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Nonloal systems of BVPs withasymptotially superlinear boundary onditionsChristopher S. GoodrihAbstrat. In this paper we onsider a oupled system of seond-order boundaryvalue problems with nonloal, nonlinear boundary onditions, and we examineonditions under whih suh problems will have at least one positive solution. Byimposing only an asymptoti growth ondition on the nonlinear boundary fun-tions, we are able to ahieve generalizations over existing works and, in partiular,we allow for the nonloal terms to be able to be realized as Lebesgue-Stieltjes in-tegrals possessing signed Borel measures. We onlude with a numerial exampleto illustrate the use of one of our two main results.Keywords: oupled system of seond-order boundary value problems, nonloalboundary ondition, nonlinear boundary ondition, superlinear growth, positivesolutionClassi�ation: Primary 34B10, 34B15, 34B18; Seondary 47H07, 47H101. IntrodutionIn this paper we onsider a system of nonloal boundary value problems withnonlinear boundary onditions. In partiular, we onsider the nonlinear systemof boundary value problems(1.1) x00(t) = �a1(t)g1(x(t); y(t)); t 2 (0; 1);y00(t) = �a2(t)g2(x(t); y(t)); t 2 (0; 1);x(0) = 0 = y(0);x(1) = H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� ;y(1) = H2 ��1(x) + "10x ��20� ; �2(y) + "20y ��20�� ;where "10, "20 > 0 are onstants, whih shall be spei�ed later, �10 ; �20 2 (0; 1)are �xed, �1, �2 : C([0; 1℄)! R are linear funtionals, whih apture the nonloalnature of the boundary onditions, andH1, H2 : R2 ! R are ontinuous funtions,whih apture the nonlinear nature of the boundary onditions. We also assumethat the nonlinearities g1, g2 : [0;+1) � [0;+1) ! [0;+1) are ontinuousfuntions. The nonloal terms here are quite general sine they are realized as



80 C.S. GoodrihLebesgue-Stieltjes integrals | that is,(1.2) �1(x) := Z[0;1℄ x(t) d�1(t) and �2(y) := Z[0;1℄ y(t) d�2(t);with �1, �2 2 BV ([0; 1℄). Sine it may be assumed without loss that, in fat, �1,�2 2 NBV ([0; 1℄), we get that assoiated to eah of �1, �2 there exists a uniqueBorel measure, say ��1 and ��2 , respetively. In our ontext, importantly, thesemeasures may be signed .Here we study the existene of at least one positive solution to problem (1.1).To aomplish this task, we use the perturbation terms in (1.1) | namely, "10x(�10),"20y(�10), "10x(�20), and "20y(�20) | as well as a new ondition on the nonlinearfuntions H1 and H2. These novelties reveal, in a way that shall be delineatedmomentarily, that many of the restritions previous authors have imposed on thevarious terms appearing in other problems similar to (1.1) are, in fat, unneessaryin our setting. Our prinipal ondition on these funtions is to require that, foreah i = 1; 2,(1.3) limz1+z2!+1 Hi (z1; z2)zp1i1 + zq1i2 = +1holds for some p1i , q1i 2 (0; 1℄ with at least one of p1i and q1i , for eah i = 1; 2,able to be taken equal to unity. In partiular (f., Remark 3.2), ondition (1.3)implies that eah of H1 and H2 may enjoy asymptotially superlinear growth inat least one of the two oordinate diretions (f., Remark 3.3). We will even givean existene result assoiated to the somewhat more relaxed ondition(1.4) lim supz1+z2!0+ Hi (z1; z2)z1 + z2 < �i;for eah i = 1; 2, with �i a positive onstant to be seleted later; importantly,the result assoiated to ondition (1.4) will even be appliable in the unperturbedase | i.e., "10 = "20 = 0. It should be pointed out that, in fat, Yang [16℄, [17℄introdued an asymptoti ondition similar to (1.4), though in the ontext of aslightly di�erent problem. Regardless, Yang imposes a number of other hypotheses| suh as ompliated onditions on the equivalent of our nonlinearities g1 andg2 as well as the assumption that the equivalent of ��1 and ��2 be positive |with whih we ompletely dispense here.In any ase, to plae problem (1.1) in an appropriate ontext, we remark thatit is, in fat, most losely related to reent papers both of Kang and Wei [10℄and of Infante and Pietramala [7℄. Regarding [10℄, Kang and Wei onsidered aproblem very similar to (1.1). However, they were fored to assume that eah ofthe measures ��1 and ��2 was positive. Moreover, regarding their equivalent ofthe nonlinearities g1 and g2 appearing in (1.1), they assumed that these funtionssatis�ed very strit growth onditions. On the other hand, regarding [7℄, a similarproblem to (1.1) was onsidered, a prinipal di�erene being that the equivalent of



