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On speial partitions of Dedekind- and Russell-setsHorst Herrlih, Paul Howard, Eleftherios TahtsisThis paper is about one of the most bizarre areas of set theoryFrom the referee's report on our original manusriptAbstrat. A Russell set is a set whih an be written as the union of a ountablepairwise disjoint set of pairs no in�nite subset of whih has a hoie funtionand a Russell ardinal is the ardinal number of a Russell set. We show thatif a Russell ardinal a has a ternary partition (see Setion 1, De�nition 2) thenthe Russell ardinal a + 2 fails to have suh a partition. In fat, we prove thatif a ZF-model ontains a Russell set, then it ontains Russell sets with ternarypartitions as well as Russell sets without ternary partitions. We then onsidergeneralizations of this result.Keywords: Axiom of Choie, Dedekind sets, Russell sets, generalizations of Rus-sell sets, odd sized partitions, permutation modelsClassi�ation: 03E10, 03E25, 03E35, 05A181. Introdution, terminology and known resultsThe Axiom of Choie AC, i.e., the statement that for every family A onsistingof non-empty sets there is a funtion (alled a hoie funtion) f : A ! SA suhthat for every x 2 A, f(x) 2 x, was formulated by Zermelo in 1904 as part ofhis development of axiomati set theory (Zermelo-Fraenkel set theory). In spiteof the ontroversy whih �rst surrounded the axiom due to its non-onstrutivenature (it asserts the existene of f but suggests no way to onstrut it) it isaepted and used by most mathematiians today. This fat is basially due tothe work of Kurt G�odel who onstruted a model for Zermelo-Fraenkel set theoryin 1938, the model of onstrutible sets , in whih AC was true and thus onsistentwith the rest of the axioms of set theory. As a result, mathematiians ould bereleased from any fears of introduing inonsistenies by using AC.The onsequenes of AC inlude suh fundamental results as \Every vetorspae has a basis", \The Tyhono� produt of ompat topologial spaes isompat" (in fat, the latter two propositions are equivalent to AC in Zermelo-Fraenkel set theory minus AC; see, e.g., [9℄ or [3℄), \Every in�nite set has a ount-ably in�nite subset" and the ountable union theorem (The union of a ountableolletion of ountable sets is ountable.) There are, however, some non-intuitive(and perhaps even undesirable) onsequenes of the axiom. For example the ex-istene of a non-Lebesgue measurable set and the Banah-Tarski paradox whihasserts that it is possible to partition a ball into a �nite number of piees and



106 H. Herrlih, P. Howard, E. Tahtsisreassemble the piees to form two balls of the same size as the original. If one isonsidering replaing the axiom of hoie by some weaker statement or possiblyeliminating hoie altogether then it seems desirable to investigate the degree towhih mathematis without hoie may di�er from mathematis with it.One possible di�erene was desribed by Bertrand Russell when he desribedhow the union of a ountable set of pairs might fail to be ountable in his metaphorabout hoosing from an in�nite olletion of pairs of shoes versus pairs of soks.But it was Fraenkel who �rst proved that without the axiom of hoie it waspossible for many of the results, whih were regarded as fundamental, to fail ifthe axiom of hoie was not assumed. He did this by onstruting models inwhih all of the set theoreti axioms other than the axiom of hoie held and thennoting that other standard theorems also failed in the models. For example, inFraenkel's �rst model there was an in�nite set without a ountably in�nite subsetand in his seond model a ountable set of pairs whose union had no ountablesubset.Atually, Fraenkel's models (whih are now alled Fraenkel-Mostowski modelsor permutation models) were models of a version of Zermelo's set theory weak-ened to permit the existene of atoms, elements whih were not themselves sets.It was not until 1963 that Cohen disovered his method of foring by whih heonstruted models of the full Zermelo-Fraenkel set theory (without the axiom ofhoie) in whih there were in�nite sets without ountable subsets and in parti-ular, in the seond Cohen model, a ountable set of pairs whose union had noountable subset. We refer the reader to [10℄ for details.Sets like the one existing in the seond Cohen model whih are the union ofa ountable set of pairs but have no ountable subset and whih live in someuniverse of set theory are alled Russell sets . They were introdued in [7℄ afterBertrand Russell's metaphor about hoosing from an in�nite olletion of pairs ofshoes versus pairs of soks.In several reent papers Russell sets and their properties have been investigated(see [7℄, [4℄, [8℄, [6℄, [5℄). We shall ontinue the researh here proving a numberof results about Russell sets and generalizations of Russell sets. Before giving anoverview of the aims and the orientation of this paper, let us �rst supply someterminology.De�nition 1. Let X and Y be sets.1. jX j � jY j if there exists an injetion f : X ! Y .2. jX j = jY j if there exists a bijetion f : X ! Y .3. jX j < jY j if jX j � jY j and jX j 6= jY j.De�nition 2. 1. A Russell sequene is a (ountable) sequene (Xi)i2! ofdisjoint pairs no in�nite subset of whih has a hoie funtion. A Russellset X is the union X = Si2!Xi of a Russell sequene. A Russell ardinalis the ardinal number of a Russell set.2. Let n be an integer suh that n � 2. An n-Russell set is a set X whihan be written X = Sk2!Xk where



