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Nonlo
al systems of BVPs withasymptoti
ally superlinear boundary 
onditionsChristopher S. Goodri
hAbstra
t. In this paper we 
onsider a 
oupled system of se
ond-order boundaryvalue problems with nonlo
al, nonlinear boundary 
onditions, and we examine
onditions under whi
h su
h problems will have at least one positive solution. Byimposing only an asymptoti
 growth 
ondition on the nonlinear boundary fun
-tions, we are able to a
hieve generalizations over existing works and, in parti
ular,we allow for the nonlo
al terms to be able to be realized as Lebesgue-Stieltjes in-tegrals possessing signed Borel measures. We 
on
lude with a numeri
al exampleto illustrate the use of one of our two main results.Keywords: 
oupled system of se
ond-order boundary value problems, nonlo
alboundary 
ondition, nonlinear boundary 
ondition, superlinear growth, positivesolutionClassi�
ation: Primary 34B10, 34B15, 34B18; Se
ondary 47H07, 47H101. Introdu
tionIn this paper we 
onsider a system of nonlo
al boundary value problems withnonlinear boundary 
onditions. In parti
ular, we 
onsider the nonlinear systemof boundary value problems(1.1) x00(t) = �a1(t)g1(x(t); y(t)); t 2 (0; 1);y00(t) = �a2(t)g2(x(t); y(t)); t 2 (0; 1);x(0) = 0 = y(0);x(1) = H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� ;y(1) = H2 ��1(x) + "10x ��20� ; �2(y) + "20y ��20�� ;where "10, "20 > 0 are 
onstants, whi
h shall be spe
i�ed later, �10 ; �20 2 (0; 1)are �xed, �1, �2 : C([0; 1℄)! R are linear fun
tionals, whi
h 
apture the nonlo
alnature of the boundary 
onditions, andH1, H2 : R2 ! R are 
ontinuous fun
tions,whi
h 
apture the nonlinear nature of the boundary 
onditions. We also assumethat the nonlinearities g1, g2 : [0;+1) � [0;+1) ! [0;+1) are 
ontinuousfun
tions. The nonlo
al terms here are quite general sin
e they are realized as
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hLebesgue-Stieltjes integrals | that is,(1.2) �1(x) := Z[0;1℄ x(t) d�1(t) and �2(y) := Z[0;1℄ y(t) d�2(t);with �1, �2 2 BV ([0; 1℄). Sin
e it may be assumed without loss that, in fa
t, �1,�2 2 NBV ([0; 1℄), we get that asso
iated to ea
h of �1, �2 there exists a uniqueBorel measure, say ��1 and ��2 , respe
tively. In our 
ontext, importantly, thesemeasures may be signed .Here we study the existen
e of at least one positive solution to problem (1.1).To a

omplish this task, we use the perturbation terms in (1.1) | namely, "10x(�10),"20y(�10), "10x(�20), and "20y(�20) | as well as a new 
ondition on the nonlinearfun
tions H1 and H2. These novelties reveal, in a way that shall be delineatedmomentarily, that many of the restri
tions previous authors have imposed on thevarious terms appearing in other problems similar to (1.1) are, in fa
t, unne
essaryin our setting. Our prin
ipal 
ondition on these fun
tions is to require that, forea
h i = 1; 2,(1.3) limz1+z2!+1 Hi (z1; z2)zp1i1 + zq1i2 = +1holds for some p1i , q1i 2 (0; 1℄ with at least one of p1i and q1i , for ea
h i = 1; 2,able to be taken equal to unity. In parti
ular (
f., Remark 3.2), 
ondition (1.3)implies that ea
h of H1 and H2 may enjoy asymptoti
ally superlinear growth inat least one of the two 
oordinate dire
tions (
f., Remark 3.3). We will even givean existen
e result asso
iated to the somewhat more relaxed 
ondition(1.4) lim supz1+z2!0+ Hi (z1; z2)z1 + z2 < �i;for ea
h i = 1; 2, with �i a positive 
onstant to be sele
ted later; importantly,the result asso
iated to 
ondition (1.4) will even be appli
able in the unperturbed
ase | i.e., "10 = "20 = 0. It should be pointed out that, in fa
t, Yang [16℄, [17℄introdu
ed an asymptoti
 
ondition similar to (1.4), though in the 
ontext of aslightly di�erent problem. Regardless, Yang imposes a number of other hypotheses| su
h as 
ompli
ated 
onditions on the equivalent of our nonlinearities g1 andg2 as well as the assumption that the equivalent of ��1 and ��2 be positive |with whi
h we 
ompletely dispense here.In any 
ase, to pla
e problem (1.1) in an appropriate 
ontext, we remark thatit is, in fa
t, most 
losely related to re
ent papers both of Kang and Wei [10℄and of Infante and Pietramala [7℄. Regarding [10℄, Kang and Wei 
onsidered aproblem very similar to (1.1). However, they were for
ed to assume that ea
h ofthe measures ��1 and ��2 was positive. Moreover, regarding their equivalent ofthe nonlinearities g1 and g2 appearing in (1.1), they assumed that these fun
tionssatis�ed very stri
t growth 
