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Singular points of order k ofClarke regular and arbitrary fun
tionsLud�ek Zaj���
ekAbstra
t. Let X be a separable Bana
h spa
e and f a lo
ally Lips
hitz realfun
tion on X. For k 2 N, let �k(f) be the set of points x 2 X, at whi
h theClarke subdi�erential �Cf(x) is at least k-dimensional. It is well-known that if fis 
onvex or semi
onvex (semi
on
ave), then �k(f) 
an be 
overed by 
ountablymany Lips
hitz surfa
es of 
odimension k. We show that this result holds evenfor ea
h Clarke regular fun
tion (and so also for ea
h approximately 
onvexfun
tion). Motivated by a resent result of A.D. Io�e, we prove also two resultson arbitrary fun
tions, whi
h work with Hadamard dire
tional derivatives and
an be 
onsidered as generalizations of our theorem on �k(f) of Clarke regularfun
tions (sin
e ea
h of them easily implies this theorem).Keywords: Clarke regular fun
tions, singularities, Hadamard derivativeClassi�
ation: Primary 49J52; Se
ondary 26B251. Introdu
tionIfX is a Bana
h spa
e and f a real fun
tion onX , then by the singular set �(f)of f we mean the set of all points x 2 X at whi
h f is not Gateâux di�erentiable. Iff is a 
ontinuous 
onvex (or semi
onvex, or semi
on
ave) fun
tion, then �(f) =fx 2 X : dim �f(x) � 1g, where �f(x) is the subdi�erential (or the Clarkesubdi�erential) of f at x.It is natural and useful to 
onsider also the set �k(f) = fx 2 X : dim �f(x) �kg (where k 2 N) of singular points of order k (or of magnitude k by [4℄). For
onvex fun
tions, the smallness of sets �k(f) was 
onsidered (using formally dif-ferent de�nition) e.g. in [3℄, [12℄ and [11℄, and for semi
onvex (resp. semi
on
ave)fun
tions in [2℄, [1℄ and [4℄.For 
ontinuous 
onvex fun
tions in separable Bana
h spa
es, the best possibleresult on smallness of sets �k(f) is the following theorem whi
h is a reformulation(via Lemma 2.4) of results of [12℄.Theorem A. Let f be a 
ontinuous 
onvex fun
tion de�ned on an open 
onvexsubset C of a separable Bana
h spa
e X . Let dimX > k 2 N. Then the set �k(f)
an be 
overed by 
ountably many DC surfa
es of 
odimension k.The resear
h was supported by the grant MSM 0021620839 from the Cze
h Ministry ofEdu
ation and by the grant GA�CR 201/09/0067.
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ek(For a 
omplete 
hara
terization of singular sets �(f) = �1(f) for 
onvexfun
tions f in Rn see [10℄.)For 
ontinuous semi
onvex (resp. semi
on
ave) fun
tions, the following analo-gous result was fa
tually proved in [1℄. Indeed, the proof in [1℄ works, if we workwith Lips
hitz surfa
es of 
odimension k (see De�nition 2.2 below) instead with\1� k re
ti�able sets" of [1℄.Theorem B. Let f be a 
ontinuous lo
ally semi
onvex (or semi
on
ave) fun
tionde�ned on an open subset G of a separable Bana
h spa
e X . Let dimX > k 2N. Then the set �k(f) 
an be 
overed by 
ountably many Lips
hitz surfa
es of
odimension k.Note that this result 
an be improved ([5℄) in the spirit of Theorem A. Namely,in superre
exive spa
es, the Lips
hitz surfa
es of Theorem B 
an be \parametrizedby di�eren
es of Lips
hitz semi
onvex fun
tions".In the present arti
le we prove the following generalization of Theorem B.Theorem 1.1. Let f be a lo
ally Lips
hitz Clarke regular fun
tion de�ned onan open 
onvex subset G of a separable Bana
h spa
e X . Let dimX > k 2N. Then the set �k(f) 
an be 
overed by 
ountably many Lips
hitz surfa
es of
odimension k.In parti
ular Theorem B holds with the weaker assumption that f is approx-imately 
onvex in the sense of [8℄. (For the fa
t that ea
h approximately 
onvexfun
tion is Clarke regular see [8, Corollary 3.5 and Theorem 3.6℄.)Theorem 1.1 is an easy 
onsequen
e of the following Proposition 1.2 on lo
allyLips
hitz mappings. So, this proposition, whi
h is perhaps of an independentinterest, 
an be 
onsidered as a generalization of Theorem 1.1.Proposition 1.2. LetX be a separable Bana
h spa
e, Y a Bana
h spa
es, G � Xan open set, and f : G ! Y a lo
ally Lips
hitz mapping. Let dimX > k 2 N.Denote by ��k(f) the set of those x 2 G, for whi
h there exists a k-dimensionalspa
e Vx � X , su
h that, for ea
h 0 6= v 2 Vx, the one-sided dire
tional deriv-ative f 0+(x; v) exists but the (two-sided) dire
tional derivative f 0(x; v) does notexist. Then the set ��k(f) 
an be 
overed by 
ountably many Lips
hitz surfa
esof 
odimension k.Note that, if f is a Clarke regular fun
tion, then it is easy to show that �k(f) =��k(f) (see Lemma 2.4), and so Proposition 1.2 yields Theorem 1.1.We will obtain also another generalization of Theorem 1.1 whi
h 
on
ern lowerdire
tional derivatives d�f(x; v) of arbitrary lo
ally Lips
hitz fun
tions:Proposition 1.3. Let X be a separable Bana
h spa
e, G � X an open set, andf a lo
ally Lips
hitz fun
tion on G. Let dimX > k 2 N. Denote by ~�k(f) theset of those x 2 G, for whi
h there exists a k-dimensional spa
e Vx � X , su
hthat d�f(x; v) + d�f(x;�v) > 0 for ea
h 0 6= v 2 Vx. Then the set ~�k(f) 
an be
overed by 
ountably many Lips
hitz surfa
es of 
odimension k.



