
Comment.Math.Univ.Carolin. 53,1 (2012) 123{137 123
H-
losed extensions with 
ountable remainderDaniel K. M
NeillAbstra
t. This paper investigates ne
essary and suÆ
ient 
onditions for a spa
eto have an H-
losed extension with 
ountable remainder. For 
ountable spa
eswe are able to give two 
hara
terizations of those spa
es admitting an H-
losedextension with 
ountable remainder.The general 
ase is more diÆ
ult, however, we arrive at a ne
essary 
ondition| a generalization of �Ce
h 
ompleteness, and several suÆ
ient 
onditions for aspa
e to have an H-
losed extension with 
ountable remainder. In parti
ular,using the notation of Cs�asz�ar, we show that a spa
e X is a �Ce
h g-spa
e if andonly if X is GÆ in �X or equivalently if EX is �Ce
h 
omplete. An example ofa spa
e whi
h is a �Ce
h f-spa
e but not a �Ce
h g-spa
e is given answering a
ouple of questions of Cs�asz�ar. We show that if X is a �Ce
h g-spa
e and R(EX),the residue of EX, is Lindel�of, then X has an H-
losed extension with 
ountableremainder. Finally, we investigate some natural generalizations of the residue tothe 
lass of all Hausdor� spa
es.Keywords: �Ce
h 
omplete, H-
losed, extensionClassi�
ation: 54A25, 54D35, 54D40In this paper we will 
on
ern ourselves with �nding H-
losed extensions with
ountable remainder, i.e. the smallest H-
losed extensions. Our topi
 is a ge-neralization of a question of Morita [11℄: 
hara
terize those spa
es whi
h have
ompa
ti�
ations with 
ountable remainder | an area studied in depth by Hen-riksen [7℄, Hoshina [8℄, [9℄, [10℄, Terada [16℄ and Charalambous [1℄ but still notentirely resolved.The question of whi
h spa
es allow H-
losed extensions with 
ountable remain-der is an obvious generalization of the question of 
ompa
ti�
ations with 
ountableremainder, and has been 
onsidered by Porter and Vermeer [13℄ and Tikoo [17℄.Mu
h of the ba
kground for this paper 
an be found in [13℄, [17℄ and [15℄.Re
all that the Iliadis absolute of a Hausdor� spa
e X is the pair (EX; k) |where EX is a zero-dimensional, extremally dis
onne
ted Hausdor� spa
e andk : EX ! X is a perfe
t, irredu
ible and �-
ontinuous surje
tion. Also re
allthat the spa
e �X is the largest stri
t H-
losed extension of X .The bulk of the results in this paper are informed by the following fa
ts.Theorem 1 ([12℄, [14℄, [15℄). Let X be a Hausdor� spa
e.(1) Then �X nX is homeomorphi
 to �EX nEX .
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h H-
losed extension hX of X , there is a �-
ontinuous fun
tionfh : �X ! hX su
h that fh = idX and ff h (y) : y 2 hX n Xg is apartition of 
ompa
t subsets of �X nX .(3) For ea
h partition P of nonempty 
ompa
t sets of �X n X , there is anH-
losed extension hX of X su
h that P = ff h (y) : y 2 hX nXg.(4) Let � be a 
ardinal. There is an H-
losed extension hX of X with jhX nX j = � i� �X nX 
an be partitioned into � many 
ompa
t sets.Corollary 2. The spa
e X has an H-
losed extension with 
ountable remainderi� �X nX �= �EX nEX has a 
ountable partition of 
ompa
t sets.A few more fa
ts about the Iliadis absolute will be useful in this paper. Firstre
all the de�nition of the small image of a set.De�nition 3. Given a fun
tion f : X ! Y where X and Y are sets, we de�nef#[A℄ = fy 2 Y : f (y) � Ag:Fa
t 4. Let X be a Hausdor� spa
e and k : EX ! X be the absolute map.(1) [15℄ If U 2 �(X), OU = O(intX 
lX U), k[OU ℄ = 
lX U and 
lEX k [U ℄ =OU .(2) [15℄ For x 2 X and U 2 �(X), k (x) � OU i� x 2 intX 
lX U , inparti
ular, k#[OU ℄ = intX 
lX U .(3) If T is 
lopen in EX then T = O(k#[T ℄).Proof: Sin
e T is 
lopen in EX , T = OU for some U 2 �(X). By the abovek#[T ℄ = intX 
lX U and so T = OU = O(intX 
lX U) = O(k#[T ℄). �1. Countable spa
esOur goal is to determine whi
h spa
es have H-
losed extensions with a 
ount-able remainder. As a sub-goal we �rst 
onsider whi
h 
ountable spa
es have
ountable H-
losed extensions.Fa
t 5. A 
ountable spa
e X with a 
ountable H-
losed extension is Kat�etov.Proof: By 1.4 of [13℄, it suÆ
es to show X has an in�nite 
losed dis
rete sub-spa
e. If X has no in�nite 
losed dis
rete subspa
es, then every in�nite subset ofX has a derived point. This means X is 
ountably 
ompa
t. As X is 
ountable,it follows that X is 
ompa
t | hen
e Kat�etov. �The other dire
tion is to determine whi
h 
ountable spa
es have a 
ountable H-
losed extension. We start with a 
ountable, �rst 
ountable, semiregular, Kat�etovspa
e X . We may also assume X is not 
ountably 
ompa
t; that is, X 
ontainsan in�nite, 
losed dis
rete subspa
e A.Theorem 6. A 
ountable Hausdor� spa
e X has a 
ountable H-
losed extensioni� X is Kat�etov and Xs is �rst 
ountable.