onditions. On the other hand, regarding [7℄, a similarproblem to (1.1) was 
onsidered, a prin
ipal di�eren
e being that the equivalent of
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ally superlinear BCs 81H1 and H2 were fun
tions of a single variable only | for instan
e, H1(x). In any
ase, the authors there assumed that ea
h of the measures ��1 and ��2 was posi-tive. Furthermore, they assumed that the nonlinear boundary nonlinearities (i.e.,the equivalent of H1 and H2) satis�ed uniformly linear growth | that is, therewere 0 � � < � su
h that �z � H(z) � �z, for all z � 0. This latter 
onditionis somewhat restri
tive, and we remove it 
ompletely in this work. Finally, ourte
hniques even allow for the nonlinearities g1 and g2 to have 
ompletely di�erentlimiting behavior | 
f., point (5) below.In addition to [7℄, [10℄, there have been many other re
ent works on nonlo
al,nonlinear boundary value problems | see, for example, [6℄, [8℄, [9℄, [16℄, [17℄.While our work here is slightly less dire
tly related to these, it is, nonetheless,nontrivially 
onne
ted to these other papers, and we provide here te
hniquesand insights not found in any of those other works. It is 
ertainly important tomention that the basi
 
one theoreti
 te
hnique used in this paper is indebtedto the important paper of Infante and Webb [12℄. Finally, we mention that ourresults here 
omplement 
ertain of the results whi
h we have re
ently given in [4℄.In summary, we provide here the following generalizations over pre
eding works.(1) We allow for ea
h of ��1 and ��2 to be signed measures rather than merelypositive. This is an improvement over the pre
eding works, as intimatedabove.(2) We do not assume a uniform linear growth 
ondition on either H1 or H2.We instead assume either the asymptoti
 
ondition given in (1.3) togetherwith an assumption that these fun
tions possess superlinear growth asz1 + z2 ! 0 or 
ondition (1.4). In parti
ular, this shows that superlineargrowth at (+1;+1) is allowable. More generally, one need not assumea uniform linear growth 
ondition as seems to appear in nearly all workson this sorts of problems | 
f., [6℄, [7℄, [8℄, [9℄ | sin
e in our setting theremay be no � > 0 su
h that Hi(z1; z2) � �(z1 + z2), for all z1, z2 � 0.(3) Spe
i�
ally regarding Yang's works [16℄, [17℄, we point out that our re-sults here even provide some interesting generalizations of the methods
ontained therein. In parti
ular, while the results of [16℄, [17℄ 
on
erndi�erent problems than (1.1), those works do appear to be among theonly ones to 
onsider an asymptoti
 
ondition with respe
t to the non-linear boundary fun
tions, at least to the best of the author's knowledge.A 
lose examination of the proofs in those works, however, reveals thatthey use in a very expli
it way the positivity of the respe
tive Stieltjesmeasures. La
king this positivity, as we do here, we must sear
h for alter-native approa
hes. Consequently, we feel that our results here representan interesting advan
ement over those presented in [16℄, [17℄.(4) We believe that our te
hniques even allow H to be only eventually posi-tive, though we do not prove su
h a theorem here | see [3℄ for an exemplarof this extension in a 
ontext somewhat di�erent from this one.(5) We show that the assumption of asymptoti
 superlinearity of the fun
-tions H1 and H2 allows for neither g1 nor g2 to have any parti
ular type
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hof growth (e.g., sub- or superlinearity) as k(x; y)k ! +1. In parti
ular,this means that g1 and g2 
an have 
ompletely di�erent limiting behavior.For example, g1 
ould be sublinear as k(x; y)k ! +1, whilst g2 is super-linear as k(x; y)k ! +1. While Yang also allowed for mixed asymptoti
behavior of the nonlinearities in [16℄, a 
ursory examination of that paperindi
ates that a number of 
ompli
ated 
onditions are required to dedu
ethat result. By 
ontrast, our 
onditions are quite simple and relativelyeasy to 
he
k 
omputationally.2. PreliminariesWe 
onsider in this work the spa
e X := B�B, where B represents the Bana
hspa
e C([0; 1℄) when equipped with the usual supremum norm, k � k := k � k1.Note | see Dunninger and Wang [2℄ | that X be
omes a Bana
h spa
e whenequipped with the norm k(x; y)k := kxk+kyk. It is then known that a �xed pointin X of(2.1)S(x; y)(t):= (T1(x; y); T2(x; y))= �tH1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10��+ Z 10 G(t; s)a1(s)g1(x(s); y(s)) ds;tH2 ��1(x) + "10x ��20� ; �2(y) + "20y ��20��+ Z 10 G(t; s)a2(s)g2(x(s); y(s)) ds�is a solution of problem (1.1), where S : X! X and Ti : X! B, for ea
