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H-closed extensions with countable remainder

DaNIEL K. McNEILL

Abstract. This paper investigates necessary and sufficient conditions for a space
to have an H-closed extension with countable remainder. For countable spaces
we are able to give two characterizations of those spaces admitting an H-closed
extension with countable remainder.

The general case is more difficult, however, we arrive at a necessary condition
— a generalization of Cech completeness, and several sufficient conditions for a
space to have an H-closed extension with countable remainder. In particular,
using the notation of Csdszdr, we show that a space X is a Cech g-space if and
only if X is Gs in ¢ X or equivalently if EX is Cech complete. An example of
a space which is a Cech f-space but not a Cech g-space is given answering a
couple of questions of Csaszar. We show that if X is a Cech g-space and R(EX),
the residue of EX, is Lindeldf, then X has an H-closed extension with countable
remainder. Finally, we investigate some natural generalizations of the residue to
the class of all Hausdorff spaces.
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In this paper we will concern ourselves with finding H-closed extensions with
countable remainder, i.e. the smallest H-closed extensions. Our topic is a ge-
neralization of a question of Morita [11]: characterize those spaces which have
compactifications with countable remainder — an area studied in depth by Hen-
riksen [7], Hoshina [8], [9], [10], Terada [16] and Charalambous [1] but still not
entirely resolved.

The question of which spaces allow H-closed extensions with countable remain-
der is an obvious generalization of the question of compactifications with countable
remainder, and has been considered by Porter and Vermeer [13] and Tikoo [17].
Much of the background for this paper can be found in [13], [17] and [15].

Recall that the Iliadis absolute of a Hausdorff space X is the pair (EX, k) —
where EX is a zero-dimensional, extremally disconnected Hausdorff space and
k: EX — X is a perfect, irreducible and 6-continuous surjection. Also recall
that the space o X is the largest strict H-closed extension of X.

The bulk of the results in this paper are informed by the following facts.

Theorem 1 ([12], [14], [15]). Let X be a Hausdorff space.
(1) Then oX \ X is homeomorphic to fEX \ EX.
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(2) For each H-closed extension hX of X, there is a #-continuous function
fn : 0X — hX such that f, = idx and {f;5 (y) : y € hx \ X} is a
partition of compact subsets of X \ X.

(3) For each partition P of nonempty compact sets of X \ X, there is an
H-closed extension hX of X such that P = {f5 (y) :y € hX \ X}.

(4) Let n be a cardinal. There is an H-closed extension hX of X with |hX \
X|=niff X \ X can be partitioned into n many compact sets.

Corollary 2. The space X has an H-closed extension with countable remainder
iff o X\ X = pBEX \ EX has a countable partition of compact sets.

A few more facts about the Iliadis absolute will be useful in this paper. First
recall the definition of the small image of a set.

Definition 3. Given a function f: X — Y where X and Y are sets, we define
fFAT={y €Y : f"(y) C A}.

Fact 4. Let X be a Hausdorff space and k : EX — X be the absolute map.
(1) [15] IfU € T(X), oU = O(intx clx U), k[OU] =clx U andclgx kF[U] =
oU.
(2) [15] For ¢z € X and U € 7(X), k(z) C OU iff ¢ € intxclx U, in
particular, k#*[OU] = intx clx U.
(3) If T is clopen in EX then T = O(k#|[TY]).

ProoF: Since T is clopen in EX, T = OU for some U € 7(X). By the above
k#[T] = intx clx U and so T = OU = O(intx clx U) = O(k#[T)). O

1. Countable spaces

Our goal is to determine which spaces have H-closed extensions with a count-
able remainder. As a sub-goal we first consider which countable spaces have
countable H-closed extensions.

Fact 5. A countable space X with a countable H-closed extension is Katétov.