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ountable spa
e X is Kat�etov and Xs is �rst 
ountable. Wewant to show X has an H-
losed extension with 
ountable remainder. By Theo-rem 1, it suÆ
es to show �EX nEX has a 
ountable partition of 
ompa
t sets.Let X 0 denote X with the 
oarser H-
losed topology. So we have that theidentity fun
tion idX : X ! X 0 is 
ontinuous.(1) By [3℄, there is a 
ontinuous fun
tion f : EX ! EX 0 su
h that kX0 Æ f =idX ÆkX . That is, the following diagram 
ommutes:EXkX �� f // EX 0kX0��X idX // X 0As X 0 is H-
losed, EX 0 is 
ompa
t Hausdor� by 1. Also, there isa 
ontinuous extension �f : �EX ! EX 0 and the following diagram
ommutes. �EX �f # #GGGGGGGGGEXkX �� f //?� OO EX 0kX0��X idX // X 0Let X = fpn : n 2 !g and X 0 = fp0n : n 2 !g where idX(pn) = p0n forn 2 !. Sin
e kX is perfe
t, we have that fk X (pn) : n 2 !g is a partitionof EX into 
ompa
t subsets, fk X0(p0n) : n 2 !g is a partition of EX 0 into
ompa
t subsets, and f(kX0 Æ �f) (p0n) : n 2 !g is a partition of �EXinto 
ompa
t subsets. By 
ommutativity of the diagram, it follows thatk X (pn) = (kX0 Æf) (p0n) � (kX0 Æ�f) (p0n) and (kX0 Æ�f) (p0n)\EX =k X (pn) for n 2 !.(2) As Xs is �rst 
ountable, for ea
h x 2 X there is a 
ountable neighborhoodbase fUng! of regular open sets for x 2 Xs. We now show f
l�EX OUng!is a 
ountable family of 
lopen sets for whi
h if k X (x) � T 2 �(�EX)then there is some m 2 ! su
h that 
l�EX OUm � T . Let T be anopen set in �EX su
h that k X (x) � T . As the 
lopen family f
l�EX S :S is 
lopen in EXg is a base for �EX whi
h is 
losed under �nite unionsand k X (x) is 
ompa
t, we 
an suppose T = 
l�EX S for some 
lopen setS of EX . By 4, S = OU for some U 2 �(X). As k X (x) � OU , itfollows that x 2 intX 
lX U and so for some n 2 !, x 2 Un � intX 
lX U .Hen
e we have k X (x) � OUn � O(intX 
lX U) = OU = S and k X (x) �
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l�EX OUn � T . Thus, k X (x) = T! 
l�EX OUn, and we 
an suppose
l�EX OUn+1 � 
l�EX OUnfor n 2 !.(3) Using the notation of 1, for ea
h n 2 ! we have k X (pn) � (kX0 Æ�f) (p0n)and (kX0 Æ �f) (p0n) n k X (pn) � �EX nEX and �nally[! ((kX0 Æ �f) (p0n) n k X (pn)) = �EX nEX:Note[(kX0 Æ �f) (p0n) n k X (pn)℄ \ [
l�EX OUk n 
l�EX OUk+1℄ = Knkis a 
ompa
t subset of �EX nEX . Now, Sk2!Knk = (kX0 Æ �f) (p0n) nk X (pn), �EX n EX = Sn;k2!Knk and fKnk : n; k 2 !g is a partitionof �EX n EX . By 1, as �EX n EX has a 
ountable partition of 
om-pa
t subsets, both EX and X have H-
losed extensions with 
ountableremainder.Conversely, suppose the 
ountable Hausdor� spa
e X has a 
ountableH-
losed extension hX . By 1, �XnX has a 
ountable partition of 
ompa
tsets. If X is not 
ountably 
ompa
t, X has a 
ountably in�nite 
loseddis
rete subspa
e. By 5, X is Kat�etov. If the 
ountable spa
e X is
ountably 
ompa
t, then X is also 
ompa
t and hen
e Kat�etov. As hX is
ountable and H-
losed, hXs is a 
ountable minimal Hausdor� extensionof Xs. But 
ountable minimal Hausdor� spa
es are �rst 
ountable. Thus,Xs is �rst 
ountable as well. �2. Generalizations of �Ce
h 
ompletenessWe re
all some basi
 de�nitions before 
onsidering the question of how generali-zations of �Ce
h 
ompleteness relate to �nding H-
losed extensions with 
ountableremainder.De�nition 7. A Ty
hono� spa
eX is �Ce
h 
omplete if it is GÆ in every Hausdor�extension.The following theorem is well-known and provides two important 
hara
ter-izations of �Ce
h 
ompleteness. The �rst allows us a redu
tion in the numberof 
ompa
t Hausdor� extensions we must 
onsider, and the se
ond provides aninternal 
hara
terization of the property.Theorem 8 ([5℄, [4℄). The following are equivalent for a Ty
hono� spa
e X .(1) The spa
e X is �Ce
h 
omplete.(2) The spa
e X is GÆ in �X .(3) There exists a sequen
e (Cn)! of open 
overs of X su
h that every �lterbase of 
losed sets subordinate to (Cn)! has non-empty interse
tion.
