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H-losed extensions with ountable remainderDaniel K. MNeillAbstrat. This paper investigates neessary and suÆient onditions for a spaeto have an H-losed extension with ountable remainder. For ountable spaeswe are able to give two haraterizations of those spaes admitting an H-losedextension with ountable remainder.The general ase is more diÆult, however, we arrive at a neessary ondition| a generalization of �Ceh ompleteness, and several suÆient onditions for aspae to have an H-losed extension with ountable remainder. In partiular,using the notation of Cs�asz�ar, we show that a spae X is a �Ceh g-spae if andonly if X is GÆ in �X or equivalently if EX is �Ceh omplete. An example ofa spae whih is a �Ceh f-spae but not a �Ceh g-spae is given answering aouple of questions of Cs�asz�ar. We show that if X is a �Ceh g-spae and R(EX),the residue of EX, is Lindel�of, then X has an H-losed extension with ountableremainder. Finally, we investigate some natural generalizations of the residue tothe lass of all Hausdor� spaes.Keywords: �Ceh omplete, H-losed, extensionClassi�ation: 54A25, 54D35, 54D40In this paper we will onern ourselves with �nding H-losed extensions withountable remainder, i.e. the smallest H-losed extensions. Our topi is a ge-neralization of a question of Morita [11℄: haraterize those spaes whih haveompati�ations with ountable remainder | an area studied in depth by Hen-riksen [7℄, Hoshina [8℄, [9℄, [10℄, Terada [16℄ and Charalambous [1℄ but still notentirely resolved.The question of whih spaes allow H-losed extensions with ountable remain-der is an obvious generalization of the question of ompati�ations with ountableremainder, and has been onsidered by Porter and Vermeer [13℄ and Tikoo [17℄.Muh of the bakground for this paper an be found in [13℄, [17℄ and [15℄.Reall that the Iliadis absolute of a Hausdor� spae X is the pair (EX; k) |where EX is a zero-dimensional, extremally disonneted Hausdor� spae andk : EX ! X is a perfet, irreduible and �-ontinuous surjetion. Also reallthat the spae �X is the largest strit H-losed extension of X .The bulk of the results in this paper are informed by the following fats.Theorem 1 ([12℄, [14℄, [15℄). Let X be a Hausdor� spae.(1) Then �X nX is homeomorphi to �EX nEX .



124 D.K. MNeill(2) For eah H-losed extension hX of X , there is a �-ontinuous funtionfh : �X ! hX suh that fh = idX and ff h (y) : y 2 hX n Xg is apartition of ompat subsets of �X nX .(3) For eah partition P of nonempty ompat sets of �X n X , there is anH-losed extension hX of X suh that P = ff h (y) : y 2 hX nXg.(4) Let � be a ardinal. There is an H-losed extension hX of X with jhX nX j = � i� �X nX an be partitioned into � many ompat sets.Corollary 2. The spae X has an H-losed extension with ountable remainderi� �X nX �= �EX nEX has a ountable partition of ompat sets.A few more fats about the Iliadis absolute will be useful in this paper. Firstreall the de�nition of the small image of a set.De�nition 3. Given a funtion f : X ! Y where X and Y are sets, we de�nef#[A℄ = fy 2 Y : f (y) � Ag:Fat 4. Let X be a Hausdor� spae and k : EX ! X be the absolute map.(1) [15℄ If U 2 �(X), OU = O(intX lX U), k[OU ℄ = lX U and lEX k [U ℄ =OU .(2) [15℄ For x 2 X and U 2 �(X), k (x) � OU i� x 2 intX lX U , inpartiular, k#[OU ℄ = intX lX U .(3) If T is lopen in EX then T = O(k#[T ℄).Proof: Sine T is lopen in EX , T = OU for some U 2 �(X). By the abovek#[T ℄ = intX lX U and so T = OU = O(intX lX U) = O(k#[T ℄). �1. Countable spaesOur goal is to determine whih spaes have H-losed extensions with a ount-able remainder. As a sub-goal we �rst onsider whih ountable spaes haveountable H-losed extensions.Fat 5. A ountable spae X with a ountable H-losed extension is Kat�etov.Proof: By 1.4 of [13℄, it suÆes to show X has an in�nite losed disrete sub-spae. If X has no in�nite losed disrete subspaes, then every in�nite subset ofX has a derived point. This means X is ountably ompat. As X is ountable,it follows that X is ompat | hene Kat�etov. �The other diretion is to determine whih ountable spaes have a ountable H-losed extension. We start with a ountable, �rst ountable, semiregular, Kat�etovspae X . We may also assume X is not ountably ompat; that is, X ontainsan in�nite, losed disrete subspae A.Theorem 6. A ountable Hausdor� spae X has a ountable H-losed extensioni� X is Kat�etov and Xs is �rst ountable.