PROOF: By 1.4 of [13], it suffices to show X has an infinite closed discrete sub-
space. If X has no infinite closed discrete subspaces, then every infinite subset of
X has a derived point. This means X is countably compact. As X is countable,
it follows that X is compact — hence Katétov. O

The other direction is to determine which countable spaces have a countable H-
closed extension. We start with a countable, first countable, semiregular, Katétov
space X. We may also assume X is not countably compact; that is, X contains
an infinite, closed discrete subspace A.

Theorem 6. A countable Hausdorff space X has a countable H-closed extension
iff X is Katétov and X, is first countable.
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PROOF: Suppose a countable space X is Katétov and X is first countable. We
want to show X has an H-closed extension with countable remainder. By Theo-
rem 1, it suffices to show SEX \ EX has a countable partition of compact sets.

Let X' denote X with the coarser H-closed topology. So we have that the
identity function idx : X — X' is continuous.

(1) By [3], there is a continuous function f : EX — EX' such that kx: o f =
idx okx. That is, the following diagram commutes:

EX—f>EX’

kXJ/ J/er
id

X——X

As X' is H-closed, EX' is compact Hausdorff by 1. Also, there is
a continuous extension Sf : SEX — EX' and the following diagram
commutes.

BEX

JX—)EX'
X lx’

X4>X’

Let X = {pn : n € w} and X' = {p}, : n € w} where idx(p,) = pl, for
n € w. Since kx is perfect, we have that {k% (pn) : n € w} is a partition
of EX into compact subsets, {k%. (p},) : n € w} is a partition of EX' into
compact subsets, and {(kx' o Sf)* (p),) : n € w} is a partition of SEX
into compact subsets. By commutativity of the diagram, it follows that
K (bn) = (ko) (6) C (ko 0 B) (pl) and (kxs o B)* (pl,) NEX =
k% (pn) for n € w.

(2) As X is first countable, for each x € X there is a countable neighborhood
base {U,}., of regular open sets for z € X;. We now show {clggx OU, }.
is a countable family of clopen sets for which if k% (z) C T € 7(BEX)
then there is some m € w such that clggx OU,, C T. Let T be an
open set in SEX such that k5 (x) C T. As the clopen family {clgpx S :
S is clopen in EX} is a base for SEX which is closed under finite unions
and k% (x) is compact, we can suppose T' = clggpx S for some clopen set
S of EX. By 4, S = OU for some U € 7(X). As ki (z) C OU, it
follows that x € intx clx U and so for some n € w, x € U,, Cintx clx U.
Hence we have k% (z) C OU,, C O(intx clx U) = OU = S and k¥ (z) C
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clgpx OU, CT. Thus, k% (z) =, clgex OU,, and we can suppose
clgpx OUny1 C clgpx OU,

for n € w.

Using the notation of 1, for each n € w we have k% (pn) C (kx o8f)< (p),)
and (kx: o Bf)(ph) \ k§ (pn) € BEX \ EX and finally

U ((kx 0 B) (W) \ ki (pn)) = BEX \ EX.

w

Note

[(kx: 0 BF)(p) \ K (Pn)] N [clsmx OU \ clgpx OUgtr] = Ky,

is a compact subset of BEX \ EX. Now, ¢, Knr = (kx' 0 Bf)(p)) \
k% (pn), BEX \ EX = Un’kew Ky and {K,j : n,k € w} is a partition
of BEX \ EX. By 1, as SEX \ EX has a countable partition of com-
pact subsets, both EX and X have H-closed extensions with countable
remainder.

Conversely, suppose the countable Hausdorff space X has a countable
H-closed extension hX. By 1, 0 X'\ X has a countable partition of compact
sets. If X is not countably compact, X has a countably infinite closed
discrete subspace. By 5, X is Katétov. If the countable space X is
countably compact, then X is also compact and hence Katétov. As hX is
countable and H-closed, hX; is a countable minimal Hausdorff extension
of X;,. But countable minimal Hausdorff spaces are first countable. Thus,
X, is first countable as well. O

Generalizations of Cech completeness

(1)
(2)
(3)

We recall some basic definitions before considering the question of how generali-
zations of Cech completeness relate to finding H-closed extensions with countable
remainder.

