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Berezin transform for non-salarholomorphi disrete seriesBenjamin CahenAbstrat. Let M = G=K be a Hermitian symmetri spae of the non-ompattype and let � be a disrete series representation of G whih is holomorphiallyindued from a unitary irreduible representation � ofK. In the paper [B. Cahen,Berezin quantization for holomorphi disrete series representations: the non-salar ase, Beitr�age Algebra Geom., DOI 10.1007/s13366-011-0066-2℄, we haveintrodued a notion of omplex-valued Berezin symbol for an operator atingon the spae of �. Here we study the orresponding Berezin transform and weshow that it an be extended to a large lass of symbols. As an appliation, weonstrut a Stratonovih-Weyl orrespondene assoiated with �.Keywords: Berezin quantization, Berezin symbol, Stratonovih-Weyl orrespon-dene, disrete series representation, Hermitian symmetri spae of the non-ompat type, semi-simple non-ompat Lie group, oherent states, reproduingkernel, adjoint orbitClassi�ation: 22E46, 32M10, 32M15, 81S101. IntrodutionLet G be a onneted semi-simple non-ompat Lie group with �nite enter.Let K be a maximal ompat subgroup of G. We assume that the enter of Khas positive dimension. Then the Hermitian symmetri spae of the non-ompattype G=K is di�eomorphi to a bounded symmetri domain D. We onsidera disrete series representation � of G whih is holomorphially indued froma unitary irreduible representation � of K. The spae of � is then a �nite-dimensional omplex vetor spae V and � an be realized in a Hilbert spae Hof holomorphi funtions on D with values in V .When � is a unitary harater of K, we an diretly de�ne the Berezin symbolS(A) of an operator A on H as a omplex-valued funtion on D and the mapS : A ! S(A) is a bounded operator from L2(D; �), where � is an invariantmeasure on D, to the spae L2(H) of the Hilbert-Shmidt operators on H, seefor instane [29℄. The Berezin transform is then the map B := SS�, whih playsan important role in quantization on symmetri domains [5℄, [6℄. In that ase,Berezin transforms have been intensively studied (see in partiular [29℄, [27℄, [16℄,[33℄ and [34℄).In the general ase, we have onstruted in [13℄ a Berezin map S : A ! S(A)from a lass of operators ating on H to a spae of omplex-valued funtions on



2 B. CahenG=K�o, where o denotes the oadjoint orbit of K assoiated with �. The map Shas some nie properties (symmetry, ovariane . . . ) and then an be onsideredas the natural generalization of the Berezin alulus to the non-salar ase.In the present paper, we introdue and study the Berezin transform B orre-sponding to the map S. In partiular, we show that B extends to a bounded oper-ator ating on a spae of square-integrable funtions on G=K�o (Proposition 5.2).This generalizes some well-known results on the usual Berezin transform, see forinstane [29, 1.19℄. Moreover, we study the funtions S(d�(X1X2 � � �Xq)) forX1; X2; : : : ; Xq in the Lie algebra of G and we prove that B an be also extendedto these funtions, generalizing the results of [12℄. As an appliation, we onstruta Stratonovih-Weyl orrespondene assoiated with � (see Setion 7 for a preisede�nition).This paper is organized as follows. In Setion 2, we introdue some notationon Hermitian symmetri spaes and holomorphi disrete series. In Setion 3, wereall the results of [13℄ about the onstrution of the map S and its properties.In Setion 4, we introdue the Berezin transform B and we show that B is an in-tegral operator. The Setions 5 and 6 are devoted to the study and the extensionof B. Our main results are then Proposition 5.2 (L2-extension of B) and Propo-sition 6.5 (extension of B to the symbols of some di�erential operators). Finally,in Setion 7, we onstrut a Stratonovih-Weyl orrespondene assoiated with �.2. PreliminariesIn this setion, we introdue the notation and we ollet some fats on Her-mitian symmetri spaes of the non-ompat type and holomorphi