H-losed extensions with ountable remainder 125Proof: Suppose a ountable spae X is Kat�etov and Xs is �rst ountable. Wewant to show X has an H-losed extension with ountable remainder. By Theo-rem 1, it suÆes to show �EX nEX has a ountable partition of ompat sets.Let X 0 denote X with the oarser H-losed topology. So we have that theidentity funtion idX : X ! X 0 is ontinuous.(1) By [3℄, there is a ontinuous funtion f : EX ! EX 0 suh that kX0 Æ f =idX ÆkX . That is, the following diagram ommutes:EXkX �� f // EX 0kX0��X idX // X 0As X 0 is H-losed, EX 0 is ompat Hausdor� by 1. Also, there isa ontinuous extension �f : �EX ! EX 0 and the following diagramommutes. �EX �f # #GGGGGGGGGEXkX �� f //?� OO EX 0kX0��X idX // X 0Let X = fpn : n 2 !g and X 0 = fp0n : n 2 !g where idX(pn) = p0n forn 2 !. Sine kX is perfet, we have that fk X (pn) : n 2 !g is a partitionof EX into ompat subsets, fk X0(p0n) : n 2 !g is a partition of EX 0 intoompat subsets, and f(kX0 Æ �f) (p0n) : n 2 !g is a partition of �EXinto ompat subsets. By ommutativity of the diagram, it follows thatk X (pn) = (kX0 Æf) (p0n) � (kX0 Æ�f) (p0n) and (kX0 Æ�f) (p0n)\EX =k X (pn) for n 2 !.(2) As Xs is �rst ountable, for eah x 2 X there is a ountable neighborhoodbase fUng! of regular open sets for x 2 Xs. We now show fl�EX OUng!is a ountable family of lopen sets for whih if k X (x) � T 2 �(�EX)then there is some m 2 ! suh that l�EX OUm � T . Let T be anopen set in �EX suh that k X (x) � T . As the lopen family fl�EX S :S is lopen in EXg is a base for �EX whih is losed under �nite unionsand k X (x) is ompat, we an suppose T = l�EX S for some lopen setS of EX . By 4, S = OU for some U 2 �(X). As k X (x) � OU , itfollows that x 2 intX lX U and so for some n 2 !, x 2 Un � intX lX U .Hene we have k X (x) � OUn � O(intX lX U) = OU = S and k X (x) �



126 D.K. MNeilll�EX OUn � T . Thus, k X (x) = T! l�EX OUn, and we an supposel�EX OUn+1 � l�EX OUnfor n 2 !.(3) Using the notation of 1, for eah n 2 ! we have k X (pn) � (kX0 Æ�f) (p0n)and (kX0 Æ �f) (p0n) n k X (pn) � �EX nEX and �nally[! ((kX0 Æ �f) (p0n) n k X (pn)) = �EX nEX:Note[(kX0 Æ �f) (p0n) n k X (pn)℄ \ [l�EX OUk n l�EX OUk+1℄ = Knkis a ompat subset of �EX nEX . Now, Sk2!Knk = (kX0 Æ �f) (p0n) nk X (pn), �EX n EX = Sn;k2!Knk and fKnk : n; k 2 !g is a partitionof �EX n EX . By 1, as �EX n EX has a ountable partition of om-pat subsets, both EX and X have H-losed extensions with ountableremainder.Conversely, suppose the ountable Hausdor� spae X has a ountableH-losed extension hX . By 1, �XnX has a ountable partition of ompatsets. If X is not ountably ompat, X has a ountably in�nite loseddisrete subspae. By 5, X is Kat�etov. If the ountable spae X isountably ompat, then X is also ompat and hene Kat�etov. As hX isountable and H-losed, hXs is a ountable minimal Hausdor� extensionof Xs. But ountable minimal Hausdor� spaes are �rst