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Singular points of order £ of

Clarke regular and arbitrary functions

LUDEK ZAJICEK

Abstract. Let X be a separable Banach space and f a locally Lipschitz real
function on X. For k € N, let Xx(f) be the set of points z € X, at which the
Clarke subdifferential € f(z) is at least k-dimensional. It is well-known that if f
is convex or semiconvex (semiconcave), then X (f) can be covered by countably
many Lipschitz surfaces of codimension k. We show that this result holds even
for each Clarke regular function (and so also for each approximately convex
function). Motivated by a resent result of A.D. Ioffe, we prove also two results
on arbitrary functions, which work with Hadamard directional derivatives and
can be considered as generalizations of our theorem on X4 (f) of Clarke regular
functions (since each of them easily implies this theorem).
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1. Introduction

If X is a Banach space and f a real function on X, then by the singular set X(f)
of f we mean the set of all points z € X at which f is not Gatedux differentiable. If
f is a continuous convex (or semiconvex, or semiconcave) function, then X(f) =
{r € X : dimdf(z) > 1}, where 0f(z) is the subdifferential (or the Clarke
subdifferential) of f at z.

It is natural and useful to consider also the set Xy (f) = {z € X : dimdf(z) >
k} (where k € N) of singular points of order k (or of magnitude k by [4]). For
convex functions, the smallness of sets X (f) was considered (using formally dif-
ferent definition) e.g. in [3], [12] and [11], and for semiconvex (resp. semiconcave)
functions in [2], [1] and [4].

For continuous convex functions in separable Banach spaces, the best possible
result on smallness of sets X (f) is the following theorem which is a reformulation
(via Lemma 2.4) of results of [12].

Theorem A. Let f be a continuous convex function defined on an open convex
subset C of a separable Banach space X. Let dim X > k € N. Then the set X (f)
can be covered by countably many DC surfaces of codimension k.
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(For a complete characterization of singular sets £(f) = X;(f) for convex
functions f in R” see [10].)

For continuous semiconvex (resp. semiconcave) functions, the following analo-
gous result was factually proved in [1]. Indeed, the proof in [1] works, if we work
with Lipschitz surfaces of codimension k (see Definition 2.2 below) instead with
“oo — k rectifiable sets” of [1].

Theorem B. Let f be a continuous locally semiconvex (or semiconcave) function
defined on an open subset G of a separable Banach space X. Let dim X > k €
N. Then the set Y (f) can be covered by countably many Lipschitz surfaces of
codimension k.

Note that this result can be improved ([5]) in the spirit of Theorem A. Namely,
in superreflexive spaces, the Lipschitz surfaces of Theorem B can be “parametrized
by differences of Lipschitz semiconvex functions”.

In the present article we prove the following generalization of Theorem B.

Theorem 1.1. Let f be a locally Lipschitz Clarke regular function defined on
an open convex subset G of a separable Banach space X. Let dimX > k €
N. Then the set Y (f) can be covered by countably many Lipschitz surfaces of
codimension k.

In particular Theorem B holds with the weaker assumption that f is approx-
imately convex in the sense of [8]. (For the fact that each approximately convex
function is Clarke regular see [8, Corollary 3.5 and Theorem 3.6].)

Theorem 1.1 is an easy consequence of the following Proposition 1.2 on locally
Lipschitz mappings. So, this proposition, which is perhaps of an independent
interest, can be considered as a generalization of Theorem 1.1.

Proposition 1.2. Let X be a separable Banach space, Y a Banach spaces, G C X
an open set, and f : G — Y a locally Lipschitz mapping. Let dim X > k € N.
Denote by X (f) the set of those x € G, for which there exists a k-dimensional
space V, C X, such that, for each 0 # v € V,, the one-sided directional deriv-
ative f! (x,v) exists but the (two-sided) directional derivative f'(x,v) does not
exist. Then the set ¥} (f) can be covered by countably many Lipschitz surfaces
of codimension k.