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orollary is immediate.Corollary 9. If a spa
e X has an H-
losed extension with 
ountable remainderthen EX is �Ce
h 
omplete.Proof: Re
all from 1 that a spa
e X has an H-
losed extension with 
ountableremainder i� �EX nEX has a 
ountable partition of 
ompa
t sets. Of 
ourse, aprerequisite for �EX nEX to be the 
ountable partition of 
ompa
t sets is that ita
tually be the union of 
ountably many 
ompa
t sets. So if �EX nEX = S!Knwhere Kn is 
ompa
t, then Gn = �EX nKn is a family of open sets of �EX andEX � Gn for all n 2 !. Sin
e S!Kn = �EX n EX , we have T! Gn = EX .Hen
e EX is �Ce
h 
omplete. �Though �Ce
h 
ompleteness of the absolute is a ne
essary 
ondition for theexisten
e of an H-
losed extension with 
ountable remainder, we will see that itis not suÆ
ient | some additional property is required.For metri
 spa
e, restri
tions related to the following de�nitions (along with�Ce
h 
ompleteness) are suÆ
ient to allow a 
ompa
ti�
ation with 
ountable re-mainder.Notation 10 ([13℄). For a Ty
hono� spa
e X , let R(X) = [
l�X(�X nX)℄ \X .We 
all R(X) the residue of X .De�nition 11. A spa
e X 
alled rim-
ompa
t (or semi
ompa
t) if X has a basisof open sets ea
h of whi
h has a 
ompa
t boundary.De�nition 12. A spa
e X is 
alled Lindel�of if every open 
over of X has a
ountable subfamily whi
h 
overs.The 
hara
terization of metri
 spa
es allowing 
ompa
ti�
ation with 
ountableremainder is due to Hoshina.Theorem 13 ([8℄). A metrizable spa
e X has a 
ompa
ti�
ation with 
ountableremainder i� X is �Ce
h 
omplete, rim-
ompa
t and R(X) is Lindel�of.For 
ompa
ti�
ations of Ty
hono� spa
es with 
ountable remainder Hoshinaalso provides a suÆ
ient 
ondition.Theorem 14 ([8℄). Let X be a �Ce
h 
omplete, rim-
ompa
t spa
e. If R(X) isseparable metrizable then X has a 
ompa
ti�
ation with 
ountable remainder.We quote the following lemma of Hoshina [9℄, whi
h is ne
essary for the nextexample.Lemma 15. If X has a 
ompa
ti�
ation with 
ountable remainder and U is a
olle
tion of pairwise disjoint open sets of X with U \R(X) 6= ? for ea
h U 2 U ,then U is 
ountable.