h i = 1; 2.Here G : [0; 1℄� [0; 1℄ ! R appearing in (2.1) is the Green's fun
tion asso
iatedto the two-point 
onjugate problem | that is,(2.2) G(t; s) := (t(1� s); 0 � t � s � 1;s(1� t); 0 � s � t � 1;as is well known | see, for example, [11℄. In the sequel, we shall assume that theset [a; b℄ is a given �xed subinterval of (0; 1). With this de
laration it is then wellknown that there is a 
onstant 
 := mint2[a;b℄ft; 1� tg su
h that(2.3) mint2[a:b℄G(t; s) � 
 maxt2[0;1℄G(t; s) = 
G(s; s);for ea
h s 2 [0; 1℄. Note that 
 2 (0; 1). Finally, let us also re
all as a preliminarylemma Krasnosel'ski��'s �xed point theorem | see [1℄.Lemma 2.1. Let B be a Bana
h spa
e and let K � B be a 
one. Assume that
1 and 
2 are bounded open sets 
ontained in B su
h that 0 2 
1 and 
1 � 
2.Assume, further, that T : K\ (
2 n
1)! K is a 
ompletely 
ontinuous operator.If either(1) kTyk � kyk for y 2 K \ �
1 and kTyk � kyk for y 2 K \ �
2; or
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al systems of BVPs with asymptoti
ally superlinear BCs 83(2) kTyk � kyk for y 2 K \ �
1 and kTyk � kyk for y 2 K \ �
2;then T has at least one �xed point in K \ (
2 n
1).3. Main result and numeri
al exampleWe begin by listing the various stru
tural 
onditions we impose on the 
on-stituent parts of problem (1.1). These 
onditions are the following.H1: For ea
h i, let Hi : R2 ! [0;+1) be a real-valued, 
ontinuous fun
tion.Moreover, Hi : [0;+1) � [0;+1) ! [0;+1) | i.e., Hi is nonnegativewhen restri
ted to [0;+1)� [0;+1).H2: For ea
h i, the fun
tional �i(y) appearing in (1.1) is linear and, in par-ti
ular, has the realization(3.1) �i(y) := Z[0;1℄ y(t) d�i(t);where �i : [0; 1℄! R satis�es �i 2 BV ([0; 1℄).H3: For ea
h i, there is a 
onstant "i1 2 [0; 12 ) su
h that the fun
tional �i in(1.1) satis�es the inequality(3.2) j�i(y)j � "i1kykfor all y 2 C([0; 1℄).H4: For ea
h i, there are p1i 2 (0; 1℄ and q1i 2 (0; 1℄, where for ea
h i at leastone of p1i and q1i is equal to unity, su
h that(3.3) limz1+z2!+1 Hi (z1; z2)zp1i1 + zq1i2 = +1holds. Furthermore, for ea
h i it holds that(3.4) limz1+z2!0+ Hi (z1; z2)z1 + z2 = 0:H5: We �nd that(3.5) limx+y!0+ g1(x; y)x+ y = 0 and limx+y!0+ g2(x; y)x+ y = 0:H6: The 
onstants "10, "20, "11, and "21 satisfy(3.6) 0 � "10 + "20 + "21 + "21 < 12 :H7: For ea
h i, ea
h of(3.7) Z[0;1℄ t d�i(t) � 0
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hand(3.8) Z[0;1℄G(t; s) d�i(t) � 0holds, where the latter holds for ea
h s 2 [0; 1℄.Let us make some brief remarks regarding 
ertain of the pre
eding 
onditions.Remark 3.1. Regarding 
onditions (H2){(H3), we point out that a wide vari-ety of fun
tions satisfy these 
onditions. Indeed, 
onsider the following pair offun
tionals.(3.9) �i1(y) := ZF y(t) dt;�i2(y) := nXk=1 aky (�k) :Sin
e ea
h of (3:9)1{(3:9)2 is linear, ea
h satis�es (H2). On the other hand, solong as m(F ) � "i0, say, where m is the Lebesgue measure, then (3:9)1 satis�es(H3). Provided that Pnk=1 jakj � "i0, then (3:9)2 satis�es (H3). Example 3.9
ontains another example.Remark 3.2. Regarding 
ondition (H4) and spe
i�
ally (3.3) therein, this is theasymptoti
 superlinear 
ondition whi
h, in part, distinguishes our methods herefrom others. On the other hand, (3.4) appearing in 
ondition (H4) implies that His also superlinear as (x; y)! (0+; 0+). Some fun
tions, H : [0;+1)� [0;+1)![0;+1), satisfying 
ondition (H4), then, are the following. (In ea
h 
ase, p1i =q1i = 1, for ea
h i.)(3.10) H (z1; z2) := zr11 + zr22 ; r1; r2 > 1;H (z1; z2) := (z1 + z2)r 
os� 1z1 + z2 + 1�; r > 1;H (z1; z2) := ((z1 + z2)2 ; 0 � z1 + z2 � 1;ez1+z2�1; z1 + z2 > 1:It is easy to 
he
k that ea
h of (3:10)1{(3:10)3 satis�es ea
h part of 
ondition (H4).Furthermore, we should mention that ea
h of the fun
tions above 
annot bein
orporated into the theory of either [7℄ or [10℄ due to the superlinear growth at(+1;+1). In fa
t, su
h nonlinear boundary fun
tions 
ould not be in
orporatedinto any of the results given in [6℄, [8℄, [9℄, [10℄ for that matter. So, 
ondition (H4)allows for a vastly di�erent variety of nonlinear boundary fun
tions than otherre
ent works on these sorts of problems. Moreover, as shall be expli
ated inthe proof of Theorem 3.5, whi
h is our �rst existen
e result, this asymptoti
superlinear growth 
ondition also allows for the mixed growth of the nonlinearitiesg1 and g2, as mentioned in Se
tion 1.