ountable. Thus,Xs is �rst ountable as well. �2. Generalizations of �Ceh ompletenessWe reall some basi de�nitions before onsidering the question of how generali-zations of �Ceh ompleteness relate to �nding H-losed extensions with ountableremainder.De�nition 7. A Tyhono� spaeX is �Ceh omplete if it is GÆ in every Hausdor�extension.The following theorem is well-known and provides two important harater-izations of �Ceh ompleteness. The �rst allows us a redution in the numberof ompat Hausdor� extensions we must onsider, and the seond provides aninternal haraterization of the property.Theorem 8 ([5℄, [4℄). The following are equivalent for a Tyhono� spae X .(1) The spae X is �Ceh omplete.(2) The spae X is GÆ in �X .(3) There exists a sequene (Cn)! of open overs of X suh that every �lterbase of losed sets subordinate to (Cn)! has non-empty intersetion.



H-losed extensions with ountable remainder 127The following orollary is immediate.Corollary 9. If a spae X has an H-losed extension with ountable remainderthen EX is �Ceh omplete.Proof: Reall from 1 that a spae X has an H-losed extension with ountableremainder i� �EX nEX has a ountable partition of ompat sets. Of ourse, aprerequisite for �EX nEX to be the ountable partition of ompat sets is that itatually be the union of ountably many ompat sets. So if �EX nEX = S!Knwhere Kn is ompat, then Gn = �EX nKn is a family of open sets of �EX andEX � Gn for all n 2 !. Sine S!Kn = �EX n EX , we have T! Gn = EX .Hene EX is �Ceh omplete. �Though �Ceh ompleteness of the absolute is a neessary ondition for theexistene of an H-losed extension with ountable remainder, we will see that itis not suÆient | some additional property is required.For metri spae, restritions related to the following de�nitions (along with�Ceh ompleteness) are suÆient to allow a ompati�ation with ountable re-mainder.Notation 10 ([13℄). For a Tyhono� spae X , let R(X) = [l�X(�X nX)℄ \X .We all R(X) the residue of X .De�nition 11. A spae X alled rim-ompat (or semiompat) if X has a basisof open sets eah of whih has a ompat boundary.De�nition 12. A spae X is alled Lindel�of if every open over of X has aountable subfamily whih overs.The haraterization of metri spaes allowing ompati�ation with ountableremainder is due to Hoshina.Theorem 13 ([8℄). A metrizable spae X has a ompati�ation with ountableremainder i� X is �Ceh omplete, rim-ompat and R(X) is Lindel�of.For ompati�ations of Tyhono� spaes with ountable remainder Hoshinaalso provides a suÆient ondition.Theorem 14 ([8℄). Let X be a �Ceh omplete, rim-ompat spae. If R(X) isseparable metrizable then X has a ompati�ation with ountable remainder.We quote the following lemma of Hoshina [9℄, whih is neessary for the nextexample.Lemma 15. If X has a ompati�ation with ountable remainder and U is aolletion of pairwise disjoint open sets of X with U \R(X) 6= ? for eah U 2 U ,then U is ountable.