Nonloal systems of BVPs with asymptotially superlinear BCs 81H1 and H2 were funtions of a single variable only | for instane, H1(x). In anyase, the authors there assumed that eah of the measures ��1 and ��2 was posi-tive. Furthermore, they assumed that the nonlinear boundary nonlinearities (i.e.,the equivalent of H1 and H2) satis�ed uniformly linear growth | that is, therewere 0 � � < � suh that �z � H(z) � �z, for all z � 0. This latter onditionis somewhat restritive, and we remove it ompletely in this work. Finally, ourtehniques even allow for the nonlinearities g1 and g2 to have ompletely di�erentlimiting behavior | f., point (5) below.In addition to [7℄, [10℄, there have been many other reent works on nonloal,nonlinear boundary value problems | see, for example, [6℄, [8℄, [9℄, [16℄, [17℄.While our work here is slightly less diretly related to these, it is, nonetheless,nontrivially onneted to these other papers, and we provide here tehniquesand insights not found in any of those other works. It is ertainly important tomention that the basi one theoreti tehnique used in this paper is indebtedto the important paper of Infante and Webb [12℄. Finally, we mention that ourresults here omplement ertain of the results whih we have reently given in [4℄.In summary, we provide here the following generalizations over preeding works.(1) We allow for eah of ��1 and ��2 to be signed measures rather than merelypositive. This is an improvement over the preeding works, as intimatedabove.(2) We do not assume a uniform linear growth ondition on either H1 or H2.We instead assume either the asymptoti ondition given in (1.3) togetherwith an assumption that these funtions possess superlinear growth asz1 + z2 ! 0 or ondition (1.4). In partiular, this shows that superlineargrowth at (+1;+1) is allowable. More generally, one need not assumea uniform linear growth ondition as seems to appear in nearly all workson this sorts of problems | f., [6℄, [7℄, [8℄, [9℄ | sine in our setting theremay be no � > 0 suh that Hi(z1; z2) � �(z1 + z2), for all z1, z2 � 0.(3) Spei�ally regarding Yang's works [16℄, [17℄, we point out that our re-sults here even provide some interesting generalizations of the methodsontained therein. In partiular, while the results of [16℄, [17℄ onerndi�erent problems than (1.1), those works do appear to be among theonly ones to onsider an asymptoti ondition with respet to the non-linear boundary funtions, at least to the best of the author's knowledge.A lose examination of the proofs in those works, however, reveals thatthey use in a very expliit way the positivity of the respetive Stieltjesmeasures. Laking this positivity, as we do here, we must searh for alter-native approahes. Consequently, we feel that our results here representan interesting advanement over those presented in [16℄, [17℄.(4) We believe that our tehniques even allow H to be only eventually posi-tive, though we do not prove suh a theorem here | see [3℄ for an exemplarof this extension in a ontext somewhat di�erent from this one.(5) We show that the assumption of asymptoti superlinearity of the fun-tions H1 and H2 allows for neither g1 nor g2 to have any partiular type



82 C.S. Goodrihof growth (e.g., sub- or superlinearity) as k(x; y)k ! +1. In partiular,this means that g1 and g2 an have ompletely di�erent limiting behavior.For example, g1 ould be sublinear as k(x; y)k ! +1, whilst g2 is super-linear as k(x; y)k ! +1. While Yang also allowed for mixed asymptotibehavior of the nonlinearities in [16℄, a ursory examination of that paperindiates that a number of ompliated onditions are required to deduethat result. By ontrast, our onditions are quite simple and relativelyeasy to hek omputationally.2. PreliminariesWe onsider in this work the spae X := B�B, where B represents the Banahspae C([0; 1℄) when equipped with the usual supremum norm, k � k := k � k1.Note | see Dunninger and Wang [2℄ | that X beomes a Banah spae whenequipped with the norm k(x; y)k := kxk+kyk. It is then known that a �xed pointin X of(2.1)S(x; y)(t):= (T1(x; y); T2(x; y))= �tH1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10��+ Z 10 G(t; s)a1(s)g1(x(s); y(s)) ds;tH2 ��1(x) + "10x ��20� ; �2(y) + "20y ��20��+ Z 10 G(t; s)a2(s)g2(x(s); y(s)) ds�is a solution of problem (1.1), where S : X! X and Ti : X! B, for eah i = 1; 2.Here G : [0; 1℄� [0; 1℄ ! R appearing in (2.1) is the Green's funtion assoiatedto the two-point onjugate problem | that is,(2.2) G(t; s) := (t(1� s); 0 � t � s � 1;s(1� t); 0 � s � t � 1;as is well known | see, for example, [11℄. In the sequel, we shall assume that theset [a; b℄ is a given �xed subinterval of (0; 1). With this delaration it is then wellknown that there is a onstant  := mint2[a;b℄ft; 1� tg suh that(2.3) mint2[a:b℄G(t; s) �  maxt2[0;1℄G(t; s) = G(s; s);for eah s 2 [0; 1℄. Note that  2 (0; 1). Finally, let us also reall as a preliminarylemma Krasnosel'ski��'s �xed point theorem | see [1℄.Lemma 2.1. Let B be a Banah spae and let K � B be a one. Assume that
1 and 
2 are bounded open sets ontained in B suh that 0 2 
1 and 
1 � 
2.Assume, further, that T : K\ (
2 n
1)! K is a ompletely ontinuous operator.If either(1) kTyk � kyk for y 2 K \ �
1 and kTyk � kyk for y 2 K \ �
2; or