disrete seriesrepresentations. Our main referenes are [21, Chapter VIII℄, [26, Chapter XII℄,[23, Chapter 6℄, [17℄ and [31℄.Let G be a onneted semi-simple non-ompat real Lie group with �nite enterand let K be a maximal ompat subgroup of G. We assume that the enter of theLie algebra of K is non-trivial. Then the homogeneous spae G=K is a Hermitiansymmetri spae of the non-ompat type.Let g and k be the Lie algebras of G and K, respetively. Let g and k be theomplexi�ations of g and k and G, K the orresponding omplex Lie groupsontaining G and K, respetively. We denote by � the Killing form of g, that is,�(X;Y ) = Tr(adX adY ) for X; Y 2 g. Let p be the ortho-omplement of k in gwith respet to �. Then g = k� p is a Cartan deomposition of g.We �x a Cartan subalgebra h of k. Then h is also a Cartan subalgebra of g. Wedenote by h the omplexi�ation of h. Let � be the root system of g relativeto h and let g = h �P�2� g� be the root spae deomposition of g. Thenwe have the diret deompositions k = h �P�2� g� and p = P�2�n g�where p denotes the omplexi�ation of p and � (resp. �n) denotes the setof ompat (resp. non-ompat) roots. We hoose an ordering on � as in [21,p. 384℄ and we denote by �+, �+ and �+n the orresponding sets of positiveroots, positive ompat roots and positive non-ompat roots, respetively. Weset p+ = P�2�+n g� and p� = P�2�+n g��. Then we have [k ; p�℄ � p� and



Berezin transform for non-salar holomorphi disrete series 3p+ and p� are abelian subalgebras [21, Proposition 7.2℄. Sine [p; p℄ � k, we alsohave [p+; p�℄ � k. We denote by P+ and P� the analyti subgroups of G withLie algebras p+ and p�, respetively.For eah � 2 (h)�, we denote by H� the element of h satisfying �(H;H�) =�(H) for all H 2 h. Note that if � is real-valued on ih then iH� 2 g. For�; � 2 (h)�, we set (�; �) := �(H�; H�).Let � denote the onjugation indued by the real form g of g. For X 2 g,we set X� = ��(X). We denote by g ! g� the involutive anti-automorphismof G whih is obtained by exponentiating X ! X� to G. Reall that themultipliation map (z; k; y) ! zky is a di�eomorphism from P+ � K � P�onto an open submanifold of G ontaining G [21, Lemma 7.9℄. Following [26,p. 497℄, we introdue the projetions � : P+KP� ! P+, � : P+KP� !K and � : P+KP� ! P�. Then the map gK ! log �(g) from G=K top+ indues a di�eomorphism from G=K onto a bounded domain D � p+ [21,p. 392℄. The natural ation of G on G=K orresponds to the ation of G onD given by g � Z = log �(g expZ). The G-invariant measure on D is d�(Z) =�0(�(expZ� expZ)) d�L(Z) where �0 is the harater on K de�ned by �0(k) =Detp+(Ad k) and d�L(Z) is a Lebesgue measure on D [26, p. 538℄.Note that by �xing an Iwasawa deomposition G = NAK, we get a smoothsetion G=K ! NA � G. Then we obtain a smooth setion D ! G; Z ! gZ ,that is, we have gZ � 0 = Z for Z 2 D.Now, let (�; V ) be a unitary irreduible representation ofK with highest weight� (relative to �+ ). We also denote by � the extension of � to K. Let H be theHilbert spae of all holomorphi funtions on D with values in V suh thatkfk2 := ZD hK(Z;Z)�1f(Z); f(Z)iV d�(Z) < +1where K(Z;W ) := �(�(expW � expZ))�1 for Z; W 2 D.For g 2 G and Z 2 D, we set J(g; Z) := �(�(g expZ)).Proposition 2.1 ([26, p. 542℄, [17℄). The spae H is non-zero if and only if(� + Æ; �) < 0 for eah non-ompat positive root �, where Æ stands for half ofthe sum of the positive roots. In that ase, H ontains all V -valued polynomials.Moreover, the ation of G on H de�ned by�(g)f(Z) = J(g�1; Z)�1 f(g�1 � Z)is a unitary irreduible representation of G whih belongs to the holomorphidisrete series of G.In the rest of the paper, we assume that the ondition of the preeding propo-sition is ful�lled.The evaluation maps KZ : H ! V , f ! f(Z) are ontinuous [26, p. 539℄. Thegeneralized oherent states of H are the maps EZ = K�Z : V ! H de�ned byhf(Z); viV = hf; EZvi for f 2 H and v 2 V .We have the following result, see [26, p. 540℄ and [17℄.



