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On spe
ial partitions of Dedekind- and Russell-setsHorst Herrli
h, Paul Howard, Eleftherios Ta
htsisThis paper is about one of the most bizarre areas of set theoryFrom the referee's report on our original manus
riptAbstra
t. A Russell set is a set whi
h 
an be written as the union of a 
ountablepairwise disjoint set of pairs no in�nite subset of whi
h has a 
hoi
e fun
tionand a Russell 
ardinal is the 
ardinal number of a Russell set. We show thatif a Russell 
ardinal a has a ternary partition (see Se
tion 1, De�nition 2) thenthe Russell 
ardinal a + 2 fails to have su
h a partition. In fa
t, we prove thatif a ZF-model 
ontains a Russell set, then it 
ontains Russell sets with ternarypartitions as well as Russell sets without ternary partitions. We then 
onsidergeneralizations of this result.Keywords: Axiom of Choi
e, Dedekind sets, Russell sets, generalizations of Rus-sell sets, odd sized partitions, permutation modelsClassi�
ation: 03E10, 03E25, 03E35, 05A181. Introdu
tion, terminology and known resultsThe Axiom of Choi
e AC, i.e., the statement that for every family A 
onsistingof non-empty sets there is a fun
tion (
alled a 
hoi
e fun
tion) f : A ! SA su
hthat for every x 2 A, f(x) 2 x, was formulated by Zermelo in 1904 as part ofhis development of axiomati
 set theory (Zermelo-Fraenkel set theory). In spiteof the 
ontroversy whi
h �rst surrounded the axiom due to its non-
onstru
tivenature (it asserts the existen
e of f but suggests no way to 
onstru
t it) it isa

epted and used by most mathemati
ians today. This fa
t is basi
ally due tothe work of Kurt G�odel who 
onstru
ted a model for Zermelo-Fraenkel set theoryin 1938, the model of 
onstru
tible sets , in whi
h AC was true and thus 
onsistentwith the rest of the axioms of set theory. As a result, mathemati
ians 
ould bereleased from any fears of introdu
ing in
onsisten
ies by using AC.The 
onsequen
es of AC in
lude su
h fundamental results as \Every ve
torspa
e has a basis", \The Ty
hono� produ
t of 
ompa
t topologi
al spa
es is
ompa
t" (in fa
t, the latter two propositions are equivalent to AC in Zermelo-Fraenkel set theory minus AC; see, e.g., [9℄ or [3℄), \Every in�nite set has a 
ount-ably in�nite subset" and the 
ountable union theorem (The union of a 
ountable
olle
tion of 
ountable sets is 
ountable.) There are, however, some non-intuitive(and perhaps even undesirable) 
onsequen
es of the axiom. For example the ex-isten
e of a non-Lebesgue measurable set and the Bana
h-Tarski paradox whi
hasserts that it is possible to partition a ball into a �nite number of pie
es and
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htsisreassemble the pie
es to form two balls of the same size as the original. If one is
onsidering repla
ing the axiom of 
hoi
e by some weaker statement or possiblyeliminating 
hoi
e altogether then it seems desirable to investigate the degree towhi
h mathemati
s without 
hoi
e may di�er from mathemati
s with it.One possible di�eren
e was des
ribed by Bertrand Russell when he des
ribedhow the union of a 
ountable set of pairs might fail to be 
ountable in his metaphorabout 
hoosing from an in�nite 
olle
tion of pairs of shoes versus pairs of so
ks.But it was Fraenkel who �rst proved that without the axiom of 
hoi
e it waspossible for many of the results, whi
h were regarded as fundamental, to fail ifthe axiom of 
hoi
e was not assumed. He did this by 
onstru
ting models inwhi
h all of the set theoreti
 axioms other than the axiom of 
hoi
e held and thennoting that other standard theorems also failed in the models. For example, inFraenkel's �rst model there was an in�nite set without a 
ountably in�nite subsetand in his se
ond model a 
ountable set of pairs whose union had no 
ountablesubset.A
tually, Fraenkel's models (whi
h are now 
alled Fraenkel-Mostowski modelsor permutation models) were models of a version of Zermelo's set theory weak-ened to permit the existen
e of atoms, elements whi
h were not themselves sets.It was not until 1963 that Cohen dis
overed his method of for
ing by whi
h he
onstru
ted models of the full Zermelo-Fraenkel set theory (without the axiom of
hoi
e) in whi
h there were in�nite sets without 
ountable subsets and in parti
-ular, in the se
ond Cohen model, a 
ountable set of pairs whose union had no
ountable subset. We refer the reader to [10℄ for details.Sets like the one existing in the se
ond Cohen model whi
h are the union ofa 
ountable set of pairs but have no 
ountable subset and whi
h live in someuniverse of set theory are 
alled Russell sets . They were introdu
ed in [7℄ afterBertrand Russell's metaphor about 
hoosing from an in�nite 
olle
tion of pairs ofshoes versus pairs of so
ks.In several re
ent papers Russell sets and their properties have been investigated(see [7℄, [4℄, [8℄, [6℄, [5℄). We shall 
ontinue the resear
h here proving a numberof results about Russell sets and generalizations of Russell sets. Before giving anoverview of the aims and the orientation of this paper, let us �rst supply someterminology.De�nition 1. Let X and Y be sets.1. jX j � jY j if there exists an inje
tion f : X ! Y .2. jX j = jY j if there exists a bije
tion f : X ! Y .3. jX j < jY j if jX j � jY j and jX j 6= jY j.De�nition 2. 1. A Russell sequen
e is a (
ountable) sequen
e (Xi)i2! ofdisjoint pairs no in�nite subset of whi
h has a 
hoi
e fun
tion. A Russellset X is the union X = Si2!Xi of a Russell sequen
e. A Russell 
ardinalis the 
ardinal number of a Russell set.2. Let n be an integer su
h that n � 2. An n-Russell set is a set X whi
h
an be written X = Sk2!Xk where
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h k 2 !, jXkj = n,(b) for i and j in !, if i 6= j then Xi \Xj = ;,(
) no in�nite subset of fXk j k 2 !g has a 
hoi
e fun
tion.The sequen
e (Xk)k2! is 
alled an n-Russell sequen
e. An n-Russell
ardinal is the 
ardinal number of an n-Russell set. A

ording to thisterminology a Russell 
ardinal (from part (2)) is a 2-Russell 
ardinal.3. For n 2 N (= the set of positive integers), an n-ary partition of a set X isa partition of X into sets ea
h with exa
tly n elements. n-ary partitionswith odd n are 
alled odd sized partitions .4. Let n 2 N. A 
ardinal a is divisible by n if and only if there exists a
ardinal 
 with a = n
. (Equivalently, if X is any set, jX j is divisible byn if and only if there exists a set Y su
h that jX j = jn� Y j).5. A set X is 
alled a Dedekind set if it is in�nite and Dedekind �nite, i.e.,�0 6� jX j (if and only if jAj < jX j for every proper subset A of X if andonly if jX j < jX j+1, where jX j+1 is the 
ardinality of X [fxg, x =2 X).A Dedekind 
ardinal is the 
ardinal number of a Dedekind set.De�nition 3. ZF will denote Zermelo-Fraenkel set theory minus the Axiom ofChoi
e and ZFA will denote ZF set theory with the axiom of extensionality weak-ened to allow the existen
e of atoms.In [8℄ Herrli
h and Ta
htsis have studied the possible partitions of a Russellset in set theory without the Axiom of Choi
e. Among other results, the authorsin [8℄ established the following propositions whi
h 
on
ern odd sized partitions ofRussell sets and whi
h shall be useful to us in the sequel.Proposition 1 ([8, Proposition 2.1, Proposition 2.2, Theorem 2.6℄).(1) For any positive integer n and any Russell set X , the set X�n is a Russellset that has an n-ary partition.(2) Any odd sized partition of a Russell set is a Dedekind set.(3) No Russell set has a 
ountable odd sized partition.(4) For odd n, a Russell set X has an n-ary partition if and only if its 
ardinalnumber jX j is divisible by n.Lemma 1 ([8, Lemma 2.4℄). Let n be odd and let V = fVi : i 2 Ig be an n-arypartition of the Russell set X = Sm2NXm. De�ne the tra
e map tr : I �!P�n(N), where N is the set of positive integers and P�n(N) is the set of all �nitesubsets of N, by tr(i) = fm 2 N : Xm \ Vi 6= ;g, and let J 
onsist of those i 2 Ifor whi
h there exists some i0 2 I , i0 6= i, with tr(i) = tr(i0). Then I � J is �nite.A question left open in [8℄ is the following:Is there a model of ZF in whi
h Russell sets exist and all Russellsets 
an be partitioned into 3-element sets?