Definition 7. A Tychonoff space X is Cech complete if it is G in every Hausdorff
extension.

The following theorem is well-known and provides two important character-
izations of Cech completeness. The first allows us a reduction in the number
of compact Hausdorff extensions we must consider, and the second provides an
internal characterization of the property.

Theorem 8 ([5], [4]). The following are equivalent for a Tychonoff space X .

The space X is Cech complete.

The space X is G5 in BX.

There exists a sequence (Cp),, of open covers of X such that every filter
base of closed sets subordinate to (Cy,)., has non-empty intersection.
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The following corollary is immediate.

Corollary 9. If a space X has an H-closed extension with countable remainder
then EX is Cech complete.

PROOF: Recall from 1 that a space X has an H-closed extension with countable
remainder iff BEX \ EX has a countable partition of compact sets. Of course, a
prerequisite for SEX \ EX to be the countable partition of compact sets is that it
actually be the union of countably many compact sets. So if SBEX \ EX = J_, K,
where K, is compact, then G,, = SEX \ K, is a family of open sets of SEX and
EX C G, for all n € w. Since |J, K, = BEX \ EX, we have [ G, = EX.
Hence EX is Cech complete. O

Though Cech completeness of the absolute is a necessary condition for the
existence of an H-closed extension with countable remainder, we will see that it
is not sufficient — some additional property is required.

For metric space, restrictions related to the following definitions (along with
Cech completeness) are sufficient to allow a compactification with countable re-
mainder.

Notation 10 ([13]). For a Tychonoff space X, let R(X) = [clgx (BX \ X)] N X.
We call R(X) the residue of X.

Definition 11. A space X called rim-compact (or semicompact) if X has a basis
of open sets each of which has a compact boundary.

Definition 12. A space X is called Lindel6f if every open cover of X has a
countable subfamily which covers.

The characterization of metric spaces allowing compactification with countable
remainder is due to Hoshina.

Theorem 13 ([8]). A metrizable space X has a compactification with countable
remainder iff X is Cech complete, rim-compact and R(X) is Lindeldtf.

For compactifications of Tychonoff spaces with countable remainder Hoshina
also provides a sufficient condition.

Theorem 14 ([8]). Let X be a Cech complete, rim-compact space. If R(X) is
separable metrizable then X has a compactification with countable remainder.

We quote the following lemma of Hoshina [9], which is necessary for the next
example.

Lemma 15. If X has a compactification with countable remainder and U is a
collection of pairwise disjoint open sets of X with UNR(X) # & for each U € U,
then U is countable.
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First we consider an example of Charalambous [1] showing that Cech com-
pleteness is not enough to guarantee that a space has a compact extension with
countable remainder; moreover there exist two spaces X and X; with homeomor-
phic residues, R(X) = R(X1), one of which has a compactification with countable
remainder — while the other does not.

Ezample 16 ([1]). The construction starts with the following setup due to Terada
[16]. Note X = SR\ N has a compactification with countable remainder, namely
AR, and R(X) = N\ N.

Now let Z = NU{oo}, the one point compactification of N, Y = Z x Z x (8N\N)
and X1 = Y \ [{oc} x N x (N \ N)]. Since Y is compact and Y \ X; is o-
compact and zero-dimensional, then X is Cech complete and rim-compact. In
addition, R(X1) = {oo} x {oo} x (6N N) is homeomorphic with R(X). But X,
has no compactification with countable remainder. For let &/ be an uncountable
collection of pairwise disjoint nonempty open subsets of SN\ N. For each U € U
let U' = Z x Z xU, then {U'NX; : U € U} is an uncountable collection of
pairwise disjoint open sets of X; with U' N X; N R(X,) # @ for each U € U. So
by the lemma above, X; has no compactification with countable remainder.