Note that, if f is a Clarke regular function, then it is easy to show that X (f) =
% (f) (see Lemma 2.4), and so Proposition 1.2 yields Theorem 1.1.

We will obtain also another generalization of Theorem 1.1 which concern lower
directional derivatives d~ f(z,v) of arbitrary locally Lipschitz functions:

Proposition 1.3. Let X be a separable Banach space, G C X an open set, and
f a locally Lipschitz function on G. Let dim X > k € N. Denote by Y4(f) the
set of those x € G, for which there exists a k-dimensional space V, C X, such
that d~ f(x,v) +d~ f(xz, —v) > 0 for each 0 # v € V,. Then the set Sy (f) can be
covered by countably many Lipschitz surfaces of codimension k.
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Note that, if f is a Clarke regular function, then (2.6) easily implies X (f) =
S1(f) and so Sk(f) = Sk(f).

In a recent article [6], A.D. Ioffe has shown that some results concerning
(Dini) derivatives of Lipschitz function can be generalized to results concerning
Hadamard derivatives of arbitrary functions. Following this idea, we will prove the
following theorems on Hadamard derivatives of arbitrary mappings (functions)
which clearly imply (via (2.3) and (2.4)) Propositions 1.2 and 1.3.

Y

Theorem 1.4. Let X be a separable Banach space, Y a Banach space, G C X
an open set, and f : G — Y an arbitrary mapping. Let dim X > k € N. Denote
by % ,(f) the set of those x € G, for which there exists a k-dimensional space
Vz C X, such that, for each 0 # v € V,, the Hadamard one-sided directional
derivative fy, (x,v) exists but the (two-sided) Hadamard directional derivative
fr (7, v) does not exist. Then the set X3, (f) can be covered by countably many
Lipschitz surfaces of codimension k.

Theorem 1.5. Let X be a separable Banach space, G C X an open set, and f
an arbitrary real function on G. Let dimX > k € N. Denote by in(f) the
set of those x € G, for which there exists a k-dimensional space V, C X, such
that fg(z,v) 4+ f7(z, —v) > 0 for each 0 # v € V,. Then the set S ;(f) can be
covered by countably many Lipschitz surfaces of codimension k.

Note that, in the case k = 1, Proposition 1.3 easily follows from Lemma 2 of
[13] and, for k = 1, Theorem 1.5 follows from [6, Theorem 1.3(a)] (which deal
with functions f : X — [—00, 00]).

Further note that our results do not deal with the case dim X = k, but a slight
modification of our proofs give that exceptional sets (Xx(f),...) from the above
results are countable in this case.

In Section 2, we will recall some definitions and well-known facts. In Section 3
and Section 4 we prove Theorem 1.4 and Theorem 1.5, respectively.

2. Preliminaries

In the following, if it is not said otherwise, X will be a real Banach space. By
span M we denote the linear span of M C X. If X = E & F, then we denote by
7g,r the projection of X on E along the space F. The symbol B(z,r) denotes
the open ball with center x and radius r.

For a Banach space Y, weset Sy == {y € YV : |ly| =1}, f C CYisa
nonempty convex set, then we set dim C' := dim(span(C —C)) € (NU{0} U{o0}).
It is well-known that, for £ € N, the inequality dim C' > k holds iff there exists a
k-dimensional space V C Y, ¢ € Y and r > 0 such that (¢c+ V)N B(c¢,r) C C.

Let X, Y be Banach spaces, ) # G C X an open set, and f : G - Y a
mapping. The directional and one-sided directional derivatives of f at € G in
the direction v € X are defined respectively by

f'(z,v) ::}%w,
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The Hadamard directional and one-sided directional derivatives of f at x € G in
the direction v € X are defined respectively by

fa+iz) = (@)

! R H
fule) = _Jim , S
. flz+tz) — f(=)
' ._
fui(z,0) = z%ql;l,igont t

It is easy to see that f'(z,v) exists if and only if f! (2, —v) = —f\ (2,v) and
(2.1) fr(z,v) exists if and only if fy_ (z,—v) = —fy . (z,v).