Nonlo
al systems of BVPs with asymptoti
ally superlinear BCs 85Remark 3.3. Also regarding 
ondition (H4), we point out that this 
onditionallows forHi to have di�erent types of growth in the di�erent 
oordinate dire
tions(i.e., when either z1 = 0 or z2 = 0). For example, 
onsider the 
ontinuous fun
tionH : [0;+1)� [0;+1)! [0;+1) de�ned by(3.11) H (z1; z2) := ((z1 + z2)2 �z21 +pz2� ; 0 � z1 + z2 � 1;z21 +pz2; z1 + z2 � 1:In the z1-
oordinate dire
tion, we �nd that H grows superlinearly as z1 + z2 !+1. On the other hand, in the z2-
oordinate dire
tion, we �nd that H growssublinearly as z1 + z2 ! +1. Finally, it holds that(3.12) limz1+z2!0+ H (z1; z2)z1 + z2 = 0 and limz1+z2!+1 H (z1; z2)z1 + z0:32 = +1:Remark 3.4. As remarked in Se
tion 1, we believe that the 
onditions imposedon Hi by 
ondition (H4) may be 
hanged in a manner similar to the argumentpresented in [3℄. But we leave su
h investigations for future work.Now, let 
0 be the 
onstant de�ned by(3.13) 
0 := min fa; 1� bg ;where 
0 2 (0; 1). Then the 
one, K, we shall use in the sequel is then de�ned by(3.14)K := �(x; y) 2 X : x; y � 0; mint2[a;b℄[x(t) + y(t)℄ � 
0k(x; y)k; �1(x); �2(y) � 0� ;whi
h is a simple modi�
ation of a 
one �rst introdu
ed by Infante and Webb[12℄. Let us point out at this jun
ture that K does not 
ontain only the neutralelement of X. Indeed, if we put, say, �1(t) := (t; 0), �2(t) := (0; t), and �3(t) :=(�1 +�2)(t) = (t; t), then it is easy to see that �1;�2;�3 2 K so that K 
ontainsin�nitely many nontrivial elements of X.In any 
ase, with these preliminary observations, we now state and prove ourmain result. We note, however, that in the statement of this theorem we assumethat p11 = p12 = 1. In other words, it is the numbers q11 , q12 that 
an bepotentially less than unity. We do this only for de�niteness and ease of expositionin the sequel.Theorem 3.5. Assume that �10 ; �20 2 [a; b℄, where [a; b℄ is a �xed set satisfying[a; b℄ b (0; 1) as in Se
tion 2. Then there exists a number Æ 2 (0; 1) su
h that ifboth q11 ; q12 2 (1� Æ; 1℄ and (H1){(H7) hold, then problem (1:1) has at least onepositive solution.Proof: To begin, as in (2.1) above, we 
onsider the operator S : X! X de�nedby(3.15) S (x; y) (t) := (T1 (x; y) ; T2 (x; y))
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hwhere, for ea
h i = 1; 2, we have that Ti : X! B is de�ned by(3.16) Ti(x; y) := tHi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��+ Z 10 G(t; s)ai(s)gi (x(s); y(s)) ds:We shall �rst argue that S : K ! K. To this end, it is obvious that for (x; y) 2 K,it follows that Ti(x; y)(t) � 0, for ea
h t 2 [0; 1℄ and i = 1; 2. We also note fromthe de�nition of 
0 in (3.13) that(3.17) mint2[a;b℄Ti(x; y) � 
0Hi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��+ 
 maxt2[0;1℄Z 10 G(t; s)ai(s)gi(x(s); y(s)) ds� 
0kTi (x; y) k:We 
on
lude that(3.18) mint2[a;b℄ [(T1(x; y)) (t) + (T2(x; y)) (t)℄ � 
0kS (x; y) k:Finally, we observe that
(3.19) �1 (T1(x; y)) = H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� Z[0;1℄ t d�1(t)+ Z[0;1℄ Z 10 G(t; s)a1(s)g1(x(s); y(s)) ds d�1(t)= H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10�� Z[0;1℄ t d�1(t)+ Z 10 "Z[0;1℄G(t; s) d�1(t)# a1(s)g1 (x(s); y(s)) ds� 0;where the �nal inequality follows from assumption (H7). In a similar way, itfollows that �2(T2(x; y)) � 0. Thus, S : K ! K, as 
laimed. Let us also point outat this jun
ture that, by a standard argument involving the Arzela-As
oli theorem(re
all here that Hi is assumed to be 
ontinuous, for ea
h i = 1; 2), we �nd thatthe operator S is 
ompletely 
ontinuous; we omit the details of this argument,however.Now, by 
ondition (H5) we �nd that there is a number r1 > 0 su