We note here, however, that X; does have an H-closed extension with countable
remainder, since Y\ X; = {00} xNx (8N\N) is zero-dimensional and the countable
union of compact G5 sets.

We now consider how it may be possible to partition the space SEX \ EX into
countably many compact sets — which would allow us to construct an H-closed
extension of X with countable remainder. Since SEX \ EX is zero-dimensional,
the following proposition, communicated to Porter and Vermeer by F. Galvin,
will be very useful.

Proposition 17 ([13]). A zero-dimensional space Y can be partitioned into a
countable number of compact sets iff Y is the countable union of compact G-
sets.

Seeking to generalize Hoshina’s characterization of metrizable spaces allowing
compactifications with countable remainder, Porter and Vermeer found the fol-
lowing sufficient conditions for an H-closed extension with countable remainder.

Theorem 18 ([13]). If c¢X is a zero-dimensional compactification of a Cech
complete space X and R(X) is Lindelof, then ¢X \ X has a countable partition
of compact sets.

Corollary 19 ([13]). Let X be a space.

(1) If X is not countably compact, EX is Cech complete, and R(EX) is
Lindel6f, then X has an H-closed extension with countable remainder
and is Katétov.

(2) If X is Tychonoff and Cech complete and R(X) is Lindeldf, then X has
an H-closed extension with a countable remainder.
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Noting that Cech completeness of the absolute is necessary for a space to
have an H-closed extension with countable remainder — we seek a generalization
of Cech completeness to Hausdorff spaces which we may be able use directly.
K. Csdszér in [2] modifies the internal characterization of a Cech complete space
to obtain three different generalizations, two of which we will consider in depth.

Before we begin we will need the following definition also due to Csaszar:

Definition 20. A subset A of a topological space X is said to regularly embedded
in X if whenever x € A C GG and G is open, then there exists an open set V' such
that z € V Cclx V CG.

Proposition 21 ([2]). Suppose A C X CY are spaces. If A is regularly embed-
ded in Y, then A is regularly embedded in X .

Theorem 22 ([2]). If X is a Hausdorff space, then X is regularly embedded in
oX.

The following definitions generalize the internal characterization of Cech com-
pleteness for Tychonoff spaces to all Hausdorff spaces.

Definition 23. Let (C,), be a sequence of families of sets of a set X and A a
family of sets. The family A is subordinate to the sequence (C,). if, for every
m € w, there is some set A € A and also a set C € C,, such that A C C.

Definition 24. Let X be a topological space. A Cech sequence (Cech f-sequence,
Cech g-sequence) in X is a sequence (Cp), of open covers of X such that every
filter base A (of closed sets, of open sets) subordinate to (Cy), has an adherent
point.

Definition 25. A Hausdorff space X is a Cech space (Cech g-space, Cech f-
space) if there is a Cech sequence (Cech g-sequence, Cech f-sequence) in X.

Notice that for a Tychonoff space the concepts of Cech space, Cech g-space,
Cech f-space, and Cech complete space coincide.

Theorem 26 ([2]). A regularly embedded open subspace of a Cech g-space is a
Cech g-space.

Theorem 27 ([2]). A regularly embedded, dense G5 subspace of a Cech g-space
is a Cech g-space.

Definition 28. A sequence of open covers (Cp), is said to be monotone if C,, 11
refines C,,.

Proposition 29 ([2]). If there exists a Cech sequence (g-sequence, f-sequence) for
a space X, then there exists a monotone Cech sequence (g-sequence, f-sequence).

The following proposition provides an external characterization of a Cech g-
space comparable to that of a Cech complete space.
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Proposition 30 ([2]). For a space X the following are equivalent.
(1) X is G5 in every Hausdorff extension.
(2) X isGs inoX.
(3) X is a Cech g-space.