4 B. CahenProposition 2.2. (1) There exists a onstant � > 0 suh that E�ZEW =�K(Z;W ) for eah Z; W 2 D.(2) For g 2 G and Z 2 D, we have Eg�Z = �(g)EZJ(g; Z)�.3. Berezin symbolsIn this setion, we �rst introdue the Berezin alulus assoiated with �, see[4℄, [32℄ and [9℄.Let � 2 h� be the highest weight of � relative to �+ . Let '0 2 h be suh that�(H) = i�('0; H) for eah H 2 h, that is, '0 = �iH�. In the rest of the paper,we assume that '0 is regular in the sense that �('0) 6= 0 for eah � 2 �. Thenthe orbit o('0) of '0 under the adjoint ation of K is said to be assoiated with� [8℄, [32℄.Note that a omplex struture on o('0) is then de�ned by the di�eomorphismo('0) ' K=H ' K=HN� where N� is the analyti subgroup of K with LiealgebraP�2�+ g�.Without loss of generality, we an assume that V is a spae of holomorphifuntions on o('0) as in [9℄. Sine V is �nite-dimensional, for eah ' 2 o('0) thereexists a unique funtion e' 2 V (alled a oherent state) suh that a(') = ha; e'iVfor eah a 2 V . The Berezin alulus on o('0) assoiates with eah operator Bon V the omplex-valued funtion s(B) on o('0) de�ned bys(B)(') = hBe'; e'iVhe'; e'iVwhih is alled the symbol of B.The following properties of the Berezin alulus an be found in [14℄, [4℄ and [9℄.Proposition 3.1. (1) The map B ! s(B) is injetive.(2) For eah operator B on V , we have s(B�) = s(B).(3) For ' 2 o('0), k 2 K and B 2 End(V ), we haves(B)(Ad(k)') = s(�(k)�1B�(k))('):(4) For U 2 k and ' 2 o('0), we have s(d�(U))(') = i�(';U).Now, in order to de�ne the Berezin symbol S(A) of an operator A on H, we�rst de�ne the pre-symbol S0(A) of A as a End(V )-valued funtion on D.Let H0 be the subspae of H generated by the funtions EZv for Z 2 D andv 2 V . Clearly, H0 is a dense subspae of H. Let C be the spae onsisting ofall operators A on H suh that the domain of A ontains H0 and the domain ofA� also ontains H0. For Z 2 D, we denote hZ := �(gZ) 2 K. We de�ne thepre-symbol S0(A) of A 2 C byS0(A)(Z) = �1� �(h�1Z )E�ZAEZ�(h�1Z )�



Berezin transform for non-salar holomorphi disrete series 5and the Berezin symbol S(A) of A is then de�ned as the omplex-valued funtionon D � o('0) given by S(A)(Z;') = s(S0(A)(Z))('):In [13℄, we proved the following properties of S.Proposition 3.2. (1) The map A! S(A) is injetive on C.(2) For eah A 2 C, we have S(A�) = S(A).(3) We have S(I) = 1.(4) For eah A 2 C, g 2 G, Z 2 D and ' 2 o('0), we haveS(A)(g � Z;') = S(�(g)�1A�(g))(Z;Ad(k(g; Z))')where k(g; Z) := h�1Z �(g expZ)�1hg�Z is an element of K.(5) For eah X 2 g, Z 2 D and ' 2 o('0), we haveS(d�(X))(Z;') = i�(Ad(gZ)';X):Let O('0) be the orbit of '0 under the adjoint ation of G on g. In [13℄, we havealso proved that the map 	 : D � o('0)! O('0) de�ned by 	(Z;') = Ad(gZ)'is a di�eomorphism suh that(3.1) Ad(g)	(Z;') = 	(g � Z;Ad(k(g; Z))�1')for g 2 G, Z 2 D and ' 2 o('0).We �x a K-invariant measure � on o('0) normalized as in [9, Setion 2℄. Thenthe measure ~� := � 
 � on D � o('0) is invariant under the ation of G onD � o('0) given by g � (Z;') := (g � Z;Ad(k(g; Z))�1'). Moreover, the measure�O('0) := (	�1)�(~�) is a G-invariant measure on O('0).4. The Berezin transformWe denote by L2(H) (respetively L2(V )) the spae of Hilbert-Shmidt opera-tors on H (respetively V ) endowed with the Hilbert-Shmidt norm k � k2 de�nedby kAk22 = Tr(A�A). Sine V is �nite-dimensional, we have L2(V ) = End(V ). Wedenote by L2(D�o('0)) (respetively L2(D); L2(o('0))) the spae of funtions onD � o('0) (resp. D, o('0)) whih are square-integrable with respet to the mea-sure ~� (resp. �, �). We de�ne similarly the spaes L1(D�o('0)), L1(D�o('0)),et.In [11℄, we proved the following proposition.Proposition 4.1. For eah ' 2 o('0), let p' denote the orthogonal projetion ofV on the line generated by e'. Then the adjoint s� of the operator s : L2(V ) !L2(o('0)) is given by s�(a) = Zo('0) a(')p' d�(')for eah a 2 L2(o('0)).