h that(3.20) g1(x; y) � �1(x + y)
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al systems of BVPs with asymptoti
ally superlinear BCs 87whenever k(x; y)k � r1 and where �1 > 0 satis�es(3.21) �1max�Z 10 G(s; s)a1(s) ds; Z 10 G(s; s)a2(s) ds� � 14 :In addition, 
ondition (H4) | i.e., equation (3.4) | implies the existen
e of anumber r�1 > 0 su
h that, for ea
h i = 1; 2,(3.22) Hi ��1(x) + "10x ��i0� ; �2(y) + "20y ��i0��< �2 ��1(x) + "10x ��i0�+ �2(y) + "20y ��i0��whenever(3.23) �1(x) + "10x ��i0�+ �2(y) + "20y ��i0� < r�1 ;and where �2 > 0 is de�ned by(3.24) �2 := 18max f"10; "20; "21; "21g :Noti
e that(3.25) �1(x) + "10x ��i0�+ �2(y) + "20y ��i0�� "11kxk+ "21kyk+ "10kxk+ "20kyk� �max�"11; "21	+max�"10; "20	� k(x; y)k� 2max�"10; "20; "21; "21	 k(x; y)k:So, in parti
ular, if (x; y) 2 K satis�es(3.26) k(x; y)k < r�12max f"10; "20; "21; "21g ;then it follows that (3.22) holds.So, set(3.27) r��1 := min�r1; r�12max f"10; "20; "21; "21g� :Put(3.28) 
r��1 := f(x; y) 2 X : k(x; y)k < r��1 g :
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hThen for ea
h (x; y) 2 K \ �
r��1 , we have that(3.29)kT1(x; y)k� H1 ��1 (x) + "10x ��10� ; �2 (y) + "20y ��10��+ Z 10 G(s; s)a1(s)g1(x(s); y(s)) ds� �2 ��1 (x) + "10x ��10�+ �2 (y) + "20y ��10��+ �1 Z 10 G(s; s)a1(s)(x(s) + y(s)) ds� �2 ��1 (x) + "10x ��10�+ �2 (y) + "20y ��10��+ 14k(x; y)k� 14k(x; y)k+ 14k(x; y)k= 12k(x; y)k:Thus, we 
on
lude that(3.30) kT1(x; y)k � 12k(x; y)k;for ea
h (x; y) 2 K \ �
r��1 . A similar argument holds for the operator T2.Consequently, we dedu
e that(3.31) kS(x; y)k � k(x; y)k;for ea
h (x; y) 2 K \ �
r��1 .On the other hand, let us assume without loss of generality that p1i = 1 forea
h i so that q1i 2 (0; 1℄, for ea
h i. Then 
ondition (H4) | i.e., equation (3.3)| implies the existen
e of a number r�2 := r�2(�3) > 0 su
h that(3.32) H1 ��1 (x) + "10x ��10� ; �2 (y) + "20y ��10��� �3 ���1(x) + "10x ��10��+ ��2(y) + "20y ��10��q11 �whenever(3.33) �1(x) + "10x ��10�+ �2(y) + "20y ��10� � r�2for some number r�2 . Note that by pi
king r�2 suÆ
iently large, the same typeof estimate likewise holds for H2; we assume hen
eforth that this is so. Here, in(3.32), we 
hoose �3 to be the number(3.34) �3 := 1t0
0min f"10; "20; "20g ;where t0 2 (a; b) is �xed but arbitrary; sin
e (a; b) b (0; 1), it holds that t0 6= 0,and so, �3 > 0. Importantly, �3 depends neither on q11 nor on q12 . Now, noti
e
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ally superlinear BCs 89that for (x; y) 2 K sin
e �1(x), �2(y) � 0 and �10 2 E, we may estimate(3.35) �1 (x) + "10x ��10�+ �2(y) + "20y ��10� � min�"10; "20	 �x ��10�+ y ��10��� min�"10; "20	 mint2[a;b℄[x(t) + y(t)℄� 
0min�"10; "20	 k(x; y)k:Consequently, if (x; y) satis�es(3.36) k(x; y)k � r�2
0min f"10; "20g ;then (3.32) holds.We next interrupt to prove an easy lemma. Suppose that x; y � 0 with x; y �M for some M � 1 and �nite. Let q satisfy 0 < q � 1. Choose the 
onstant 
su
h that(3.37) 
 := min�1;M q�1	 ;note that �1 < q � 1 � 0. Obviously, 
 2 (0; 1℄ sin
e M � 1 and q� 1 � 0. Thenit follows that(3.38) x+ yq � 
(x+ y);for all (x; y) 2 [0;M ℄� [0;M ℄. Indeed, we merely noti
e that, for (x; y) 2 [0;M ℄�[0;M ℄(3.39) 
x � xand(3.40) 
y � yq ;sin
e y 7! yq�1 is de
reasing for y > 0, whereupon adding (3.39){(3.40) weestimate(3.41) 
x+ 
y � x+ yq;whi
h evidently proves inequality (3.38).Now 
ontinuing with the proof, let us put(3.42) r��2 := max�1; 2r��1 ; r�2
0min f"10; "20g� ;whi
h is independent of ea
h of q11 and q12 . De�ne 
r��2 by(3.43) 
r��2 := f(x; y) 2 X : k(x; y)k < r��2 g :
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hUsing estimate (3.38), then, and the fa
t that(3.44) Z 10 G (t0; s) a1(s)g1(x(s); y(s)) ds � 0;we dedu