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onsider an example of Charalambous [1℄ showing that �Ce
h 
om-pleteness is not enough to guarantee that a spa
e has a 
ompa
t extension with
ountable remainder; moreover there exist two spa
es X and X1 with homeomor-phi
 residues, R(X) �= R(X1), one of whi
h has a 
ompa
ti�
ation with 
ountableremainder | while the other does not.Example 16 ([1℄). The 
onstru
tion starts with the following setup due to Terada[16℄. Note X = �R n N has a 
ompa
ti�
ation with 
ountable remainder, namely�R , and R(X) = �N n N .Now let Z = N[f1g, the one point 
ompa
ti�
ation of N , Y = Z�Z�(�NnN)and X1 = Y n [f1g � N � (�N n N )℄. Sin
e Y is 
ompa
t and Y n X1 is �-
ompa
t and zero-dimensional, then X1 is �Ce
h 
omplete and rim-
ompa
t. Inaddition, R(X1) = f1g� f1g� (�N n N ) is homeomorphi
 with R(X). But X1has no 
ompa
ti�
ation with 
ountable remainder. For let U be an un
ountable
olle
tion of pairwise disjoint nonempty open subsets of �N n N . For ea
h U 2 Ulet U 0 = Z � Z � U , then fU 0 \ X1 : U 2 Ug is an un
ountable 
olle
tion ofpairwise disjoint open sets of X1 with U 0 \X1 \ R(X1) 6= ? for ea
h U 2 U . Soby the lemma above, X1 has no 
ompa
ti�
ation with 
ountable remainder.We note here, however, thatX1 does have an H-
losed extension with 
ountableremainder, sin
e Y nX1 = f1g�N�(�NnN ) is zero-dimensional and the 
ountableunion of 
ompa
t GÆ sets.We now 
onsider how it may be possible to partition the spa
e �EX nEX into
ountably many 
ompa
t sets | whi
h would allow us to 
onstru
t an H-
losedextension of X with 
ountable remainder. Sin
e �EX nEX is zero-dimensional,the following proposition, 
ommuni
ated to Porter and Vermeer by F. Galvin,will be very useful.Proposition 17 ([13℄). A zero-dimensional spa
e Y 
an be partitioned into a
ountable number of 
ompa
t sets i� Y is the 
ountable union of 
ompa
t GÆ-sets.Seeking to generalize Hoshina's 
hara
terization of metrizable spa
es allowing
ompa
ti�
ations with 
ountable remainder, Porter and Vermeer found the fol-lowing suÆ
ient 
onditions for an H-
losed extension with 
ountable remainder.Theorem 18 ([13℄). If 
X is a zero-dimensional 
ompa
ti�
ation of a �Ce
h
omplete spa
e X and R(X) is Lindel�of, then 
X nX has a 
ountable partitionof 
ompa
t sets.Corollary 19 ([13℄). Let X be a spa
e.(1) If X is not 
ountably 
ompa
t, EX is �Ce
h 
omplete, and R(EX) isLindel�of, then X has an H-
losed extension with 
ountable remainderand is Kat�etov.(2) If X is Ty
hono� and �Ce
h 
omplete and R(X) is Lindel�of, then X hasan H-
losed extension with a 
ountable remainder.
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ountable remainder 129Noting that �Ce
h 
ompleteness of the absolute is ne
essary for a spa
e tohave an H-
losed extension with 
ountable remainder | we seek a generalizationof �Ce
h 
ompleteness to Hausdor� spa
es whi
h we may be able use dire
tly.K. Cs�asz�ar in [2℄ modi�es the internal 
hara
terization of a �Ce
h 
omplete spa
eto obtain three di�erent generalizations, two of whi
h we will 
onsider in depth.Before we begin we will need the following de�nition also due to Cs�asz�ar:De�nition 20. A subset A of a topologi
al spa
eX is said to regularly embeddedin X if whenever x 2 A � G and G is open, then there exists an open set V su
hthat x 2 V � 
lX V � G.Proposition 21 ([2℄). Suppose A � X � Y are spa
es. If A is regularly embed-ded in Y , then A is regularly embedded in X .Theorem 22 ([2℄). If X is a Hausdor� spa
e, then X is regularly embedded in�X .The following de�nitions generalize the internal 
hara
terization of �Ce
h 
om-pleteness for Ty
hono� spa
es to all Hausdor� spa
es.De�nition 23. Let (Cn)! be a sequen
e of families of sets of a set X and A afamily of sets. The family A is subordinate to the sequen
e (Cn)! if, for everym 2 !, there is some set A 2 A and also a set C 2 Cm su
h that A � C.De�nition 24. Let X be a topologi
al spa
e. A �Ce
h sequen
e (�Ce
h f -sequen
e,�Ce
h g-sequen
e) in X is a sequen
e (Cn)! of open 
overs of X su
h that every�lter base A (of 
losed sets, of open sets) subordinate to (Cn)! has an adherentpoint.De�nition 25. A Hausdor� spa
e X is a �Ce
h spa
e (�Ce
h g-spa
e, �Ce
h f -spa
e) if there is a �Ce
h sequen
e (�Ce
h g-sequen
e, �Ce
h f -sequen
e) in X .Noti
e that for a Ty
hono� spa
e the 
on
epts of �Ce
h spa
e, �Ce
h g-spa
e,�Ce
h f -spa
e, and �Ce
h 
omplete spa
e 
oin
ide.Theorem 26 ([2℄). A regularly embedded open subspa
e of a �Ce
h g-spa
e is a�Ce
h g-spa
e.Theorem 27 ([2℄). A regularly embedded, dense GÆ subspa
e of a �Ce
h g-spa
eis a �Ce
h g-spa
e.De�nition 28. A sequen
e of open 
overs (Cn)! is said to be monotone if Cn+1re�nes Cn.Proposition 29 ([2℄). If there exists a �Ce
h sequen
e (g-sequen
e, f -sequen
e) fora spa
e X , then there exists a monotone �Ce
h sequen
e (g-sequen
e, f -sequen
e).The following proposition provides an external 
hara
terization of a �Ce
h g-spa
e 
omparable to that of a �Ce
h 
omplete spa
e.