It is easy to prove that, if fi;(z,v) exists for each v € X, then
(2.2) fi(z,+) is a continuous function.

It is well-known and easy to prove that, if f is locally Lipschitz on G, then

(23) fl(xsv) = f}I(x,U) (resp. fi(xav) = f}[+(1‘,v))

whenever one of these two derivatives exists.

Now we suppose that f is a real function defined on an open subset G of X. The
upper and lower (Dini) one-sided directional derivative of f at x in the direction
v are defined respectively by

d* f(z,v) := limsup (f(z + tv) — f(x))t™",
t—0+

d=f(z,v) := litrgégf (f(z +tv) — f(x))t™".

Following [6] we denote the upper and lower Hadamard one-sided directional
derivatives of f at z in the direction v by

fi(@,v) == limsup (F(@ + t2) — f@)t,

z—v,t—0+
fi(z,v) = liminf (f(z +tz) — f(2))t™"

z—v,t—0+

It is well-known (cf. [6]) and easy to prove that, if f is locally Lipschitz on G,
then

(2.4) dt f(z,v) = fg(a:,v) and d” f(z,v) = fg(z,v)

for each z € G and v € X.
It is also well-known (cf. [6, p. 1021]) and easy to prove that

(2.5) fr(z,-) is a lower semicontinuous function.
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Further we suppose that f is locally Lipschitz on G. Then

f%(a,v) :== limsup M

z—a,t—0+ t

is the Clarke derivative of f at a in the direction v and
3% f(a) :={z* € X*: z*(v) < fa,v) forall ve X}
is the Clarke subdifferential of f at a. Recall that
(2.6) f%(a,-) is a convex function,
99 f(a) is a nonempty convex set, and
(2.7) fO(a,v) = max{z*(v) : z* € 8°f(a)}.

We say that f is Clarke regular at = € G if fO(z,v) = f| (z,v) for each v € X.
We say that f is Clarke regular on G, if f is Clarke regular at each point of G.

Let X be a Banach space and Y, Z be closed non-trivial (i.e., different from
{0}) subspaces of X. Then the gap between Y and Z (called also the opening or
the deviation of Y and Z) is defined by

v(Y,Z) =max{ sup dist(y,Z), sup dist(z,Y)}.
yeYNS(X) 2€ZN5(X)

The gap need not be a metric on the set of all non-trivial subspaces of X; this
property has the distance p(Y, Z) (called also the spherical opening) between Y
and Z defined as the Hausdorff distance between Y N S(X) and Z N S(X). It is
well-known (see e.g., [7]) that always

(2.8) p(Y,2)/2 < (Y, 2) < p(Y, 2).

For each k € N, we will denote by Vi (X) the set of all k-dimensional subspaces
of X equipped with the metric p. We will need the following fact; because of the
lack of a reference we supply a proof.

Lemma 2.1. Let X be a separable Banach space and k € N. Then Vi (X) is a
separable metric space.

ProOF: Let C' be a countable dense subset of X. Denote by Dj, the set of all
spaces from Vi (X) which has a basis formed by elements of C. Then D, is
clearly countable. To prove that Dy is dense in Vi (X), consider an arbitrary
V € Vi(X) with the basis vq,...,v;. For each ¢ > 0, we can by [14, Lemma 2.4]
find § > 0 such that the inequalities ||w1 — vi]] < 4,..., ||lwr — vi]] < § imply
that W := span{wy,...,w;} € Vi(X) and v(V, W) < e. So, using (2.8) and the
density of C'in X, we easily obtain that V' belongs to the closure of Dy. O
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Definition 2.2. Let X be a Banach space and A C X.

(i) Let F be a closed subspace of X. We say that A is an F'-Lipschitz surface
if there exists a topological complement E of F' and a Lipschitz mapping
¢: E — F such that A ={z+ ¢(z): z € E}.

(ii) Let 1 < n < dimX be a natural number. We say that A C X is
a Lipschitz surface of codimension n if A is an F-Lipschitz surface for
some n-dimensional space F' C X. A Lipschitz surface of codimension 1
is said to be a Lipschitz hypersurface.