On speial partitions of Dedekind- and Russell-sets 107(a) for eah k 2 !, jXkj = n,(b) for i and j in !, if i 6= j then Xi \Xj = ;,() no in�nite subset of fXk j k 2 !g has a hoie funtion.The sequene (Xk)k2! is alled an n-Russell sequene. An n-Russellardinal is the ardinal number of an n-Russell set. Aording to thisterminology a Russell ardinal (from part (2)) is a 2-Russell ardinal.3. For n 2 N (= the set of positive integers), an n-ary partition of a set X isa partition of X into sets eah with exatly n elements. n-ary partitionswith odd n are alled odd sized partitions .4. Let n 2 N. A ardinal a is divisible by n if and only if there exists aardinal  with a = n. (Equivalently, if X is any set, jX j is divisible byn if and only if there exists a set Y suh that jX j = jn� Y j).5. A set X is alled a Dedekind set if it is in�nite and Dedekind �nite, i.e.,�0 6� jX j (if and only if jAj < jX j for every proper subset A of X if andonly if jX j < jX j+1, where jX j+1 is the ardinality of X [fxg, x =2 X).A Dedekind ardinal is the ardinal number of a Dedekind set.De�nition 3. ZF will denote Zermelo-Fraenkel set theory minus the Axiom ofChoie and ZFA will denote ZF set theory with the axiom of extensionality weak-ened to allow the existene of atoms.In [8℄ Herrlih and Tahtsis have studied the possible partitions of a Russellset in set theory without the Axiom of Choie. Among other results, the authorsin [8℄ established the following propositions whih onern odd sized partitions ofRussell sets and whih shall be useful to us in the sequel.Proposition 1 ([8, Proposition 2.1, Proposition 2.2, Theorem 2.6℄).(1) For any positive integer n and any Russell set X , the set X�n is a Russellset that has an n-ary partition.(2) Any odd sized partition of a Russell set is a Dedekind set.(3) No Russell set has a ountable odd sized partition.(4) For odd n, a Russell set X has an n-ary partition if and only if its ardinalnumber jX j is divisible by n.Lemma 1 ([8, Lemma 2.4℄). Let n be odd and let V = fVi : i 2 Ig be an n-arypartition of the Russell set X = Sm2NXm. De�ne the trae map tr : I �!P�n(N), where N is the set of positive integers and P�n(N) is the set of all �nitesubsets of N, by tr(i) = fm 2 N : Xm \ Vi 6= ;g, and let J onsist of those i 2 Ifor whih there exists some i0 2 I , i0 6= i, with tr(i) = tr(i0). Then I � J is �nite.A question left open in [8℄ is the following:Is there a model of ZF in whih Russell sets exist and all Russellsets an be partitioned into 3-element sets?



108 H. Herrlih, P. Howard, E. TahtsisIn Setion 2 we answer this question in the negative. Herrlih and Tahtsisalso asked the same question with 3 replaed by an arbitrary odd natural num-ber n. We shall also answer this more general question in the negative. Inpartiular, in Theorem 2 we prove that if the Russell set X = Si2! Xi (where(Xi)i2! is a Russell sequene) has a p-ary partition, where p is an odd naturalnumber greater than 1, then the Russell set Y = Si2!;i>0Xi does not have suha partition. In Corollary 1 we provide the negative answer to the above questionby onluding that if a ZF-model ontains a Russell set, then it ontains Russellsets with p-ary partitions, p an odd integer greater than 1, as well as Russell setswithout p-ary partitions.With regard to n-Russell sets, n � 3 (see De�nition 2), the natural ques-tion1 whih arises is the following generalization of the Herrlih-Tahtsis question,namelyProblem 1. Given n; k 2 !, is it onsistent with set theory without AC thatthere is an n-Russell set and all n-Russell sets have a k-partition?The primary purpose of this paper is to give a partial answer to this problem.First we note that for every natural number n � 2 it is onsistent with set theorywithout hoie that n-Russell sets do exist. Indeed, for n = 2, the seond Fraenkelmodel (see the disussion above for this model) ontains Russell sets (atuallyin�nitely many; see Proposition 1(1)). For every n � 3, a permutation modelis onstruted in the proof of Theorem 11 whih ontains an n-Russell set (butno Russell sets). Now if k is a multiple of n, say k = sn, X is an n-Russell setand X = Si2!Xi where (Xi)i2! is a disjoint sequene of n-element sets, thengrouping them by taking the union of the �rst s of the Xis, the union of theseond s of the Xis and so on yields a k-partition of X . So, in this ase (of n,k = sn) the answer to Problem 1 is in the aÆrmative.The situation beomes obsure when n and k are relatively prime. As we havestated in the paragraph preeding Problem 1, the answer to the problem is in thenegative when n = 2 and k = 3. We also generalize this fat in Corollary 2 wherewe onsider partitions P of Russell sets suh that for every z 2 P , jzj is an oddmultiple of a given odd natural number p > 1.For the ase n = 3 and k a natural number relatively prime to 3, we alsoprovide a negative answer to Problem 1. This is the result of Corollary 3. Thekeys for its proof are the results of Theorem 4 (for any 3-Russell set X and anyinteger p relatively prime to 3, the ondition \X has a partition onsisting of setssuh that the ardinality of eah is a multiple of p whih is relatively prime to 3"is equivalent to the ondition \X has a p-ary partition"), of Theorem 6 (If p > 1is a natural number whih is relatively prime to 3, then a 3-Russell set X hasa p-ary partition if and only if jX j is divisible by p) and of Theorem 1 (If a isDedekind ardinal, p and n are natural numbers, p positive, then p j (pa + n) ifand only if p j n, where j means \divides").1We are grateful to the referee for suggesting this question whih provided a fous for ourresults.



On speial partitions of Dedekind- and Russell-sets 109For n � 5, things hange dramatially. First we note that here, our resultsare inomplete. We show among other things that the method used for the asesn = 2 and n = 3 will not work if n � 5. That is, we annot show:(1) If the n-Russell set X = Si2!Xi (where (Xi)i2! is a Russell sequene)has a p-ary partition then the n-Russell set Y = Si2!;i>0Xidoes not have suh a partition.We do this by onstruting a modelM of set theory in whih there is an n-Russellset for whih (1) is false. Spei�ally, we show that for all natural numbers n andp both greater than or equal to 5, there is (inM) an n-Russell sequene (Xi)i2!with the property that both Si2!Xi and Si2!;i>0Xi have p-ary partitions whihare in the model; see Theorem 8. Moreover, the permutation model of Theorem 8sheds light on Problem 1 for the ase n = 5 and k > 6. In partiular, we showin Theorem 9 that in the model of Theorem 8, every 5-Russell set has a k-arypartition for every k > 6 and onsequently the answer to Problem 1 is in theaÆrmative for the ase n = 5 and k > 6.For n = 4 and p relatively prime to 4, the question of whether (1) holds isopen.In Theorem 10 we establish that the results of Proposition 1(4) and Theorem 6ease to be true if n � 5. Therefore, one should no longer expet to rely on similarsuh results (for n � 5) in order to attak Problem 1.Finally, in Setion 4 we study partitions of generalized Russell sets (see De�-nition 4 for this notion) and prove results via the method of Fraenkel-Mostowskipermutation models (Theorems 12 and 13) whih larify that the situation, asfar as 3-ary partitions, divisibility by 3 and their interrelation are onerned, isstrikingly di�erent from the orresponding one for Russell sets.2. Odd sized and other partitions of Russell setsIn this setion we answer the question of Herrlih and Tahtsis from [8℄ men-tioned in the introdution, namely \Is there a model of ZF in whih Russell setsexist and all Russell sets an be partitioned into 3-element sets (or in general inton-element sets, n an odd natural number)."Theorem 1. If a is Dedekind ardinal, p and n are natural numbers, p positive,then p j (pa+ n) if and only if p j n, where j means \divides".Proof: (!) Assume that pa+n = pb for some ardinal number b. Then pa � pb,hene by a result of Tarski [11℄ (in ZF, given a natural number m 6= 0 and twoarbitrary ardinals p and q, if mp � mq, then p � q) we obtain that a � b. Sothere exists a ardinal x suh that a+ x = b. Therefore,pa+ px = p(a+ x) = pb = pa+ n:



110 H. Herrlih, P. Howard, E. TahtsisSine pa is a Dedekind ardinal, this implies that px = n, thus p j n as required.( ) This is straightforward. �Theorem 2. If X is a Russell set, p is an odd natural number greater than 1,and X has a p-ary partition, then the set Y obtained from X by the removal (oraddition) of a �nite number n of pairs has a p-ary partition if and only if 2n isdivisible by p. Consequently, if the Russell set X = Si2!Xi (where (Xi)i2! is aRussell sequene) has a p-ary partition then the Russell set Y = Si2!;i>0Xi doesnot have suh a partition.Proof: Immediate from the fat that a Russell set is a Dedekind set and fromTheorem 1 and Proposition 1(4). �Corollary 1. Let p be an odd natural number greater than 1. Then the followingholds: If a ZF-model ontains a Russell set, then it ontains Russell sets with p-arypartitions as well as Russell sets without p-ary partitions.Proof: This follows from Theorem 2 and Proposition 1(1). �Theorem 3. Assume that p is an odd natural number greater than 1. Then theRussell set X = Si2!Xi (where (Xi)i2! is a Russell sequene) has a partition Psuh that 8z 2 P , jzj is an odd multiple of p if and only if X has a p-ary partition.Proof: ( ) This is straightforward.(!) We �rst need the following slight modi�ation of Lemma 1.Lemma 2. Let R be a partition of the Russell set X = Si2!Xi suh that forall z 2 R, jzj is an odd natural number greater than 1. Then the set R0 = fz 2R : g � z is injetiveg, where for r 2 X we let g(r) = the unique i 2 ! suh thatr 2 Xi, has a �nite omplement in R.Proof: We use the idea from the proof of Lemma 2.4 in [8℄ (Lemma 1 in thispaper). Let R1 = fz 2 R : 9i 2 !;Xi � zg then R1 = R � R0 so the proofwill be ompleted by showing that R1 is �nite. Assume that z 2 R1. Then thereis some i 2 ! suh that Xi � z. Therefore for any other w 2 R1, Xi \ w = ;and hene i 2 g[z℄ but i =2 g[w℄. It follows that g[z℄ 6= g[w℄. This shows that thefuntion h on R1 de�ned by h(z) = g[z℄ for all z 2 R1, is injetive. But the rangeof h is a subset of the olletion of all �nite subsets of ! whih is ountable. Itfollows that R1 is either �nite or ountably in�nite. Suppose that R1 is ountablyin�nite. Sine every z 2 R1 is odd-sized and jXij = 2 for all i 2 !, it followsthat for every z 2 R1 there is an nz 2 ! suh that jz \ Xnz j = 1. On this basisand via indution we may de�ne a subsequene of (Xi)i2! with a hoie funtion.This ontradits the fat that X is a Russell set. Therefore, R1 is a �nite set asrequired. �By Lemma 2 the set P0 = fz 2 P : g � z is injetiveg has a �nite omplementin P . For every z 2 P , let kz be the odd natural number suh that jzj = kzp. Sinefor every z 2 P0, g � z is injetive and g[z℄ is well ordered (being a subset of !),



On speial partitions of Dedekind- and Russell-sets 111we may e�etively de�ne (i.e., using no hoie priniples) a well ordering of z andonsequently we may de�ne a partition fUz;j : j 2 kzg of z suh that jUz;j j = pfor all j 2 kz. On the other hand, sine P1 = P � P0 is a �nite family of �nitesets, it follows that SP1 is well ordered, hene for every z 2 P1 we may similarlyde�ne a p-ary partition fUz;j : j 2 kzg of z. Then U = fUz;j : z 2 P ; j 2 kzg is ap-ary partition of X . This ompletes the proof of the theorem. �Corollary 2. Assume that p is an odd natural number greater than 1. If theRussell set X = Si2!Xi (where (Xi)i2! is a Russell sequene) has a partition Psuh that 8z 2 P , jzj is an odd multiple of p then the Russell set Y = Si2!;i>0Xidoes not have suh a partition.Proof: The result follows from Theorem 3 and from Theorem 2. �3. Partitions of n-Russell sets, n � 3Proposition 2. n-Russell sets are Dedekind sets.Proof: This follows immediately from De�nition 2. �Question 1. Assume that X = Si2! Xi is an n-Russell set where (Xi)i2! isan n-Russell sequene and that X has a partition P suh that 8z 2 P , there isan integer k suh that k is relatively prime to n and jzj = kp. Is it possible forSi2!;i>0Xi to have suh a partition?We are able to answer this question for n = 3. For n = 4 the question remainsopen. For n > 4 we have an answer for all p > 4. The remaining ases are open.Next we answer Question 1 in the negative for the ase n = 3.Theorem 4. Assume(1) X = Si2!Xi is a 3-Russell set where (Xi)i2! is a 3-Russell sequene;(2) p is a natural number whih is larger than 1 and relatively prime to 3;(3) X has a partition P suh that 8z 2 P , there is an integer k suh that kis relatively prime to 3 and jzj = kp.Then X has a p-ary partition.Proof: We �rst prove the following replaement for Lemma 2.Lemma 3. Let R be a partition of the 3-Russell set X = Si2!Xi suh that8z 2 R, there is an integer k suh that k is relatively prime to 3 and jzj = kp.Then the set R0 = fz 2 R : g � z is injetiveg, where g is de�ned as in thestatement of Lemma 2, has a �nite omplement in R.Proof: The proof is by ontradition. Assume the hypotheses of the lemmaand assume that R1 = fz 2 R : g � z is not injetiveg is in�nite. If z 2 R1then 9i 2 ! suh that jz \ Xij > 1. Therefore we an write R1 = R2 [ R3where R2 = fz 2 R : 9i 2 ! suh that jz \ Xij = 2g and R3 = fz 2 R :9i 2 ! suh that jz \ Xij = 3g. If R2 is in�nite we get a hoie funtion for thein�nite set fXi : 9z 2 R suh that jz \Xij = 2g by de�ning F (Xi) = S(Xi n z)