Nonloal systems of BVPs with asymptotially superlinear BCs 83(2) kTyk � kyk for y 2 K \ �
1 and kTyk � kyk for y 2 K \ �
2;then T has at least one �xed point in K \ (
2 n
1).3. Main result and numerial exampleWe begin by listing the various strutural onditions we impose on the on-stituent parts of problem (1.1). These onditions are the following.H1: For eah i, let Hi : R2 ! [0;+1) be a real-valued, ontinuous funtion.Moreover, Hi : [0;+1) � [0;+1) ! [0;+1) | i.e., Hi is nonnegativewhen restrited to [0;+1)� [0;+1).H2: For eah i, the funtional �i(y) appearing in (1.1) is linear and, in par-tiular, has the realization(3.1) �i(y) := Z[0;1℄ y(t) d�i(t);where �i : [0; 1℄! R satis�es �i 2 BV ([0; 1℄).H3: For eah i, there is a onstant "i1 2 [0; 12 ) suh that the funtional �i in(1.1) satis�es the inequality(3.2) j�i(y)j � "i1kykfor all y 2 C([0; 1℄).H4: For eah i, there are p1i 2 (0; 1℄ and q1i 2 (0; 1℄, where for eah i at leastone of p1i and q1i is equal to unity, suh that(3.3) limz1+z2!+1 Hi (z1; z2)zp1i1 + zq1i2 = +1holds. Furthermore, for eah i it holds that(3.4) limz1+z2!0+ Hi (z1; z2)z1 + z2 = 0:H5: We �nd that(3.5) limx+y!0+ g1(x; y)x+ y = 0 and limx+y!0+ g2(x; y)x+ y = 0:H6: The onstants "10, "20, "11, and "21 satisfy(3.6) 0 � "10 + "20 + "21 + "21 < 12 :H7: For eah i, eah of(3.7) Z[0;1℄ t d�i(t) � 0



84 C.S. Goodrihand(3.8) Z[0;1℄G(t; s) d�i(t) � 0holds, where the latter holds for eah s 2 [0; 1℄.Let us make some brief remarks regarding ertain of the preeding onditions.Remark 3.1. Regarding onditions (H2){(H3), we point out that a wide vari-ety of funtions satisfy these onditions. Indeed, onsider the following pair offuntionals.(3.9) �i1(y) := ZF y(t) dt;�i2(y) := nXk=1 aky (�k) :Sine eah of (3:9)1{(3:9)2 is linear, eah satis�es (H2). On the other hand, solong as m(F ) � "i0, say, where m is the Lebesgue measure, then (3:9)1 satis�es(H3). Provided that Pnk=1 jakj � "i0, then (3:9)2 satis�es (H3). Example 3.9ontains another example.Remark 3.2. Regarding ondition (H4) and spei�ally (3.3) therein, this is theasymptoti superlinear ondition whih, in part, distinguishes our methods herefrom others. On the other hand, (3.4) appearing in ondition (H4) implies that His also superlinear as (x; y)! (0+; 0+). Some funtions, H : [0;+1)� [0;+1)![0;+1), satisfying ondition (H4), then, are the following. (In eah ase, p1i =q1i = 1, for eah i.)(3.10) H (z1; z2) := zr11 + zr22 ; r1; r2 > 1;H (z1; z2) := (z1 + z2)r os� 1z1 + z2 + 1�; r > 1;H (z1; z2) := ((z1 + z2)2 ; 0 � z1 + z2 � 1;ez1+z2�1; z1 + z2 > 1:It is easy to hek that eah of (3:10)1{(3:10)3 satis�es eah part of ondition (H4).Furthermore, we should mention that eah of the funtions above annot beinorporated into the theory of either [7℄ or [10℄ due to the superlinear growth at(+1;+1). In fat, suh nonlinear boundary funtions ould not be inorporatedinto any of the results given in [6℄, [8℄, [9℄, [10℄ for that matter. So, ondition (H4)allows for a vastly di�erent variety of nonlinear boundary funtions than otherreent works on these sorts of problems. Moreover, as shall be expliated inthe proof of Theorem 3.5, whih is our �rst existene result, this asymptotisuperlinear growth ondition also allows for the mixed growth of the nonlinearitiesg1 and g2, as mentioned in Setion 1.