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h, P. Howard, E. Ta
htsisIn Se
tion 2 we answer this question in the negative. Herrli
h and Ta
htsisalso asked the same question with 3 repla
ed by an arbitrary odd natural num-ber n. We shall also answer this more general question in the negative. Inparti
ular, in Theorem 2 we prove that if the Russell set X = Si2! Xi (where(Xi)i2! is a Russell sequen
e) has a p-ary partition, where p is an odd naturalnumber greater than 1, then the Russell set Y = Si2!;i>0Xi does not have su
ha partition. In Corollary 1 we provide the negative answer to the above questionby 
on
luding that if a ZF-model 
ontains a Russell set, then it 
ontains Russellsets with p-ary partitions, p an odd integer greater than 1, as well as Russell setswithout p-ary partitions.With regard to n-Russell sets, n � 3 (see De�nition 2), the natural ques-tion1 whi
h arises is the following generalization of the Herrli
h-Ta
htsis question,namelyProblem 1. Given n; k 2 !, is it 
onsistent with set theory without AC thatthere is an n-Russell set and all n-Russell sets have a k-partition?The primary purpose of this paper is to give a partial answer to this problem.First we note that for every natural number n � 2 it is 
onsistent with set theorywithout 
hoi
e that n-Russell sets do exist. Indeed, for n = 2, the se
ond Fraenkelmodel (see the dis
ussion above for this model) 
ontains Russell sets (a
tuallyin�nitely many; see Proposition 1(1)). For every n � 3, a permutation modelis 
onstru
ted in the proof of Theorem 11 whi
h 
ontains an n-Russell set (butno Russell sets). Now if k is a multiple of n, say k = sn, X is an n-Russell setand X = Si2!Xi where (Xi)i2! is a disjoint sequen
e of n-element sets, thengrouping them by taking the union of the �rst s of the Xis, the union of these
ond s of the Xis and so on yields a k-partition of X . So, in this 
ase (of n,k = sn) the answer to Problem 1 is in the aÆrmative.The situation be
omes obs
ure when n and k are relatively prime. As we havestated in the paragraph pre
eding Problem 1, the answer to the problem is in thenegative when n = 2 and k = 3. We also generalize this fa
t in Corollary 2 wherewe 
onsider partitions P of Russell sets su
h that for every z 2 P , jzj is an oddmultiple of a given odd natural number p > 1.For the 
ase n = 3 and k a natural number relatively prime to 3, we alsoprovide a negative answer to Problem 1. This is the result of Corollary 3. Thekeys for its proof are the results of Theorem 4 (for any 3-Russell set X and anyinteger p relatively prime to 3, the 
ondition \X has a partition 
onsisting of setssu
h that the 
ardinality of ea
h is a multiple of p whi
h is relatively prime to 3"is equivalent to the 
ondition \X has a p-ary partition"), of Theorem 6 (If p > 1is a natural number whi
h is relatively prime to 3, then a 3-Russell set X hasa p-ary partition if and only if jX j is divisible by p) and of Theorem 1 (If a isDedekind 
ardinal, p and n are natural numbers, p positive, then p j (pa + n) ifand only if p j n, where j means \divides").1We are grateful to the referee for suggesting this question whi
h provided a fo
us for ourresults.