With regard to finding H-closed extensions with countable remainder, the pre-
vious proposition indicates that Cech g-spaces may be the generalization of Cech
complete spaces we should consider. The next proposition provides more sup-
port for this observation. We begin with the following lemma which generalizes
a theorem appearing in [14].

Lemma 31. Let X be a space. If ACoX \ X and A is closed in 60X \ X, then
clyx A is an H-set of 0 X.

PROOF: Let U be an open cover of cl,x A. Extend, and possibly refine, U to an
open cover, C, of all of ¢ X with basic open sets of the form oU where U € 7(X).
Since 0 X is H-closed we can find a finite subfamily of C with the closures covering
oX, and since cl, x oU = clx U U oU we get a finite subfamily covering A, hence
finite subfamily whose closures cover cl,x A. O

Corollary 32 ([14]). Let X be a space. If A C 0 X \ X and A is closed in 0 X,
then A is compact.

Proposition 33. A space X is a Cech g-space iff EX is Cech complete.

PROOF: The space X is a Cech g-space iff X is Gs in 0X, ie. X = N, Un
where U,, € 7(0X). Let K, = 60X \U,, so 0 X \ X = |J, K, and each K, is
compact. Now recall X \ X = ¢EX \ EX. Consider K,, C ¢EX \ EX, and
let U, = 0EX \ K,. Note EX C U,, and since |J, K, = 0EX \ EX, then
EX =, U, and EX is G5 in ¢ EX and hence Cech complete.

The argument can also be reversed. d

Corollary 34. A space X is a Cech g-space iff X, is a Cech g-space.
Proor: This follows from FX = EX,. O

The following proposition is another characterization of countable spaces ad-
mitting an H-closed extension with countable remainder. First we note that if X
is countable then EX is Lindel6f.

Lemma 35. Let X be a countable space, then EX is Lindel6f.

PROOF: Since k : EX — X is compact, EX = [J{k* (z) : z € X} is the
countable union of compact sets — hence Lindel6f. O

Proposition 36. A countable space X admits an H-closed extension with count-
able remainder iff X is a Cech g-space.

Proor: Clearly if X admits an H-closed extension with countable remainder,
then X is a Cech g-space.



H-closed extensions with countable remainder

Now suppose X is countable and a Cech g-space, then EX is Tychonoff and
Cech complete. Also note since X is countable that X is Lindelof. Therefore EX
is Lindel6f. Since R(EX) is a closed subset of EX, it is Lindeldf as well. By 18,
EX has an H-closed extension with countable remainder. Therefore X does as
well. O

Combining the above with 6 we have the following.

Theorem 37. For a countable space X the following are equivalent.

(1) X has an H-closed extension with countable remainder.
(2) X is Katétov and X is first countable.
(3) X is a Cech g-space.

The following provides a characterization of all Hausdorff spaces having an
H-closed extension with countable remainder in terms of a special class of Cech
g-sequences.

Proposition 38. The space X has an H-closed extension with countable remain-
der iff X admits a Cech g-sequence (C,),, for which each free open ultrafilter p is
not subordinate to Cy, only for m = N, for some N, € w.

PROOF: Recall X has an H-closed extension with countable remainder iff 0X \
X = BEX \ EX has a countable partition of compact sets {K,}. Let G, =
oX \ K,, then G, is open in ¢X and so G, = |JoU where oU C G, and
U € 7(X). Since X C G, andoUNX =U, X = U{U : oU C Gy}, ie.
{U : oU C G, } is an open cover of X. Note for each p € 0 X \ X, p € K,, implies
p & K, for m # n, ie. p ¢ ocX \ G, implies p € 60X \ Gy, for m # n. Finally
we get U ¢ p for all U such that oU C Gy, implies V' € p for all V such that
oV C Gy, for m # n. Let C, = {U : oU C G,}, then (C,), is a sequence of
open covers of X. Also, for each p € 6 X \ X there is an N € w such that U ¢ p
for all U € Cy (i.e. p € Ky). In addition, for all p € ¢ X \ X, p (as an open
filter) is subordinate to all C,, where n # N. Hence no free open ultrafilter on X
is subordinate to (C,) and (C,) is a Cech g-sequence on X — one in which each
open ultrafilter is excluded at exactly one level.