128 D.K. MNeillFirst we onsider an example of Charalambous [1℄ showing that �Ceh om-pleteness is not enough to guarantee that a spae has a ompat extension withountable remainder; moreover there exist two spaes X and X1 with homeomor-phi residues, R(X) �= R(X1), one of whih has a ompati�ation with ountableremainder | while the other does not.Example 16 ([1℄). The onstrution starts with the following setup due to Terada[16℄. Note X = �R n N has a ompati�ation with ountable remainder, namely�R , and R(X) = �N n N .Now let Z = N[f1g, the one point ompati�ation of N , Y = Z�Z�(�NnN)and X1 = Y n [f1g � N � (�N n N )℄. Sine Y is ompat and Y n X1 is �-ompat and zero-dimensional, then X1 is �Ceh omplete and rim-ompat. Inaddition, R(X1) = f1g� f1g� (�N n N ) is homeomorphi with R(X). But X1has no ompati�ation with ountable remainder. For let U be an unountableolletion of pairwise disjoint nonempty open subsets of �N n N . For eah U 2 Ulet U 0 = Z � Z � U , then fU 0 \ X1 : U 2 Ug is an unountable olletion ofpairwise disjoint open sets of X1 with U 0 \X1 \ R(X1) 6= ? for eah U 2 U . Soby the lemma above, X1 has no ompati�ation with ountable remainder.We note here, however, thatX1 does have an H-losed extension with ountableremainder, sine Y nX1 = f1g�N�(�NnN ) is zero-dimensional and the ountableunion of ompat GÆ sets.We now onsider how it may be possible to partition the spae �EX nEX intoountably many ompat sets | whih would allow us to onstrut an H-losedextension of X with ountable remainder. Sine �EX nEX is zero-dimensional,the following proposition, ommuniated to Porter and Vermeer by F. Galvin,will be very useful.Proposition 17 ([13℄). A zero-dimensional spae Y an be partitioned into aountable number of ompat sets i� Y is the ountable union of ompat GÆ-sets.Seeking to generalize Hoshina's haraterization of metrizable spaes allowingompati�ations with ountable remainder, Porter and Vermeer found the fol-lowing suÆient onditions for an H-losed extension with ountable remainder.Theorem 18 ([13℄). If X is a zero-dimensional ompati�ation of a �Cehomplete spae X and R(X) is Lindel�of, then X nX has a ountable partitionof ompat sets.Corollary 19 ([13℄). Let X be a spae.(1) If X is not ountably ompat, EX is �Ceh omplete, and R(EX) isLindel�of, then X has an H-losed extension with ountable remainderand is Kat�etov.(2) If X is Tyhono� and �Ceh omplete and R(X) is Lindel�of, then X hasan H-losed extension with a ountable remainder.



H-losed extensions with ountable remainder 129Noting that �Ceh ompleteness of the absolute is neessary for a spae tohave an H-losed extension with ountable remainder | we seek a generalizationof �Ceh ompleteness to Hausdor� spaes whih we may be able use diretly.K. Cs�asz�ar in [2℄ modi�es the internal haraterization of a �Ceh omplete spaeto obtain three di�erent generalizations, two of whih we will onsider in depth.Before we begin we will need the following de�nition also due to Cs�asz�ar:De�nition 20. A subset A of a topologial spaeX is said to regularly embeddedin X if whenever x 2 A � G and G is open, then there exists an open set V suhthat x 2 V � lX V � G.Proposition 21 ([2℄). Suppose A � X � Y are spaes. If A is regularly embed-ded in Y , then A is regularly embedded in X .Theorem 22 ([2℄). If X is a Hausdor� spae, then X is regularly embedded in�X .The following de�nitions generalize the internal haraterization of �Ceh om-pleteness for Tyhono� spaes to all Hausdor� spaes.De�nition 23. Let (Cn)! be a sequene of families of sets of a set X and A afamily of sets. The family A is subordinate to the sequene (Cn)! if, for everym 2 !, there is some set A 2 A and also a set C 2 Cm suh that A � C.De�nition 24. Let X be a topologial spae. A �Ceh sequene (�Ceh f -sequene,�Ceh g-sequene) in X is a sequene (Cn)! of open overs of X suh that every�lter base A (of losed sets, of open sets) subordinate to (Cn)! has an adherentpoint.De�nition 25. A Hausdor� spae X is a �Ceh spae (�Ceh g-spae, �Ceh f -spae) if there is a �Ceh sequene (�Ceh g-sequene, �Ceh f -sequene) in X .Notie that for a Tyhono� spae the onepts of �Ceh spae, �Ceh g-spae,�Ceh f -spae, and �Ceh omplete spae oinide.Theorem 26 ([2℄). A regularly embedded open subspae of a �Ceh g-spae is a�Ceh g-spae.Theorem 27 ([2℄). A regularly embedded, dense GÆ subspae of a �Ceh g-spaeis a �Ceh g-spae.De�nition 28. A sequene of open overs (Cn)! is said to be monotone if Cn+1re�nes Cn.Proposition 29 ([2℄). If there exists a �Ceh sequene (g-sequene, f -sequene) fora spae X , then there exists a monotone �Ceh sequene (g-sequene, f -sequene).The following proposition provides an external haraterization of a �Ceh g-spae omparable to that of a �Ceh omplete spae.



