � infn supk�nhy; _xk(t)� fk(t)i:By (3) and (4), one has� _xn(t)� fn(t)� 2 �N�C(��n(t)); xn(��n(t))� \ �j _v(t)j+ g(t) + p(t)(k'k+ r)�B
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