On spe
ial partitions of Dedekind- and Russell-sets 109For n � 5, things 
hange dramati
ally. First we note that here, our resultsare in
omplete. We show among other things that the method used for the 
asesn = 2 and n = 3 will not work if n � 5. That is, we 
annot show:(1) If the n-Russell set X = Si2!Xi (where (Xi)i2! is a Russell sequen
e)has a p-ary partition then the n-Russell set Y = Si2!;i>0Xidoes not have su
h a partition.We do this by 
onstru
ting a modelM of set theory in whi
h there is an n-Russellset for whi
h (1) is false. Spe
i�
ally, we show that for all natural numbers n andp both greater than or equal to 5, there is (inM) an n-Russell sequen
e (Xi)i2!with the property that both Si2!Xi and Si2!;i>0Xi have p-ary partitions whi
hare in the model; see Theorem 8. Moreover, the permutation model of Theorem 8sheds light on Problem 1 for the 
ase n = 5 and k > 6. In parti
ular, we showin Theorem 9 that in the model of Theorem 8, every 5-Russell set has a k-arypartition for every k > 6 and 
onsequently the answer to Problem 1 is in theaÆrmative for the 
ase n = 5 and k > 6.For n = 4 and p relatively prime to 4, the question of whether (1) holds isopen.In Theorem 10 we establish that the results of Proposition 1(4) and Theorem 6
ease to be true if n � 5. Therefore, one should no longer expe
t to rely on similarsu
h results (for n � 5) in order to atta
k Problem 1.Finally, in Se
tion 4 we study partitions of generalized Russell sets (see De�-nition 4 for this notion) and prove results via the method of Fraenkel-Mostowskipermutation models (Theorems 12 and 13) whi
h 
larify that the situation, asfar as 3-ary partitions, divisibility by 3 and their interrelation are 
on
erned, isstrikingly di�erent from the 
orresponding one for Russell sets.2. Odd sized and other partitions of Russell setsIn this se
tion we answer the question of Herrli
h and Ta
htsis from [8℄ men-tioned in the introdu
tion, namely \Is there a model of ZF in whi
h Russell setsexist and all Russell sets 
an be partitioned into 3-element sets (or in general inton-element sets, n an odd natural number)."Theorem 1. If a is Dedekind 
ardinal, p and n are natural numbers, p positive,then p j (pa+ n) if and only if p j n, where j means \divides".Proof: (!) Assume that pa+n = pb for some 
ardinal number b. Then pa � pb,hen
e by a result of Tarski [11℄ (in ZF, given a natural number m 6= 0 and twoarbitrary 
ardinals p and q, if mp � mq, then p � q) we obtain that a � b. Sothere exists a 
ardinal x su
h that a+ x = b. Therefore,pa+ px = p(a+ x) = pb = pa+ n:
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htsisSin
e pa is a Dedekind 
ardinal, this implies that px = n, thus p j n as required.( ) This is straightforward. �Theorem 2. If X is a Russell set, p is an odd natural number greater than 1,and X has a p-ary partition, then the set Y obtained from X by the removal (oraddition) of a �nite number n of pairs has a p-ary partition if and only if 2n isdivisible by p. Consequently, if the Russell set X = Si2!Xi (where (Xi)i2! is aRussell sequen
e) has a p-ary partition then the Russell set Y = Si2!;i>0Xi doesnot have su
h a partition.Proof: Immediate from the fa
t that a Russell set is a Dedekind set and fromTheorem 1 and Proposition 1(4). �Corollary 1. Let p be an odd natural number greater than 1. Then the followingholds: If a ZF-model 
ontains a Russell set, then it 
ontains Russell sets with p-arypartitions as well as Russell sets without p-ary partitions.Proof: This follows from Theorem 2 and Proposition 1(1). �Theorem 3. Assume that p is an odd natural number greater than 1. Then theRussell set X = Si2!Xi (where (Xi)i2! is a Russell sequen
e) has a partition Psu
h that 8z 2 P , jzj is an odd multiple of p if and only if X has a p-ary partition.Proof: ( ) This is straightforward.(!) We �rst need the following slight modi�
ation of Lemma 1.Lemma 2. Let R be a partition of the Russell set X = Si2!Xi su
h that forall z 2 R, jzj is an odd natural number greater than 1. Then the set R0 = fz 2R : g � z is inje
tiveg, where for r 2 X we let g(r) = the unique i 2 ! su
h thatr 2 Xi, has a �nite 
omplement in R.Proof: We use the idea from the proof of Lemma 2.4 in [8℄ (Lemma 1 in thispaper). Let R1 = fz 2 R : 9i 2 !;Xi � zg then R1 = R � R0 so the proofwill be 
ompleted by showing that R1 is �nite. Assume that z 2 R1. Then thereis some i 2 ! su
h that Xi � z. Therefore for any other w 2 R1, Xi \ w = ;and hen
e i 2 g[z℄ but i =2 g[w℄. It follows that g[z℄ 6= g[w℄. This shows that thefun
tion h on R1 de�ned by h(z) = g[z℄ for all z 2 R1, is inje
tive. But the rangeof h is a subset of the 
olle
tion of all �nite subsets of ! whi
h is 
ountable. Itfollows that R1 is either �nite or 
ountably in�nite. Suppose that R1 is 
ountablyin�nite. Sin
e every z 2 R1 is odd-sized and jXij = 2 for all i 2 !, it followsthat for every z 2 R1 there is an nz 2 ! su
h that jz \ Xnz j = 1. On this basisand via indu
tion we may de�ne a subsequen
e of (Xi)i2! with a 
hoi
e fun
tion.This 
ontradi
ts the fa
t that X is a Russell set. Therefore, R1 is a �nite set asrequired. �By Lemma 2 the set P0 = fz 2 P : g � z is inje
tiveg has a �nite 
omplementin P . For every z 2 P , let kz be the odd natural number su
h that jzj = kzp. Sin
efor every z 2 P0, g � z is inje
tive and g[z℄ is well ordered (being a subset of !),
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ial partitions of Dedekind- and Russell-sets 111we may e�e
tively de�ne (i.e., using no 
hoi
e prin
iples) a well ordering of z and
onsequently we may de�ne a partition fUz;j : j 2 kzg of z su
h that jUz;j j = pfor all j 2 kz. On the other hand, sin
e P1 = P � P0 is a �nite family of �nitesets, it follows that SP1 is well ordered, hen
e for every z 2 P1 we may similarlyde�ne a p-ary partition fUz;j : j 2 kzg of z. Then U = fUz;j : z 2 P ; j 2 kzg is ap-ary partition of X . This 
ompletes the proof of the theorem. �Corollary 2. Assume that p is an odd natural number greater than 1. If theRussell set X = Si2!Xi (where (Xi)i2! is a Russell sequen
e) has a partition Psu
h that 8z 2 P , jzj is an odd multiple of p then the Russell set Y = Si2!;i>0Xidoes not have su
h a partition.Proof: The result follows from Theorem 3 and from Theorem 2. �3. Partitions of n-Russell sets, n � 3Proposition 2. n-Russell sets are Dedekind sets.Proof: This follows immediately from De�nition 2. �Question 1. Assume that X = Si2! Xi is an n-Russell set where (Xi)i2! isan n-Russell sequen
e and that X has a partition P su
h that 8z 2 P , there isan integer k su
h that k is relatively prime to n and jzj = kp. Is it possible forSi2!;i>0Xi to have su
