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Sympleti Killing spinorsSvatopluk Kr�yslAbstrat. Let (M;!) be a sympleti manifold admitting a metapleti struture(a sympleti analogue of the Riemannian spin struture) and a torsion-freesympleti onnetion r. Sympleti Killing spinor �elds for this struture aresetions of the sympleti spinor bundle satisfying a ertain �rst order partialdi�erential equation and they are the main objet of this paper. We derive aneessary ondition whih has to be satis�ed by a sympleti Killing spinor �eld.Using this ondition one may easily ompute the sympleti Killing spinor �eldsfor the standard sympleti vetor spaes and the round sphere S2 equippedwith the volume form of the round metri.Keywords: Fedosov manifolds, sympleti spinors, sympleti Killing spinors,sympleti Dira operators, Segal-Shale-Weil representationClassi�ation: 58J60, 53C071. IntrodutionIn this artile we shall study the so alled sympleti Killing spinor �elds onFedosov manifolds admitting a metapleti struture. A Fedosov manifold is astruture onsisting of a sympleti manifold (M2l; !) and the so alled Fedosovonnetion on (M;!). A Fedosov onnetion r is an aÆne onnetion on (M;!)suh that it is sympleti, i.e., r! = 0, and torsion-free. Let us notie that inontrary to the Riemannian geometry, a Fedosov onnetion is not unique. Thus,it seems natural to add the Fedosov onnetion into the studied struture andobtain the notion of a Fedosov manifold. See, e.g., Tondeur [13℄ for symple-ti onnetions for presympleti strutures and Gelfand, Retakh, Shubin [3℄ forFedosov onnetions.It is known that if l > 1, the urvature tensor of a Fedosov onnetion deom-poses into two invariant parts, namely into the so alled sympleti Rii urvatureand sympleti Weyl urvature tensor �elds. If l = 1, only the sympleti Riiurvature ours. See Vaisman [14℄ for details.In order to de�ne a sympleti Killing spinor �eld, we shall briey desribe theso alled metapleti strutures with help of whih these �elds are de�ned. Anysympleti group Sp(2l;R) admits a non-trivial, i.e., onneted, two-fold overing,The author of this artile was supported by the grant GA�CR 306-33/80397 of the GrantAgeny of the Czeh Republi. The work is a part of the researh projet MSM0021620839�naned by M�SMT �CR.



20 S. Kr�yslthe so alled metapleti group, denoted by Mp(2l;R) in this paper. A metapletistruture over a sympleti manifold is a sympleti analogue of the Riemannianspin struture. In partiular, one of its parts is a prinipal Mp(2l;R)-bundlewhih overs twie the bundle of sympleti frame of (M2l; !). Let us denote thisprinipal Mp(2l;R)-bundle by q : Q !M .Now, let us say a few words about the sympleti spinor �elds. These �eldsare setions of the so alled sympleti spinor bundle S !M . This vetor bundleis the bundle assoiated to the prinipal Mp(2l;R)-bundle q : Q ! M via the soalled Segal-Shale-Weil representation. The Segal-Shale-Weil representation is adistinguished representation of the metapleti group and plays a similar role inthe quantization of boson partiles as the spinor representations of spin groupsplay in the quantization of fermions. See, e.g., Shale [12℄. The Segal-Shale-Weilrepresentation is unitary and does not desend to a representation of the sym-pleti group. The vetor spae of the underlying Harish-Chandra (g;K)-moduleof the Segal-Shale-Weil representation is isomorphi to S�(Rl ), the symmetripower of a Lagrangian subspae Rl of the sympleti vetor spae R2l . Thus, thesituation is parallel to the omplex orthogonal ase, where the spinor representa-tion an be realized on the exterior power of a maximal isotropi subspae. TheSegal-Shale-Weil representation and some of its analyti versions are sometimesalled osillatory representation, metapleti representation or sympleti spinorrepresentation. For a detailed explanation of the last name, see, e.g., Kostant [8℄.The sympleti Killing spinor �eld is a non-zero setion of the sympleti spinorbundle S !M satisfying ertain linear �rst order partial di�erential equation for-mulated by the onnetion rS : �(M;S)��(M;TM)! �(M;S), the assoiatedonnetion to the Fedosov onnetion r. This partial di�erential equation is asympleti analogue of the lassial sympleti Killing spinor equation from atleast two aspets. One of them is rather formal. Namely, the de�ning equationfor a sympleti Killing spinor is of the \same shape" as that one for a Killingspinor �eld on a Riemannian spin manifold. The seond similarity an be ex-pressed by omparing this equation with the so alled sympleti Dira equationand the sympleti twistor equation and will be disussed below in this paper. Letus mention that any sympleti Killing spinor �eld determines a unique omplexnumber, the so alled sympleti Killing spinor number. Let us notie that thesympleti Killing spinor �elds were onsidered already in a onnetion with theexistene of a linear embedding of the spetrum of the so alled sympleti Diraoperator into the spetrum of the so alled sympleti Rarita-Shwinger operator.The sympleti Killing spinor �elds represent an obstrution for the mentionedembedding. See Kr�ysl [10℄ for this aspet.In many partiular ases, the equation for sympleti Killing spinor �elds seemsto be rather ompliated. On the other hand, in many ases it is known that itssolutions are rare. Therefore it is reasonable to look for a neessary onditionsatis�ed by a sympleti Killing spinor �eld whih is simpler than the de�ningequation itself. Let us notie that similar neessary onditions are known and