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e X the following are equivalent.(1) X is GÆ in every Hausdor� extension.(2) X is GÆ in �X .(3) X is a �Ce
h g-spa
e.With regard to �nding H-
losed extensions with 
ountable remainder, the pre-vious proposition indi
ates that �Ce
h g-spa
es may be the generalization of �Ce
h
omplete spa
es we should 
onsider. The next proposition provides more sup-port for this observation. We begin with the following lemma whi
h generalizesa theorem appearing in [14℄.Lemma 31. Let X be a spa
e. If A � �X nX and A is 
losed in �X nX , then
l�X A is an H-set of �X .Proof: Let U be an open 
over of 
l�X A. Extend, and possibly re�ne, U to anopen 
over, C, of all of �X with basi
 open sets of the form oU where U 2 �(X).Sin
e �X is H-
losed we 
an �nd a �nite subfamily of C with the 
losures 
overing�X , and sin
e 
l�X oU = 
lX U [ oU we get a �nite subfamily 
overing A, hen
e�nite subfamily whose 
losures 
over 
l�X A. �Corollary 32 ([14℄). Let X be a spa
e. If A � �X nX and A is 
losed in �X ,then A is 
ompa
t.Proposition 33. A spa
e X is a �Ce
h g-spa
e i� EX is �Ce
h 
omplete.Proof: The spa
e X is a �Ce
h g-spa
e i� X is GÆ in �X , i.e. X = T! Unwhere Un 2 �(�X). Let Kn = �X n Un, so �X n X = S!Kn and ea
h Kn is
ompa
t. Now re
all �X n X �= �EX n EX . Consider Kn � �EX n EX , andlet Ûn = �EX n Kn. Note EX � Ûn, and sin
e S!Kn = �EX n EX , thenEX = T! Ûn and EX is GÆ in �EX and hen
e �Ce
h 
omplete.The argument 
an also be reversed. �Corollary 34. A spa
e X is a �Ce
h g-spa
e i� Xs is a �Ce
h g-spa
e.Proof: This follows from EX = EXs. �The following proposition is another 
hara
terization of 
ountable spa
es ad-mitting an H-
losed extension with 
ountable remainder. First we note that if Xis 
ountable then EX is Lindel�of.Lemma 35. Let X be a 
ountable spa
e, then EX is Lindel�of.Proof: Sin
e k : EX ! X is 
ompa
t, EX = Sfk (x) : x 2 Xg is the
ountable union of 
ompa
t sets | hen
e Lindel�of. �Proposition 36. A 
ountable spa
e X admits an H-
losed extension with 
ount-able remainder i� X is a �Ce
h g-spa
e.Proof: Clearly if X admits an H-
losed extension with 
ountable remainder,then X is a �Ce
h g-spa
e.
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ountable remainder 131Now suppose X is 
ountable and a �Ce
h g-spa
e, then EX is Ty
hono� and�Ce
h 
omplete. Also note sin
e X is 
ountable that X is Lindel�of. Therefore EXis Lindel�of. Sin
e R(EX) is a 
losed subset of EX , it is Lindel�of as well. By 18,EX has an H-
losed extension with 
ountable remainder. Therefore X does aswell. �Combining the above with 6 we have the following.Theorem 37. For a 
ountable spa
e X the following are equivalent.(1) X has an H-
losed extension with 
ountable remainder.(2) X is Kat�etov and Xs is �rst 
ountable.(3) X is a �Ce
h g-spa
e.The following provides a 
hara
terization of all Hausdor� spa
es having anH-
losed extension with 
ountable remainder in terms of a spe
ial 
lass of �Ce
hg-sequen
es.Proposition 38. The spa
e X has an H-
losed extension with 
ountable remain-der i� X admits a �Ce
h g-sequen
e (Cn)! for whi
h ea
h free open ultra�lter p isnot subordinate to Cm only for m = Np for some Np 2 !.Proof: Re
all X has an H-
losed extension with 
ountable remainder i� �X nX = �EX n EX has a 
ountable partition of 
ompa
t sets fKng. Let Gn =�X n Kn, then Gn is open in �X and so Gn = S oU where oU � Gn andU 2 �(X). Sin
e X � Gn and oU \ X = U , X = SfU : oU � Gng, i.e.fU : oU � Gng is an open 
over of X . Note for ea
h p 2 �X nX , p 2 Kn impliesp =2 Km for m 6= n, i.e. p =2 �X n Gn implies p 2 �X n Gm for m 6= n. Finallywe get U =2 p for all U su
h that oU � Gm implies V 2 p for all V su
h thatoV � Gm for m 6= n. Let Cn = fU : oU � Gng, then (Cn)! is a sequen
e ofopen 
overs of X . Also, for ea
h p 2 �X nX there is an N 2 ! su