h a partition?We are able to answer this question for n = 3. For n = 4 the question remainsopen. For n > 4 we have an answer for all p > 4. The remaining 
ases are open.Next we answer Question 1 in the negative for the 
ase n = 3.Theorem 4. Assume(1) X = Si2!Xi is a 3-Russell set where (Xi)i2! is a 3-Russell sequen
e;(2) p is a natural number whi
h is larger than 1 and relatively prime to 3;(3) X has a partition P su
h that 8z 2 P , there is an integer k su
h that kis relatively prime to 3 and jzj = kp.Then X has a p-ary partition.Proof: We �rst prove the following repla
ement for Lemma 2.Lemma 3. Let R be a partition of the 3-Russell set X = Si2!Xi su
h that8z 2 R, there is an integer k su
h that k is relatively prime to 3 and jzj = kp.Then the set R0 = fz 2 R : g � z is inje
tiveg, where g is de�ned as in thestatement of Lemma 2, has a �nite 
omplement in R.Proof: The proof is by 
ontradi
tion. Assume the hypotheses of the lemmaand assume that R1 = fz 2 R : g � z is not inje
tiveg is in�nite. If z 2 R1then 9i 2 ! su
h that jz \ Xij > 1. Therefore we 
an write R1 = R2 [ R3where R2 = fz 2 R : 9i 2 ! su
h that jz \ Xij = 2g and R3 = fz 2 R :9i 2 ! su
h that jz \ Xij = 3g. If R2 is in�nite we get a 
hoi
e fun
tion for thein�nite set fXi : 9z 2 R su
h that jz \Xij = 2g by de�ning F (Xi) = S(Xi n z)



112 H. Herrli
h, P. Howard, E. Ta
htsiswhere z is the unique element of R su
h that jz \Xij = 2. This is not possiblesin
e (Xi)i2! is a 3-Russell sequen
e. It follows that R3 is in�nite. The fun
tionH : R3 ! P�n(!) de�ned by H(z) = fi 2 ! : jz \ Xij = 3g is inje
tive andtherefore R3 is well orderable, say by 4. Further, for ea
h z 2 R3; 9i 2 ! su
hthat jz \Xij = 2 or jz \Xij = 1 (sin
e jzj is not a multiple of 3). It follows thatthe set Z = fXi : i 2 ! and 9z 2 R3 su
h that jz \ Xij = 1 or jz \ Xij = 2g isin�nite. For Xi 2 Z and z su
h that jz \Xij = 1 or jz \Xij = 2, letfz(Xi) = (z \Xi; if jz \Xij = 1Xi n z; if jz \Xij = 2 :We arrive at a 
ontradi
tion by de�ning a 
hoi
e fun
tion for Z by K(Xi) =S fz(Xi) where z is the 4 least element of R3 su
h that jz\Xij = 1 or jz\Xij =2. �By Lemma 3 the set P0 = fz 2 P : g � z is inje
tiveg has a �nite 
omplementin P . For every z 2 P , let kz be the natural number whi
h is relatively prime to3 and is su
h that jzj = kzp. We may �nish o� the proof now as in the proof of(!) of Theorem 3. �Theorem 5. Let p > 1 be a natural number whi
h is relatively prime to 3 andlet V = fVi : i 2 Ig be a p-ary partition of the 3-Russell set X = Sm2!Xm. Lettr : I �! P�n(!), tr(i) = fm 2 ! : Xm \ Vi 6= ;g, i 2 I , be the tra
e map and letJ 
onsist of those i 2 I for whi
h there exist i0; i00 2 I , i; i0; i00 pairwise distin
t,with tr(i) = tr(i0) = tr(i00). Then I � J is �nite.Proof: We follow the ideas of the proof of [8, Lemma 2.4℄. First, by virtue ofLemma 3, we may assume without loss of generality that for every i 2 I if m 2 !is su
h that Vi \ Xm 6= ;, then jVi \ Xmj = 1. Let R = tr[I ℄ be the 
ountablerange of the fun
tion tr (sin
e R � P�n(!) and it is known that, in ZF, P�n(!) is
ountable). Clearly, R = R1 [ R2 [ R3, whereRi = fr 2 R : tr�1(r) has pre
isely i elementsg; i = 1; 2; 3:Let Ji = tr�1(Ri), i = 1; 2; 3. Then I = J1 [ J2 [ J3. The fun
tion tr is inje
tiveon J1 and sin
e R is 
ountable and (Xm)m2! has no subsequen
e with a 
hoi
efun
tion, we may easily 
on
lude that R1, hen
e J1, is a �nite set.Now assume that the set R2 is in�nite. Put J 02 = ftr�1(r) : r 2 R2g. Thenthe fun
tion h : J 02 ! R2 de�ned by h(j) = Sftr(u) : u 2 jg for all j 2 J 02 isinje
tive. Sin
e R2 is 
ountable, J 02 is 
ountable and let J 02 = fjk : k 2 !g be anenumeration of J 02. Put W = fS jk : k 2 !g. Clearly, W is a 
ountable set. Sin
efor ea
h m 2 !, Xm is a 3-element set and for ea
h m 2 ! and ea
h k 2 ! su
hthat Xm \ (S jk) 6= ; we have that jXmn(S jk)j = 1 we may easily de�ne viaindu
tion a subsequen
e of (Xm)m2! with a 
hoi
e fun
tion. But this 
ontradi
tsthe fa
t that X is a 3-Russell set. Therefore, we may 
on
lude that R2 is a �niteset and 
onsequently J 02, hen
e J2 = S J 02 is also a �nite set.
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ial partitions of Dedekind- and Russell-sets 113From the above we dedu
e that J3 is a 
o�nite subset of I . Furthermore, notethat for every i 2 J3, tr(i) has exa
tly p elements, say m1(i) < : : : < mp(i)and there exists a unique pair (i0; i00) of pairwise distin
t elements of J3nfig withtr(i) = tr(i0) = tr(i00). Clearly, for every i 2 J3, Vi[Vi0[Vi00 = Xm1(i)[� � �[Xmp(i).Letting J = J3, the proof of the theorem is 
omplete. �Theorem 6. If p > 1 is a natural number whi
h is relatively prime to 3, then a3-Russell set X has a p-ary partition if and only if jX j is divisible by p.Proof: This 
an be established using the result of Lemma 3 or the result ofTheorem 5 and following the proof of [8, Theorem 2.6 (1), p. 187℄, so we simplyrefer the reader to the latter result in [8℄. �Theorem 7. Assume(1) X = Si2!Xi is a 3-Russell set;(2) p is a natural number whi
h is larger than 1 and relatively prime to 3;(3) X has a partition P su
h that 8z 2 P , there is an integer k su
h that kis relatively prime to 3 and jzj = kp.Then the 3-Russell set Y = Si2!;i>0Xi does not have su
h a partition.Proof: By Theorem 4 we may assume without loss of generality that P is ap-ary partition of X , hen
e by Theorem 6 jX j is divisible by p. If Y has also apartition as in the statement of the Theorem, then again by Theorem 4 Y has ap-ary partition, hen
e by Theorem 6 jY j = pa for some in�nite 
ardinal a. ThenjX j = jY j + 3 = pa+ 3 and sin
e Y is a Dedekind set (being a 3-Russell set), ais a Dedekind 
ardinal. Thus, by Theorem 1, 3 is divisible by p. Sin
e p > 1 this
ontradi
ts our assumption that 3 and p are relatively prime. Therefore, Y hasno su
h partitions and the proof of the theorem is 
omplete. �Corollary 3. Let p > 1 be a natural number whi
h is relatively prime to 3. Thenthe following holds: If a ZF-model 
ontains a 3-Russell set, then it 
ontains 3-Russell sets with p-ary partitions as well as 3-Russell sets without p-ary partitions.We show next that the answer to Question 1 is positive if n and p are bothgreater than or equal to 5.Theorem 8. There is a modelM of ZFA su
h that for all natural numbers n andp both greater than or equal to 5, there is (inM) an n-Russell sequen
e (Xi)i2!with the property that both Si2!Xi and Si2!;i>0Xi have p-ary partitions whi
hare in the model.Proof: We start with a ground model of AC with a 
ountable set A = SfAi[Bi :i 2 !g of atoms su
h that:1. for every i 2 !, Ai is the three element set Ai = fai1; ai2; ai3g and Bi isthe two element set Bi = fbi1; bi2g;2. for all i 2 !, Ai \ Bi = ; and for all i; j 2 !, if i 6= j, then (Ai [ Bi) \(Aj [ Bj) = ;.