Sympleti Killing spinors 21parallel methods were used in Riemannian or Lorentzian spin geometry. See, e.g.,Friedrih [2℄.In this paper, we shall prove that any sympleti Killing spinor �eld neessarilysatis�es ertain zeroth order di�erential equation. More preisely, we prove thatany sympleti Killing spinor is neessarily a setion of the kernel of a sympletispinor bundle morphism. We derive this equation by prolongating the sympletiKilling spinor equation. We make suh a prolongation that enables us to omparethe result with an appropriate part of the urvature tensor of the assoiatedonnetion rS ating on sympleti spinors. An expliit formula for this part ofthe urvature ation was already derived in Kr�ysl [11℄. Espeially, it is knownthat the sympleti Weyl urvature of r does not show up in this part and thus,the mentioned morphism depends on the sympleti Rii part of the urvatureof the Fedosov onnetion r only. This will make us able to prove that theonly sympleti Killing number of a Fedosov manifold of Weyl type is zero. Thiswill in turn imply that any sympleti Killing spinor on the standard sympletivetor spae of an arbitrary �nite dimension and equipped with the standard atonnetion is onstant. This result an be obtained easily when one knows theprolongated equation, whereas omputing the sympleti Killing spinors withoutthis knowledge is rather ompliated. This fat will be illustrated when we willompute the sympleti Killing spinors on the standard sympleti 2-plane usingjust the de�ning equation for sympleti Killing spinor �eld.The ases when the prolongated equation does not help so easily as in the aseof the Weyl type Fedosov manifolds are the Rii type ones. Nevertheless, weprove that there are no sympleti Killing spinors on the 2-sphere, equipped withthe volume form of the round metri as the sympleti form and the Riemann-ian onnetion as the Fedosov onnetion. Let us remark that in this ase, theprolongated equation has a shape of a stationary Shr�odinger equation. More pre-isely, it has the shape of the equation for the eigenvalues of ertain osillator-likequantum Hamiltonian determined ompletely by the sympleti Rii urvaturetensor of the Fedosov onnetion.Let us notie that there are some appliations of sympleti spinors in physisbesides those in the mentioned artile of Shale [12℄. For an appliation in stringtheory physis, see, e.g., Green, Hull [4℄.In the seond setion, some neessary notions from sympleti linear algebraand representation theory of redutive Lie groups are explained and the Segal-Shale-Weil representation and the sympleti Cli�ord multipliation are intro-dued. In the third setion, the Fedosov onnetions are introdued and someproperties of their urvature tensors ating on sympleti spinor �elds are sum-marized. In the fourth setion, the sympleti Killing spinors are de�ned andsympleti Killing spinors on the standard sympleti 2-plane are omputed. Inthis setion, a onnetion of the sympleti Killing spinor �elds to the eigen-funtions of sympleti Dira and sympleti twistor operators is formulated andproved. Further, the mentioned prolongation of the sympleti Killing spinor



22 S. Kr�yslequation is derived and the sympleti Killing spinor �elds on the standard sym-pleti vetor spaes are omputed. At the end, the ase of the round sphere S2is treated.2. Sympleti spinors and sympleti spinor valued formsLet us start realling some notions from sympleti linear algebra. Let usmention that we shall often use the Einstein summation onvention without men-tioning it expliitly. Let (V; !0) be a sympleti vetor spae of dimension 2l,i.e., !0 is a non-degenerate anti-symmetri bilinear form on the vetor spae Vof dimension 2l. Let L and L0 be two Lagrangian subspaes1 of (V; !0) suh thatL � L0 = V. Let feig2li=1 be an adapted sympleti basis of (V = L � L0 ; !0),i.e., feig2li=1 is a sympleti basis and feigli=1 � L and feig2li=l+1 � L0 . Beausethe de�nition of a sympleti basis is not unique, we shall �x one whih we shalluse in this text. A basis feig2li=1 of (V; !0) is alled sympleti, if !0(ei; ej) = 1i� 1 � i � l and j = l + i; !0(ei; ej) = �1 i� l + 1 � i � 2l and j = i � land !0(ei; ej) = 0 in the remaining ases. Whenever a sympleti basis will behosen, we will denote the basis of V� dual to feig2li=1 by f�ig2li=1. Further fori; j = 1; : : : ; 2l, we set !ij := !0(ei; ej) and similarly for other type of tensors.For i; j = 1; : : : ; 2l, we de�ne !ij by the equation P2lk=1 !ik!jk = Æij .As in the orthogonal ase, we would like to rise and lower indies. Beausethe sympleti form !0 is antisymmetri, we should be more areful in this ase.For oordinates Kab::::::drs:::t:::u of a tensor K over V, we denote the expression!iKab::::::drs:::t by Kab:::i:::drs:::t and Kab:::rs:::t:::u!ti by Kab:::rs:::i:::u and sim-ilarly for other types of tensors and also in a geometri setting when we will beonsidering tensor �elds over a sympleti manifold (M;!).Let us denote the sympleti group Sp(V; !0) of (V; !0) by G. Beause themaximal ompat subgroup of G is isomorphi to the unitary group U(l) whihis of homotopy type Z, we have �1(G) ' Z. From the theory of overing spaes,we know that there exists up to an isomorphism a unique onneted double overof G. This double over is the so alled metapleti group Mp(V; !0) and will bedenoted by ~G in this text. We shall denote the overing homomorphism by �,i.e., � : ~G ! G is a �xed member of the isomorphism lass of all onneted 2:1overings.Now, let us reall some notions from representation theory of redutive Liegroups whih we shall need in this paper. Let us mention that these notions arerather of tehnial harater for the purpose of our artile. For a redutive Liegroup G in the sense of Vogan [15℄, let R(G) be the ategory the objet of whihare omplete, loally onvex, Hausdor� vetor spaes with a ontinuous ation ofG whih is admissible and of �nite length; the morphisms are ontinuous linearG-equivariant maps between the objets. Let us notie that, e.g., �nite oversof the lassial groups are redutive. It is known that any irreduible unitaryrepresentation of a redutive group is in R(G). Let g be the Lie algebra of G1i.e., maximal isotropi with respet to !0, in partiular dimL = dimL0 = l