130 D.K. MNeillProposition 30 ([2℄). For a spae X the following are equivalent.(1) X is GÆ in every Hausdor� extension.(2) X is GÆ in �X .(3) X is a �Ceh g-spae.With regard to �nding H-losed extensions with ountable remainder, the pre-vious proposition indiates that �Ceh g-spaes may be the generalization of �Cehomplete spaes we should onsider. The next proposition provides more sup-port for this observation. We begin with the following lemma whih generalizesa theorem appearing in [14℄.Lemma 31. Let X be a spae. If A � �X nX and A is losed in �X nX , thenl�X A is an H-set of �X .Proof: Let U be an open over of l�X A. Extend, and possibly re�ne, U to anopen over, C, of all of �X with basi open sets of the form oU where U 2 �(X).Sine �X is H-losed we an �nd a �nite subfamily of C with the losures overing�X , and sine l�X oU = lX U [ oU we get a �nite subfamily overing A, hene�nite subfamily whose losures over l�X A. �Corollary 32 ([14℄). Let X be a spae. If A � �X nX and A is losed in �X ,then A is ompat.Proposition 33. A spae X is a �Ceh g-spae i� EX is �Ceh omplete.Proof: The spae X is a �Ceh g-spae i� X is GÆ in �X , i.e. X = T! Unwhere Un 2 �(�X). Let Kn = �X n Un, so �X n X = S!Kn and eah Kn isompat. Now reall �X n X �= �EX n EX . Consider Kn � �EX n EX , andlet Ûn = �EX n Kn. Note EX � Ûn, and sine S!Kn = �EX n EX , thenEX = T! Ûn and EX is GÆ in �EX and hene �Ceh omplete.The argument an also be reversed. �Corollary 34. A spae X is a �Ceh g-spae i� Xs is a �Ceh g-spae.Proof: This follows from EX = EXs. �The following proposition is another haraterization of ountable spaes ad-mitting an H-losed extension with ountable remainder. First we note that if Xis ountable then EX is Lindel�of.Lemma 35. Let X be a ountable spae, then EX is Lindel�of.Proof: Sine k : EX ! X is ompat, EX = Sfk (x) : x 2 Xg is theountable union of ompat sets | hene Lindel�of. �Proposition 36. A ountable spae X admits an H-losed extension with ount-able remainder i� X is a �Ceh g-spae.Proof: Clearly if X admits an H-losed extension with ountable remainder,then X is a �Ceh g-spae.