6 B. CahenOur aim is to obtain a similar result for S. To this goal, we introdue theoperator T de�ned byT (f) = ZD�o('0) PZ;'f(Z;') d�(Z)d�(')where PZ;' := �1� EZ�(h�1Z )�p'�(h�1Z )E�Z .Proposition 4.2. (1) PZ;' is the orthogonal projetion of H on the linegenerated by EZ�(h�1Z )�e'.(2) For eah A 2 L2(H), we have S(A) 2 L1(D � o('0)).(3) For eah f 2 L1(D � o('0)), we have T (f) 2 L2(H).(4) For eah A 2 L2(H), we have Tr(APZ;') = S(A)(Z;').(5) The operators S : L2(H) ! L1(D � o('0)) and T : L1(D � o('0)) !L2(H) are adjoint in the sense thatZD�o('0) S(A)(Z;')f(Z;') d�(Z)d�(') = hA; T (f)i2for eah A 2 L2(H) and f 2 L1(D � o('0)).Proof: (1) Let Z 2 D. We an deompose gZ as gZ = expZhZy where y 2 P�.Then we have e = g�ZgZ = y�h�Z expZ� expZhZy where e is the unit elementof G. This implies that �(expZ� expZ)�1 = hZh�Z . Therefore, by applying (1)of Proposition 2.2, we obtain(4.1) E�ZEZ = ��(�(expZ� expZ))�1 = ��(hZh�Z):By using this equality, we immediately verify that P 2Z;' = PZ;'. Moreover, itis lear that P �Z;' = PZ;'. Then PZ;' is an orthogonal projetion of H. UsingEquality (4.1) again, we get PZ;'EZ�(h�1Z )�e' = EZ�(h�1Z )�e'. Finally, sine p'is a rank one operator, we see that PZ;' is also a rank one operator, hene theorthogonal projetion on the line generated by EZ�(h�1Z )�e'.(2) Let A 2 L2(H). We havekS0(A)(Z)k2 � �1� k�(h�1Z )E�ZkopkAk2kEZ�(h�1Z )�kop:Sinek�(h�1Z )E�ZkopkEZ�(h�1Z )�kop = k�(h�1Z )E�ZEZ�(h�1Z )�kop = k�idV kop = �;we get kS0(A)(Z)k2 � kAk2. Then we havejS(A)(Z;')j � kS0(A)(Z)kop � kS0(A)(Z)k2 � kAk2:Hene S(A) 2 L1(D � o('0)).(3) Let f 2 L1(D�o('0)). Sine kPZ;'k2 = 1, we see that T (f) is well-de�nedas a Bohner integral and that kT (f)k2 � kfk1.



Berezin transform for non-salar holomorphi disrete series 7(4) Let A 2 L2(H). Reall that PZ;' is the orthogonal projetion on the linegenerated by EZ�(h�1Z )�e'. Then, by onsidering an orthonormal basis (hk)k�1of H suh that h1 = kEZ�(h�1Z )�e'k�12 EZ�(h�1Z )�e', we getTr(APZ;') = hAEZ�(h�1Z )�e'; EZ�(h�1Z )�e'ihEZ�(h�1Z )�e'; EZ�(h�1Z )�e'i :Thus, sine we havehEZ�(h�1Z )�e'; EZ�(h�1Z )�e'i = h�(h�1Z )E�ZEZ�(h�1Z )�e'; e'iV = �he'; e'iV ;we �nd Tr(APZ;') = �1� h�(h�1Z )E�ZAEZ�(h�1Z )�e'; e'iVhe'; e'iV= s(S0(A)(Z))(') = S(A)(Z;'):(5) This is an immediate onsequene of (4). �Now, we an onsider the Berezin transform B := ST as an operator fromL1(D� o('0)) to L1(D� o('0)). The following proposition shows that B an beexpressed as an integral operator.Proposition 4.3. For eah f 2 L1(D � o('0)), we haveB(f)(Z; ) = ZD�o('0) k(Z;W; ; ') f(W;') d�(W )d�(')where k(Z;W; ; ') := jh�(�(g�1Z gW ))�1e ; e'iV j2he'; e'iV he ; e iV :Proof: We begin with the following remark. Let Z; W 2 D. We an writegZ = expZhZy and gW = expWhW y0 where y; y0 2 P�. Then we haveexpW � expZ = h��1W y0��1g�W gZy�1h�1Z :Hene we get �(expW � expZ) = h��1W �(g�W gZ)h�1Z . Using this equality, we seethat �(h�1Z )E�ZEW �(h�1W )� = ��(h�1Z )�(�(expW � expZ))�1�(h�1W )�= ��(�(g�W gZ))�1:Now, let f 2 L1(D � o('0)). We haveS0(T (f))(Z) = �1� �(h�1Z )E�ZT (f)EZ�(h�1Z )�= �2� ZD�o('0)�(h�1Z )E�ZEW �(h�1W )�p'�(h�1W )E�WEZ�(h�1Z )� f(W;')d�(W )d�('):