Sympleti Killing spinors 23and K be a maximal ompat subgroup of G. It is well known that there existsthe so alled L2-globalization funtor, denoted by L2 here, from the ategoryof admissible Harish-Chandra modules to the ategory R(G). See Vogan [15℄for details. Let us notie that this funtor behaves ompatibly with respet toHilbert tensor produts. See, e.g., Vogan [15℄ again. For an objet E in R(G),let us denote its underlying Harish-Chandra (g;K)-module by E and when wewill be onsidering only its gC -module struture, we shall denote it by E . If gChappens to be a simple omplex Lie algebra of rank l, let us denote its Cartansubalgebra by hC . The set � of roots for (gC ; hC ) is then uniquely determined.Further let us hoose a set �+ � � of positive roots and denote the orrespondingset of fundamental weights by f$igli=1. For � 2 hC , let us denote the irreduiblehighest weight module with the highest weight � by L(�).Let us denote by U(W) the group of unitary operators on a Hilbert spaeW and let L : Mp(V; !0) ! U(L2(L)) be the Segal-Shale-Weil representation ofthe metapleti group. It is an in�nite dimensional unitary representation of themetapleti group on the omplex valued square Lebesgue integrable funtionsde�ned on the Lagrangian subspae L. This representation does not desendto a representation of the sympleti group Sp(V; !0). See, e.g., Weil [16℄ andKashiwara, Vergne [7℄. For onveniene, let us set S := L2(L) and all it thesympleti spinor module and its elements sympleti spinors. It is well knownthat as a ~G-module, S deomposes into the diret sum S = S+ � S� of twoirreduible submodules. The submodule S+ (S�) onsists of even (odd) funtionsin L2(L). Further, let us notie that in Kr�ysl [9℄, a slightly di�erent analytiversion (based on the so alled minimal globalizations) of this representation wasused.As in the orthogonal ase, we may multiply spinors by vetors. The multipli-ation : : V � S ! S will be alled sympleti Cli�ord multipliation and it isde�ned as follows. For f 2 S and i = 1; : : : ; l, we set(ei:f)(x) := {xif(x);(el+i:f)(x) := �f�xi (x); x 2 Land extend it linearly to get the sympleti Cli�ord multipliation. The sympletiCli�ord multipliation (by a �xed vetor) has to be understood as an unboundedoperator on L2(L). See Habermann, Habermann [6℄ for details. Let us alsonotie that the sympleti Cli�ord multipliation orresponds to the so alledHeisenberg anonial quantization known from quantum mehanis. (For brevity,we shall write v:w:s, instead of v:(w:s), v; w 2 V and s 2 S.)It is easy to hek that the sympleti Cli�ord multipliation satis�es the re-lation desribed in the followingLemma 1. For v; w 2 V and s 2 S, we havev:(w:s) � w:(v:s) = �{!0(v; w)s:



24 S. Kr�yslProof: See Habermann, Habermann [6℄. �Let us onsider the representation� : ~G! Aut( �̂ V� 
 S)of the metapleti group ~G on V� V� 
 S given by�(g)(�
 s) := ��^r(g)�
 L(g)s;where r = 0; : : : ; 2l, � 2 Vr V�, s 2 S and ��^r denotes the rth wedge power ofthe representation �� dual to �, and extended linearly. For de�niteness, let usonsider the vetor spae V� V� 
 S equipped with the topology of the Hilberttensor produt. Beause the L2-globalization funtor behaves ompatibly withrespet to the Hilbert tensor produts, one an easily see that the representation� belongs to the lass R( ~G).In the next theorem, the spae o sympleti valued exterior two-forms is de-omposed into irreduible summands.Theorem 2. For 12 dim(V) = l > 2, the following isomorphism2̂ V� 
 S� ' E20� �E21� � E22�holds. For j2 = 0; 1; 2, the E2j2 are uniquely determined by the onditions that�rst, they are submodules of the orresponding tensor produts and seond,E20� ' S� ' L($l�1 � 32$l); E20+ ' S+ ' L(�12$l);E21� ' L($1 � 12$l); E21+ ' L($1 +$l�1 � 32$l);E22+ ' L($2 � 12$l) and E22� ' L($2 +$l�1 � 32$l):Proof: This theorem is proved in Kr�ysl [10℄ or Kr�ysl [9℄ for the so alled minimalglobalizations. Beause the L2-globalization behaves ompatibly with respet tothe onsidered Hilbert tensor produt topology, the statement remains true. �Remark. Let us notie that for l = 2, the number of irreduible summands insympleti spinor valued two-forms is the same as that one for l > 2. In this ase(l = 2), one only has to hange the presription for the highest weights desribedin the preeding theorem. For l = 1, the number of the irreduible summands isdi�erent from that one for l � 2. Nevertheless, in this ase the deomposition isalso multipliity-free. See Kr�ysl [9℄ for details.In order to make some proofs in the setion on sympleti Killing spinor �eldssimpler and more lear, let us introdue the operators