H-losed extensions with ountable remainder 131Now suppose X is ountable and a �Ceh g-spae, then EX is Tyhono� and�Ceh omplete. Also note sine X is ountable that X is Lindel�of. Therefore EXis Lindel�of. Sine R(EX) is a losed subset of EX , it is Lindel�of as well. By 18,EX has an H-losed extension with ountable remainder. Therefore X does aswell. �Combining the above with 6 we have the following.Theorem 37. For a ountable spae X the following are equivalent.(1) X has an H-losed extension with ountable remainder.(2) X is Kat�etov and Xs is �rst ountable.(3) X is a �Ceh g-spae.The following provides a haraterization of all Hausdor� spaes having anH-losed extension with ountable remainder in terms of a speial lass of �Cehg-sequenes.Proposition 38. The spae X has an H-losed extension with ountable remain-der i� X admits a �Ceh g-sequene (Cn)! for whih eah free open ultra�lter p isnot subordinate to Cm only for m = Np for some Np 2 !.Proof: Reall X has an H-losed extension with ountable remainder i� �X nX = �EX n EX has a ountable partition of ompat sets fKng. Let Gn =�X n Kn, then Gn is open in �X and so Gn = S oU where oU � Gn andU 2 �(X). Sine X � Gn and oU \ X = U , X = SfU : oU � Gng, i.e.fU : oU � Gng is an open over of X . Note for eah p 2 �X nX , p 2 Kn impliesp =2 Km for m 6= n, i.e. p =2 �X n Gn implies p 2 �X n Gm for m 6= n. Finallywe get U =2 p for all U suh that oU � Gm implies V 2 p for all V suh thatoV � Gm for m 6= n. Let Cn = fU : oU � Gng, then (Cn)! is a sequene ofopen overs of X . Also, for eah p 2 �X nX there is an N 2 ! suh that U =2 pfor all U 2 CN (i.e. p 2 KN ). In addition, for all p 2 �X n X , p (as an open�lter) is subordinate to all Cn where n 6= N . Hene no free open ultra�lter on Xis subordinate to (Cn) and (Cn) is a �Ceh g-sequene on X | one in whih eahopen ultra�lter is exluded at exatly one level.The argument above an be reversed. That is given a speial �Ceh g-sequene(Cn)! , we simply notie that fKn : Kn = �X nSfoU : U 2 Cngg is a ountableompat partition of �X nX . �Cs�asz�ar [2℄ gives an example showing not all �Ceh g-spaes are �Ceh f -spaes,a somewhat simpler example is provided by the following.Example 39. Let X be the unit interval with the topology generated by opensets of the form I nM where I is an interval and M is ountable. Then X is aHausdor� �Ceh g-spae whih is not a �Ceh f -spae.Proof: Sine X is H-losed, it is a �Ceh g-spae.To show X is not a �Ceh f -spae, let (Cn) be a sequene of open overs of X .Selet Cn 2 Cn suh that 0 2 Cn and then In andMn suh that 0 2 In nMn � Cn.



132 D.K. MNeillDe�ne M0 = 1[1 Mn [ f0g;�nd some xk 2   1\1 In! \ �0; 1k�! nM0;and �nally let An = fxk : k � ng:After noting that An is losed by virtue of being ountable, by An � In nM0 �In nMn � Cn the system A = fAn : n 2 Ng is a losed �lter base subordinate to(Cn). So sine TAn = ?, X is not a �Ceh f -spae. �Cs�asz�ar goes on to ask whether every �Ceh f -spae is also a �Ceh g-spae. Thisis not the ase.Theorem 40. There is a spae whih is a �Ceh f -spae but not a �Ceh g-spae.The following lemma is well known and an be found in Chapter 9 of [6℄.Lemma 41. If X is loally ompat and realompat, then every in�nite losedsubset of �X nX has ardinality at least 2.We now onstrut a speial subset of �! n !.Lemma 42. There is a set D � �! n! = !� for whih D intersets every in�niteompat subset of !� and !� n D also intersets every in�nite ompat subsetof !�.Proof: Note any in�nite ompat subset of !� has a ountably in�nite subset.We onsider the family of sets C = fC : C is a ountably in�nite subset of !