Nonloal systems of BVPs with asymptotially superlinear BCs 85Remark 3.3. Also regarding ondition (H4), we point out that this onditionallows forHi to have di�erent types of growth in the di�erent oordinate diretions(i.e., when either z1 = 0 or z2 = 0). For example, onsider the ontinuous funtionH : [0;+1)� [0;+1)! [0;+1) de�ned by(3.11) H (z1; z2) := ((z1 + z2)2 �z21 +pz2� ; 0 � z1 + z2 � 1;z21 +pz2; z1 + z2 � 1:In the z1-oordinate diretion, we �nd that H grows superlinearly as z1 + z2 !+1. On the other hand, in the z2-oordinate diretion, we �nd that H growssublinearly as z1 + z2 ! +1. Finally, it holds that(3.12) limz1+z2!0+ H (z1; z2)z1 + z2 = 0 and limz1+z2!+1 H (z1; z2)z1 + z0:32 = +1:Remark 3.4. As remarked in Setion 1, we believe that the onditions imposedon Hi by ondition (H4) may be hanged in a manner similar to the argumentpresented in [3℄. But we leave suh investigations for future work.Now, let 0 be the onstant de�ned by(3.13) 0 := min fa; 1� bg ;where 0 2 (0; 1). Then the one, K, we shall use in the sequel is then de�ned by(3.14)K := �(x; y) 2 X : x; y � 0; mint2[a;b℄[x(t) + y(t)℄ � 0k(x; y)k; �1(x); �2(y) � 0� ;whih is a simple modi�ation of a one �rst introdued by Infante and Webb[12℄. Let us point out at this junture that K does not ontain only the neutralelement of X. Indeed, if we put, say, �1(t) := (t; 0), �2(t) := (0; t), and �3(t) :=(�1 +�2)(t) = (t; t), then it is easy to see that �1;�2;�3 2 K so that K ontainsin�nitely many nontrivial elements of X.In any ase, with these preliminary observations, we now state and prove ourmain result. We note, however, that in the statement of this theorem we assumethat p11 = p12 = 1. In other words, it is the numbers q11 , q12 that an bepotentially less than unity. We do this only for de�niteness and ease of expositionin the sequel.Theorem 3.5. Assume that �10 ; �20 2 [a; b℄, where [a; b℄ is a �xed set satisfying[a; b℄ b (0; 1) as in Setion 2. Then there exists a number Æ 2 (0; 1) suh that ifboth q11 ; q12 2 (1� Æ; 1℄ and (H1){(H7) hold, then problem (1:1) has at least onepositive solution.Proof: To begin, as in (2.1) above, we onsider the operator S : X! X de�nedby(3.15) S (x; y) (t) := (T1 (x; y) ; T2 (x; y))



86 C.S. Goodrihwhere, for eah i = 1; 2, we have that Ti : X! B is de�ned by(3.16) Ti(x; y) := tHi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��+ Z 10 G(t; s)ai(s)gi (x(s); y(s)) ds:We shall �rst argue that S : K ! K. To this end, it is obvious that for (x; y) 2 K,it follows that Ti(x; y)(t) � 0, for eah t 2 [0; 1℄ and i = 1; 2. We also note fromthe de�nition of 0 in (3.13) that(3.17) mint2[a;b℄Ti(x; y) � 0Hi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��+  maxt2[0;1℄Z 10 G(t; s)ai(s)gi(x(s); y(s)) ds� 0kTi (x; y) k:We onlude that(3.18) mint2[a;b℄ [(T1(x; y)) (t) + (T2(x; y)) (t)℄ � 0kS (x; y) k:Finally, we observe that
(3.19) �1 (T1(x; y)) = H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� Z[0;1℄ t d�1(t)+ Z[0;1℄ Z 10 G(t; s)a1(s)g1(x(s); y(s)) ds d�1(t)= H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� Z[0;1℄ t d�1(t)+ Z 10 "Z[0;1℄G(t; s) d�1(t)# a1(s)g1 (x(s); y(s)) ds� 0;where the �nal inequality follows from assumption (H7). In a similar way, itfollows that �2(T2(x; y)) � 0. Thus, S : K ! K, as laimed. Let us also point outat this junture that, by a standard argument involving the Arzela-Asoli theorem(reall here that Hi is assumed to be ontinuous, for eah i = 1; 2), we �nd thatthe operator S is ompletely ontinuous; we omit the details of this argument,however.Now, by ondition (H5) we �nd that there is a number r1 > 0 suh that(3.20) g1(x; y) � �1(x + y)