e that for ea
h (x; y) 2 K \ �
r��2
(3.45)

(T1(x; y)) (t0) = t0H1 ��1(x) + "10x ��10� ; �2(y) + "20y ��10��+ Z 10 G (t0; s) a1(s)g1(x(s); y(s)) ds� t0H1 ��1(x) + "10x ��10� ; �2 (y) + "20y ��10��� t0�3 ���1(x) + "10x ��10��+ ��2(y) + "20y ��10��q11 �� t0�3 h"10x ��10�+ �"20�q11 �y ��10��q11 i� t0�3 h"10x ��10�+ "20 �y ��10��q11 i� t0�3min�"10; "20	 h�x ��10��+ �y ��10��q11 i� t0�3min�"10; "20	 
1 �x ��10�+ y ��10��� t0�3min�"10; "20	 
0
1k(x; y)k� 
1k(x; y)k;where we have used the lemma of the previous paragraph to get the third-to-lastinequality, and so, here 
1 := minf1; (r��2 )q11 �1g. We have also used both the fa
tthat "20 2 [0; 12 ) and that q11 2 (0; 1℄ so that ("20)q11 � "20. In summary, it followsthat(3.46) kT1(x; y)k � 
1k(x; y)k:Likewise, for ea
h (x; y) 2 K \ �
r��2 we dedu
e that for 
2 := minf1; (r��2 )q12 �1g(3.47) kT2(x; y)k � 
2k(x; y)k:We now 
on
lude the argument by 
onsidering 
ases. If q11 = q12 = 1, thenfrom (3.37), it is obvious that 
1 = 
2 = 1. In this 
ase we dedu
e from (3.46){(3.47) that(3.48) kS(x; y)k � 2k(x; y)k > k(x; y)k;for ea
h (x; y) 2 K \ �
r��2 . On the other hand, in 
ase 0 < max fq11 ; q12 g < 1,then(3.49) 
1 := (r��2 )q11 �1 and 
2 := (r��2 )q12 �1 :
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ally superlinear BCs 91In order that 
1 + 
2 � 1 be satis�ed, at a minimum we must have that(3.50) minn2 11�q11 ; 2 11�q12 o � r��2 :Evidently, sin
e r��2 is �nite and (1 � q1i )�1 ! +1 as q1i ! 1�, there existsa Æ > 0 suÆ
iently small su
h that for ea
h q11 , q12 2 (1 � Æ; 1℄ we have that(3.50) holds. In this 
ase, we again dedu
e that (3.48) holds with, say, the fa
tor2 repla
ed by 1. Importantly, we point out that r��2 does not depend on q1i foreither i. Consequently, we may, in inequality (3.50) above, freely in
rease q1i , forea
h i, without 
hanging the previously sele
ted and �xed value of r��2 .Finally, putting the pre
eding paragraphs together, we make two 
on
lusions.Firstly, if q11 = q12 = 1, then by Lemma 2.1 and inequality (3.48) we dedu
e theexisten
e of a fun
tion (x0; y0) 2 K su
h that S(x0; y0) = (x0; y0), where x0(t),y0(t) forms a positive solution of problem (1.1). Se
ondly, if q11 , q12 � 1, thenthere exists a Æ > 0 suÆ
iently small su
h that if q11 , q12 2 (1�Æ; 1℄, then problem(1.1) still has at least one positive solution. And as these 
ases are exhaustivethis 
ompletes the proof. �We now prove a se
ond result that demonstrates an alternative approa
h toproblem (1.1). In parti
ular, we begin by introdu
ing the following 
ondition.H8: For ea
h i = 1; 2, there is a 
onstant �i > 0 su
h that(3.51) lim supz1+z2!0+ Hi (z1; z2)z1 + z2 < �iholds, where �i 2 [0; 12maxf"11;"21g ).On the one hand, 
ondition (H8) is 
ertainly more general than 
ondition (H4).For instan
e, the 
ontinuous fun
tion H : [0;+1) � [0;+1) ! [0;+1) de�nedby(3.52) H (z1; z2) := ((z1 + z2) 
os� 1z1+z2�; z1 + z2 6= 00; z1 = z2 = 0satis�es(3.53) lim supz1+z2!0+ H (z1; z2)z1 + z2 = 1but limz1+z2!0+ H(z1;z2)z1+z2 does not exist. On the other hand, in order to prove thenext result, we shall have to impose growth 
onditions on the nonlinearities g1and g2 at in�nity. Thus, we introdu
e 
ondition (H9) below.H9: We �nd that(3.54) limx+y!+1 g1(x; y)x+ y = +1 and limx+y!+1 g2(x; y)x+ y = +1:
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hWith 
ondition (H8) and (H9) in hand we state and prove the following theo-rem. We �rst give two preliminary remarks.Remark 3.6. We note that 
ondition (H8) is more 
losely related to 
ertain ofthe 
onditions given by Yang [16℄, [17℄, to whi
h was alluded in Se
tion 1. Inparti
ular, however, we note that unlike the results Yang gives, whi