Sympleti Killing spinors 25
F+ : �̂ V� 
 S! �+1̂V� 
 S; F+(�
 s) := 2lXi=1 �i ^ �
 ei:s;F� : �̂ V� 
 S! ��1̂V� 
 S; F�(�
 s) := � 2lXi;j=1!ij �ei�
 ej :s;H : �̂ V� 
 S! �̂ V� 
 S; H := fF+; F�g:Remark. (1) One easily �nds out that the operators are independent of thehoie of an adapted sympleti basis feig2li=1.(2) Let us remark that the operators F+; F� and H de�ned here di�er fromthe operators F+; F�; H de�ned in Kr�ysl [9℄. Though, by a onstant realmultiple only.(3) The operators F+ and F� are used to prove the Howe orrespondenefor Mp(V; !0) ating on V� V�
S via the representation �. More or less,the ortho-sympleti super Lie algebra osp(1j2) plays the role of a (superLie) algebra, a representation of whih is the appropriate ommutant. SeeKr�ysl [9℄ for details.In the next lemma the ~G-equivariane of the operators F+; F� and H is stated,some properties of F� are mentioned and the value of H on degree-homogeneouselements is omputed. We shall use this lemma when we will be treating thesympleti Killing spinor �elds in the fourth setion.Lemma 3. Let (V = L � L0 ; !0) be a 2l dimensional sympleti vetor spae.Then(1) the operators F+, F+ and H are ~G-equivariant,(2) (a) F�jE11 = 0,(b) F+jE00 is an isomorphism onto E10,() (F+)2jS = � {2! 
 IdjS and it is an isomorphism onto E20.(3) For r = 0; : : : ; 2l, we haveHjVr V�
S = {(r � l) IdjVr V�
S :Proof: See Kr�ysl [9℄. �Let us remark that the items 1 and 3 of the preeding lemma follow by adiret omputation, and the seond item follows from the �rst item, deompositiontheorem (Theorem 2), a version of the Shur lemma and a diret omputation.



26 S. Kr�ysl3. Curvature of Fedosov manifolds and its ations on sympletispinorsAfter we have �nished the \algebrai part" of this paper, let us reall somebasi fats on Fedosov manifolds, their urvature tensors, metapleti struturesand the ation of the urvature tensor on sympleti spinor �elds.Let us start realling some notions and results related to the so alled Fedosovmanifolds. Let (M2l; !) be a sympleti manifold of dimension 2l. Any torsion-free aÆne onnetion r on M preserving !, i.e., r! = 0, is alled Fedosovonnetion. The triple (M;!;r), where r is a Fedosov onnetion, will be alledFedosov manifold . As we have already mentioned in the Introdution, a Fedosovonnetion for a given sympleti manifold (M;!) is not unique. Let us remarkthat Fedosov manifolds are used for a onstrution of geometri quantization ofsympleti manifolds due to Fedosov. See, e.g., Fedosov [1℄.To �x our notation, let us reall the lassial de�nition of the urvature tensorRr of the onnetion r, we shall be using here. We setRr(X;Y )Z := rXrY Z �rYrXZ �r[X;Y ℄Zfor X;Y; Z 2 X(M).Let us hoose a loal adapted sympleti frame feig2li=1 on a �xed open subsetU �M . By a loal adapted sympleti frame feig2li=1 over U , we mean suh a loalframe that for eah m 2 U the basis f(ei)mg2li=1 is an adapted sympleti basisof (TmM;!m). Whenever a sympleti frame is hosen, we denote its dual frameby f�ig2li=1. Although some of the formulas below hold only loally, ontaining aloal adapted sympleti frame, we will not mention this restrition expliitly.From the sympleti urvature tensor �eld Rr, we an build the sympletiRii urvature tensor �eld �r de�ned by the lassial formula�r(X;Y ) := Tr(V 7! Rr(V;X)Y )for eah X;Y 2 X(M) (the variable V denotes a vetor �eld on M). For thehosen frame and i; j = 1; : : : ; 2l, we de�ne�ij := �r(ei; ej):Let us de�ne the extended Rii tensor �eld by the equatione�(X;Y; Z; U) := e�ijknX iY jZkUn; X; Y; Z; U 2 X(M);where for i; j; k; n = 1; : : : ; 2l,2(l + 1)e�ijkn := !in�jk � !ik�jn + !jn�ik � !jk�in + 2�ij!kn:A Fedosov manifold (M;!;r) is alled of Weyl type, if � = 0. Let us notie,that it is alled of Rii type, if R = e�. In Vaisman [14℄, one an �nd moreinformation on the Sp(2l;R)-invariant deomposition of the urvature tensors ofFedosov onnetions.