112 H. Herrlih, P. Howard, E. Tahtsiswhere z is the unique element of R suh that jz \Xij = 2. This is not possiblesine (Xi)i2! is a 3-Russell sequene. It follows that R3 is in�nite. The funtionH : R3 ! P�n(!) de�ned by H(z) = fi 2 ! : jz \ Xij = 3g is injetive andtherefore R3 is well orderable, say by 4. Further, for eah z 2 R3; 9i 2 ! suhthat jz \Xij = 2 or jz \Xij = 1 (sine jzj is not a multiple of 3). It follows thatthe set Z = fXi : i 2 ! and 9z 2 R3 suh that jz \ Xij = 1 or jz \ Xij = 2g isin�nite. For Xi 2 Z and z suh that jz \Xij = 1 or jz \Xij = 2, letfz(Xi) = (z \Xi; if jz \Xij = 1Xi n z; if jz \Xij = 2 :We arrive at a ontradition by de�ning a hoie funtion for Z by K(Xi) =S fz(Xi) where z is the 4 least element of R3 suh that jz\Xij = 1 or jz\Xij =2. �By Lemma 3 the set P0 = fz 2 P : g � z is injetiveg has a �nite omplementin P . For every z 2 P , let kz be the natural number whih is relatively prime to3 and is suh that jzj = kzp. We may �nish o� the proof now as in the proof of(!) of Theorem 3. �Theorem 5. Let p > 1 be a natural number whih is relatively prime to 3 andlet V = fVi : i 2 Ig be a p-ary partition of the 3-Russell set X = Sm2!Xm. Lettr : I �! P�n(!), tr(i) = fm 2 ! : Xm \ Vi 6= ;g, i 2 I , be the trae map and letJ onsist of those i 2 I for whih there exist i0; i00 2 I , i; i0; i00 pairwise distint,with tr(i) = tr(i0) = tr(i00). Then I � J is �nite.Proof: We follow the ideas of the proof of [8, Lemma 2.4℄. First, by virtue ofLemma 3, we may assume without loss of generality that for every i 2 I if m 2 !is suh that Vi \ Xm 6= ;, then jVi \ Xmj = 1. Let R = tr[I ℄ be the ountablerange of the funtion tr (sine R � P�n(!) and it is known that, in ZF, P�n(!) isountable). Clearly, R = R1 [ R2 [ R3, whereRi = fr 2 R : tr�1(r) has preisely i elementsg; i = 1; 2; 3:Let Ji = tr�1(Ri), i = 1; 2; 3. Then I = J1 [ J2 [ J3. The funtion tr is injetiveon J1 and sine R is ountable and (Xm)m2! has no subsequene with a hoiefuntion, we may easily onlude that R1, hene J1, is a �nite set.Now assume that the set R2 is in�nite. Put J 02 = ftr�1(r) : r 2 R2g. Thenthe funtion h : J 02 ! R2 de�ned by h(j) = Sftr(u) : u 2 jg for all j 2 J 02 isinjetive. Sine R2 is ountable, J 02 is ountable and let J 02 = fjk : k 2 !g be anenumeration of J 02. Put W = fS jk : k 2 !g. Clearly, W is a ountable set. Sinefor eah m 2 !, Xm is a 3-element set and for eah m 2 ! and eah k 2 ! suhthat Xm \ (S jk) 6= ; we have that jXmn(S jk)j = 1 we may easily de�ne viaindution a subsequene of (Xm)m2! with a hoie funtion. But this ontraditsthe fat that X is a 3-Russell set. Therefore, we may onlude that R2 is a �niteset and onsequently J 02, hene J2 = S J 02 is also a �nite set.



On speial partitions of Dedekind- and Russell-sets 113From the above we dedue that J3 is a o�nite subset of I . Furthermore, notethat for every i 2 J3, tr(i) has exatly p elements, say m1(i) < : : : < mp(i)and there exists a unique pair (i0; i00) of pairwise distint elements of J3nfig withtr(i) = tr(i0) = tr(i00). Clearly, for every i 2 J3, Vi[Vi0[Vi00 = Xm1(i)[� � �[Xmp(i).Letting J = J3, the proof of the theorem is omplete. �Theorem 6. If p > 1 is a natural number whih is relatively prime to 3, then a3-Russell set X has a p-ary partition if and only if jX j is divisible by p.Proof: This an be established using the result of Lemma 3 or the result ofTheorem 5 and following the proof of [8, Theorem 2.6 (1), p. 187℄, so we simplyrefer the reader to the latter result in [8℄. �Theorem 7. Assume(1) X = Si2!Xi is a 3-Russell set;(2) p is a natural number whih is larger than 1 and relatively prime to 3;(3) X has a partition P suh that 8z 2 P , there is an integer k suh that kis relatively prime to 3 and jzj = kp.Then the 3-Russell set Y = Si2!;i>0Xi does not have suh a partition.Proof: By Theorem 4 we may assume without loss of generality that P is ap-ary partition of X , hene by Theorem 6 jX j is divisible by p. If Y has also apartition as in the statement of the Theorem, then again by Theorem 4 Y has ap-ary partition, hene by Theorem 6 jY j = pa for some in�nite ardinal a. ThenjX j = jY j + 3 = pa+ 3 and sine Y is a Dedekind set (being a 3-Russell set), ais a Dedekind ardinal. Thus, by Theorem 1, 3 is divisible by p. Sine p > 1 thisontradits our assumption that 3 and p are relatively prime. Therefore, Y hasno suh partitions and the proof of the theorem is omplete. �Corollary 3. Let p > 1 be a natural number whih is relatively prime to 3. Thenthe following holds: If a ZF-model ontains a 3-Russell set, then it ontains 3-Russell sets with p-ary partitions as well as 3-Russell sets without p-ary partitions.We show next that the answer to Question 1 is positive if n and p are bothgreater than or equal to 5.Theorem 8. There is a modelM of ZFA suh that for all natural numbers n andp both greater than or equal to 5, there is (inM) an n-Russell sequene (Xi)i2!with the property that both Si2!Xi and Si2!;i>0Xi have p-ary partitions whihare in the model.Proof: We start with a ground model of AC with a ountable set A = SfAi[Bi :i 2 !g of atoms suh that:1. for every i 2 !, Ai is the three element set Ai = fai1; ai2; ai3g and Bi isthe two element set Bi = fbi1; bi2g;2. for all i 2 !, Ai \ Bi = ; and for all i; j 2 !, if i 6= j, then (Ai [ Bi) \(Aj [ Bj) = ;.