Singular points of order k 53Note that, if f is a Clarke regular fun
tion, then (2.6) easily implies ~�k(f) =��k(f) and so ~�k(f) = �k(f).In a re
ent arti
le [6℄, A.D. Io�e has shown that some results 
on
erning(Dini) derivatives of Lips
hitz fun
tion 
an be generalized to results 
on
erningHadamard derivatives of arbitrary fun
tions. Following this idea, we will prove thefollowing theorems on Hadamard derivatives of arbitrary mappings (fun
tions),whi
h 
learly imply (via (2.3) and (2.4)) Propositions 1.2 and 1.3.Theorem 1.4. Let X be a separable Bana
h spa
e, Y a Bana
h spa
e, G � Xan open set, and f : G ! Y an arbitrary mapping. Let dimX > k 2 N. Denoteby ��H;k(f) the set of those x 2 G, for whi
h there exists a k-dimensional spa
eVx � X , su
h that, for ea
h 0 6= v 2 Vx, the Hadamard one-sided dire
tionalderivative f 0H+(x; v) exists but the (two-sided) Hadamard dire
tional derivativef 0H(x; v) does not exist. Then the set ��H;k(f) 
an be 
overed by 
ountably manyLips
hitz surfa
es of 
odimension k.Theorem 1.5. Let X be a separable Bana
h spa
e, G � X an open set, and fan arbitrary real fun
tion on G. Let dimX > k 2 N. Denote by ~�H;k(f) theset of those x 2 G, for whi
h there exists a k-dimensional spa
e Vx � X , su
hthat f�H (x; v) + f�H (x;�v) > 0 for ea
h 0 6= v 2 Vx. Then the set ~�H;k(f) 
an be
overed by 
ountably many Lips
hitz surfa
es of 
odimension k.Note that, in the 
ase k = 1, Proposition 1.3 easily follows from Lemma 2 of[13℄ and, for k = 1, Theorem 1.5 follows from [6, Theorem 1.3(a)℄ (whi
h dealwith fun
tions f : X ! [�1;1℄).Further note that our results do not deal with the 
ase dimX = k, but a slightmodi�
ation of our proofs give that ex
eptional sets (�k(f); : : : ) from the aboveresults are 
ountable in this 
ase.In Se
tion 2, we will re
all some de�nitions and well-known fa
ts. In Se
tion 3and Se
tion 4 we prove Theorem 1.4 and Theorem 1.5, respe
tively.2. PreliminariesIn the following, if it is not said otherwise, X will be a real Bana
h spa
e. ByspanM we denote the linear span of M � X . If X = E � F , then we denote by�E;F the proje
tion of X on E along the spa
e F . The symbol B(x; r) denotesthe open ball with 
enter x and radius r.For a Bana
h spa
e Y , we set SY := fy 2 Y : kyk = 1g. If C � Y is anonempty 
onvex set, then we set dimC := dim(span(C�C)) 2 (N[f0g[f1g).It is well-known that, for k 2 N, the inequality dimC � k holds i� there exists ak-dimensional spa
e V � Y , 
 2 Y and r > 0 su
h that (
+ V ) \ B(
; r) � C.Let X , Y be Bana
h spa
es, ; 6= G � X an open set, and f : G ! Y amapping. The dire
tional and one-sided dire
tional derivatives of f at x 2 G inthe dire
tion v 2 X are de�ned respe
tively byf 0(x; v) := limt!0 f(x+ tv)� f(x)t ;
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ekf 0+(x; v) := limt!0+ f(x+ tv)� f(x)t :The Hadamard dire
tional and one-sided dire
tional derivatives of f at x 2 G inthe dire
tion v 2 X are de�ned respe
tively byf 0H(x; v) := limz!v;t!0 f(x+ tz)� f(x)t ;f 0H+(x; v) := limz!v;t!0+ f(x+ tz)� f(x)t :It is easy to see that f 0(x; v) exists if and only if f 0+(x;�v) = �f 0+(x; v) and(2.1) f 0H(x; v) exists if and only if f 0H+(x;�v) = �f 0H+(x; v).It is easy to prove that, if f 0H(x; v) exists for ea
h v 2 X , then(2.2) f 0H(x; �) is a 
ontinuous fun
tion.It is well-known and easy to prove that, if f is lo
ally Lips
hitz on G, then(2.3) f 0(x; v) = f 0H(x; v) (resp. f 0+(x; v) = f 0H+(x; v))whenever one of these two derivatives exists.Now we suppose that f is a real fun
tion de�ned on an open subset G ofX . Theupper and lower (Dini) one-sided dire
tional derivative of f at x in the dire
tionv are de�ned respe
tively byd+f(x; v) := lim supt!0+ (f(x+ tv)� f(x))t�1;d�f(x; v) := lim inft!0+ (f(x+ tv)� f(x))t�1:Following [6℄ we denote the upper and lower Hadamard one-sided dire
tionalderivatives of f at x in the dire
tion v byf+H (x; v) := lim supz!v;t!0+(f(x+ tz)� f(x))t�1;f�H (x; v) := lim infz!v;t!0+(f(x+ tz)� f(x))t�1:It is well-known (
f. [6℄) and easy to prove that, if f is lo
ally Lips
hitz on G,then(2.4) d+f(x; v) = f+H(x; v) and d�f(x; v) = f�H (x; v)for ea
h x 2 G and v 2 X .It is also well-known (
f. [6, p. 1021℄) and easy to prove that(2.5) f�H (x; �) is a lower semi
ontinuous fun
tion.