h admittedlywere for a slightly di�erent problem than (1.1), we do not require 
ompli
ated
onditions on the nonlinearities g1 and g2. Indeed, 
onditions (H5) and (H9) arequite straightforward and standard. Moreover, the measures here are signed. So,we 
onsider these observations to be both interesting and noteworthy.Remark 3.7. We also note, as will be
ome 
lear in the statement and proof ofTheorem 3.8 in the sequel, that with this parti
ular assumption | namely (H8)| we may dispense with the perturbation terms appearing in (1.1). In parti
ularand importantly, then, we may set "10 = "20 = 0.Theorem 3.8. Suppose that 
onditions (H1){(H3) and (H5){(H9) hold. In ad-dition, suppose that "10 = "20 = 0. Then the unperturbed problem (1:1) has atleast one positive solution.Proof: Due to the assumptions given in the statement of this theorem, it is stillthe 
ase that T : K ! K and that T is a 
ompletely 
ontinuous operator. So, wepro
eed dire
tly to the 
one theoreti
 part of the argument.To this end, let �i < 12maxf"11;"21g be given, for ea
h i = 1; 2. Evidently, we maysele
t k 2 N suÆ
iently large su
h that(3.55) 0 � �i < 2k � 12k+1max f"11; "21g < 12max f"11; "21gholds for ea
h i. Moreover, for ea
h i, sele
t the number �i > 0 su
h that(3.56) �i Z 10 G(s; s)ai(s) ds � 12k+1holds. Condition (H5) implies the existen
e of a number r1 > 0 su
h thatgi(x; y) � �i(x+ y) for all 0 � x+ y < r1 and for ea
h i. On the other hand, from
ondition (H8), we may sele
t a number 0 < " < minf�1; �2g suÆ
ient small su
hthat(3.57) Hi (z1; z2) < (�i � ") (z1 + z2)holds whenever 0 � z1 + z2 < r�1 for some number r�1 > 0, for ea
h i = 1; 2. Inaddition, sin
e (3.55) holds, for ea
h i, it evidently holds that(3.58) 0 < �i � " < 2k � 12k+1max f"11; "21g :
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ally superlinear BCs 93Now, 
ondition (H3) implies that(3.59) �1(x) � "11kxk and that �2(y) � "21kyk:Consequently, for ea
h (x; y) 2 K satisfying(3.60) 0 � k(x; y)k < min fr1; r�1g ;it follows that(3.61) �1(x) � "11kxk � "11k(x; y)k < 12r�1 and that�2(y) � "21kyk � "21k(x; y)k < 12r�1 :Now, sele
t r��1 > 0 su
h that(3.62) r��1 < min fr1; r�1gand put 
r��1 := f(x; y) 2 K : k(x; y)k < r��1 g. Then upon 
ombining (3.59){(3.62), we may estimate(3.63) Hi (�1(x); �2(y)) < (�i � ") (�1(x) + �2(y)) ;for ea
h (x; y) 2 K \ �
r��1 and i = 1; 2. So, 
ombining all of these estimates, wededu
e that
(3.64)

kT1(x; y)k � H1 (�1(x); �2(y)) + Z 10 G(s; s)a1(s)g1(x(s); y(s)) ds� (�1 � ") (�1(x) + �2(y)) + 12k+1 k(x; y)k� 2k � 12k+1max f"11; "21g �"11kxk+ "21kyk�+ 12k+1 k(x; y)k� 2k � 12k+1max f"11; "21g max�"11; "21	 (kxk+ kyk) + 12k+1 k(x; y)k= 2k � 12k+1max f"11; "21g max�"11; "21	 k(x; y)k+ 12k+1 k(x; y)k= 12k(x; y)k:Similarly, we dedu
e that(3.65) kT2(x; y)k � 12k(x; y)kwhen
e(3.66) kS(x; y)k � k(x; y)k;
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hfor ea
h (x; y) 2 K \ �
r��1 .On the other hand, sele
t the number �3 > 0 to satisfy(3.67) �3max(Z[a;b℄ 
20G(s; s)a1(s) ds; Z[a;b℄ 
20G(s; s)a2(s) ds) � 12 :Then by 
ondition (H9), we have that(3.68) gi(x; y) � �3(x+ y);for all x+ y � r2 and for ea
h i = 1; 2. Put(3.69) r�2 := max� r2
0 ; 2r��1 � :Then sin
e H1(z1; z2) � 0, for all (z1; z2) 2 [0;+1)� [0;+1), we dedu
e that
(3.70) mint2[a;b℄ (T1(x; y)) (t) � �3 Z[a;b℄ 
0G(s; s)a1(s)[x(s) + y(s)℄ ds� k(x; y)k�3 Z[a;b℄ 
20G(s; s)a1(s) ds� 12k(x; y)k;when
e(3.71) kT1(x; y)k � 12k(x; y)k;for ea
h (x; y) 2 K \ �
r�2 . Similarly,(3.72) kT2(x; y)k � 12k(x; y)k;so that kS(x; y)k � k(x; y)k, for (x; y) 2 K \ �
r�2 . Consequently, we may invokeLemma 2.1 to dedu
e the existen
e of at least one positive solution to prob-lem (1.1). �We 
on
lude with an expli
it numeri
al example together with some �nal re-marks.