114 H. Herrlih, P. Howard, E. TahtsisG is the group of permutations of A generated by the yles (ai1; ai2; ai3) and(bi1; bi2), i 2 !. The normal ideal I of supports is the set of all �nite subsets ofA. LetM be the permutation model determined by G and I.Lemma 4. If u and v are any natural numbers and m � 5 is a natural numberthen, inM, 0�[i�uAi1A [0�[j�vBj1Ais an m-Russell set.Proof: The proof depends on whether or not m = 6.Case 1. Assume that m 6= 6. Then m an be written in the form m =3r + 2s where r and s are positive natural numbers. Choose suh an r ands. Let X0 = (Su�i<u+r Ai) [ (Sv�j<v+s Bj) and in general for k 2 !, Xk =(Su+kr�i<u+(k+1)r Ai) [ (Sv+ks�j<v+(k+1)s Bj).Sine any union of the Ais and the Bis is in the model with empty supporteah Xk has empty support. Therefore the sequene (Xk)k2! is in M withempty support. It is also lear from the de�nition that for k 2 !, jXkj = mand that for k1; k2 2 !, if k1 6= k2 then Xk1 \ Xk2 = ;. Further, fXk :k 2 !g an have no in�nite subset with a hoie funtion sine for any �-nite support E only �nitely many of the sets Xk meet E and therefore forall but �nitely many of the sets Xk there is a permutation in G whih �xesE pointwise (and �xes Xk) but moves every element of Xk. (If A is an in�-nite subfamily of fXk : k 2 !g with a hoie funtion, say f with support E,then let k 2 ! suh that Xk 2 A and Xk \ E = ;. Let f(Xk) = x. Let = (Qu+kr�i<u+(k+1)r(ai1; ai2; ai3)) � (Qv+ks�j<v+(k+1)s(bj1; bj2)), i.e.,  movesall the elements of Xk but �xes pointwise all the other atoms. Sine Xk \E = ;,we have that  �xes E pointwise hene  (f) = f . Furthermore sine  (Xk) = Xkwe dedue that (Xk;  (x)) 2 f . Sine x 2 Xk and  moves every element of Xkwe have that  (x) 6= x meaning that f is not a funtion, a ontradition.) There-fore (Xk)k2! is an m-Russell sequene in the modelM. We leave to the readerthe proof that Sk2! Xk = (Si�u Ai) [ (Sj�v Bj).Case 2. Assume that m = 6. The proof proeeds as in Case 1 exept thatX0 = Au[Au+1, X1 = Bv[Bv+1[Bv+2, and in generalX2m = Au+2m[Au+2m+1and X2m+1 = Bv+3m [ Bv+3m+1 [ Bv+3m+2. �Now assume that n � 5. By the lemma with m = n, u = 0 and v = 0 we seethat A is an n-Russell set, A = Sk2!Xk where (Xk)k2! is an n-Russell sequene.Further by the proof of the lemma X0 has the form X0 = (Si<u0 Ai)[(Sj<v0 Bj)where u0 and v0 are in !. Assume that p � 5. Using the lemma with m = p,u = 0 and v = 0 we get a p-Russell sequene (Ya)a2! whose union is A andtherefore we obtain a p-ary partition of A = Sk2!Xk. Using the lemma again



On speial partitions of Dedekind- and Russell-sets 115in a similar way with m = p, u = u0 and v = v0 we get a p-ary partition of(Si�u0 Ai) [ (Sj�v0 Bj) = Sk2!;k>0Xk. �Remark 1. From the proof of Theorem 8 we infer that it is relatively onsistentwith ZFA that there exist Dedekind sets X suh that X as well as sets obtainedby adding 5k, k 2 N, elements to X both have m-ary partitions for every naturalnumber m � 5.Theorem 9. In the model of Theorem 8, for every k > 6, every 5-Russell set hasa k-ary partition.Proof: We begin by noting that every integer greater than 6 an be written inthe form 2r+3s where r and s are positive integers (as in the proof of Theorem 8,Lemma 4, Case 1). Seondly, we note the following easy lemma.Lemma 5. If k is a natural number whih an be written in the form k = 2r+3swhere r and s are positive integers and X is a set whih an be written as aountable disjoint union X = Si2! Yi where 8i 2 !, jYij = 2 or jYij = 3 and bothof the sets fi 2 ! : jYij = 2g and fi 2 ! : jYij = 3g are in�nite then X has a k-arypartition.The theorem will now follow as soon as we proveLemma 6. In the modelM of Theorem 8 every 5-Russell set an be written asa ountable disjoint union X = Si2! Yi where 8i 2 !, jYij = 2 or jYij = 3 andboth of the sets fi 2 ! : jYij = 2g and fi 2 ! : jYij = 3g are in�nite.Proof: We shall use the notation given in the proof of Theorem 8 for the atomsof M and, as in Theorem 8, G will denote the group of permutations used toonstrutM. In addition, for any �nite set E of atoms �xG(E) or simply �x(E)denotes the subgroup f� 2 G : 8a 2 E; �(a) = ag. Finally, for any subgroup Hof G and any element t of M we let OrbH(t) denote the H orbit of t, that is,OrbH(t) = f�(t) : � 2 Hg. For the proof of the lemma we �rst make the followinglaimClaim 1. For any t inM and any �nite subset E of the atoms A, jOrb�x(E)(t)j =2i3j where i and j are natural numbers.Proof: Assume that t 2 M and that E � A is �nite. Choose a �nite subset Fof A so that F is a support of t and(2) 8i 2 !; (Ai � F or Ai \ F = ;) and (Bi � F or Bi \ F = ;):For � 2 �x(E) let �F be the funtion that agrees with � on F and is equal tothe identity funtion outside of F . By (2) �F 2 �x(E) and it is also the asethat �F (t) = �(t) sine �F and � agree on a support of t. Therefore if we letH = f�F : � 2 �x(E)g, OrbH(t) = Orb�x(E)(t). Let K = f 2 H :  (t) = tgthen the following fats are easy to verify.1. The set of pairs f(�K; �(t)) : � 2 Hg is a one to one funtion from thequotient group H=K onto OrbH(t).