Singular points of order k 55Further we suppose that f is lo
ally Lips
hitz on G. Thenf0(a; v) := lim supz!a;t!0+ f(z + tv)� f(z)tis the Clarke derivative of f at a in the dire
tion v and�Cf(a) := fx� 2 X� : x�(v) � f0(a; v) for all v 2 Xgis the Clarke subdi�erential of f at a. Re
all that(2.6) f0(a; �) is a 
onvex fun
tion,�Cf(a) is a nonempty 
onvex set, and(2.7) f0(a; v) = maxfx�(v) : x� 2 �Cf(a)g:We say that f is Clarke regular at x 2 G if f0(x; v) = f 0+(x; v) for ea
h v 2 X .We say that f is Clarke regular on G, if f is Clarke regular at ea
h point of G.Let X be a Bana
h spa
e and Y , Z be 
losed non-trivial (i.e., di�erent fromf0g) subspa
es of X . Then the gap between Y and Z (
alled also the opening orthe deviation of Y and Z) is de�ned by
(Y; Z) = maxf supy2Y \S(X)dist(y; Z); supz2Z\S(X) dist(z; Y )g:The gap need not be a metri
 on the set of all non-trivial subspa
es of X ; thisproperty has the distan
e �(Y; Z) (
alled also the spheri
al opening) between Yand Z de�ned as the Hausdor� distan
e between Y \ S(X) and Z \ S(X). It iswell-known (see e.g., [7℄) that always(2.8) �(Y; Z)=2 � 
(Y; Z) � �(Y; Z):For ea
h k 2 N, we will denote by Vk(X) the set of all k-dimensional subspa
esof X equipped with the metri
 �. We will need the following fa
t; be
ause of thela
k of a referen
e we supply a proof.Lemma 2.1. Let X be a separable Bana
h spa
e and k 2 N. Then Vk(X) is aseparable metri
 spa
e.Proof: Let C be a 
ountable dense subset of X . Denote by Dk the set of allspa
es from Vk(X) whi
h has a basis formed by elements of C. Then Dk is
learly 
ountable. To prove that Dk is dense in Vk(X), 
onsider an arbitraryV 2 Vk(X) with the basis v1; : : : ; vk. For ea
h " > 0, we 
an by [14, Lemma 2.4℄�nd Æ > 0 su
h that the inequalities kw1 � v1k < Æ; : : : ; kwk � vkk < Æ implythat W := spanfw1; : : : ; wkg 2 Vk(X) and 
(V;W ) < ". So, using (2.8) and thedensity of C in X , we easily obtain that V belongs to the 
losure of Dk. �
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ekDe�nition 2.2. Let X be a Bana
h spa
e and A � X .(i) Let F be a 
losed subspa
e of X . We say that A is an F -Lips
hitz surfa
eif there exists a topologi
al 
omplement E of F and a Lips
hitz mapping' : E ! F su
h that A = fx+ '(x) : x 2 Eg.(ii) Let 1 � n < dimX be a natural number. We say that A � X isa Lips
hitz surfa
e of 
odimension n if A is an F -Lips
hitz surfa
e forsome n-dimensional spa
e F � X . A Lips
hitz surfa
e of 
odimension 1is said to be a Lips
hitz hypersurfa
e.Note that the sets whi
h 
an be 
overed by 
ountably many Lips
hitz hyper-surfa
es are sometimes 
alled sparse sets (see [13℄ and [6℄).If X is a Bana
h spa
e, A � X and x 2 X , then we denote by T (A; x) theBouligand's tangent (or 
ontingent) 
one of A at x. Re
all that v 2 T (A; x) ifand only if there exist sequen
es vn ! v and tn ! 0+ su
h that x + tnvn 2 A,n 2 N. We will need the following fa
t whi
h is essentially a reformulation of [9,Lemma 2.10℄.Lemma 2.3. Let X be a Bana
h spa
e and V a �nite dimensional subspa
e ofX with dimX > dimV � 1. Let A � X and let T (A; a) \ V = f0g for ea
ha 2 A. Then A 
an be 
overed by 
ountably many V -Lips
hitz surfa
es.Re
all that, if A � X�, thenA? := fx 2 X : x�(x) = 0 for ea
h x� 2 Agis a 
losed linear subspa
e of X . It is well-known and easy to prove that if Z � X�is a linear spa
e and k 2 N, then(2.9) dimZ � k , 
odimZ? � k:Now suppose that f is a Clarke regular fun
tion on an open set G � X anda 2 G. Consider the 
losed linear spa
e La := (�f(a)� �f(a))? = (span(�f(a)��f(a)))?. Then(2.10) La = fv 2 X : f 0(a; v) existsg:This fa
t immediately follows from the observation that f 0(a; v) exists i�0 = f 0+(a; v) + f 0+(a;�v) = f0(a; v) + f0(a;�v)= supfy1(v) : y1 2 �f(a)g+ supfy2(�v) : y2 2 �f(a)g= supfy1(v) : y1 2 �f(a)g � inffy2(v) : y2 2 �f(a)g= supf(y1 � y2)(v) : y1 2 �f(a); y2 2 �f(a)g:Using (2.10), it is easy to show that, for ea
h k 2 N,(2.11) a 2 ��k(f) if and only if 
odim(La) � k:After these observations, we easily obtain the following fa
t.