The argument above can be reversed. That is given a special Cech g-sequence
(Cn)w, we simply notice that {K,, : K, = X \ U{oU : U € C,}} is a countable
compact partition of o X \ X. O

Csészar [2] gives an example showing not all Cech g-spaces are Cech f-spaces,
a somewhat simpler example is provided by the following.

Example 39. Let X be the unit interval with the topology generated by open
sets of the form I\ M where I is an interval and M is countable. Then X is a
Hausdorff Cech g-space which is not a Cech f-space.

PROOF: Since X is H—c}osed, it is a Cech g-space.
To show X is not a Cech f-space, let (C,) be a sequence of open covers of X.
Select C), € Cy, such that 0 € C), and then I,, and M,, such that 0 € I,\ M,, C C,.
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Define

My = GMnU{O},
1

e ()t e

Ap ={zr: k>n}.
After noting that A,, is closed by virtue of being countable, by A,, C I,,\ My C
I, \ M, C C, the system A= {A,, :n € N} is a closed filter base subordinate to
(Cn). So since (N A, = @, X is not a Cech f-space. O

find some

and finally let

Csaszér goes on to ask whether every Cech f-space is also a Cech g-space. This
is not the case.

Theorem 40. There is a space which is a Cech f-space but not a Cech g-space.
The following lemma is well known and can be found in Chapter 9 of [6].

Lemma 41. If X is locally compact and realcompact, then every infinite closed
subset of BX \ X has cardinality at least 2°.

We now construct a special subset of fw \ w.

Lemma 42. There is a set D C fw \ w = w* for which D intersects every infinite
compact subset of w* and w* \ D also intersects every infinite compact subset
of w*.

PROOF: Note any infinite compact subset of w* has a countably infinite subset.
We consider the family of sets C = {C : C'is a countably infinite subset of w*}.
Note |C] = (2%)% = 2°. Hence if K = {K : K = clg, C for some C € C}, then
|K] < 2°. We construct D recursively; begin by well-ordering K = {Kjz : § < 2°}.
Let p € Dg and g € Eg where p,q € Ko and p # q.

For a+ 1 a successor ordinal, let D,4+1 = D,U{p} and E,4; = E,U{q} where
D,q € Koy1\(DyUE,) and p # q. Note Ko41\ (Do UE,) # @ since |Ky41| = 2¢
but |D, U E,| < 2°.

For a a limit ordinal, let Do = g, DgU{p} and E, = Uz, EsU{q} where
p,q € Ka\(U5<a D6UUB<a Eﬁ) and p # q. Note Ka\(UB<a D5UUB<Q Eﬁ) # 2
since |Ko| = 2¢ but still [Usz_, Ds U Usz, Esl < 2°.

Let D = (Jyc Do and E = |Jyc Eo. Note DN E = @ and for each infinite
compact subset K of w*, KN D # & and KN FE # . O

PRrOOF OF 40: Consider the set D constructed above as a subset of kw. Let
X =kw\ D, then X is a Cech f-space but not a Cech g-space.

To show X is a Cech f-space we must find a sequence of open covers (Cn)e of
X for which every subordinate closed filter base has nonempty adherence. The
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sequence (Cp), where C,, = C = {{p} Uw : p € X \ w} suffices. For suppose
F is a subordinate closed filter base, then there is some F' € F and U € C for
which ¥ C U. Now F' cannot contain an infinite subset V of w because then
oVNXCeclxVCF,butoVNXZU. So FNuw is finite, and hence F is finite.
Now F contains a compact set and hence has nonempty adherence.