116 H. Herrlih, P. Howard, E. Tahtsis2. jH j = 2132 where 1 and 2 are in !. (1 is the number of sets Biontained in F whih do not meet E and similarly 2 is the number ofsets Ai ontained in F whih do not meet E.)3. It follows from item 3 that the ardinality of the quotient group H=K is2d13d2 where d1 and d2 are in !.Using items 3 and 3 we onlude that jOrb�x(E)(t)j = jOrbH(t)j = jH=Kj =2d13d2 . �Now let X be a 5-Russell set inM and say that X is the disjoint union of aountable set of 5 element sets, X = Si2! Xj where the sequene (Xj)j2! is inMand has support E. Then for eah j 2 !, every � in �x(E) �xes Xj and therefore8t 2 Xj , �(t) 2 Xj . We therefore have that for all t 2 Xj , Orb�x(E)(t) � Xj .From this we onlude that the �xE orbits of elements of Xj form a partition ofXj eah element of whih has support E. By the laim and the fat that jXj j = 5we onlude that eah of the �xE orbits of an element of Xj has size 1, 2 or 3. Bytaking unions of orbits if neessary this gives us a partition of Xj into two sets,Pj of size 2 and Qj of size 3 both with support E.We an write X as a ountable disjoint union X = Si2! Yi as required byLemma 6 by letting Y2i = Pi and Y2i+1 = Qi for all i 2 !. �The proof of the theorem is now omplete. �Aording to Proposition 1, if n is an odd natural number, then a Russell sethas an n-ary partition if and only if jX j is divisible by n (and we note that forevery set X , if jX j is divisible by n, then X has an n-ary partition) and aordingto Theorem 6, if p > 1 is a natural number whih is relatively prime to 3, then a3-Russell set X has a p-ary partition if and only if jX j is divisible by p. However,the situation with n-Russell sets, n � 5, is strikingly di�erent as shown by thesubsequent theorem.Theorem 10. There is a modelM of ZFA and a set A inM suh that for everynatural number n � 5, A is an n-Russell set, hene has an n-ary partition, butfor every natural number p � 2, jAj is not divisible by p.Proof: LetM be the permutation model de�ned in the proof of Theorem 8 andlet A be its set of atoms. From Lemma 4 of the proof of Theorem 8 we obtain thatA is an n-Russell set for every natural number n � 5. So in order to ompletethe proof we need to show that jAj is not divisible by p for every natural numberp � 2. To this end, �x an integer p � 2 and, toward a proof by ontradition,assume that jAj is divisible by p and let fU1; U2; : : : ; Upg be a partition of A intop pairwise equipollent in�nite sets. Let f be a bijetion inM from U1 to U2 andlet E be a support of f . Sine A is a 5-Russell set, it is not hard to verify thatevery in�nite subset Y of A must satisfy that QY = fn 2 ! : 0 < jY \Anj < 3g is�nite and RY = fn 2 ! : 0 < jY \Bnj < 2g is �nite and for all n 2 !�(QY [RY ),either An � Y or Bn � Y or both, i.e., Xn � Y where for n 2 !, Xn = An [Bn.(For example, if QY is in�nite, let Y � = [fY \ An : n 2 QY g and let E be



On speial partitions of Dedekind- and Russell-sets 117a support for Y �. Sine QY is in�nite, let n 2 QY be suh that E \ An = ;.Let x 2 An � Y �, y 2 Y \ An and let z be the third element of An. Then thepermutation  = (y; x; z) ( moves only the atoms x; y; z) �xes E pointwise heneit �xes Y �. However, x =  (y) =2 Y �, a ontradition. Similarly, one shows thatRY is a �nite set.)Now let n0 = maxfn 2 ! : E \ Xn 6= ;g. In view of the above observations,there exists a natural number n > n0 suh that An � U1 or Bn � U1 or Xn � U1.Without loss of generality assume that An = fan1; an2; an3g � U1. Suppose thatf(an1) = u for some u 2 U2. Sine U1\U2 = ;, we have that u =2 U1, hene u =2 An.We may onsider now the permutation  to be the 3-yle (an1; an2; an3), i.e.,  moves only anj , j = 1; 2; 3, and �xes all the other atoms. Then  �xesE pointwise,hene it �xes the funtion f (not neessarily pointwise). Sine  (an1) = an2, (u) = u, and  (f) = f , we may onlude that f(an2) = u meaning that f is notinjetive. This ontradits our assumption on f . Therefore, jAj is not divisibleby p as required.This ompletes the proof of the theorem. �From Proposition 1 we see that it is provable in ZF that no Russell set an bea p-Russell set, where p is an odd natural number, and vie versa. That is, forevery odd natural number p, a p-Russell set annot be a Russell set.On the other hand, every Russell set is easily seen to be a 2n-Russell set forevery natural number n � 1. However, the reverse impliation may fail to be true.In fat, in [5, Theorem 3℄ we have shown that for every natural number n � 3,it is relatively onsistent with ZFA that there exists an n-Russell set whih is nota Russell set. (However, there were Russell sets in eah of these models; see [5,Remark 4℄). Yet, even more may be true. In partiular, for every natural numbern � 3 it is relatively onsistent with ZFA that there is an n-Russell set and thereare no Russell sets at all. We prove this in the next theorem.Theorem 11. Let n be a natural number suh that n � 3. Then there is a modelof ZFA whih has an n-Russell set but has no Russell sets.Proof: We onsider two ases.Case 1. n = 3 or n � 5. We start with a ground model of AC with a ountableset A = [fAi : i 2 !g of atoms suh that:1. for every i 2 !, Ai = fai1; ai2; : : : ; aing (hene 8i 2 !, jAij = n);2. for all i; j 2 !, if i 6= j, then Ai \ Aj = ;.The group G of permutations of A is the set of all permutations � suh that forevery i 2 !, � � Ai is an even permutation of Ai. The normal ideal I of supportsis the set of all �nite subsets of A. Let N be the permutation model determinedby G and I.First we note that the family A = fAi : i 2 !g does not have a partial hoiefuntion in N . Assume the ontrary and let B be an in�nite subfamily of Ahaving a hoie funtion f 2 N with support E. Sine E is �nite, we may �x an