h that U =2 pfor all U 2 CN (i.e. p 2 KN ). In addition, for all p 2 �X n X , p (as an open�lter) is subordinate to all Cn where n 6= N . Hen
e no free open ultra�lter on Xis subordinate to (Cn) and (Cn) is a �Ce
h g-sequen
e on X | one in whi
h ea
hopen ultra�lter is ex
luded at exa
tly one level.The argument above 
an be reversed. That is given a spe
ial �Ce
h g-sequen
e(Cn)! , we simply noti
e that fKn : Kn = �X nSfoU : U 2 Cngg is a 
ountable
ompa
t partition of �X nX . �Cs�asz�ar [2℄ gives an example showing not all �Ce
h g-spa
es are �Ce
h f -spa
es,a somewhat simpler example is provided by the following.Example 39. Let X be the unit interval with the topology generated by opensets of the form I nM where I is an interval and M is 
ountable. Then X is aHausdor� �Ce
h g-spa
e whi
h is not a �Ce
h f -spa
e.Proof: Sin
e X is H-
losed, it is a �Ce
h g-spa
e.To show X is not a �Ce
h f -spa
e, let (Cn) be a sequen
e of open 
overs of X .Sele
t Cn 2 Cn su
h that 0 2 Cn and then In andMn su
h that 0 2 In nMn � Cn.
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losed by virtue of being 
ountable, by An � In nM0 �In nMn � Cn the system A = fAn : n 2 Ng is a 
losed �lter base subordinate to(Cn). So sin
e TAn = ?, X is not a �Ce
h f -spa
e. �Cs�asz�ar goes on to ask whether every �Ce
h f -spa
e is also a �Ce
h g-spa
e. Thisis not the 
ase.Theorem 40. There is a spa
e whi
h is a �Ce
h f -spa
e but not a �Ce
h g-spa
e.The following lemma is well known and 
an be found in Chapter 9 of [6℄.Lemma 41. If X is lo
ally 
ompa
t and real
ompa
t, then every in�nite 
losedsubset of �X nX has 
ardinality at least 2
.We now 
onstru
t a spe
ial subset of �! n !.Lemma 42. There is a set D � �! n! = !� for whi
h D interse
ts every in�nite
ompa
t subset of !� and !� n D also interse
ts every in�nite 
ompa
t subsetof !�.Proof: Note any in�nite 
ompa
t subset of !� has a 
ountably in�nite subset.We 
onsider the family of sets C = fC : C is a 
ountably in�nite subset of !�g.Note jCj = (2
)! = 2
. Hen
e if K = fK : K = 
l�! C for some C 2 Cg, thenjKj � 2
. We 
onstru
t D re
ursively; begin by well-ordering K = fK� : � < 2
g.Let p 2 D0 and q 2 E0 where p; q 2 K0 and p 6= q.For �+1 a su

essor ordinal, let D�+1 = D�[fpg and E�+1 = E�[fqg wherep; q 2 K�+1 n (D�[E�) and p 6= q. Note K�+1 n (D�[E�) 6= ? sin
e jK�+1j = 2
but jD� [ E�j < 2
.For � a limit ordinal, let D� = S�<�D� [fpg and E� = S�<�E� [fqg wherep; q 2 K�n(S�<�D�[S�<�E�) and p 6= q. NoteK�n(S�<�D�[S�<�E�) 6= ?sin
e jK�j = 2
 but still jS�<�D� [S�<�E� j < 2
.Let D = S2
 D� and E = S2
 E�. Note D \ E = ? and for ea
h in�nite
ompa
t subset K of !�, K \D 6= ? and K \ E 6= ?. �Proof of 40: Consider the set D 
onstru
ted above as a subset of �!. LetX = �! nD, then X is a �Ce
h f -spa
e but not a �Ce
h g-spa
e.To show X is a �Ce
h f -spa
e we must �nd a sequen
e of open 
overs (Cn)! ofX for whi
h every subordinate 
losed �lter base has nonempty adheren
e. The
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e (Cn)! where Cn = C = ffpg [ ! : p 2 X n !g suÆ
es. For supposeF is a subordinate 
losed �lter base, then there is some F 2 F and U 2 C forwhi
h F � U . Now F 
annot 
ontain an in�nite subset V of ! be
ause thenoV \X � 
lX V � F , but oV \X 6� U . So F \ ! is �nite, and hen
e F is �nite.Now F 
ontains a 
ompa
t set and hen
e has nonempty adheren
e.To show X is not a �Ce
h g-spa
e we 
onsider the following diagram:! = E! � � //�� EX = Xs � � //�� E(�!) = �!��! � � // X � � // �!:In this 
ase if X is a �Ce
h g-spa
e then EX = Xs is �Ce
h 
omplete. Butthen EX is GÆ in every Hausdor� extension, in parti
ular �! | 
ontradi
tingthe 
onstru
tion of D. �From the above a spa
e must be a �Ce
h g-spa
e if it is to have an H-
losedextension with 
ountable remainder. By 18, if we also have that the residue ofEX , R(EX), is Lindel�of, then this is suÆ
ient to guarantee an H-
losed extensionof the spa
e with 
ountable remainder. Hen
e we have the following 