�g.Note jCj = (2)! = 2. Hene if K = fK : K = l�! C for some C 2 Cg, thenjKj � 2. We onstrut D reursively; begin by well-ordering K = fK� : � < 2g.Let p 2 D0 and q 2 E0 where p; q 2 K0 and p 6= q.For �+1 a suessor ordinal, let D�+1 = D�[fpg and E�+1 = E�[fqg wherep; q 2 K�+1 n (D�[E�) and p 6= q. Note K�+1 n (D�[E�) 6= ? sine jK�+1j = 2but jD� [ E�j < 2.For � a limit ordinal, let D� = S�<�D� [fpg and E� = S�<�E� [fqg wherep; q 2 K�n(S�<�D�[S�<�E�) and p 6= q. NoteK�n(S�<�D�[S�<�E�) 6= ?sine jK�j = 2 but still jS�<�D� [S�<�E� j < 2.Let D = S2 D� and E = S2 E�. Note D \ E = ? and for eah in�niteompat subset K of !�, K \D 6= ? and K \ E 6= ?. �Proof of 40: Consider the set D onstruted above as a subset of �!. LetX = �! nD, then X is a �Ceh f -spae but not a �Ceh g-spae.To show X is a �Ceh f -spae we must �nd a sequene of open overs (Cn)! ofX for whih every subordinate losed �lter base has nonempty adherene. The



H-losed extensions with ountable remainder 133sequene (Cn)! where Cn = C = ffpg [ ! : p 2 X n !g suÆes. For supposeF is a subordinate losed �lter base, then there is some F 2 F and U 2 C forwhih F � U . Now F annot ontain an in�nite subset V of ! beause thenoV \X � lX V � F , but oV \X 6� U . So F \ ! is �nite, and hene F is �nite.Now F ontains a ompat set and hene has nonempty adherene.To show X is not a �Ceh g-spae we onsider the following diagram:! = E! � � //�� EX = Xs � � //�� E(�!) = �!��! � � // X � � // �!:In this ase if X is a �Ceh g-spae then EX = Xs is �Ceh omplete. Butthen EX is GÆ in every Hausdor� extension, in partiular �! | ontraditingthe onstrution of D. �From the above a spae must be a �Ceh g-spae if it is to have an H-losedextension with ountable remainder. By 18, if we also have that the residue ofEX , R(EX), is Lindel�of, then this is suÆient to guarantee an H-losed extensionof the spae with ountable remainder. Hene we have the following orollary.Corollary 43. If a spae X is a �Ceh g-spae and R(EX) is Lindel�of, then Xhas an H-losed extension with ountable remainder.It seems that the next step would be to generalize the ondition on R(EX)to a ondition on the original spae X . What follows are several theorems andexamples obtained while trying to �nd onditions both neessary and suÆientfor a spae to have an H-losed extension with ountable remainder.Lemma 44. The ountable intersetion of �-ompat subspaes in a regularspae is Lindel�of.Proof: Let X be a regular spae, Bn � X where Bn is �-ompat for n 2 !,and A = T! Bn. Note Q! Bn is Lindel�of. The funtion e : A ! Q! Bn de�nedby e(x)(n) = x is an embedding and e[A℄ is losed in the produt. Therefore A isLindel�of. �Proposition 45 ([13℄). Let X be a Tyhono�, nowhere loally ompat spae.If X has an H-losed extension with ountable remainder, then X has a denseLindel�of subspae.Fat 46 ([13℄). A omplete metri spae is Kat�etov.Example 47 ([13℄). Let D be the disrete spae of ardinality �1, and P be theirrationals. Note both D and P have ompat extensions with ountable remain-der. Also, the spae D � P is loally Lindel�of and a omplete metri spae |hene �Ceh omplete, �rst ountable and Kat�etov. Reall P has a oarser ompatHausdor� topology. In partiular, P �= Q! !, and there is a ontinuous bijetion



134 D.K. MNeillf : Q! ! ! Q!(! [ f1g). Let P0 denote P with this oarser ompat Haus-dor� topology, then D� P0 is loally ompat and Hausdor�. Thus, D� P has aoarser ompat Hausdor� topology. However, sine the spae is nowhere loallyompat and has no dense Lindel�of subspae, D � P has no H-losed extensionwith ountable remainder.The onverse of 45 is false, for onsider the spae Q . Also onsider the follow-ing example, whih has a dense subspae admitting an H-losed extension withountable remainder, but has none itself.Example 48. Again let D be the disrete spae of ardinality �1 and let D�be the one point ompati�ation of D. Let R denote the real numbers withthe usual topology and let R+ denote the two point ompati�ation of R. LetX = P�D� �R+ and note that X = R+ �D� �R+ is a ompati�ation of Xwhere XnX = Q�D��R+ has a ountable partition into ompat sets. SoX hasan H-losed