8 B. CahenBy the preeding remark, we getS0(T (f))(Z) = ZD�o('0) �(�(g�W gZ))�1p'�(�(g�W gZ)�1)� f(W;') d�(W )d�('):Now we aim to ompute S(T (f))(Z; ) = s(S0(T (f))(Z))( ). We note that,putting h := �(g�ZgW ), we haves(�(h�1)�p'�(h�1))( ) = h�(h�1)�p'�(h�1)e ; e iVhe ; e iV= hp'�(h�1)e ; �(h�1)e iVhe ; e iV= jh�(h�1)e ; e'iV j2he ; e iV he'; e'iVsine p'�(h�1)e = h�(h�1)e ; e'iVhe'; e'iV e':Finally, we obtains(S0(T (f))(Z))( ) = ZD�o('0) jh�(h�1)e ; e'iV j2he ; e iV he'; e'iV f(W;') d�(W )d�(')as desired. �5. Extension of the Berezin transform to L2-spaesIn this setion, we show that the Berezin transform B := ST an be extendedto the spae L2(D�o('0)). We retain the notation from Setion 4. The �rst stepis to show that the integralI(Z; ) := ZD�o('0) k(Z;W; ; ') d�(W )d�(')is �nite for eah (Z; ) 2 D� o('0). More preisely, we have the following result.Lemma 5.1. For eah (Z; ) 2 D � o('0), we have I(Z; ) = �1� .Proof: First reall that for a 2 V we haveZo('0) jha; e'iV j2ke'k2V d�(') = kak2V(see [9℄). Then I(Z; ) = 1ke k2V ZD k�(�(g�1Z gW ))�1e k2V d�(W ):



Berezin transform for non-salar holomorphi disrete series 9Now we perform the hange of variables W ! gZ �W in this integral. Remarkthat, sine (gZgW )�1ggZ �W � 0 = 0, we have (gZgW )�1ggZ �W 2 KP� \ G = K.Denoting this element by k, we get �(g�1Z ggZ �W ) = �(gW k) = hW k. Thenk�(�(g�1Z ggZ �W ))�1e kV = k�(k�1h�1W )e kV = k�(hW )�1e kV :Hene we obtainI(Z; ) = 1ke k2V ZD k�(hW )�1e k2V d�(W )= 1ke k2V ZDhK(W;W )�1e ; e iV d�(W )sine we have �(hWh�W ) = K(W;W ) by Equality (4.1).On the other hand, reall the reproduing propertyhf(Z); viV = hf; EZvi = ZDhK(W;W )�1f(W ); (EZv)(W )iV d�(W ):Applying this equality to the onstant funtion f(W ) = v and evaluating atZ = 0, we get kvk2V = ZDhK(W;W )�1v; (E0v)(W )iV d�(W ):Sine we have (E0v)(W ) = E�WE0v = �v, we obtainkvk2V = � ZDhK(W;W )�1v; viV d�(W ):Finally, applying this equality to v = e , we obtain I(Z; ) = �1� . �Proposition 5.2. (1) The map B := ST an be extended to a boundedoperator of L2(D � o('0)) and we have kBkop � �1� .(2) T extends to a bounded operator from L2(D�o('0)) to L2(H), S extendsto a bounded operator from L2(H) to L2(D� o('0)) and these operatorsare adjoint to eah other.Proof: (1) Let f 2 L1(D� o('0))\L2(D� o('0)). Then, using Lemma 5.1 andthe Cauhy-Shwarz inequality, we havejB(f)(Z; )j2� ZD�o('0) k(Z;W; ; ') d�(W )d�(')� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(W )d�(')� �1� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(W )d�('):



10 B. CahenIntegrating this inequality and using Lemma 5.1 again, we then obtainZD�o('0)jB(f)(Z; )j2 d�(Z)d�( )� �1� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(Z)d�(W )d�(')d�( )� �2� ZD�o('0) jf(W;')j2 d�(W )d�('):Therefore, the result follows.(2) Let f 2 L1(D� o('0))\L2(D� o('0)). By applying (5) of Proposition 4.2to A = T (f) and using (1), we getkT (f)k22 � hST (f); fi � kfk2kST (f)k2 � �1� kfk22:This implies that T extends to an operator (also denoted by T ) from L2(D�o('0))to L2(H). Let T � : L2(H) ! L2(D � o('0)) be the adjoint of T . Reall that wehave hS(A); fi = hA; T (f)i2 = hT �(A); fifor eah A 2 L2(H) and eah f 2 L1(D � o('0)) \ L2(D � o('0)). This showsthat S extends to the operator T � : L2(H)! L2(D � o('0)). �Now we establish that B is