orollary.Corollary 43. If a spa
e X is a �Ce
h g-spa
e and R(EX) is Lindel�of, then Xhas an H-
losed extension with 
ountable remainder.It seems that the next step would be to generalize the 
ondition on R(EX)to a 
ondition on the original spa
e X . What follows are several theorems andexamples obtained while trying to �nd 
onditions both ne
essary and suÆ
ientfor a spa
e to have an H-
losed extension with 
ountable remainder.Lemma 44. The 
ountable interse
tion of �-
ompa
t subspa
es in a regularspa
e is Lindel�of.Proof: Let X be a regular spa
e, Bn � X where Bn is �-
ompa
t for n 2 !,and A = T! Bn. Note Q! Bn is Lindel�of. The fun
tion e : A ! Q! Bn de�nedby e(x)(n) = x is an embedding and e[A℄ is 
losed in the produ
t. Therefore A isLindel�of. �Proposition 45 ([13℄). Let X be a Ty
hono�, nowhere lo
ally 
ompa
t spa
e.If X has an H-
losed extension with 
ountable remainder, then X has a denseLindel�of subspa
e.Fa
t 46 ([13℄). A 
omplete metri
 spa
e is Kat�etov.Example 47 ([13℄). Let D be the dis
rete spa
e of 
ardinality �1, and P be theirrationals. Note both D and P have 
ompa
t extensions with 
ountable remain-der. Also, the spa
e D � P is lo
ally Lindel�of and a 
omplete metri
 spa
e |hen
e �Ce
h 
omplete, �rst 
ountable and Kat�etov. Re
all P has a 
oarser 
ompa
tHausdor� topology. In parti
ular, P �= Q! !, and there is a 
ontinuous bije
tion
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oarser 
ompa
t Haus-dor� topology, then D� P0 is lo
ally 
ompa
t and Hausdor�. Thus, D� P has a
oarser 
ompa
t Hausdor� topology. However, sin
e the spa
e is nowhere lo
ally
ompa
t and has no dense Lindel�of subspa
e, D � P has no H-
losed extensionwith 
ountable remainder.The 
onverse of 45 is false, for 
onsider the spa
e Q . Also 
onsider the follow-ing example, whi
h has a dense subspa
e admitting an H-
losed extension with
ountable remainder, but has none itself.Example 48. Again let D be the dis
rete spa
e of 
ardinality �1 and let D�be the one point 
ompa
ti�
ation of D. Let R denote the real numbers withthe usual topology and let R+ denote the two point 
ompa
ti�
ation of R. LetX = P�D� �R+ and note that 
X = R+ �D� �R+ is a 
ompa
ti�
ation of Xwhere 
XnX = Q�D��R+ has a 
ountable partition into 
ompa
t sets. SoX hasan H-
losed extension with 
ountable remainder. Let Y = X [ (Q �D�P), then
X is also a 
ompa
ti�
ation of Y . However 
XnY = Q�[(D��R+)n(D�P)℄ doesnot have a 
ountable partition of 
ompa
t sets, so Y has no H-
losed extensionwith 
ountable remainder. This is despite the fa
t Y is nowhere lo
ally 
ompa
t,X is a dense Lindel�of subspa
e of Y , and X itself has an H-
losed extension with
ountable remainder.Example 49. The spa
e X = P� 2 with the lexi
ographi
 order has an H-
losedextension with 
ountable remainder, namely Y = R+ � 2 with the lexi
ographi
order, sin
e X is both a �Ce
h g-spa
e and Lindel�of. The spa
e X2 also hasan H-
losed extension with 
ountable remainder, though X2 is not Lindel�of. Inparti
ular, noti
e Y 2 is a zero-dimensional 
ompa
ti�
ation of X2, whi
h hasa remainder that 
an be expressed as the 
ountable union of 
ompa
t GÆ sets.Namely,Y 2 nX2 = [q2R+nP[(fqg � 2)� (R � 2)℄ [ [q02R+nP[(R � 2)� (fq0g � 2)℄:Consider the following fa
t.Fa
t 50. Let a Ty
hono� spa
e X have an H-
losed extension hX with a 
ount-able remainder. If U is a family of pairwise disjoint open sets in X , then fU 2U : U \ R(X) 6= ?g is 
ountable.Proof: If U is an open set of X we denote by ohU the largest open set in hXsu
h that ohU \X = U . By the denseness of X in hX , fohU : U 2 Ug is a familyof pairwise disjoint open sets in hX . If U \ R(X) 6= ?, then ohU nX 6= ?. AshX nX is 
ountable, fU 2 U : U \ R(X) 6= ?g is 
ountable. �We de�ne the relative 
ellularity of a spa
e X relative to a subspa
e A asfollows: 
(A;X) = supfU : U is a family of pairwise disjoint nonempty opensubsets of X su
h that U \ A 6= ? for all U 2 Ug.