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htsisG is the group of permutations of A generated by the 
y
les (ai1; ai2; ai3) and(bi1; bi2), i 2 !. The normal ideal I of supports is the set of all �nite subsets ofA. LetM be the permutation model determined by G and I.Lemma 4. If u and v are any natural numbers and m � 5 is a natural numberthen, inM, 0�[i�uAi1A [0�[j�vBj1Ais an m-Russell set.Proof: The proof depends on whether or not m = 6.Case 1. Assume that m 6= 6. Then m 
an be written in the form m =3r + 2s where r and s are positive natural numbers. Choose su
h an r ands. Let X0 = (Su�i<u+r Ai) [ (Sv�j<v+s Bj) and in general for k 2 !, Xk =(Su+kr�i<u+(k+1)r Ai) [ (Sv+ks�j<v+(k+1)s Bj).Sin
e any union of the Ais and the Bis is in the model with empty supportea
h Xk has empty support. Therefore the sequen
e (Xk)k2! is in M withempty support. It is also 
lear from the de�nition that for k 2 !, jXkj = mand that for k1; k2 2 !, if k1 6= k2 then Xk1 \ Xk2 = ;. Further, fXk :k 2 !g 
an have no in�nite subset with a 
hoi
e fun
tion sin
e for any �-nite support E only �nitely many of the sets Xk meet E and therefore forall but �nitely many of the sets Xk there is a permutation in G whi
h �xesE pointwise (and �xes Xk) but moves every element of Xk. (If A is an in�-nite subfamily of fXk : k 2 !g with a 
hoi
e fun
tion, say f with support E,then let k 2 ! su
h that Xk 2 A and Xk \ E = ;. Let f(Xk) = x. Let = (Qu+kr�i<u+(k+1)r(ai1; ai2; ai3)) � (Qv+ks�j<v+(k+1)s(bj1; bj2)), i.e.,  movesall the elements of Xk but �xes pointwise all the other atoms. Sin
e Xk \E = ;,we have that  �xes E pointwise hen
e  (f) = f . Furthermore sin
e  (Xk) = Xkwe dedu
e that (Xk;  (x)) 2 f . Sin
e x 2 Xk and  moves every element of Xkwe have that  (x) 6= x meaning that f is not a fun
tion, a 
ontradi
tion.) There-fore (Xk)k2! is an m-Russell sequen
e in the modelM. We leave to the readerthe proof that Sk2! Xk = (Si�u Ai) [ (Sj�v Bj).Case 2. Assume that m = 6. The proof pro
eeds as in Case 1 ex
ept thatX0 = Au[Au+1, X1 = Bv[Bv+1[Bv+2, and in generalX2m = Au+2m[Au+2m+1and X2m+1 = Bv+3m [ Bv+3m+1 [ Bv+3m+2. �Now assume that n � 5. By the lemma with m = n, u = 0 and v = 0 we seethat A is an n-Russell set, A = Sk2!Xk where (Xk)k2! is an n-Russell sequen
e.Further by the proof of the lemma X0 has the form X0 = (Si<u0 Ai)[(Sj<v0 Bj)where u0 and v0 are in !. Assume that p � 5. Using the lemma with m = p,u = 0 and v = 0 we get a p-Russell sequen
e (Ya)a2! whose union is A andtherefore we obtain a p-ary partition of A = Sk2!Xk. Using the lemma again
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ial partitions of Dedekind- and Russell-sets 115in a similar way with m = p, u = u0 and v = v0 we get a p-ary partition of(Si�u0 Ai) [ (Sj�v0 Bj) = Sk2!;k>0Xk. �Remark 1. From the proof of Theorem 8 we infer that it is relatively 
onsistentwith ZFA that there exist Dedekind sets X su
h that X as well as sets obtainedby adding 5k, k 2 N, elements to X both have m-ary partitions for every naturalnumber m � 5.Theorem 9. In the model of Theorem 8, for every k > 6, every 5-Russell set hasa k-ary partition.Proof: We begin by noting that every integer greater than 6 
an be written inthe form 2r+3s where r and s are positive integers (as in the proof of Theorem 8,Lemma 4, Case 1). Se
ondly, we note the following easy lemma.Lemma 5. If k is a natural number whi
h 
an be written in the form k = 2r+3swhere r and s are positive integers and X is a set whi
h 
an be written as a
ountable disjoint union X = Si2! Yi where 8i 2 !, jYij = 2 or jYij = 3 and bothof the sets fi 2 ! : jYij = 2g and fi 2 ! : jYij = 3g are in�nite then X has a k-arypartition.The theorem will now follow as soon as we proveLemma 6. In the modelM of Theorem 8 every 5-Russell set 
an be written asa 
ountable disjoint union X = Si2! Yi where 8i 2 !, jYij = 2 or jYij = 3 andboth of the sets fi 2 ! : jYij = 2g and fi 2 ! : jYij = 3g are in�nite.Proof: We shall use the notation given in the proof of Theorem 8 for the atomsof M and, as in Theorem 8, G will denote the group of permutations used to
onstru
tM. In addition, for any �nite set E of atoms �xG(E) or simply �x(E)denotes the subgroup f� 2 G : 8a 2 E; �(a) = ag. Finally, for any subgroup Hof G and any element t of M we let OrbH(t) denote the H orbit of t, that is,OrbH(t) = f�(t) : � 2 Hg. For the proof of the lemma we �rst make the following
laimClaim 1. For any t inM and any �nite subset E of the atoms A, jOrb�x(E)(t)j =2i3j where i and j are natural numbers.Proof: Assume that t 2 M and that E � A is �nite. Choose a �nite subset Fof A so that F is a support of t and(2) 8i 2 !; (Ai � F or Ai \ F = ;) and (Bi � F or Bi \ F = ;):For � 2 �x(E) let �F be the fun
tion that agrees with � on F and is equal tothe identity fun
tion outside of F . By (2) �F 2 �x(E) and it is also the 
asethat �F (t) = �(t) sin
e �F and � agree on a support of t. Therefore if we letH = f�F : � 2 �x(E)g, OrbH(t) = Orb�x(E)(t). Let K = f 2 H :  (t) = tgthen the following fa
ts are easy to verify.1. The set of pairs f(�K; �(t)) : � 2 Hg is a one to one fun
tion from thequotient group H=K onto OrbH(t).