G-ovariant. We denote by � the left-regularrepresentation of G on L2(D�o('0)) de�ned by (�(g)(f))(Z;') = f(g�1 � (Z;')).Then � is unitary. We have the following proposition.Proposition 5.3. For eah f 2 L2(D � o('0)) and eah g 2 G, we haveB(�(g)f) = �(g)(B(f)).Proof: By (4) of Proposition 3.2, we have �(g)S(A) = S(�(g)A�(g)�1) for eahA 2 L2(H) and g 2 G. Sine � is unitary, the orresponding property for T = S�is S�(�(g)f) = �(g)S�(f)�(g)�1 for eah f 2 L2(D � o('0)) and g 2 G. Thisgives SS�(�(g)f) = S(�(g)S�(f)�(g)�1) = �(g)SS�(f)for eah f 2 L2(D � o('0)), hene the result. �6. Extension of the Berezin transform to symbols of di�erential ope-ratorsLet us introdue some additional notation as in [12, Setion 4℄. Let (E�)�2�+nbe a basis for p+ as in [21, Chapter VIII, Corollary 7.6℄. In partiular, we haveg� = CE� and [E�; E��℄ = 2�(H�)H� for eah � 2 �+n . Let �1; �2; : : : ; �n be anenumeration of �+n . Let Z = Pnk=1 zkE�k be the deomposition of Z 2 p+ inthe basis (E�k ). If f is a holomorphi funtion on D, then we denote by �kfthe partial derivative of f with respet to zk. We say that a funtion f(Z) on D



Berezin transform for non-salar holomorphi disrete series 11is a polynomial of degree q in the variable Z if f(Pnk=1 zkE�k ) is a polynomialof degree q in the variables z1; z2; : : : ; zn. For Z; W 2 D, we set lZ(W ) :=log �(expZ� expW ) 2 p�.Moreover, if L is a Lie group and X is an element of the Lie algebra of L thenwe denote by X+ the right invariant vetor �eld on L generated by X , that is,X+(h) = ddt(exp tX)hjt=0 for h 2 L.We �rst reall some useful results, in partiular an expliit expression for thederived representation d�. Let pp+ , pk and pp� be the projetions of g ontop+, k and p� assoiated with the diret deomposition g = p+ � k � p�. Bydi�erentiating the multipliation map from P+ � K � P� onto P+KP�, wean easily prove the following result.Lemma 6.1 ([10℄). Let X 2 g and g = z k y where z 2 P+, k 2 K and y 2 P�.We have(1) d�g(X+(g)) = (Ad(z) pp+(Ad(z�1)X))+(z).(2) d�g(X+(g)) = (pk(Ad(z�1)X))+(k).(3) d�g(X+(g)) = (Ad(k�1) pp�(Ad(z�1)X))+(y).From this result, we immediately dedue the following proposition (see [26,Proposition XII.2.1℄ and also [10℄).Proposition 6.2. For X 2 g and f 2 H, we haved�(X)f(Z) = d�(pk(Ad((expZ)�1)X)) f(Z)� (df)Z�pp+(e� adZ X)�:In partiular, we have(1) if X 2 p+ then d�(X)f(Z) = �(df)Z(X);(2) if X 2 k then d�(X)f(Z) = d�(X)f(Z) + (df)Z([Z;X ℄);(3) if X 2 p� then d�(X)f(Z) = �d�([Z;X ℄)f(Z)� 12 (df)Z([Z; [Z;X ℄℄).Now, we study the form of the Berezin symbols of the operators d�(X1X2� � �Xq) for X1; X2; : : : ; Xq 2 g. The following lemma is the generalization of [12℄,Lemma 4.1 and Lemma 4.2.Lemma 6.3. (1) For eah Z; W 2 D, W 0 2 p+ and v 2 V , we haveddt (EZv)(W + tW 0)��t=0= ��d�([lZ(W );W 0℄)�(�(expZ� expW ))�1v:(2) For Z; W 2 D and W 0 2 p+, we haveddt lZ(W + tW 0)��t=0= 12[lZ(W ); [lZ(W );W 0℄℄:(3) The funtion (�k1�k2 � � ��kq EZv)(W ) is of the form Q(lZ(W ))(EZv)(W )where Q is a polynomial of degree � q with values in End(V ).(4) For eah X1; X2; : : : ; Xq 2 g, the operator d�(X1X2 � � �Xq) is a sum ofterms of the form P (Z)�k1�k2 � � � �kr where r � q and P is a polynomialof degree � 2q with values in End(V ).