Nonloal systems of BVPs with asymptotially superlinear BCs 87whenever k(x; y)k � r1 and where �1 > 0 satis�es(3.21) �1max�Z 10 G(s; s)a1(s) ds; Z 10 G(s; s)a2(s) ds� � 14 :In addition, ondition (H4) | i.e., equation (3.4) | implies the existene of anumber r�1 > 0 suh that, for eah i = 1; 2,(3.22) Hi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��< �2 ��1(x) + "10x ��i0�+ �2(y) + "20y ��i0��whenever(3.23) �1(x) + "10x ��i0�+ �2(y) + "20y ��i0� < r�1 ;and where �2 > 0 is de�ned by(3.24) �2 := 18max f"10; "20; "21; "21g :Notie that(3.25) �1(x) + "10x ��i0�+ �2(y) + "20y ��i0�� "11kxk+ "21kyk+ "10kxk+ "20kyk� �max�"11; "21	+max�"10; "20	� k(x; y)k� 2max�"10; "20; "21; "21	 k(x; y)k:So, in partiular, if (x; y) 2 K satis�es(3.26) k(x; y)k < r�12max f"10; "20; "21; "21g ;then it follows that (3.22) holds.So, set(3.27) r��1 := min�r1; r�12max f"10; "20; "21; "21g� :Put(3.28) 
r��1 := f(x; y) 2 X : k(x; y)k < r��1 g :



88 C.S. GoodrihThen for eah (x; y) 2 K \ �
r��1 , we have that(3.29)kT1(x; y)k� H1 ��1 (x) + "10x ��10� ; �2 (y) + "20y ��10��+ Z 10 G(s; s)a1(s)g1(x(s); y(s)) ds� �2 ��1 (x) + "10x ��10�+ �2 (y) + "20y ��10��+ �1 Z 10 G(s; s)a1(s)(x(s) + y(s)) ds� �2 ��1 (x) + "10x ��10�+ �2 (y) + "20y ��10��+ 14k(x; y)k� 14k(x; y)k+ 14k(x; y)k= 12k(x; y)k:Thus, we onlude that(3.30) kT1(x; y)k � 12k(x; y)k;for eah (x; y) 2 K \ �
r��1 . A similar argument holds for the operator T2.Consequently, we dedue that(3.31) kS(x; y)k � k(x; y)k;for eah (x; y) 2 K \ �
r��1 .On the other hand, let us assume without loss of generality that p1i = 1 foreah i so that q1i 2 (0; 1℄, for eah i. Then ondition (H4) | i.e., equation (3.3)| implies the existene of a number r�2 := r�2(�3) > 0 suh that(3.32) H1 ��1 (x) + "10x ��10� ; �2 (y) + "20y ��10��� �3 ���1(x) + "10x ��10��+ ��2(y) + "20y ��10��q11 �whenever(3.33) �1(x) + "10x ��10�+ �2(y) + "20y ��10� � r�2for some number r�2 . Note that by piking r�2 suÆiently large, the same typeof estimate likewise holds for H2; we assume heneforth that this is so. Here, in(3.32), we hoose �3 to be the number(3.34) �3 := 1t00min f"10; "20; "20g ;where t0 2 (a; b) is �xed but arbitrary; sine (a; b) b (0; 1), it holds that t0 6= 0,and so, �3 > 0. Importantly, �3 depends neither on q11 nor on q12 . Now, notie



Nonloal systems of BVPs with asymptotially superlinear BCs 89that for (x; y) 2 K sine �1(x), �2(y) � 0 and �10 2 E, we may estimate(3.35) �1 (x) + "10x ��10�+ �2(y) + "20y ��10� � min�"10; "20	 �x ��10�+ y ��10��� min�"10; "20	 mint2[a;b℄[x(t) + y(t)℄� 0min�"10; "20	 k(x; y)k:Consequently, if (x; y) satis�es(3.36) k(x; y)k � r�20min f"10; "20g ;then (3.32) holds.We next interrupt to prove an easy lemma. Suppose that x; y � 0 with x; y �M for some M � 1 and �nite. Let q satisfy 0 < q � 1. Choose the onstant suh that(3.37)  := min�1;M q�1	 ;note that �1 < q � 1 � 0. Obviously,  2 (0; 1℄ sine M � 1 and q� 1 � 0. Thenit follows that(3.38) x+ yq � (x+ y);for all (x; y) 2 [0;M ℄� [0;M ℄. Indeed, we merely notie that, for (x; y) 2 [0;M ℄�[0;M ℄(3.39) x � xand(3.40) y � yq ;sine y 7! yq�1 is dereasing for y > 0, whereupon adding (3.39){(3.40) weestimate(3.41) x+ y � x+ yq;whih evidently proves inequality (3.38).Now ontinuing with the proof, let us put(3.42) r��2 := max�1; 2r��1 ; r�20min f"10; "20g� ;whih is independent of eah of q11 and q12 . De�ne 
r��2 by(3.43) 
r��2 := f(x; y) 2 X : k(x; y)k < r��2 g :



90 C.S. GoodrihUsing estimate (3.38), then, and the fat that(3.44) Z 10 G (t0; s) a1(s)g1(x(s); y(s)) ds � 0;we dedue that for eah (x; y) 2 K \ �
r��2
(3.45)