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ally superlinear BCs 95Example 3.9. Consider the boundary value problem
(3.73) �x00(t) = (2t+ 1)g1(x(t); y(t));�y00(t) = e�3t+1g2(x(t); y(t));x(0) = H1 ��1(x) + 140x�12� ; �2(y) + 1300y�25�� ;y(0) = H2 ��1(x) + 140x�12� ; �2(y) + 1300y�25�� ;x(1) = 0 = y(1);where we make the following de
larations:(3.74)H1 (z1; z2) := (z1 + z2)3 ;H2 (z1; z2) := z1:11 ez1 + z22ez2 ;�1(x) := 18x�13�� 140x�12�� 112x�35�+ 12 Z[ 1320 ; 34 ℄ x(s) ds;�2(y) := � 1300y�25�+ 115y� 920�� 1100y�1120�+ 110 Z[ 35 ; 710 ℄ y(s) ds;g1(x; y) := ((x+ y)2; x+ y � 1;px+ y; x+ y � 1;g2(x; y) := (x+ y)3:Interestingly, note that g1 is sublinear as x+ y ! +1, whereas g2 is superlinear.Furthermore, let us observe at this jun
ture that on a

ount of the de�nitionsof �1 and �2 given in (3.74), we may re
ast the boundary 
onditions at t = 0in (3.73) in the somewhat simpler form(3.75) x(0) = H1 ( 1(x);  2(y)) = [ 1(x) +  2(y)℄3 ;y(0) = H2 ( 1(x);  2(y)) = ( 1(x))1:1 e 1(x) + ( 2(y))2 e 2(y);where we have put  1(x) := �1(x) + 140x( 12 ) and  2(y) := �2(y) + 1300y( 25 ).In
identally, though we do not show this expli
itly, let us also remark that it iseasy to show that the Stieltjes measures ��1 and ��2 are signed for this problem.It is now easy to 
he
k that ea
h of 
onditions (H1){(H7) is satis�ed. Inparti
ular, note that we may sele
t "11 := 1760 , "21 := 9100 , "10 := 140 , and "20 := 1300 .Moreover, we note that R[0;1℄ t d�1(t) = 171200 � 0 and that R[0;1℄ t d�2(t) = 893000 �0. In any 
ase, we 
on
lude that we may invoke Theorem 3.5 to dedu
e thatproblem (3.73) has at least one positive solution. Likewise, problem (3.75) has atleast one positive solution, too.
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hRemark 3.10. We note that problem (3.73) 
ould not be addressed by any existingresults. This is true for a variety of reasons, among whi
h are the following:problem (3.73) involves a system of equations; it imposes no growth 
onditionson g1 and g2 for (x; y) large in norm; it allows for ea
h of H1 and H2 to havesuperlinear growth as x + y ! +1; and it allows for ea
h of �1 and �2 tobe have asso
iated signed Borel measures. In short, we are not aware that anyresults in the existing literature 
an be applied to problem (3.73). And this is theadvantage of the asymptoti
 
onditions (H4) and (H8), whi
h we have introdu
edin this work.Remark 3.11. Observe that Example 3.9 demonstrates that it is not ne
essary forthe fun
tion H2(z1; z2) to be able to be realized in the form(3.76) H2 (z1; z2) = eH (z1 + z2) ;for some fun
tion eH . Indeed, while su
h a de
omposition is an easy way inwhi
h to satisfy 
ondition (H4), the fun
tion H2(z1; z2) = z1:11 ez1+z22ez2 in (3.74)
annot be realized in this simpler form. Of 
ourse, the fun
tions H1, g1, and g2need not be able to be realized as a fun
tion of z1 + z2 either. The point is that
ondition (H4) 
an still be satis�ed in spite of this. In fa
t, for example, to ensurethat (3.3) in 
ondition (H4) is satis�ed, it is enough, for instan
e, that(3.77) Hi (z1; z2) � (z1 + z2)�holds for z1 + z2 suÆ
iently large and for some � > 1. Evidently, (3.77) does notrequire that Hi satisfy (3.76) for some eH . Furthermore, note that an additionalexample of this sort was provided in both (3:10)1 and (3.11).Remark 3.12. We have ele
ted not to give an example of Theorem 3.8 sin
e itsappli
ation would pro
eed in a very similar manner to Example 3.9. Nonetheless,we emphasize that in the 
ase of Theorem 3.8, we may take the perturbationterms in (1.1) equal to zero and, hen
e, in this 
ase we are re
overing solutions tothe unperturbed (i.e., "10 = "20 = 0) problem (1.1).A
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