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htsis2. jH j = 2
13
2 where 
1 and 
2 are in !. (
1 is the number of sets Bi
ontained in F whi
h do not meet E and similarly 
2 is the number ofsets Ai 
ontained in F whi
h do not meet E.)3. It follows from item 3 that the 
ardinality of the quotient group H=K is2d13d2 where d1 and d2 are in !.Using items 3 and 3 we 
on
lude that jOrb�x(E)(t)j = jOrbH(t)j = jH=Kj =2d13d2 . �Now let X be a 5-Russell set inM and say that X is the disjoint union of a
ountable set of 5 element sets, X = Si2! Xj where the sequen
e (Xj)j2! is inMand has support E. Then for ea
h j 2 !, every � in �x(E) �xes Xj and therefore8t 2 Xj , �(t) 2 Xj . We therefore have that for all t 2 Xj , Orb�x(E)(t) � Xj .From this we 
on
lude that the �xE orbits of elements of Xj form a partition ofXj ea
h element of whi
h has support E. By the 
laim and the fa
t that jXj j = 5we 
on
lude that ea
h of the �xE orbits of an element of Xj has size 1, 2 or 3. Bytaking unions of orbits if ne
essary this gives us a partition of Xj into two sets,Pj of size 2 and Qj of size 3 both with support E.We 
an write X as a 
ountable disjoint union X = Si2! Yi as required byLemma 6 by letting Y2i = Pi and Y2i+1 = Qi for all i 2 !. �The proof of the theorem is now 
omplete. �A

ording to Proposition 1, if n is an odd natural number, then a Russell sethas an n-ary partition if and only if jX j is divisible by n (and we note that forevery set X , if jX j is divisible by n, then X has an n-ary partition) and a

ordingto Theorem 6, if p > 1 is a natural number whi
h is relatively prime to 3, then a3-Russell set X has a p-ary partition if and only if jX j is divisible by p. However,the situation with n-Russell sets, n � 5, is strikingly di�erent as shown by thesubsequent theorem.Theorem 10. There is a modelM of ZFA and a set A inM su
h that for everynatural number n � 5, A is an n-Russell set, hen
e has an n-ary partition, butfor every natural number p � 2, jAj is not divisible by p.Proof: LetM be the permutation model de�ned in the proof of Theorem 8 andlet A be its set of atoms. From Lemma 4 of the proof of Theorem 8 we obtain thatA is an n-Russell set for every natural number n � 5. So in order to 
ompletethe proof we need to show that jAj is not divisible by p for every natural numberp � 2. To this end, �x an integer p � 2 and, toward a proof by 
ontradi
tion,assume that jAj is divisible by p and let fU1; U2; : : : ; Upg be a partition of A intop pairwise equipollent in�nite sets. Let f be a bije
tion inM from U1 to U2 andlet E be a support of f . Sin
e A is a 5-Russell set, it is not hard to verify thatevery in�nite subset Y of A must satisfy that QY = fn 2 ! : 0 < jY \Anj < 3g is�nite and RY = fn 2 ! : 0 < jY \Bnj < 2g is �nite and for all n 2 !�(QY [RY ),either An � Y or Bn � Y or both, i.e., Xn � Y where for n 2 !, Xn = An [Bn.(For example, if QY is in�nite, let Y � = [fY \ An : n 2 QY g and let E be



On spe
ial partitions of Dedekind- and Russell-sets 117a support for Y �. Sin
e QY is in�nite, let n 2 QY be su
h that E \ An = ;.Let x 2 An � Y �, y 2 Y \ An and let z be the third element of An. Then thepermutation  = (y; x; z) ( moves only the atoms x; y; z) �xes E pointwise hen
eit �xes Y �. However, x =  (y) =2 Y �, a 
ontradi
tion. Similarly, one shows thatRY is a �nite set.)Now let n0 = maxfn 2 ! : E \ Xn 6= ;g. In view of the above observations,there exists a natural number n > n0 su
h that An � U1 or Bn � U1 or Xn � U1.Without loss of generality assume that An = fan1; an2; an3g � U1. Suppose thatf(an1) = u for some u 2 U2. Sin
e U1\U2 = ;, we have that u =2 U1, hen
e u =2 An.We may 
onsider now the permutation  to be the 3-
y
le (an1; an2; an3), i.e.,  moves only anj , j = 1; 2; 3, and �xes all the other atoms. Then  �xesE pointwise,hen
e it �xes the fun
tion f (not ne
essarily pointwise). Sin
e  (an1) = an2, (u) = u, and  (f) = f , we may 
on
lude that f(an2) = u meaning that f is notinje
tive. This 
ontradi
ts our assumption on f . Therefore, jAj is not divisibleby p as required.This 
ompletes the proof of the theorem. �From Proposition 1 we see that it is provable in ZF that no Russell set 
an bea p-Russell set, where p is an odd natural number, and vi
e versa. That is, forevery odd natural number p, a p-Russell set 
annot be a Russell set.On the other hand, every Russell set is easily seen to be a 2n-Russell set forevery natural number n � 1. However, the reverse impli
ation may fail to be true.In fa
t, in [5, Theorem 3℄ we have shown that for every natural number n � 3,it is relatively 
onsistent with ZFA that there exists an n-Russell set whi
h is nota Russell set. (However, there were Russell sets in ea
h of these models; see [5,Remark 4℄). Yet, even more may be true. In parti
ular, for every natural numbern � 3 it is relatively 
onsistent with ZFA that there is an n-Russell set and thereare no Russell sets at all. We prove this in the next theorem.Theorem 11. Let n be a natural number su
h that n � 3. Then there is a modelof ZFA whi
h has an n-Russell set but has no Russell sets.Proof: We 
onsider two 
ases.Case 1. n = 3 or n � 5. We start with a ground model of AC with a 
ountableset A = [fAi : i 2 !g of atoms su
h that:1. for every i 2 !, Ai = fai1; ai2; : : : ; aing (hen
e 8i 2 !, jAij = n);2. for all i; j 2 !, if i 6= j, then Ai \ Aj = ;.The group G of permutations of A is the set of all permutations � su
h that forevery i 2 !, � � Ai is an even permutation of Ai. The normal ideal I of supportsis the set of all �nite subsets of A. Let N be the permutation model determinedby G and I.First we note that the family A = fAi : i 2 !g does not have a partial 
hoi
efun
tion in N . Assume the 
ontrary and let B be an in�nite subfamily of Ahaving a 
hoi
e fun
tion f 2 N with support E. Sin
e E is �nite, we may �x an
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htsisi 2 ! su
h that Ai 2 B and Ai \E = ;. Without loss of generality assume that f
hooses ai1 from the set Ai. Consider the permutation � whi