Singular points of order k 57Lemma 2.4. Let f be a Clarke regular fun
tion on an open set G � X andk 2 N. Then �k(f) = ��k(f).Proof: Let a 2 G. Set Z := span(�f(a) � �f(a)); so a 2 �k(f) if and onlyif dim(Z) � k. By (2.9), the latter 
ondition is equivalent to 
odimZ? =
odim(La) � k, whi
h is equivalent to a 2 ��k(f) by (2.11). �3. Proof of Theorem 1.4We will �rst prove two lemmas and then show that they easily imply Theo-rem 1.4.Lemma 3.1. Let X and Y be Bana
h spa
es and f : X ! Y an arbitrarymapping. For ea
h �nitely dimensional spa
e V � X and n; p 2 N, denote(a) by BV the set of all a 2 X su
h that, for ea
h 0 6= v 2 V , the one-sidedHadamard derivative f 0H+(a; v) exists, but the (bilateral) Hadamard de-rivative f 0H(a; v) does not exist, and(b) by BV;n;p the set of all a 2 X su
h that(3.1) 



f(a+ �w) � f(a)� � f(a+ tz)� f(a)t 



 < 1=4n;



f(a+ �w) � f(a)� + f(a� tz)� f(a)t 



 > 1=n;whenever t; � 2 (0; 1=p), v 2 SV , and w; z 2 X ful�l kv�wk < 1=p; kv�zk < 1=p.Let k 2 N, and letDk be a dense 
ountable subset of Vk := Vk(X) (see Lemma 2.1).Then(i) BV � 1[n;p=1BV;n;p for ea
h V 2 Vk; and(ii) [V 2Vk BV � [U2Dk;n2N;p2N BU;n;p:Proof: Consider arbitrary k 2 N, V 2 Vk and a 2 BV . For v 2 SV , denotee(v) := kf 0H+(a; v)+f 0H+(a;�v)k. Sin
e f 0H+(a; �) is 
ontinuous on X (see (2.2)),the fun
tion e is 
ontinuous as well. Sin
e SV is 
ompa
t and e is stri
tly positiveon SV by (2.1), we 
an �nd n 2 N su
h that e(v) > 2=n for ea
h v 2 SV . Using thede�nition of f 0H+(a; v) and f 0H+(a;�v), we 
an �nd, for ea
h v 2 SV , a number
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ekÆv > 0 su
h that(3.2) 



f(a+ tz)� f(a)t � f 0H+(a; v)



 < 18n ;



f(a� tz)� f(a)t � f 0H+(a;�v)



 < 18nwhenever kz � vk < Æv and 0 < t < Æv.Sin
e SV is 
ompa
t, we 
an �nd a �nite set F � SV su
h that(3.3) SV � [v2F B(v; Æv=4):Choose p 2 N su
h that 1=p < minfÆv=4 : v 2 Fg.Now we will show that(3.4) if U 2 Vk and �(U; V ) < 1=p; then a 2 BU;n;p:The 
ondition (3.4) 
learly implies (i) and (sin
e Dk is dense in Vk) also (ii).So suppose that U 2 Vk with �(U; V ) < 1=p be given. To prove a 2 BU;n;p,
onsider arbitrary t; � 2 (0; 1=p), u 2 SU , and w; z 2 X ful�lling ku � wk <1=p; ku� zk < 1=p. Sin
e �(U; V ) < 1=p, we 
an �nd ~v 2 SV with ku� ~vk < 1=p.By (3.3) we 
hoose v 2 F su
h that kv � ~vk < Æv=4. Then kv � zk � kv � ~vk +k~v � uk+ ku� zk < Æv, and so (3.2) implies



f(a+ tz)� f(a)t � f 0H+(a; v)



 < 18n ;



f(a� tz)� f(a)t � f 0H+(a;�v)



 < 18n :Similarly we obtain kv � wk < Æv, and so (3.2) implies



f(a+ �w) � f(a)� � f 0H+(a; w)



 < 18n :Therefore 



f(a+ �w) � f(a)� � f(a+ tz)� f(a)t 



 < 14nand 



f(a+ tw)� f(a)� + f(a� tz)� f(a)t 



 > kf�H (a; v) + f�H (a;�v)k � 14n= e(v)� 14n > 1n :So a 2 BU;n;p. �



Singular points of order k 59Lemma 3.2. Let X and Y be Bana
h spa
es and f : X ! Y an arbitrarymapping. Let dimX > k 2 N and let V � X be a spa
e of dimension k. LetB = BV or B = BV;n;p, where BV and BV;n;p are as in Lemma 3.1. Then B 
anbe 
overed by 
ountably many V -Lips
hitz surfa
es.Proof: By Lemma 3.1(i), it is suÆ
ient to prove the statement for B := BV;n;p(where n; p 2 N). By Lemma 2.3, it is suÆ
ient to prove that T (B; x)\V = f0g forea
h x 2 B. Suppose to the 
ontrary that there exist x 2 B and v 2 T (B; x)\V .We 
an and will suppose that kvk = 1. Set � := 12p , y := x + �v and C :=jf(y)�f(x)j� . Sin
e v 2 T (B; x), we 
an 
learly �nd z 2 X with kz � vk < 1=p and0 < t < 14np2(C+1) su
h that a := x+ tz 2 B. Sin
e x 2 B = BV;n;p, we have(3.5) 