To show X is not a Cech g-space we consider the following diagram:

w=Euw“—— EX = X;,—— E(kw) = Bw

L |

wC s X ¢ S KW.

In this case if X is a Cech g-space then EX = X, is Cech complete. But
then EX is Gy in every Hausdorff extension, in particular fw — contradicting
the construction of D. O

From the above a space must be a Cech g-space if it is to have an H-closed
extension with countable remainder. By 18, if we also have that the residue of
EX, R(EX), is Lindeldf, then this is sufficient to guarantee an H-closed extension
of the space with countable remainder. Hence we have the following corollary.

Corollary 43. If a space X is a Cech g-space and R(EX) is Lindeldf, then X
has an H-closed extension with countable remainder.

It seems that the next step would be to generalize the condition on R(EX)
to a condition on the original space X. What follows are several theorems and
examples obtained while trying to find conditions both necessary and sufficient
for a space to have an H-closed extension with countable remainder.

Lemma 44. The countable intersection of o-compact subspaces in a regular
space is Lindel6f.

ProOF: Let X be a regular space, B, C X where B, is o-compact for n € w,
and A =, B,. Note [ B, is Lindel6f. The function e : A — [] B, defined
by e(z)(n) = z is an embedding and e[A] is closed in the product. Therefore A is
Lindelof. O

Proposition 45 ([13]). Let X be a Tychonoff, nowhere locally compact space.
If X has an H-closed extension with countable remainder, then X has a dense
Lindel6f subspace.

Fact 46 ([13]). A complete metric space is Katétov.

Ezample 47 ([13]). Let D be the discrete space of cardinality 8y, and P be the
irrationals. Note both D and P have compact extensions with countable remain-
der. Also, the space D x PP is locally Lindeléf and a complete metric space —
hence Cech complete, first countable and Katétov. Recall P has a coarser compact
Hausdorff topology. In particular, P =[] w, and there is a continuous bijection
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f:Tl,w = [, (wU{oc}). Let P' denote P with this coarser compact Haus-
dorff topology, then D x P’ is locally compact and Hausdorff. Thus, D x P has a
coarser compact Hausdorff topology. However, since the space is nowhere locally
compact and has no dense Lindelof subspace, D x P has no H-closed extension
with countable remainder.

The converse of 45 is false, for consider the space Q. Also consider the follow-
ing example, which has a dense subspace admitting an H-closed extension with
countable remainder, but has none itself.

Example 48. Again let D be the discrete space of cardinality N; and let D*
be the one point compactification of D. Let R denote the real numbers with
the usual topology and let RT denote the two point compactification of R. Let
X =P x D* x R" and note that ¢cX = R x D* x R is a compactification of X
where cX\X = Qx D* xR has a countable partition into compact sets. So X has
an H-closed extension with countable remainder. Let Y = X U (Q x D x P), then
cX is also a compactification of Y. However cX\Y = Qx[(D*xR")\ (D xP)] does
not have a countable partition of compact sets, so Y has no H-closed extension
with countable remainder. This is despite the fact Y is nowhere locally compact,
X is a dense Lindeldf subspace of Y, and X itself has an H-closed extension with
countable remainder.

Ezample 49. The space X = P x 2 with the lexicographic order has an H-closed
extension with countable remainder, namely ¥ = R" x 2 with the lexicographic
order, since X is both a Cech g-space and Lindelsf. The space X? also has
an H-closed extension with countable remainder, though X?2 is not Lindeldf. In
particular, notice Y2 is a zero-dimensional compactification of X2, which has
a remainder that can be expressed as the countable union of compact G sets.
Namely,

Y2I\X?= | [ x2)x®x2Ju (] [®Rx2)x{q}x2)
scRT\P ¢ cRT\P

Consider the following fact.

Fact 50. Let a Tychonoff space X have an H-closed extension hX with a count-
able remainder. If U is a family of pairwise disjoint open sets in X, then {U €
U:UNR(X)# @} is countable.