h is the identity onAj , for all j 2 !�fig, and � � Ai = (ai1; ai2)(ai3; ai4). Then � �xes E pointwise,hen
e �(f) = f . It follows that (i; ai2) 2 f , meaning that f is not a fun
tion, a
ontradi
tion. Therefore, A 
annot have a partial 
hoi
e fun
tion in N and theset A of atoms is an n-Russell set in N .We show now that the model N does not admit any Russell sets. Assume the
ontrary and let X = Si2!Xi 2 N be a Russell set. Let E = A0 [A1 [ � � � [Ak,for some k 2 !, be a support of Xi for ea
h i 2 !. We will prove that for everyi 2 ! and for every element x 2 Xi, E is a support of x. This will give us thatX is a well orderable set in N , hen
e we shall obtain a 
ontradi
tion to the fa
tthat X is a Russell set.To this end, assume that there exists an i 2 !, an element x 2 Xi and apermutation  su
h that  �xes E pointwise but  (x) 6= x. Let Ex be a supportof x. Sin
e E does not support x, we may assume without loss of generality thatEx = E [ Ak+1 and that  �xes A � Ak+1 pointwise. Let G be the subgroupof G 
onsisting of all permutations in G whi
h �x A � Ak+1 pointwise. ThenG is homeomorphi
 to the group of even permutations of Ak+1. Let H = f� 2G : �(x) = xg. Then H is a subgroup of G. Furthermore, we 
laim that H isa normal subgroup of G. To prove our assertion we need to show that for all� 2 G, �H = H�. To this end, �x a permutation � 2 G. If � 2 H , then for all� 2 H , �� = (����1)� and sin
e H is a group we have that ����1 2 H , hen
e�H � H� and similarly H� � �H . So we may assume that � 2 G � H . LetXi = fx; yg. Then �(x) = y (sin
e � =2 H) and �(y) = x. Therefore, ��1(x) isalso equal to y. Fix a permutation � 2 H . Then �(x) = x, hen
e �(y) = y. Now,we have that ����1(x) = ��(y) = �(y) = x. Thus, ����1 2 H and 
onsequently�� = (����1)� 2 H� meaning that �H � H�. Similarly, we may prove thatH� � �H , and so H is a normal subgroup of G.From group theory we know (see [2℄) that for n = 3 or for n � 5 the group ofeven permutations on n elements has no normal subgroups other than the wholegroup and the trivial one, namely fidg where id is the identity mapping. Sin
eH 6= G (for  2 G�H ; see above for the properties of  ) we infer that H = fidg.It follows that 8� 2 G�H , 8� 2 G�H , if � 6= �, then �(x) = �(x) (= y). NowG has at least 3 elements (sin
e jGj = n!2 � 3 sin
e either n = 3 or n � 5) so ithas at least two distin
t elements � and � su
h that �; � =2 H . Then ��1�(x) = x,so ��1� 2 H , hen
e � = �, a 
ontradi
tion.From the above we 
on
lude that whenever a permutation � �xes E pointwise,then � �xes X pointwise, hen
e X is well orderable 
ontradi
ting the fa
t thatX is a Russell set. Therefore, the model N does not have any Russell sets asrequired.Case 2. n = 4. The suitable Fraenkel-Mostowski model N is de�ned as in
ases n = 3 or n � 5. We show that N has no Russell sets. Assume the 
ontraryand let X = Si2!Xi be a Russell set in the model N . Let E, x 2 Xi, Ex,  , G,



On spe
ial partitions of Dedekind- and Russell-sets 119and H be as in 
ases n = 3 or n � 5. Sin
e G is homeomorphi
 to the group ofeven permutations of Ak+1 and jAk+1j = 4, it follows that jGj = 12. Furthermore,sin
e Xi is a two-element set and  (x) 6= x, it is easy to see that the index ofH in G is 2. Thus, jH j = 6. But this 
ontradi
ts the fa
t that the group ofeven permutations on 4 obje
ts does not have any subgroup of 
ardinality 6 (see[2℄). Therefore, any permutation whi
h �xes E pointwise also �xes X pointwisemeaning that X is well-orderable. This 
ontradi
ts the fa
t that X is a Russellset and 
ompletes the proof of Case 2 and of the theorem. �4. Partitions of generalized Russell setsDe�nition 4. A generalized Russell set is a set X whi
h 
an be written asX = Si2I Xi where1. for ea
h i 2 I , jXij = 2;2. I is in�nite;3. for i and j in I , if i 6= j then Xi \Xj = ;;4. no in�nite subset of fXi j i 2 Ig has a 
hoi
e fun
tion.A generalized Russell 
ardinal is the 
ardinal number of a generalized Russellset.Proposition 3. Generalized Russell sets are Dedekind sets.Proof: This follows immediately from De�nition 4. �In Theorem 2 we showed that if a is a Russell 
ardinal whi
h has a 3-arypartition, then the Russell 
ardinal a + 2 fails to have one. It is natural to askwhether this holds also for generalized Russell 
ardinals or Dedekind 
ardinalsin general. We show next that it is relatively 
onsistent with ZFA that thereexists a generalized Russell 
ardinal a, hen
e a Dedekind 
ardinal a, su
h that a,a+ 1 and a+ 2 all have 3-ary partitions. Moreover, we prove that the existen
eof a generalized Russell set X = Si2I Xi su
h that jX j < jI j is 
onsistent withZFA. Note that in view of [4℄ this 
annot happen for Russell sets (
onsidered asgeneralized Russell sets by rearranging its elements into pairs).Theorem 12. There exists a model of ZFA in whi
h there is a generalized Russellset X = Si2I Xi, hen
e a Dedekind set X , su
h that jX j < jI j and su
h that jX j,jX j+ 1 and jX j+ 2 all have ternary partitions.Proof: We shall use the Fraenkel-Mostowski permutation model de�ned in theproof of [1, Theorem 3.1℄. Similarly to the observation by the authors in [1℄ (see[1, Se
tion 2℄) the result 
an be transferred to ZF using the Je
h-So
hor theoremwhi
h provides embeddings of arbitrary long initial segments of ZFA models intoZF models. Thus, we also obtain 
onsisten
y with ZF.The atoms are identi�ed (for simpli
ity's sake) with the elements of 2<!, i.e.,with �nite non-empty sequen
es of 0s and 1s. Let A be the set of the atoms. Wemay view A as two in�nite binary trees, the one having h0i as its root and the
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htsisother having h1i as its root. The set A is partially ordered by the extension ofsequen
es, i.e., for t; s 2 A, t � s if and only if t is an initial segment of s. LetG be the group of all order automorphisms of (A;�), i.e., if t 2 A and � 2 G,then t and �(t) have the same length and if s 2 A and t � s, then �(t) � �(s).The normal ideal of supports is the set of all �nite subsets of A. Let N be theresulting permutation model.For ea