Sympleti Killing spinors 27Now, let us desribe the geometri struture with help of whih the sympletiKilling spinor �elds are de�ned. This struture, alled metapleti, is a symple-ti analogue of the notion of a spin struture in the Riemannian geometry. Fora sympleti manifold (M2l; !) of dimension 2l, let us denote the bundle of sym-pleti frame in TM by P and the foot-point projetion of P onto M by p. Thus(p : P !M;G), where G ' Sp(2l;R), is a prinipal G-bundle overM . As in Sub-setion 2, let � : ~G! G be a member of the isomorphism lass of the non-trivialtwo-fold overings of the sympleti group G. In partiular, ~G ' Mp(2l;R). Fur-ther, let us onsider a prinipal ~G-bundle (q : Q ! M; ~G) over the sympletimanifold (M;!). We all a pair (Q;�) metapleti struture if � : Q ! P isa surjetive bundle homomorphism over the identity on M and if the followingdiagram, Q� ~G�����
// Q��� q ���������� MP �G // P p >>}}}}}}}}with the horizontal arrows being respetive ations of the displayed groups, om-mutes. See, e.g., Habermann, Habermann [6℄ and Kostant [8℄ for details onmetapleti strutures. Let us only remark that typial examples of sympletimanifolds admitting a metapleti struture are otangent bundles of orientablemanifolds (phase spaes), Calabi-Yau manifolds and omplex projetive spaesC P2k+1, k 2 N0 .Let us denote the vetor bundle assoiated to the introdued prinipal ~G-bundle (q : Q ! M; ~G) via the representation � ating on S by S, and all thisassoiated vetor bundle sympleti spinor bundle. Thus, we have S = Q �� S.The setions � 2 �(M;S) will be alled sympleti spinor �elds . Further forj2 = 0; 1; 2, we de�ne the assoiated vetor bundles E2j2 by the presriptionE2j2 := Q �� E2j2 . Further, we de�ne Er := �(M;Q �� Vr V� 
 S), i.e., thespae o sympleti spinor valued di�erential r-forms, r = 0; : : : ; 2l. Beause thesympleti Cli�ord multipliation is ~G-equivariant (see Habermann, Habermann[6℄), we an lift it to the assoiated vetor bundle struture, i.e., to let it aton the elements from �(M;S). For j2 = 0; 1; 2, let us denote the vetor bundleprojetions �(M; E2)! �(M; E2j2) by p2j2 , i.e., p2j2 : �(M; E2)! �(M; E2j2) forall appropriate j2. This de�nition makes sense beause due to the deompositionresult (Theorem 2) and Remark below Theorem 2, the ~G-module of sympletispinor valued exterior 2-forms is multipliity-free.Let Z be the prinipal bundle onnetion on the prinipal G-bundle (p : P !M;G) assoiated to the hosen Fedosov onnetion r and ~Z be a lift of Z to the



28 S. Kr�yslprinipal ~G-bundle (q : Q !M; ~G). Let us denote by rS the ovariant derivativeassoiated to ~Z. Thus, in partiular, rS ats on the sympleti spinor �elds.Any setion � of the assoiated vetor bundle S = Q�� S an be equivalentlyonsidered as a ~G-equivariant S-valued funtion on Q. Let us denote this funtionby �̂, i.e., �̂ : Q ! S. For a loal adapted sympleti frame s : U ! P , let usdenote by s : U ! Q one of the lifts of s to Q. Finally, let us set �s := �̂ Æ s.Further for q 2 Q and  2 S, let us denote by [q;  ℄ the equivalene lass in Sontaining (q;  ). (As it is well known, the total spae S of the sympleti spinorbundle is the produt Q� S modulo an equivalene relation.)Lemma 4. Let (M;!;r) be a Fedosov manifold admitting a metapleti stru-ture. Then for eah X 2 X(M), � 2 �(M;S) and a loal adapted sympletiframe s : U ! P , we haverSX� = [s;X(�s)℄� {2 lXi=1 [ei+l:(rXei):� ei:(rXei+l):℄� andrSX(Y:�) = (rSXY ):� +X:rSY �:Proof: See Habermann, Habermann [6℄. �The urvature tensor on sympleti spinor �elds is de�ned by the formulaRS(X;Y )� = rSXrSY ��rSYrSX��rS[X;Y ℄�;where � 2 �(M;S) and X;Y 2 X(M).In the next lemma, a part of the ation of RS on the spae of sympleti spinorsis desribed using just the sympleti Rii urvature tensor �eld �.Lemma 5. Let (M;!;r) be a Fedosov manifold admitting a metapleti stru-ture. Then for a sympleti spinor �eld � 2 �(M;S), we havep20RS� = {2l �ij!kl�k ^ �l 
 ei:ej :�:Proof: See Kr�ysl [11℄. �4. Sympleti Killing spinor �eldsIn this setion, we shall fous our attention to the sympleti Killing spinor�elds. More spei�ally, we ompute the sympleti Killing spinor �elds on someFedosov manifolds admitting a metapleti struture and derive a neessary on-dition satis�ed by a sympleti Killing spinor �eld.Let (M;!;r) be a Fedosov manifold admitting a metapleti struture. Weall a non-zero setion � 2 �(M;S) sympleti Killing spinor �eld ifrSX� = �X:�



Sympleti Killing spinors 29for a omplex number � 2 C and eah vetor �eld X 2 X(M). The omplexnumber � will sometimes be alled sympleti Killing spinor number. (Allowingthe zero setion to be a sympleti Killing spinor would make the notion of asympleti Killing spinor number meaningless.)Let us note that one an rewrite equivalently the preeding de�ning equationfor a sympleti Killing spinor intorS� = �F+�:Indeed, if this equation is satis�ed, we get by inserting the loal vetor �eldX = X iei the equation rSX� = �X(��i 
 ei:�) = ��i(X)ei:� = �X iei:� = �X:�,i.e., the de�ning equation. Conversely, one an prove that rSX� = �X:� is equiv-alent to �XrS� = �X(�F+�). Beause this equation holds for eah vetor �eldX , we get rS� = �F+�. We shall all both the de�ning equation and the equiv-alent equation for a sympleti Killing spinor �eld the sympleti Killing spinorequation.In the next example, we ompute the sympleti Killing spinors on the standardsympleti 2-plane.Example 1. Let us solve the sympleti Killing spinor equation for the stan-dard sympleti vetor spae (R2 [s; t℄; !0) equipped with the standard at Eu-lidean onnetion r. In this ase, (R2 ; !0;r) is also a Fedosov manifold. Thebundle of sympleti frame in TR2 de�nes a prinipal Sp(2;R)-bundle. BeauseH1(R2 ;R) = 0, we know that there exists, up to a bundle isomorphism, onlyone metapleti bundle over R2 , namely the trivial prinipal Mp(2;R)-bundleR2 �Mp(2;R) ! R2 and thus also a unique metapleti struture � : Mp(2;R) �R2 ! Sp(2;R) � R2 given by �(g; (s; t)) := (�(g); (s; t)) for g 2 Mp(2;R) and(s; t) 2 R2 . Let S ! R2 be the sympleti spinor bundle. In this ase S ! R2is isomorphi to the trivial vetor bundle S� R2 = L2(R) � R2 ! R2 . Thus, wemay think of a sympleti spinor �eld � as of a mapping � : R2 ! S = L2(R).Let us de�ne  : R3 ! C by  (s; t; x) := �(s; t)(x) for eah (s; t; x) 2 R3 . Oneeasily shows that � is a sympleti Killing spinor if and only if the funtion  satis�es the system � �s = �{x and� �t = �� �x :If � = 0, the solution of this system of partial di�erential equations is nees-sarily  (s; t; x) =  (x), (s; t; x) 2 R3 , for any  2 L2(R).If � 6= 0, let us onsider the independent variable and orresponding depen-dent variable transformation s = s; y = t + ��1x, z = t � ��1x and  (s; t; x) =e (s; t + ��1x; t � ��1x) = e (s; y; z). The Jaobian of this transformation is�2=� 6= 0 and the transformation is obviously a di�eomorphism. Substitut-ing this transformation in the studied system, one gets the following equivalent



30 S. Kr�ysltransformed system � e �s = {2�2(y � z) e � e �y + � e �z = �(� e �y ��1 + � e �z (���1)):(Let us notie that the substitution we have used is similar to that one whihis usually used to obtain the d'Alemebert's solution of the wave equation in twodimensions.) The �rst equation implies � e �z = 0, and thus e (s; y; z) =  (s; y) for afuntion  . Substituting this relation into the seond equation of the transformedsystem, we get � �s = {2(y � z)�2 :The solution of this equation is  (s; y) = e {2�2(y�z)se (y) for a suitable funtion e .Beause of the dependene of the right hand side of the last written equation on z,we see that  does not exist unless � = 0 or e = 0 (More formally, one gets theserestritions by substituting the last written formula for  into the �rst equationof the transformed system.) Thus, neessarily  = 0 or � = 0. The ase � = 0 isexluded by the assumption at the beginning of this alulation.Summing up, we have proved that any sympleti Killing spinor �eld � on(R2 ; !0;r) is onstant, i.e., for eah (s; t) 2 R2 , we have �(s; t) =  for a funtion 2 L2(R). The only sympleti Killing spinor number is zero in this ase.Remark. More generally, one an treat the ase of a standard sympleti ve-tor spae (R2l [s1; : : : ; sl; t1; : : : ; tl℄; !0) equipped with the standard at Eulideanonnetion r. One gets by similar lines of reasoning that any sympleti Killingspinor for this Fedosov manifold is also onstant, i.e., (s1; : : : ; sl; t1; : : : ; tl) =  ;for (s1; : : : ; sl); (t1; : : : ; tl) 2 Rl and  2 L2(Rl ). But we shall see this result moreeasily below when we will be studying the prolongated equation mentioned in theIntrodution.Now, in order to make a onnetion of the sympleti Killing spinor equationto some slightly more known equations, let us introdue the following operators.The operator D : �(M;S)! �(M;S); D := �F�rSis alled sympleti Dira operator and its eigenfuntions are alled sympletiDira spinors. Let us notie that the sympleti Dira operator was introduedby Katharina Habermann in 1992. See, e.g., Habermann [5℄.