(T1(x; y)) (t0) = t0H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10��+ Z 10 G (t0; s) a1(s)g1(x(s); y(s)) ds� t0H1 ��1(x) + "10x ��10� ; �2 (y) + "20y ��10��� t0�3 ���1(x) + "10x ��10��+ ��2(y) + "20y ��10��q11 �� t0�3 h"10x ��10�+ �"20�q11 �y ��10��q11 i� t0�3 h"10x ��10�+ "20 �y ��10��q11 i� t0�3min�"10; "20	 h�x ��10��+ �y ��10��q11 i� t0�3min�"10; "20	 1 �x ��10�+ y ��10��� t0�3min�"10; "20	 01k(x; y)k� 1k(x; y)k;where we have used the lemma of the previous paragraph to get the third-to-lastinequality, and so, here 1 := minf1; (r��2 )q11 �1g. We have also used both the fatthat "20 2 [0; 12 ) and that q11 2 (0; 1℄ so that ("20)q11 � "20. In summary, it followsthat(3.46) kT1(x; y)k � 1k(x; y)k:Likewise, for eah (x; y) 2 K \ �
r��2 we dedue that for 2 := minf1; (r��2 )q12 �1g(3.47) kT2(x; y)k � 2k(x; y)k:We now onlude the argument by onsidering ases. If q11 = q12 = 1, thenfrom (3.37), it is obvious that 1 = 2 = 1. In this ase we dedue from (3.46){(3.47) that(3.48) kS(x; y)k � 2k(x; y)k > k(x; y)k;for eah (x; y) 2 K \ �
r��2 . On the other hand, in ase 0 < max fq11 ; q12 g < 1,then(3.49) 1 := (r��2 )q11 �1 and 2 := (r��2 )q12 �1 :



Nonloal systems of BVPs with asymptotially superlinear BCs 91In order that 1 + 2 � 1 be satis�ed, at a minimum we must have that(3.50) minn2 11�q11 ; 2 11�q12 o � r��2 :Evidently, sine r��2 is �nite and (1 � q1i )�1 ! +1 as q1i ! 1�, there existsa Æ > 0 suÆiently small suh that for eah q11 , q12 2 (1 � Æ; 1℄ we have that(3.50) holds. In this ase, we again dedue that (3.48) holds with, say, the fator2 replaed by 1. Importantly, we point out that r��2 does not depend on q1i foreither i. Consequently, we may, in inequality (3.50) above, freely inrease q1i , foreah i, without hanging the previously seleted and �xed value of r��2 .Finally, putting the preeding paragraphs together, we make two onlusions.Firstly, if q11 = q12 = 1, then by Lemma 2.1 and inequality (3.48) we dedue theexistene of a funtion (x0; y0) 2 K suh that S(x0; y0) = (x0; y0), where x0(t),y0(t) forms a positive solution of problem (1.1). Seondly, if q11 , q12 � 1, thenthere exists a Æ > 0 suÆiently small suh that if q11 , q12 2 (1�Æ; 1℄, then problem(1.1) still has at least one positive solution. And as these ases are exhaustivethis ompletes the proof. �We now prove a seond result that demonstrates an alternative approah toproblem (1.1). In partiular, we begin by introduing the following ondition.H8: For eah i = 1; 2, there is a onstant �i > 0 suh that(3.51) lim supz1+z2!0+ Hi (z1; z2)z1 + z2 < �iholds, where �i 2 [0; 12maxf"11;"21g ).On the one hand, ondition (H8) is ertainly more general than ondition (H4).For instane, the ontinuous funtion H : [0;+1) � [0;+1) ! [0;+1) de�nedby(3.52) H (z1; z2) := ((z1 + z2) os� 1z1+z2�; z1 + z2 6= 00; z1 = z2 = 0satis�es(3.53) lim supz1+z2!0+ H (z1; z2)z1 + z2 = 1but limz1+z2!0+ H(z1;z2)z1+z2 does not exist. On the other hand, in order to prove thenext result, we shall have to impose growth onditions on the nonlinearities g1and g2 at in�nity. Thus, we introdue ondition (H9) below.H9: We �nd that(3.54) limx+y!+1 g1(x; y)x+ y = +1 and limx+y!+1 g2(x; y)x+ y = +1:



92 C.S. GoodrihWith ondition (H8) and (H9) in hand we state and prove the following theo-rem. We �rst give two preliminary remarks.Remark 3.6. We note that ondition (H8) is more losely related to ertain ofthe onditions given by Yang [16℄, [17℄, to whih was alluded in Setion 1. Inpartiular, however, we note that unlike the results Yang gives, whih admittedlywere for a slightly di�erent problem than (1.1), we do not require ompliatedonditions on the nonlinearities g1 and g2. Indeed, onditions (H5) and (H9) arequite straightforward and standard. Moreover, the measures here are signed. So,we onsider these observations to be both interesting and noteworthy.Remark 3.7. We also note, as will beome lear in the statement and proof ofTheorem 3.8 in the sequel, that with this partiular assumption | namely (H8)| we may dispense with the perturbation terms appearing in (1.1). In partiularand importantly, then, we may set "10 = "20 = 0.Theorem 3.8. Suppose that onditions (H1){(H3) and (H5){(H9) hold. In ad-dition, suppose that "10 = "20 = 0. Then the unperturbed problem (1:1) has atleast one positive solution.Proof: Due to the assumptions given in the statement of this theorem, it is stillthe ase that T : K ! K and that T is a ompletely ontinuous operator. So, weproeed diretly to the one theoreti part of the argument.To this end, let �i < 12maxf"11;"21g be given, for eah i = 1; 2. Evidently, we mayselet k 2 N suÆiently large suh that(3.55) 0 � �i < 2k � 12k+1max f"11; "21g < 12max f"11; "21gholds for eah i. Moreover, for eah i, selet the number �i > 0 suh that(3.56) �i Z 10 G(s; s)ai(s) ds � 12k+1holds. Condition (H5) implies the existene of a number r1 > 0 suh thatgi(x; y) � �i(x+ y) for all 0 � x+ y < r1 and for eah i. On the other hand, fromondition (H8), we may selet a number 0 < " < minf�1; �2g suÆient small suhthat(3.57) Hi (z1; z2) < (�i � ") (z1 + z2)holds whenever 0 � z1 + z2 < r�1 for some number r�1 > 0, for eah i = 1; 2. Inaddition, sine (3.55) holds, for eah i, it evidently holds that(3.58) 0 < �i � " < 2k � 12k+1max f"11; "21g :



Nonloal systems of BVPs with asymptotially superlinear BCs 93Now, ondition (H3) implies that(3.59) �1(x) � "11kxk and that �2(y) � "21kyk:Consequently, for eah (x; y) 2 K satisfying(3.60) 0 � k(x; y)k < min fr1; r�1g ;it follows that(3.61) �1(x) � "11kxk � "11k(x; y)k < 12r�1 and that�2(y) � "21kyk � "21k(x; y)k < 12r�1 :Now, selet r��1 > 0 suh that(3.62) r��1 < min fr1; r�1gand put 
r��1 := f(x; y) 2 K : k(x; y)k < r��1 g. Then upon ombining (3.59){(3.62), we may estimate(3.63) Hi (�1(x); �2(y)) < (�i � ") (�1(x) + �2(y)) ;for eah (x; y) 2 K \ �
r��1 and i = 1; 2. So, ombining all of these estimates, wededue that
(3.64)

kT1(x; y)k � H1 (�1(x); �2(y)) + Z 10 G(s; s)a1(s)g1(x(s); y(s)) ds� (�1 � ") (�1(x) + �2(y)) + 12k+1 k(x; y)k� 2k � 12k+1max f"11; "21g �"11kxk+ "21kyk�+ 12k+1 k(x; y)k� 2k � 12k+1max f"11; "21g max�"11; "21	 (kxk+ kyk) + 12k+1 k(x; y)k= 2k � 12k+1max f"11; "21g max�"11; "21	 k(x; y)k+ 12k+1 k(x; y)k= 12k(x; y)k:Similarly, we dedue that(3.65) kT2(x; y)k � 12k(x; y)kwhene(3.66) kS(x; y)k � k(x; y)k;



94 C.S. Goodrihfor eah (x; y) 2 K \ �
r��1 .On the other hand, selet the number �3 > 0 to satisfy(3.67) �3max(Z[a;b℄ 20G(s; s)a1(s) ds; Z[a;b℄ 20G(s; s)a2(s) ds) � 12 :Then by ondition (H9), we have that(3.68) gi(x; y) � �3(x+ y);for all x+ y � r2 and for eah i = 1; 2. Put(3.69) r�2 := max� r20 ; 2r��1 � :Then sine H1(z1; z2) � 0, for all (z1; z2) 2 [0;+1)� [0;+1), we dedue that
(3.70) mint2[a;b℄ (T1(x; y)) (t) � �3 Z[a;b℄ 0G(s; s)a1(s)[x(s) + y(s)℄ ds� k(x; y)k�3 Z[a;b℄ 20G(s; s)a1(s) ds� 12k(x; y)k;whene(3.71) kT1(x; y)k � 12k(x; y)k;for eah (x; y) 2 K \ �
r�2 . Similarly,(3.72) kT2(x; y)k � 12k(x; y)k;so that kS(x; y)k � k(x; y)k, for (x; y) 2 K \ �
r�2 . Consequently, we may invokeLemma 2.1 to dedue the existene of at least one positive solution to prob-lem (1.1). �We onlude with an expliit numerial example together with some �nal re-marks.