f(y)� f(x)� � f(a)� f(x)t 



 < 14n :Set w := 2p(y � a). Then t; � 2 (0; 1=p), kv � zk < 1=p and alsokv � wk = k2p(y � x) � 2p(y � a)k = 2pka� xk = 2ptkzk < 2p � 14p2 � 2 = 1=p:Consequently, sin
e x = a� tz, y = a+ �w and a 2 B = BV;n;p, we have by (3.1)(3.6) 



f(y)� f(a)� + f(x)� f(a)t 



 > 1n :Using (3.5) and (3.6), we obtain



f(x)� f(a)� 



 � 



f(y)� f(a)� + f(x)� f(a)t 



� 



f(y)� f(x)� � f(a)� f(x)t 



 > 12n :Consequently, kf(x)� f(a)k > 14np . On the other hand, by (3.5) and the de�ni-tions of C and t, we obtainkf(x)� f(a)k = t 



f(x)� f(a)t 



 � t�C + 14n� < 14np ;whi
h is a 
ontradi
tion. �Proof of Theorem 1.4: By de�nition of ��H;k(f) and Lemma 3.1(ii), we have��H;k(f) = [V 2VkBV � [U2Dk;n2N;p2N BU;n;p:Sin
e Dk is 
ountable, the assertion of Theorem 1.4 follows from Lemma 3.2. �



60 L. Zaj���
ek4. Proof of Theorem 1.5We will �rst prove two lemmas and then show that they easily imply Theo-rem 1.5.Lemma 4.1. Let X be a Bana
h spa
e and f a real fun
tion on X . For ea
h�nitely dimensional spa
e V � X and n 2 N, denote(a) by AV the set of all a 2 X su
h that(4.1) f�H (a; v) + f�H (a;�v) > 0 for ea
h 0 6= v 2 Vand(b) by AV;n the set of all a 2 AV su
h that(4.2) f(a+ �w) � f(a)� + f(a� tz)� f(a)t > 1=n;whenever t; � 2 (0; 1=n), v 2 SV , and w; z 2 X ful�l kv � wk < 1=n,kv � zk < 1=n.Let k 2 N, and letDk be a dense 
ountable subset of Vk := Vk(X) (see Lemma 2.1).Then(i) AV = 1[n=1AV;n for ea
h V 2 Vk; and(ii) [V 2VkAV = [U2Dk AU :Proof: Consider arbitrary k 2 N, V 2 Vk and a 2 AV . For 0 6= v 2 V , denotee(v) := f�H (a; v) + f�H (a;�v). Sin
e f�H (a; �) is lower semi
ontinuous on X (see(2.5)), the fun
tion e is lower semi
ontinuous as well. Sin
e SV is 
ompa
t and eis stri
tly positive on SX , we 
an �nd " > 0 su
h that e(v) > ", v 2 SV . Usingthe lower semi
ontinuity of f�H (a; �) and the de�nition of f�H (a; v), we 
an �nd,for ea
h v 2 SV , a number Æv > 0 su
h that(4.3) f�H (a; u) > f�H (a; v)� "8 and f�H (a;�u) > f�H (a;�v)� "8 ;whenever ku� vk < Ævand(4.4)f(a+ tz)� f(a)t > f�H (a; v)� "8 and f(a� tz)� f(a)t > f�H (a;�v)� "8whenever kz � vk < Æv and 0 < t < Æv:
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e SV is 
ompa
t, we 
an �nd a �nite set F � SV su
h that(4.5) SV � [v2F B(v; Æv=4):Choose n 2 N su
h that 1=n < min(fÆv=4 : v 2 Fg [ f"=2g). To prove (i), itis suÆ
ient to show that a 2 AV;n. To this end, suppose that t; � 2 (0; 1=n),v 2 SV , and w; z 2 X ful�lling kv � wk < 1=n, kv � zk < 1=n are given. By(4.5), we 
an 
hoose v� 2 F su
h that kv � v�k < Æv�=4. Then kw � v�k �kv�wk+ kv� v�k < 1=n+ Æv�=4 < Æv� , and similarly kz� v�k < Æv� . Sin
e alsot; � 2 (0; 1=n) � (0; Æv�), we obtain by (4.4)f(a+ tw)� f(a)� + f(a� tz)� f(a)t > f�H (a; v�)� "8 + f�H (a;�v�)� "8> "� "4 > 1n :To prove (ii), it is suÆ
ient to prove that if U 2 Vk and �(V; U) < 1=n, thena 2 AU . To this end, 
hoose an arbitrary u 2 SU . Sin
e �(V; U) < 1=n, we 
an�nd ~v 2 SV with k~v � uk < 1=n and by (4.5) v 2 F with k~v � vk < Æv=4. Thenkv � uk < 1=n+ Æv=4 < Æv and (4.3) impliesf�H (a; u) + f�H (a;�u) > f�H (a; v) � "8 + f�H (a;�v)� "8 > e(v)� "4 > 0:So 
learly a 2 AU . �Lemma 4.2. Let X be a Bana