Sympleti Killing spinors 31The operator T : �(M;S)! �(M; E11); T := rS � p10rSis alled (the �rst) sympleti twistor operator.In the next theorem, the sympleti Killing spinor �elds are related to thesympleti Dira spinors and to the kernel of the sympleti twistor operator.Theorem 6. Let (M;!;r) be a Fedosov manifold admitting a metapleti stru-ture. A sympleti spinor �eld � 2 �(M;S) is a sympleti Killing spinor �eld ifand only if � is a sympleti Dira spinor lying in the kernel of the sympletitwistor operator.Proof: We prove this equivalene in two steps.(1) Suppose � 2 �(M;S) is a sympleti Killing spinor to a sympleti Killingnumber � 2 C . Thus it satis�es the equation rS� = �F+�. Applying theoperator �F� to the both sides of the preeding equation and using thede�nition of the sympleti Dira operator, we get D� = ��F�F+� =�(�H + F+F�)� = ��H� = ��(�{l�) = {�l� due to the de�nition ofH and Lemma 3(2)(a) and (3). Thus � is a sympleti Dira spinor.Now, we ompute T�. Using the de�nition of T, we get T� = (rS �p10rS)� = �(F+��p10F+�) = �p11F+� = 0, beause F+� 2 �(M; E10)due to Lemma 3(2)(a).(2) Conversely, let � 2 �(M; E00) be in the kernel of the sympleti twistor op-erator and also a sympleti Dira spinor. Thus, we haverS��p10rS� =0 and D� = �F�rS� = �� for a omplex number � 2 C . Fromthe �rst equation, we dedue that  := rS� 2 �(M; E10). BeauseF+j�(M;E00) is surjetive onto �(M; E10) (see Lemma 3(2)(b)), there ex-ists a  0 2 �(M; E00) suh that  = F+ 0. Let us ompute F+F� =F+F�F+ 0 = F+(H � F+F�) 0 = F+(�{l 0) = �{l , where we haveused the de�ning equation for H and Lemma 3(2)(a) and (3). Thus weget �F+F� = {l :(1) From the sympleti Dira equation, we get �� = �F� . Thus �F+F� = �F+�. Using the equation (1), we obtain {l = �F+�, i.e., rS� =�{�l F+�. Thus, � is a sympleti Killing spinor to the sympleti Killingspinor number �{�=l. �In the next theorem, we derive the mentioned prolongation of the sympletiKilling spinor equation. It is a zeroth order equation. More preisely, it is anequation for the setions of the kernel of an endomorphism of the sympletispinor bundle S !M . A similar omputation is well known from the Riemannianspin geometry. See, e.g., Friedrih [2℄.



32 S. Kr�yslTheorem 7. Let (M2l; !;r) be a Fedosov manifold admitting a metapletistruture and a sympleti Killing spinor �eld � 2 �(M;S) to the sympletiKilling spinor number �. Then�ijei:ej :� = 2l�2�:Proof: Let � 2 �(M2l;S) be a sympleti spinor Killing �eld, i.e., rSX� = �X:�for a omplex number � and any vetor �eld X 2 X(M). For vetor �elds X;Y 2X(M), we may writeRS(X;Y )� = (rXrY �rYrX �r[X;Y ℄)�= �rX(Y:�) � �rY (X:�)� �[X;Y ℄:�= �(rXY ):�+ �Y:(rX�) � �(rYX):�� �X:rY :�� �[X;Y ℄:�= �T (X;Y ):�+ �2(Y:X:� Y:X:)�= �T (X;Y ):�+ {�2!(X;Y )� = {�2!(X;Y )�;where we have used the sympleti Killing spinor equation and the ompatibilityof the sympleti spinor ovariant derivative and the sympleti Cli�ord multipli-ation (Lemma 4).Thus RS� = {�2! 
 �. Beause of Lemma 3(2)(), we know that the righthand side is in �(M; E20). Thus also RS� = p20RS�. Using Lemma 5, we get{2l!
�ijei:ej :� = {�2!
�. Thus �ijei:ej :� = 2l�2� and the theorem follows. �Remark. Let us reall that in the Riemannian spin geometry (positive de�nitease), the existene of a non-zero Killing spinor implies that the manifold is Ein-stein. Further, let us notie that if the sympleti Rii urvature tensor � is(globally) diagonalizable by a sympletomorphism, the prolongated equation hasthe shape of the equation for eigenvalues of the Hamiltonian of an ellipti l di-mensional harmoni osillator with possibly varying axes lengths. An exampleof a diagonalizable sympleti Rii urvature will be treated in Example 3. Al-though, in this ase the axis will be onstant and the harmoni osillator will bespherial.Now, we derive a simple onsequene of the preeding theorem in the ase ofFedosov manifolds of Weyl type, i.e., � = 0.Corollary 8. Let (M;!;r) be a Fedosov manifold of Weyl type. Let (M;!)admit a metapleti struture and a sympleti Killing spinor � �eld to the sym-pleti Killing spinor number �. Then the sympleti Killing spinor number � = 0and � is loally ovariantly onstant.Proof: Follows immediately from the preeding theorem and the sympletiKilling spinor equation. �Example 2. Let us go bak to the ase of (R2l ; !0;r) from Remark below Ex-ample 1. Corollary 8 implies that any sympleti Killing spinor �eld for this