12 B. Cahen(5) For eah X1; X2; : : : ; Xq 2 g, the pre-symbol S0(d�(X1X2 � � �Xq)) isa sum of terms of the form �(hZ)�1P (Z)Q(lZ(Z))�(hZ) where P is apolynomial of degree � 2q with values in End(V ) and Q is a polynomialof degree � q with values in End(V ).Proof: The proof, based on Lemma 6.1 and Proposition 6.2, is similar to thatof [12, Lemma 4.1℄. Note that (5) is an immediate onsequene of (4). �In the following lemma, we give some expressions for k�(hZ)kop and k�(hZ)�1kopwhih will be needed in the proof of Proposition 6.5. Reall that we have denotedby � the highest weight of � relative to �+ . We also denote the lowest weightof � by �lw (see [30, p. 326℄). Moreover, let 1; 2; : : : ; r be a subset of �+n on-sisting of strongly orthogonal roots (see for instane [21, p. 385℄). We also setHs = [Es ; E�s ℄ for s = 1; 2; : : : ; r.Lemma 6.4. Let Z = Ad(k)(Prs=1 tsEs) where k 2 K and 1 � t1 � t2 �: : : � tr � 0. Then we have k�(hZ)k2op =Qrs=1(1� t2s)�lw(Hs) and k�(hZ)�1k2op =Qrs=1(1� t2s)��(Hs).Proof: If Z = Ad(k)(Prs=1 tsEs) where 1 � t1 � t2 � : : : � tr � 0 then wehave �(expZ� expZ) = k exp(�Prs=1 log(1�t2s)Hs)k�1, see for instane [31, p. 3℄or [17, p. 231℄. Hene the eigenvalues of�(h�Z)�1�(hZ)�1 = �(�(expZ� expZ)) = exp�� rXs=1 log(1� t2s)d�(Hs)�are the exp(�Prs=1 log(1� t2s)�(Hs)) for � weight of �. Now, sinelog 11� t21 � log 11� t22 � � � � log 11� t2rwe have � rXs=1 log 11� t2sHs! � � rXs=1 log 11� t2sHs!for eah weight � of �, [22, p. 16℄. This implies thatk�(hZ)�1k2op = exp rXs=1 log 11� t2s �(Hs)! :The seond equality is proved similarly. �Now we are in position to establish the main result of this setion.Proposition 6.5. Let �0 := d�0jh and let q� := Min1�s�r(� 32���0+ 12�lw)(Hs).If q � q� then for eah X1; X2; : : : ; Xq 2 g, the Berezin transform of S(d�(X1X2� � �Xq)) is well-de�ned.



Berezin transform for non-salar holomorphi disrete series 13Proof: Let (Z; ) 2 D � o('0). Fix g 2 G suh that g � (0; '0) = (Z; ). Then,by using Proposition 5.3, we see thatB(f)(Z; ) = ZD�o('0) k(0;W; '0; ') f(g � (W;'))�0(�(expW � expW ))d�L(W )d�('):In partiular, if f = S(d�(X1X2 � � �Xq)) then by (4) of Proposition 3.2 we havef(g � (W;')) = S(�(g)�1d�(X1X2 � � �Xq)�(g))(W;') = S(d�(Y1Y2 � � �Yq))(W;')where Yk = Ad(g�1)Xk for k = 1; 2; : : : ; q.Now assume that q � q�. In order to show that B(f)(Z; ) is well-de�ned, wewill prove that the integrandJ(W;') := k(0;W; '0; ')S(d�(Y1Y2 � � �Yq))(W;')�0(�(expW � expW ))is bounded hene integrable for the measure d�L(W )d�(') on D � o('0). Webegin by the following observations.(1) We have k(0;W; '0; ') = jh�(h�1W )e'0 ; e'iV j2ke'0k2V ke'k2V � k�(h�1W )k2Vfor eah W 2 D and ' 2 o('0).(2) Reall thatS0(d�(Y1Y2 � � �Yq))(W ) = lXi=1 �(hW )�1Pi(W )Qi(lW (W ))�(hW )where the Pi are polynomials of degree � 2q with values in End(V ) and the Qiare polynomials of degree � q with values in End(V ) for i = 1; 2; : : : ; l. Then wehavejS(d�(Y1Y2 � � �Yq))(W;')j � kS0(d�(Y1Y2 � � �Yq))(W )kop� C k�(hW )�1kopk�(hW )kop lXi=1 kQi(lW (W ))kopwhere C is a onstant (independent of W ).(3) For eah W 2 D, we an write W = Ad(k)(Prs=1 tsEs) where k 2 K and1 � t1 � t2 � : : : � tr � 0 as in Lemma 6.4, see [22, p. 16℄ and [25, Theorem 3℄.Then we have�0��(expW � expW )� = exp rXs=1 log 11� t2s �0(Hs)!