118 H. Herrlih, P. Howard, E. Tahtsisi 2 ! suh that Ai 2 B and Ai \E = ;. Without loss of generality assume that fhooses ai1 from the set Ai. Consider the permutation � whih is the identity onAj , for all j 2 !�fig, and � � Ai = (ai1; ai2)(ai3; ai4). Then � �xes E pointwise,hene �(f) = f . It follows that (i; ai2) 2 f , meaning that f is not a funtion, aontradition. Therefore, A annot have a partial hoie funtion in N and theset A of atoms is an n-Russell set in N .We show now that the model N does not admit any Russell sets. Assume theontrary and let X = Si2!Xi 2 N be a Russell set. Let E = A0 [A1 [ � � � [Ak,for some k 2 !, be a support of Xi for eah i 2 !. We will prove that for everyi 2 ! and for every element x 2 Xi, E is a support of x. This will give us thatX is a well orderable set in N , hene we shall obtain a ontradition to the fatthat X is a Russell set.To this end, assume that there exists an i 2 !, an element x 2 Xi and apermutation  suh that  �xes E pointwise but  (x) 6= x. Let Ex be a supportof x. Sine E does not support x, we may assume without loss of generality thatEx = E [ Ak+1 and that  �xes A � Ak+1 pointwise. Let G be the subgroupof G onsisting of all permutations in G whih �x A � Ak+1 pointwise. ThenG is homeomorphi to the group of even permutations of Ak+1. Let H = f� 2G : �(x) = xg. Then H is a subgroup of G. Furthermore, we laim that H isa normal subgroup of G. To prove our assertion we need to show that for all� 2 G, �H = H�. To this end, �x a permutation � 2 G. If � 2 H , then for all� 2 H , �� = (����1)� and sine H is a group we have that ����1 2 H , hene�H � H� and similarly H� � �H . So we may assume that � 2 G � H . LetXi = fx; yg. Then �(x) = y (sine � =2 H) and �(y) = x. Therefore, ��1(x) isalso equal to y. Fix a permutation � 2 H . Then �(x) = x, hene �(y) = y. Now,we have that ����1(x) = ��(y) = �(y) = x. Thus, ����1 2 H and onsequently�� = (����1)� 2 H� meaning that �H � H�. Similarly, we may prove thatH� � �H , and so H is a normal subgroup of G.From group theory we know (see [2℄) that for n = 3 or for n � 5 the group ofeven permutations on n elements has no normal subgroups other than the wholegroup and the trivial one, namely fidg where id is the identity mapping. SineH 6= G (for  2 G�H ; see above for the properties of  ) we infer that H = fidg.It follows that 8� 2 G�H , 8� 2 G�H , if � 6= �, then �(x) = �(x) (= y). NowG has at least 3 elements (sine jGj = n!2 � 3 sine either n = 3 or n � 5) so ithas at least two distint elements � and � suh that �; � =2 H . Then ��1�(x) = x,so ��1� 2 H , hene � = �, a ontradition.From the above we onlude that whenever a permutation � �xes E pointwise,then � �xes X pointwise, hene X is well orderable ontraditing the fat thatX is a Russell set. Therefore, the model N does not have any Russell sets asrequired.Case 2. n = 4. The suitable Fraenkel-Mostowski model N is de�ned as inases n = 3 or n � 5. We show that N has no Russell sets. Assume the ontraryand let X = Si2!Xi be a Russell set in the model N . Let E, x 2 Xi, Ex,  , G,



On speial partitions of Dedekind- and Russell-sets 119and H be as in ases n = 3 or n � 5. Sine G is homeomorphi to the group ofeven permutations of Ak+1 and jAk+1j = 4, it follows that jGj = 12. Furthermore,sine Xi is a two-element set and  (x) 6= x, it is easy to see that the index ofH in G is 2. Thus, jH j = 6. But this ontradits the fat that the group ofeven permutations on 4 objets does not have any subgroup of ardinality 6 (see[2℄). Therefore, any permutation whih �xes E pointwise also �xes X pointwisemeaning that X is well-orderable. This ontradits the fat that X is a Russellset and ompletes the proof of Case 2 and of the theorem. �4. Partitions of generalized Russell setsDe�nition 4. A generalized Russell set is a set X whih an be written asX = Si2I Xi where1. for eah i 2 I , jXij = 2;2. I is in�nite;3. for i and j in I , if i 6= j then Xi \Xj = ;;4. no in�nite subset of fXi j i 2 Ig has a hoie funtion.A generalized Russell ardinal is the ardinal number of a generalized Russellset.Proposition 3. Generalized Russell sets are Dedekind sets.Proof: This follows immediately from De�nition 4. �In Theorem 2 we showed that if a is a Russell ardinal whih has a 3-arypartition, then the Russell ardinal a + 2 fails to have one. It is natural to askwhether this holds also for generalized Russell ardinals or Dedekind ardinalsin general. We show next that it is relatively onsistent with ZFA that thereexists a generalized Russell ardinal a, hene a Dedekind ardinal a, suh that a,a+ 1 and a+ 2 all have 3-ary partitions. Moreover, we prove that the existeneof a generalized Russell set X = Si2I Xi suh that jX j < jI j is onsistent withZFA. Note that in view of [4℄ this annot happen for Russell sets (onsidered asgeneralized Russell sets by rearranging its elements into pairs).Theorem 12. There exists a model of ZFA in whih there is a generalized Russellset X = Si2I Xi, hene a Dedekind set X , suh that jX j < jI j and suh that jX j,jX j+ 1 and jX j+ 2 all have ternary partitions.Proof: We shall use the Fraenkel-Mostowski permutation model de�ned in theproof of [1, Theorem 3.1℄. Similarly to the observation by the authors in [1℄ (see[1, Setion 2℄) the result an be transferred to ZF using the Jeh-Sohor theoremwhih provides embeddings of arbitrary long initial segments of ZFA models intoZF models. Thus, we also obtain onsisteny with ZF.The atoms are identi�ed (for simpliity's sake) with the elements of 2<!, i.e.,with �nite non-empty sequenes of 0s and 1s. Let A be the set of the atoms. Wemay view A as two in�nite binary trees, the one having h0i as its root and the