h t 2 A, let Pt = ft̂ 0; t̂ 1g, where t̂ 0 is the sequen
e t with 0 adjoinedas a last element and similarly for t̂ 1. Put P = fPt : t 2 Ag [ ffh0i; h1iggwhere h0i and h1i are the sequen
es of length 1, i.e. the two roots. Then P is a
olle
tion of 2-element sets whi
h belongs to the model sin
e it has empty support,i.e., every permutation in G �xes P . Furthermore, the family P has no partial
hoi
e fun
tion in the model N . To see this, assume on the 
ontrary that P has anin�nite subset P 0 with a 
hoi
e fun
tion, say f , and let E be a support for f . Sin
eP 0 is in�nite, there is an element t 2 A�E su
h that t is not the initial segmentof any element of E and Pt = ft̂ 0; t̂ 1g 2 P 0. Consider a permutation  2 Gwhi
h �xes E pointwise but inter
hanges the elements of Pt. Sin
e E is a supportof f we have that  (f) = f . However, (Pt; f(Pt)) 2 f ! (Pt;  (f(Pt))) 2 f and (f(Pt)) 6= f(Pt), a 
ontradi
tion. Therefore, P has no in�nite subfamily witha 
hoi
e fun
tion and 
onsequently A = SP is a generalized Russell set in themodel N .Furthermore, jAj � jP j in N sin
e the fun
tion f : A! P de�ned by f(t) = Ptfor all t 2 A, is inje
tive and belongs to the model sin
e it has empty support.We assert that there is no inje
tive fun
tion g : P ! A in N . Assume the
ontrary and let g be su
h a fun
tion with support E. For ea
h t 2 A we denotethe length of (the sequen
e indexing) t by ln(t) and we note(3) 8n 2 !, n > 0, 8t 2 A su
h that ln(t) � n, 9� 2 G whi
h �xes the setfs 2 A : ln(s) < ng pointwise and su
h that �(t) 6= t.Choose an n0 2 ! su
h that n0 > 0 and 8t 2 E, ln(t) < n0. We make twoassertions about g.Lemma 7. (1) ln(g(fh0i; h1ig)) < n0.(2) 8t 2 A, if ln(t) < n0 then ln(g(Pt)) < n0.Proof: We prove part 2. The proof of 1 is similar and is left to the reader.Assume t 2 A, that ln(t) < n0 and, toward a proof by 
ontradi
tion, thatln(g(Pt)) � n0. By equation (3) there is a � 2 G su
h that �(s) = s for alls 2 A with ln(s) < n0 and su
h that �(g(Pt)) 6= g(Pt). Sin
e ln(t) < n0, �(t) = t.Sin
e the fun
tion r 7! Pr is in the model with empty support we may also 
on-
lude that �(Pt) = Pt. By our 
hoi
e of n0, � also �xes E pointwise and therefore�xes g. This is a 
ontradi
tion sin
e if � �xes g and Pt it must �x g(Pt). �By the lemma g restri
ted to the set ffh0i; h1igg [ fPt : ln(t) < n0g has rangein
luded in the set ft : ln(t) < n0g. Sin
e the �rst of these two sets has one more
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ond we arrive at the 
ontradi
tion that g is not inje
tive.Therefore, jAj < jP j in the model N .For the se
ond assertion of the theorem, we see that due to the de�nitionof the group G of permutations of the set A of atoms, P = fft; t̂ 0; t̂ 1g : t 2A and ln(t) is oddg is a 3-ary partition of A whi
h lives in the model sin
e everypermutation in G �xes (not pointwise) the family P . Now if we dis
ard from Athe two roots, namely h0i and h1i, we obtain again a generalized Russell set whi
h,similarly to the 
ase of A, also has a ternary partition, namely Q = fft; t̂ 0; t̂ 1g :t 2 A and ln(t) is eveng. If we dis
ard from A one of the two roots, then againwe easily see that the resulting Dedekind set also has a ternary partition. This
ompletes the proof of the theorem. �Remark 2. In [1, Theorem 3.1℄ it is shown that it is 
onsistent with ZF that thereexists a Dedekind set X su
h that for all natural numbers n, the set Y obtainedfrom X by removing (or adding) n elements from X has a ternary partition.Theorem 12 above also yields the result of Theorem 3.1 in [1℄. However, sin
e italso establishes the existen
e (in some model of ZF) of a generalized Russell setX = Si2I Xi su
h that jX j < jI j, the result of Theorem 12 is stronger.Theorem 13. There is a model of ZFA in whi
h there exists a generalized Russellset A su
h that A has a 3-ary partition but jAj is not divisible by 3.Proof: Let N be the permutation model de�ned in the proof of Theorem 12 andlet A be its set of atoms. A

ording to the latter proof, A is a generalized Russellset whi
h has a 3-ary partition in N . Hen
e, we only need to show that jAj is notdivisible by 3. Assume the 
ontrary and let P = fP1; P2; P3g be a partition of A
onsisting of in�nite pairwise equipollent sets. Let f1;2 : P1 ! P2 be a bije
tionin the model with support E and let n0 = maxfln(t) : t 2 Eg. Without loss ofgenerality we may assume that E 
ontains all atoms of length less than or equalto n0 (therefore E 
ontains both roots h0i and h1i).Let a = t̂ 0 2 P1, t 2 A, with length m > n0, i.e. a =2 E, and supposethat a belongs to the subtree having h0i as its root. By the fa
t that E isa support of the fun
tion f1;2 and by the de�nition of the group G we may
on
lude that b = t̂ 1 2 P1 = Dom(f1;2). (Let  2 �x(E) su
h that  swaps aand b. Then  (f1;2) = f1;2 and (a; f1;2(a)) 2 f1;2 ! (b;  (f1;2(a))) 2 f1;2, hen
eb 2 Dom(f1;2)). Let f1;2(a) = 
. Then 
 6= a; b sin
e 
 2 P2, a; b 2 P1 andP1 \ P2 = ;. We ne
essarily have that either a or b is a proper initial segment of
. Otherwise, 
onsidering the permutation  whi
h �xes E pointwise, swaps theatoms a and b and �xes pointwise all the bran
hes whi
h 
ontain neither a nor b,we obtain that  (
) = 
 and  (f1;2) = f1;2 hen
e f1;2(a) = f1;2(b) = 
 meaningthat f1;2 is not inje
tive, a 
ontradi
tion. Without loss of generality assume that
 = r 0̂ for some atom r.1. If a is an initial segment of 
, then 
onsider a permutation  2 G whi
hswaps 
 and d = r^1 and moves only 
; d and their des
endants. Then 2 �x(E), hen
e  (f1;2) = f1;2, and  (a) = a. But then (a; 
) 2 f1;2 !
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htsis (a; 
) 2  (f1;2) ! (a; d) 2 f1;2 meaning that f1;2 is not a fun
tion,a 
ontradi
tion.2. If b is an initial segment of 
, then a is neither a des
endant of 
 nor of d.Working exa
tly as in (1) we arrive at a 
ontradi
tion.Therefore, jAj is not divisible by 3 in N and the proof of the theorem is
omplete. �A
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