h spa
e and f a real fun
tion on X . Let dimX >k 2 N and let V � X be a spa
e of dimension k. Let AV be as in Lemma 4.1.Then AV 
an be 
overed by 
ountably many V -Lips
hitz surfa
es.Proof: By Lemma 4.1(i), it is suÆ
ient to prove that ea
h A := AV;n (wheren 2 N) 
an be 
overed by 
ountably many V -Lips
hitz surfa
es. By Lemma 2.3,it is suÆ
ient to prove that T (A; x) \ V = f0g for ea
h x 2 A.Suppose to the 
ontrary that there exist x 2 A and v 2 T (A; x) \ V . We 
anand will suppose that kvk = 1. To infer a 
ontradi
tion, we will distinguish the
ases f�H (x; v) =1 and f�H (x; v) <1.If f�H (x; v) = 1, set � := 1n , y := x + �v and p := jf(y) � f(x)j. Sin
ev 2 T (A; x) and f�H (x; v) =1, we 
an 
learly �nd z 2 X with kz� vk < 1=n and0 < t < 14n2 su
h that a := x+ tz 2 A and f(a)�f(x)t > 2np. Set w := 2n(y � a).Then �; t 2 (0; 1=n), kv � zk < 1=n and alsokv � wk = k2n(y � x)� 2n(y � a)k = 2nka� xk = 2ntkzk < 2n � 14n2 � 2 = 1n :Consequently, sin
e x = a� tz, y = a+ �w and a 2 A = AV;n, we have by (4.2)f(y)� f(a)� > f(a)� f(x)t + 1n > 2np:
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ekThereforep � f(y)�f(x) = (f(y)�f(a))+(f(a)�f(x)) > � � f(y)� f(a)� +0 � 12n �2np = p;whi
h is a 
ontradi
tion.If D := f�H (x; v) < 1, then the de�nition of A = AV;n yields D 2 R. By thede�nition of f�H (x; v), we 
an �nd ~u 2 X with k~uk < 14n and 0 < � < 14n su
hthat y := x+ �(v + ~u) satis�es(4.6) f(y)� f(x)� < D + 14n :Sin
e v 2 T (A; x) and f�H (x; v) = D 2 R, we 
an 
learly �nd z 2 X withkz � vk < 14n and 0 < t < �4n (jD� 14n j+1) su
h that a := x+ tz 2 A and(4.7) f(a)� f(x)t > D � 14n :Set w := y�a� . Then �; t 2 (0; 1=n), kv � zk < 1=n and alsokw � vk � 



y � a� � y � x� 



+ k~uk � ka� xk� + 14n � 2t� + 14n < 1n :Consequently, sin
e x = a� tz, y = a+ �w and a 2 A = AV;n, we have by (4.2)(4.8) f(y)� f(a)� > f(a)� f(x)t + 1n > D � 14n + 1n > D + 12n :Using (4.6), (4.8) and (4.7), we obtain� �D + 14n� > f(y)� f(x) = (f(y)� f(a)) + (f(a)� f(x))> � �D + 12n�+ t�D � 14n� :Consequently t � jD � 14n j > �( 14n ), whi
h 
ontradi
ts t < �4n (jD� 14n j+1) . �Proof of Theorem 1.5: By de�nition of ~�H;k(f) and Lemma 4.1(ii), we have~�H;k(f) = [V 2Vk AV = [U2Dk AU :Sin
e Dk is 
ountable, the assertion of Theorem 1.5 follows from Lemma 4.2. �
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