14 B. Cahenand log �(expW � expW ) = Ad(k) � rXs=1 ts1� t2s E�s! ;see for instane [17, p. 231℄.Using these observations and Lemma 6.4, we obtainjJ(W;')j � C k�(hW )�1k3opk�(hW )kop�0(�(expW � expW )) lXi=1 kQi(lW (W ))kop� C 0 lYi=1(1� t2s)q��qwhere C 0 is a onstant. Hene the result follows. �Example. In order to illustrate the previous proposition, we onsider the aseG = SU(2; 1) and K = S(U(2) � U(1)) ' U(2). Then we have g = sl(3; C )and h is the abelian subalgebra of g onsisting of the matries Diag(a1; a2; a3)where ai 2 C for i = 1; 2; 3 and a1 + a2 + a3 = 0. The set of roots of h on g isf�i��j : 1 � i 6= j � 3g where �i(X) = ai for X 2 h as above. We take the setof positive roots to be �1��2 (ompat root), �1��3 and �2��3 (non-ompatroots). Hene the system of strongly orthogonal roots redues to  = �1 � �3.Let H1 = Diag(1; 1;�2) and H2 = Diag(1;�1; 0) in h. Let �m be the unitaryirreduible representation of SU(2) of dimensionm+1. Here we onsider SU(2) asa subgroup ofK ' U(2). The highest weight ~�m of �m is de�ned by ~�m(H2) = m.Let S1 be the group of diagonal matries of the form Diag(ei�; ei�; e�2i�) where� 2 R. Let n 2 Z be suh that m+n is even. Then �m;n(ug) := un�m(g) is a uni-tary irreduible representation ofK and all the unitary irreduible representationsof K are of this form [7, p. 87℄.The highest weight � of �m;n is de�ned by �(H1) = n and �(H2) = m. More-over, we have �lw(H1) = n and �lw(H2) = �m. Also, note that �0(H1) = 2 and�0(H2) = 0 (see [26, p. 541℄).Then the ondition of Proposition 2.1 is n + 2 < m < �n � 4. Furthermore,sine we have [E ; E� ℄ = 2(H)H where H = Diag( 16 ; 0;� 16 ), we easily obtainthat q� = � 12n�m� 3.7. Stratonovih-Weyl orrespondeneIn this setion, we onstrut a Stratonovih-Weyl orrespondene assoiatedwith � by using the method of [19℄, [11℄ and [12℄. Reall that the notion ofStratonovih-Weyl orrespondene was introdued in [28℄ as a natural generaliza-tion of the lassial Weyl orrespondene [1℄, [18℄. Stratonovih-Weyl orrespon-denes were systematially studied, espeially by J.M. Graia-Bond��a, J.C. V�arillyand their o-workers, see in partiular [19℄, [15℄ and [20℄ (see also the work ofJ. Arazy and H. Upmeier on invariant symboli aluli [2℄, [3℄).



Berezin transform for non-salar holomorphi disrete series 15De�nition 7.1. Let G0 be a Lie group and �0 a unitary representation of G0on a Hilbert spae H0. Let M be a homogeneous G0-spae and let �0 be a(suitably normalized) G0-invariant measure on M . Then a Stratonovih-Weylorrespondene for the triple (G0; �0;M) is an isomorphism W from a vetorspae of operators on H0 to a spae of funtions on M satisfying the followingproperties:(1) the funtion W (A�) is the omplex-onjugate of W (A);(2) Covariane: we have W (�0(g)A�0(g)�1)(x) =W (A)(g�1 � x);(3) Traiality: we haveZM W (A)(x)W (B)(x) d�(x) = Tr(AB):The previous de�nition is adapted from [15, p. 906℄. Note that here we havedropped the requirement that W maps the identity operator I of H0 to the on-stant funtion 1 sine it is not adapted to the present situation where I is notHilbert-Shmidt. However, in general, this requirement should hold in some gen-eralized sense, up to a suitable normalization of �, see [15℄.The basi example is the ase when G0 is the (2n+1)-dimensional Heisenberggroup Hn whih ats on R2n by translations and �0 is the Shr�odinger represen-tation of Hn on L2(Rn ). In that ase, the lassial Weyl orrespondene gives aStratonovih-Weyl orrespondene for the triple (Hn; �0;R2n ) [18℄, [20℄.When G0 is a ompat semi-simple Lie group, �0 a unitary irreduible repre-sentation of G0 and M the oadjoint orbit of G0 whih is assoiated with �0 bythe Kostant-Kirillov method of orbits [24℄, a Stratonovih-Weyl orrespondenefor (G0; �0;M) was onstruted in [19℄ and [11℄ by a taking the isometri partin the polar deomposition of the Berezin alulus on M . The same methodalso works for the holomorphi disrete series representations of salar type ofa semi-simple Lie group, see [12℄. Now, we will apply this method to onstruta Stratonovih-Weyl orrespondene assoiated with � as an appliation of theresults of Setion 5.We introdue the polar deomposition of S : L2(H) ! L2(D � o('0)). Wehave S = (SS�)1=2W = B1=2W where W = B�1=2S is a unitary operator fromL2(H) onto L2(D � o('0)). Then we have the following proposition.Proposition 7.2. (1) The map W : L2(H)! L2(D � o('0)) is a Stratono-vih-Weyl orrespondene for the triple (G; �;D � o('0)).(2) The map W from L2(H) to L2(O('0); �O('0)) de�ned by W(f) =W (f Æ	) is a Stratonovih-Weyl orrespondene for the triple (G; �;O('0)).Proof: (1) Sine W is unitary, we have just to verify that the properties (1)and (2) of De�nition 7.1 are satis�ed. Sine we have the properties S(A�) = S(A)and S�(f) = (S�f)�, we see that B hene B�1=2 ommute with omplex onju-gation. This gives Property (1). Finally, Property (2) is a onsequene of theovariane properties of S, S� and B, see (4) of Proposition 3.2 and Proposi-tion 5.3.
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