Sympleti Killing spinors 33struture is ovariantly onstant, i.e., in fat onstant in this ase, and any sym-pleti Killing number is zero. In this ase, we see that the prolongated equationfrom Theorem 7 makes it possible to ompute the sympleti Killing spinor �eldswithout any big e�ort, ompared to the alulations in Example 1 where the2-plane was treated.In the next example, we ompute the sympleti Killing spinor �elds on S2equipped with the standard sympleti struture and the Riemannian onnetionof the round metri. This is an example of a Fedosov manifold (spei�ed morearefully below) for whih one annot use Corollary 8, beause it is not of Weyltype. But still, one an use Theorem 7.Example 3. Consider the round sphere (S2; r2(d�2 + sin2 �d�2)) of radius r >0, � being the longitude a � the latitude. Then ! := r2 sin �d� ^ d� is thevolume form of the round sphere. Beause ! is also a sympleti form, (S2; !)is a sympleti manifold. Let us onsider the Riemannian onnetion r of theround sphere. Then r preserves the sympleti volume form ! being a metrionnetion of the round sphere. Beauser is torsion-free, we see that (S2; !;r) isa Fedosov manifold. Now, we will work in a oordinate path without mentioningit expliitly. Let us set e1 := 1r ��� and e2 := 1r sin � ��� . Clearly, fe1; e2g is a loaladapted sympleti frame and it is a loal orthogonal frame as well. With respetto this basis, the Rii form � of r takes the form[�ij ℄i;j=1;2 = �1=r 00 1=r� :Let us onsider S2 as the omplex projetive spae C P1. It is easy to see thatthe (unique) omplex struture on C P1 is ompatible with the volume form. The�rst Chern lass of the tangent bundle to C P1 is known to be even. Thus, thesympleti manifold (S2; !) admits a metapleti struture and we may onsider asympleti Killing spinor �eld � 2 �(S2;S) orresponding to a sympleti Killingspinor number �. Beause the �rst homology group of the sphere S2 is zero, themetapleti struture is unique and thus the trivial one. Beause of the triviality ofthe assoiated sympleti spinor bundle S ! S2, we may write �(m) = (m; f(m))where f(m) 2 L2(R) for eah m 2 S2. Using Theorem 7 and the presription forthe Rii form, we get that �ijei:ej :[f(m)℄ = 1rH [f(m)℄ = 2�2f(m), where H =�2�x2 �x2 is the quantum Hamiltonian of the one dimensional harmoni osillator.The solutions of the Sturm-Liouville type equationH [f(m)℄ = 2r�2f(m), m 2 S2,are well known. The eigenfuntions of H are the Hermite funtions fl(m)(x) =hl(x) := ex2=2 dldxl (e�x2) for m 2 S2 and x 2 R and the orresponding eigenvaluesare �(2l+ 1), l 2 N0 . Thus 2r�2 = �(2l+ 1) and onsequently� = �{r2l+ 12r :



34 S. Kr�yslUsing the fat that fe1; e2g is a loal orthonormal frame and r is metri andtorsion-free, we easily getre1e1 = 0 re1e2 = 0re2e1 = ot �r e2 re2e2 = � ot �r e1:From the de�nition of di�erentiability of funtions with values in a Hilbertspae, we see easily as a onsequene of the preeding omputations that anysympleti Killing spinor �eld is neessarily of the form �(m) = (m; (m)fl(m))for a smooth funtion  2 C1(S2; C ). Substituting this Ansatz into the sympletiKilling spinor equation, we get for eah vetor �eld X 2 X(S2) the equationrX(fl) = (X)fl + rXfl = �(X:fl):Due to Lemma 4, we have for a loal adapted sympleti frame s : U � S2 !P = Sp(2;R) � S2,rXfl = [s;X(fl)s℄� {2[e2:(rXe1):� e1:(rXe2):℄fl:(See the paragraph above Lemma 4 for an explanation of the notation used inthis formula.)Beause m 7! (m; fl(m)) is onstant as a setion of the trivial bundle S ! S2,the �rst summand of the preeding expression vanishes. Thus for X = e1, we get(e1)fl + {2 [e2:(re1e1):� e1:(re1e2):℄fl = �(e1:fl):Using the knowledge of the values of re1ej , for j = 1; 2, omputed above, theseond summand at the left hand side of the last written equation vanishes andthus, we get 1r ���fl = �{xfl:This equation implies (�; �) =  (x; �)e{rx�� for x suh that hl(x) 6= 0 and asuitable funtion  . (The set of suh x 2 R, suh that hl(x) 6= 0 is the omplementin R of a �nite set.) Beause r > 0 is given and � is ertainly non-zero (see thepresription for � above), the only possibility for  to be independent of x is = 0. Therefore  = 0 and onsequently � = 0. On the other hand, � = 0 (thezero setion) is learly a solution, but aording to the de�nition not a sympletiKilling spinor. Thus, there is no sympleti Killing spinor �eld on the roundsphere.Remark. In the future, one an study holonomy restritions implied by the ex-istene of a sympleti Killing spinor. One an also try to extend the results togeneral sympleti onnetions, i.e., to drop the ondition on the torsion-freenessor study also the sympleti Killing �elds on Rii type Fedosov manifolds admit-ting a metapleti struture in more detail.
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