extension with ountable remainder. Let Y = X [ (Q �D�P), thenX is also a ompati�ation of Y . However XnY = Q�[(D��R+)n(D�P)℄ doesnot have a ountable partition of ompat sets, so Y has no H-losed extensionwith ountable remainder. This is despite the fat Y is nowhere loally ompat,X is a dense Lindel�of subspae of Y , and X itself has an H-losed extension withountable remainder.Example 49. The spae X = P� 2 with the lexiographi order has an H-losedextension with ountable remainder, namely Y = R+ � 2 with the lexiographiorder, sine X is both a �Ceh g-spae and Lindel�of. The spae X2 also hasan H-losed extension with ountable remainder, though X2 is not Lindel�of. Inpartiular, notie Y 2 is a zero-dimensional ompati�ation of X2, whih hasa remainder that an be expressed as the ountable union of ompat GÆ sets.Namely,Y 2 nX2 = [q2R+nP[(fqg � 2)� (R � 2)℄ [ [q02R+nP[(R � 2)� (fq0g � 2)℄:Consider the following fat.Fat 50. Let a Tyhono� spae X have an H-losed extension hX with a ount-able remainder. If U is a family of pairwise disjoint open sets in X , then fU 2U : U \ R(X) 6= ?g is ountable.Proof: If U is an open set of X we denote by ohU the largest open set in hXsuh that ohU \X = U . By the denseness of X in hX , fohU : U 2 Ug is a familyof pairwise disjoint open sets in hX . If U \ R(X) 6= ?, then ohU nX 6= ?. AshX nX is ountable, fU 2 U : U \ R(X) 6= ?g is ountable. �We de�ne the relative ellularity of a spae X relative to a subspae A asfollows: (A;X) = supfU : U is a family of pairwise disjoint nonempty opensubsets of X suh that U \ A 6= ? for all U 2 Ug.



H-losed extensions with ountable remainder 135Thus by the fat above, if X is a Tyhono� spae with an H-losed extensionwith ountable remainder, then (R(X); X) = !.Corollary 51. If X is Tyhono�, nowhere loally ompat and has an H-losedextension with a ountable remainder then (X) = !.Remark 52. As the spae D � P desribed in 47 is nowhere loally ompat and(X) = !1, it follows from the above that X has no H-losed extension with aountable remainder.The next result extends a result of Hoshina [9℄ whih states that if a paraom-pat spae X has a ompati�ation with a ountable remainder then R(X) isLindel�of, and answers a question of Porter and Vermeer [13℄.Proposition 53. LetX be a paraompat Tyhono� spae whih has an H-losedextension hX with a ountable remainder, then R(X) is Lindel�of.Proof: Let C be an open over of R(X). Extend eah C 2 C to an open set C 0 ofX suh that C 0 \R(X) = C. Now fC 0 : C 2 Cg[ fX nR(X)g is an open over ofX and has an open re�nement fUng!, where eah Un is a pairwise disjoint family.Also, fU \R(X) : U 2 Un; n 2 !;U \R(X) 6= ?g is a re�nement of C. By 50, foreah n 2 !, fU \R(X) : U 2 Un; U \ R(X) 6= ?g is also ountable. Hene C hasa ountable subover. �Considering the importane R(X) seems to play in �nding extension withountable remainder for Tyhono� spaes, we seek to generalize it all Hausdor�spaes. There are a few possibilities to onsider. To begin we make the followingnotational de�nitions.De�nition 54. Given a spae X set R�(X) = X \ l�X (�X nX).Notie that x 2 R�(X) i� for every open neighborhood U of x in �X there issome p 2 �X nX suh that U 2 p.De�nition 55. Given a spae X , set REX(X) = k[R(EX)℄.Another haraterization of REX(X) is: x 2 REX(X) i� for eah U 2 �(X)with x 2 lX U there is some p 2 �X nX suh that U 2 p.De�nition 56. Given a spae X letRH(X) = fx 2 X : x has no H-losed neighborhoodg:Note that if U 2 �(X), A is an H-set of X and U � A then lX U is H-losed,so replaing \H-losed" with \H-set" in the previous de�nition does not obtain alarger set.Proposition 57. For a spae X , REX(X) � R�(X) = RH(X).Proof: Suppose x 2 REX(X), then there is some p 2 R(EX) suh that k(p) = x.Now p 2 R(EX) i� for eah U 2 p there is some q 2 �EX nEX suh that U 2 q.
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