H-
losed extensions with 
ountable remainder 135Thus by the fa
t above, if X is a Ty
hono� spa
e with an H-
losed extensionwith 
ountable remainder, then 
(R(X); X) = !.Corollary 51. If X is Ty
hono�, nowhere lo
ally 
ompa
t and has an H-
losedextension with a 
ountable remainder then 
(X) = !.Remark 52. As the spa
e D � P des
ribed in 47 is nowhere lo
ally 
ompa
t and
(X) = !1, it follows from the above that X has no H-
losed extension with a
ountable remainder.The next result extends a result of Hoshina [9℄ whi
h states that if a para
om-pa
t spa
e X has a 
ompa
ti�
ation with a 
ountable remainder then R(X) isLindel�of, and answers a question of Porter and Vermeer [13℄.Proposition 53. LetX be a para
ompa
t Ty
hono� spa
e whi
h has an H-
losedextension hX with a 
ountable remainder, then R(X) is Lindel�of.Proof: Let C be an open 
over of R(X). Extend ea
h C 2 C to an open set C 0 ofX su
h that C 0 \R(X) = C. Now fC 0 : C 2 Cg[ fX nR(X)g is an open 
over ofX and has an open re�nement fUng!, where ea
h Un is a pairwise disjoint family.Also, fU \R(X) : U 2 Un; n 2 !;U \R(X) 6= ?g is a re�nement of C. By 50, forea
h n 2 !, fU \R(X) : U 2 Un; U \ R(X) 6= ?g is also 
ountable. Hen
e C hasa 
ountable sub
over. �Considering the importan
e R(X) seems to play in �nding extension with
ountable remainder for Ty
hono� spa
es, we seek to generalize it all Hausdor�spa
es. There are a few possibilities to 
onsider. To begin we make the followingnotational de�nitions.De�nition 54. Given a spa
e X set R�(X) = X \ 
l�X (�X nX).Noti
e that x 2 R�(X) i� for every open neighborhood U of x in �X there issome p 2 �X nX su
h that U 2 p.De�nition 55. Given a spa
e X , set REX(X) = k[R(EX)℄.Another 
hara
terization of REX(X) is: x 2 REX(X) i� for ea
h U 2 �(X)with x 2 
lX U there is some p 2 �X nX su
h that U 2 p.De�nition 56. Given a spa
e X letRH(X) = fx 2 X : x has no H-
losed neighborhoodg:Note that if U 2 �(X), A is an H-set of X and U � A then 
lX U is H-
losed,so repla
ing \H-
losed" with \H-set" in the previous de�nition does not obtain alarger set.Proposition 57. For a spa
e X , REX(X) � R�(X) = RH(X).Proof: Suppose x 2 REX(X), then there is some p 2 R(EX) su
h that k(p) = x.Now p 2 R(EX) i� for ea
h U 2 p there is some q 2 �EX nEX su
h that U 2 q.
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e k(p) = x then Np � p. So for every open neighborhood U of there is someq 2 �X nX su
h that U 2 q.Now suppose x =2 RH(X), then there is some U 2 Nx su
h that 
lX U is H-
losed. Now if p is an open ultra�lter on X then ad(p) = Tp 
lX V = Tp 
lX(U \V ) 6= ?. So every open ultra�lter 
ontaining U is �xed and x =2 R�(X). ThereforeR�(X) � RH(X).Finally suppose x =2 X n R�(X), then there is some U 2 Nx for whi
h if p isa open ultra�lter and U 2 p, then ad(p) 6= ?. This means every open �lter on
lX U has nonempty adheren
e and hen
e 
lX U is H-
losed. �The next example shows that the 
ontainment in the previous proposition 
anbe stri
t.Example 58. Let X = [0; 1℄ [ ([1; 2℄ \ Q ) with the usual topology as a subspa
eof R. Let x = 1, then x has no H-
losed neighborhood so 1 =2 R�(X). But1 2 
lX(0; 1) so 1 2 REX(X).A
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