ProoF: If U is an open set of X we denote by o,U the largest open set in hX
such that 0,UNX = U. By the denseness of X in hX, {0,U : U € U} is a family
of pairwise disjoint open sets in hX. If U N R(X) # &, then o,U \ X # &. As
hX \ X is countable, {U € & : UN R(X) # @&} is countable. O

We define the relative cellularity of a space X relative to a subspace A as
follows: ¢(A,X) = sup{U : U is a family of pairwise disjoint nonempty open
subsets of X such that U N A # & for all U € U}.
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Thus by the fact above, if X is a Tychonoff space with an H-closed extension
with countable remainder, then ¢(R(X), X) = w.

Corollary 51. If X is Tychonoff, nowhere locally compact and has an H-closed
extension with a countable remainder then ¢(X) = w.

Remark 52. As the space D x P described in 47 is nowhere locally compact and
¢(X) = wy, it follows from the above that X has no H-closed extension with a
countable remainder.

The next result extends a result of Hoshina [9] which states that if a paracom-
pact space X has a compactification with a countable remainder then R(X) is
Lindel6f, and answers a question of Porter and Vermeer [13].

Proposition 53. Let X be a paracompact Tychonoff space which has an H-closed
extension hX with a countable remainder, then R(X) is Lindeldf.

PRrOOF: Let C be an open cover of R(X). Extend each C € C to an open set C' of
X such that C'NR(X) = C. Now {C": C € C}U{X \ R(X)} is an open cover of
X and has an open refinement {U, }.,, where each U,, is a pairwise disjoint family.
Also, {UNR(X): U € Up,n € w,UNR(X) # &} is a refinement of C. By 50, for
eachn € w, {UNR(X):U € U,,UN R(X) # @} is also countable. Hence C has
a countable subcover. O

Considering the importance R(X) seems to play in finding extension with
countable remainder for Tychonoff spaces, we seek to generalize it all Hausdorff
spaces. There are a few possibilities to consider. To begin we make the following
notational definitions.

Definition 54. Given a space X set R,(X) =X Ncl,x (0 X \ X).

Notice that € R,(X) iff for every open neighborhood U of 2 in ¢ X there is
some p € 0X \ X such that U € p.

Definition 55. Given a space X, set Rpx(X) = k[R(EX)].

Another characterization of Rgx(X) is: € Rgx(X) iff for each U € 7(X)
with z € clx U there is some p € 0 X \ X such that U € p.

Definition 56. Given a space X let
Ry (X) ={z € X : x has no H-closed neighborhood}.

Note that if U € 7(X), A is an H-set of X and U C A then clx U is H-closed,
so replacing “H-closed” with “H-set” in the previous definition does not obtain a
larger set.

Proposition 57. For a space X, Rpx(X) C R,(X) = Ru(X).

PROOF: Suppose z € Rpx(X), then there is some p € R(EX) such that k(p) = x.
Now p € R(EX) iff for each U € p there is some ¢ € c EX \ EX such that U € q.
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Since k(p) = z then N, C p. So for every open neighborhood U of there is some
q € X \ X such that U € q.

Now suppose = ¢ Ry (X), then there is some U € N, such that clx U is H-
closed. Now if p is an open ultrafilter on X then ad(p) =, clx V =, clx(UN
V) # @. So every open ultrafilter containing U is fixed and z ¢ R,(X). Therefore
R, (X) C Ru(X).

Finally suppose z ¢ X \ R,(X), then there is some U € N, for which if p is
a open ultrafilter and U € p, then ad(p) # @. This means every open filter on
clx U has nonempty adherence and hence clx U is H-closed. g

The next example shows that the containment in the previous proposition can
be strict.

Ezample 58. Let X = [0,1] U ([1,2] N Q) with the usual topology as a subspace
of R. Let # = 1, then = has no H-closed neighborhood so 1 ¢ R,(X). But
leclx(0,1)s01€ Rpx(X).
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