Nonloal systems of BVPs with asymptotially superlinear BCs 95Example 3.9. Consider the boundary value problem
(3.73) �x00(t) = (2t+ 1)g1(x(t); y(t));�y00(t) = e�3t+1g2(x(t); y(t));x(0) = H1 ��1(x) + 140x�12� ; �2(y) + 1300y�25�� ;y(0) = H2 ��1(x) + 140x�12� ; �2(y) + 1300y�25�� ;x(1) = 0 = y(1);where we make the following delarations:(3.74)H1 (z1; z2) := (z1 + z2)3 ;H2 (z1; z2) := z1:11 ez1 + z22ez2 ;�1(x) := 18x�13�� 140x�12�� 112x�35�+ 12 Z[ 1320 ; 34 ℄ x(s) ds;�2(y) := � 1300y�25�+ 115y� 920�� 1100y�1120�+ 110 Z[ 35 ; 710 ℄ y(s) ds;g1(x; y) := ((x+ y)2; x+ y � 1;px+ y; x+ y � 1;g2(x; y) := (x+ y)3:Interestingly, note that g1 is sublinear as x+ y ! +1, whereas g2 is superlinear.Furthermore, let us observe at this junture that on aount of the de�nitionsof �1 and �2 given in (3.74), we may reast the boundary onditions at t = 0in (3.73) in the somewhat simpler form(3.75) x(0) = H1 ( 1(x);  2(y)) = [ 1(x) +  2(y)℄3 ;y(0) = H2 ( 1(x);  2(y)) = ( 1(x))1:1 e 1(x) + ( 2(y))2 e 2(y);where we have put  1(x) := �1(x) + 140x( 12 ) and  2(y) := �2(y) + 1300y( 25 ).Inidentally, though we do not show this expliitly, let us also remark that it iseasy to show that the Stieltjes measures ��1 and ��2 are signed for this problem.It is now easy to hek that eah of onditions (H1){(H7) is satis�ed. Inpartiular, note that we may selet "11 := 1760 , "21 := 9100 , "10 := 140 , and "20 := 1300 .Moreover, we note that R[0;1℄ t d�1(t) = 171200 � 0 and that R[0;1℄ t d�2(t) = 893000 �0. In any ase, we onlude that we may invoke Theorem 3.5 to dedue thatproblem (3.73) has at least one positive solution. Likewise, problem (3.75) has atleast one positive solution, too.



96 C.S. GoodrihRemark 3.10. We note that problem (3.73) ould not be addressed by any existingresults. This is true for a variety of reasons, among whih are the following:problem (3.73) involves a system of equations; it imposes no growth onditionson g1 and g2 for (x; y) large in norm; it allows for eah of H1 and H2 to havesuperlinear growth as x + y ! +1; and it allows for eah of �1 and �2 tobe have assoiated signed Borel measures. In short, we are not aware that anyresults in the existing literature an be applied to problem (3.73). And this is theadvantage of the asymptoti onditions (H4) and (H8), whih we have introduedin this work.Remark 3.11. Observe that Example 3.9 demonstrates that it is not neessary forthe funtion H2(z1; z2) to be able to be realized in the form(3.76) H2 (z1; z2) = eH (z1 + z2) ;for some funtion eH . Indeed, while suh a deomposition is an easy way inwhih to satisfy ondition (H4), the funtion H2(z1; z2) = z1:11 ez1+z22ez2 in (3.74)annot be realized in this simpler form. Of ourse, the funtions H1, g1, and g2need not be able to be realized as a funtion of z1 + z2 either. The point is thatondition (H4) an still be satis�ed in spite of this. In fat, for example, to ensurethat (3.3) in ondition (H4) is satis�ed, it is enough, for instane, that(3.77) Hi (z1; z2) � (z1 + z2)�holds for z1 + z2 suÆiently large and for some � > 1. Evidently, (3.77) does notrequire that Hi satisfy (3.76) for some eH . Furthermore, note that an additionalexample of this sort was provided in both (3:10)1 and (3.11).Remark 3.12. We have eleted not to give an example of Theorem 3.8 sine itsappliation would proeed in a very similar manner to Example 3.9. Nonetheless,we emphasize that in the ase of Theorem 3.8, we may take the perturbationterms in (1.1) equal to zero and, hene, in this ase we are reovering solutions tothe unperturbed (i.e., "10 = "20 = 0) problem (1.1).Aknowledgments. The author would like to thank the anonymous referee forhis or her areful reading of this paper. The referee's omments and questionsimproved the quality of this paper.Referenes[1℄ Agarwal R., Meehan M., O'Regan D., Fixed Point Theory and Appliations, CambridgeUniversity Press, Cambridge, 2001.[2℄ Dunninger D., Wang H., Existene and multipliity of positive solutions for ellipti systems,Nonlinear Anal. 29 (1997), 1051{1060.[3℄ Goodrih C.S., Positive solutions to boundary value problems with nonlinear boundaryonditions, Nonlinear Anal. 75 (2012), 417{432.[4℄ Goodrih C.S., On nonloal BVPs with boundary onditions with asymptotially sublinearor superlinear growth, Math. Nahr., to appear.
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