120 H. Herrlih, P. Howard, E. Tahtsisother having h1i as its root. The set A is partially ordered by the extension ofsequenes, i.e., for t; s 2 A, t � s if and only if t is an initial segment of s. LetG be the group of all order automorphisms of (A;�), i.e., if t 2 A and � 2 G,then t and �(t) have the same length and if s 2 A and t � s, then �(t) � �(s).The normal ideal of supports is the set of all �nite subsets of A. Let N be theresulting permutation model.For eah t 2 A, let Pt = ft̂ 0; t̂ 1g, where t̂ 0 is the sequene t with 0 adjoinedas a last element and similarly for t̂ 1. Put P = fPt : t 2 Ag [ ffh0i; h1iggwhere h0i and h1i are the sequenes of length 1, i.e. the two roots. Then P is aolletion of 2-element sets whih belongs to the model sine it has empty support,i.e., every permutation in G �xes P . Furthermore, the family P has no partialhoie funtion in the model N . To see this, assume on the ontrary that P has anin�nite subset P 0 with a hoie funtion, say f , and let E be a support for f . SineP 0 is in�nite, there is an element t 2 A�E suh that t is not the initial segmentof any element of E and Pt = ft̂ 0; t̂ 1g 2 P 0. Consider a permutation  2 Gwhih �xes E pointwise but interhanges the elements of Pt. Sine E is a supportof f we have that  (f) = f . However, (Pt; f(Pt)) 2 f ! (Pt;  (f(Pt))) 2 f and (f(Pt)) 6= f(Pt), a ontradition. Therefore, P has no in�nite subfamily witha hoie funtion and onsequently A = SP is a generalized Russell set in themodel N .Furthermore, jAj � jP j in N sine the funtion f : A! P de�ned by f(t) = Ptfor all t 2 A, is injetive and belongs to the model sine it has empty support.We assert that there is no injetive funtion g : P ! A in N . Assume theontrary and let g be suh a funtion with support E. For eah t 2 A we denotethe length of (the sequene indexing) t by ln(t) and we note(3) 8n 2 !, n > 0, 8t 2 A suh that ln(t) � n, 9� 2 G whih �xes the setfs 2 A : ln(s) < ng pointwise and suh that �(t) 6= t.Choose an n0 2 ! suh that n0 > 0 and 8t 2 E, ln(t) < n0. We make twoassertions about g.Lemma 7. (1) ln(g(fh0i; h1ig)) < n0.(2) 8t 2 A, if ln(t) < n0 then ln(g(Pt)) < n0.Proof: We prove part 2. The proof of 1 is similar and is left to the reader.Assume t 2 A, that ln(t) < n0 and, toward a proof by ontradition, thatln(g(Pt)) � n0. By equation (3) there is a � 2 G suh that �(s) = s for alls 2 A with ln(s) < n0 and suh that �(g(Pt)) 6= g(Pt). Sine ln(t) < n0, �(t) = t.Sine the funtion r 7! Pr is in the model with empty support we may also on-lude that �(Pt) = Pt. By our hoie of n0, � also �xes E pointwise and therefore�xes g. This is a ontradition sine if � �xes g and Pt it must �x g(Pt). �By the lemma g restrited to the set ffh0i; h1igg [ fPt : ln(t) < n0g has rangeinluded in the set ft : ln(t) < n0g. Sine the �rst of these two sets has one more



On speial partitions of Dedekind- and Russell-sets 121element than the seond we arrive at the ontradition that g is not injetive.Therefore, jAj < jP j in the model N .For the seond assertion of the theorem, we see that due to the de�nitionof the group G of permutations of the set A of atoms, P = fft; t̂ 0; t̂ 1g : t 2A and ln(t) is oddg is a 3-ary partition of A whih lives in the model sine everypermutation in G �xes (not pointwise) the family P . Now if we disard from Athe two roots, namely h0i and h1i, we obtain again a generalized Russell set whih,similarly to the ase of A, also has a ternary partition, namely Q = fft; t̂ 0; t̂ 1g :t 2 A and ln(t) is eveng. If we disard from A one of the two roots, then againwe easily see that the resulting Dedekind set also has a ternary partition. Thisompletes the proof of the theorem. �Remark 2. In [1, Theorem 3.1℄ it is shown that it is onsistent with ZF that thereexists a Dedekind set X suh that for all natural numbers n, the set Y obtainedfrom X by removing (or adding) n elements from X has a ternary partition.Theorem 12 above also yields the result of Theorem 3.1 in [1℄. However, sine italso establishes the existene (in some model of ZF) of a generalized Russell setX = Si2I Xi suh that jX j < jI j, the result of Theorem 12 is stronger.Theorem 13. There is a model of ZFA in whih there exists a generalized Russellset A suh that A has a 3-ary partition but jAj is not divisible by 3.Proof: Let N be the permutation model de�ned in the proof of Theorem 12 andlet A be its set of atoms. Aording to the latter proof, A is a generalized Russellset whih has a 3-ary partition in N . Hene, we only need to show that jAj is notdivisible by 3. Assume the ontrary and let P = fP1; P2; P3g be a partition of Aonsisting of in�nite pairwise equipollent sets. Let f1;2 : P1 ! P2 be a bijetionin the model with support E and let n0 = maxfln(t) : t 2 Eg. Without loss ofgenerality we may assume that E ontains all atoms of length less than or equalto n0 (therefore E ontains both roots h0i and h1i).Let a = t̂ 0 2 P1, t 2 A, with length m > n0, i.e. a =2 E, and supposethat a belongs to the subtree having h0i as its root. By the fat that E isa support of the funtion f1;2 and by the de�nition of the group G we mayonlude that b = t̂ 1 2 P1 = Dom(f1;2). (Let  2 �x(E) suh that  swaps aand b. Then  (f1;2) = f1;2 and (a; f1;2(a)) 2 f1;2 ! (b;  (f1;2(a))) 2 f1;2, heneb 2 Dom(f1;2)). Let f1;2(a) = . Then  6= a; b sine  2 P2, a; b 2 P1 andP1 \ P2 = ;. We neessarily have that either a or b is a proper initial segment of. Otherwise, onsidering the permutation  whih �xes E pointwise, swaps theatoms a and b and �xes pointwise all the branhes whih ontain neither a nor b,we obtain that  () =  and  (f1;2) = f1;2 hene f1;2(a) = f1;2(b) =  meaningthat f1;2 is not injetive, a ontradition. Without loss of generality assume that = r 0̂ for some atom r.1. If a is an initial segment of , then onsider a permutation  2 G whihswaps  and d = r^1 and moves only ; d and their desendants. Then 2 �x(E), hene  (f1;2) = f1;2, and  (a) = a. But then (a; ) 2 f1;2 !
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