Note that the sets which can be covered by countably many Lipschitz hyper-
surfaces are sometimes called sparse sets (see [13] and [6]).

If X is a Banach space, A C X and z € X, then we denote by T'(4,z) the
Bouligand’s tangent (or contingent) cone of A at z. Recall that v € T'(A4,z) if
and only if there exist sequences v, — v and t,, — 0+ such that = + t,v, € A,
n € N. We will need the following fact which is essentially a reformulation of [9,
Lemma 2.10].

Lemma 2.3. Let X be a Banach space and V' a finite dimensional subspace of
X with dimX > dimV > 1. Let A C X and let T(A,a) NV = {0} for each
a € A. Then A can be covered by countably many V -Lipschitz surfaces.

Recall that, if A C X*, then
Al ={xeX: z*(x) =0 for each z* € A}

is a closed linear subspace of X. It is well-known and easy to prove that if Z C X*
is a linear space and k € N, then

(2.9) dmZ >k & codimZ, > k.

Now suppose that f is a Clarke regular function on an open set G C X and
a € G. Consider the closed linear space L, := (0f(a) —9f(a)).L = (span(df(a) —
0f(a)))L. Then

(2.10) L,={veX: f'(a,v) exists}.

This fact immediately follows from the observation that f'(a,v) exists iff

0= fi—(a’vv) + fi—(a’v —’U) = fo(a:v) + fo(av —’U)
=sup{y1(v) : y1 € 0f(a)} +sup{y=(—v): y2 € df(a)}
= sup{y1(v) : y1 € (@)} — inf{ys(v) : y € OF(a)}
=sup{(y1 — y2)(v) : y1 € 0f(a),y2 € 0f(a)}.

Using (2.10), it is easy to show that, for each k € N,
(2.11) a € X;(f) if and only if codim(L,) > k.

After these observations, we easily obtain the following fact.
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Lemma 2.4. Let f be a Clarke regular function on an open set G C X and
k € N. Then Z4(f) = Z;(f).

PRrROOF: Let a € G. Set Z := span(df(a) — df(a)); so a € Ti(f) if and only
if dim(Z) > k. By (2.9), the latter condition is equivalent to codim Z, =
codim(L,) > k, which is equivalent to a € X} (f) by (2.11). O

3. Proof of Theorem 1.4

We will first prove two lemmas and then show that they easily imply Theo-
rem 1.4.

Lemma 3.1. Let X and Y be Banach spaces and f : X — Y an arbitrary
mapping. For each finitely dimensional space VC X and n,p € N, denote

(a) by By the set of all a € X such that, for each 0 # v € V', the one-sided
Hadamard derivative fy_ (a,v) exists, but the (bilateral) Hadamard de-
rivative f;(a,v) does not exist, and

(b) by By,np the set of all a € X such that

Hf(a+TUT)) — fla) f(a+tzt) — f(a) ‘ <1/4n,
3. H fatmo) = j(@) , fla—ts) - flo ‘ > 1/,

whenever t,7 € (0,1/p), v € Sy, and w,z € X fulfil ||lv—w|| < 1/p, |jv—
z|| < 1/p.
Let k € N, and let Dy, be a dense countable subset of Vy, := V(X)) (see Lemma 2.1).
Then

(1)

o
By C U By, foreach V €V, and

n,p=1

U BV C U BU,n,p-

VeV UeDy ,neEN,peEN

ProOF: Consider arbitrary ¥ € N, V € V, and a € By. For v € Sy, denote
e(v) == |[fyy(a,v)+ fy (a, —v)||. Since fz, (a,-) is continuous on X (see (2.2)),
the function e is continuous as well. Since Sy is compact and e is strictly positive
on Sy by (2.1), we can find n € Nsuch that e(v) > 2/n for each v € Sy. Using the
definition of fy, (a,v) and fz, (a, —v), we can find, for each v € Sy, a number
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6y > 0 such that

o=ty 1
(3.2) et
|[fo=t9 =10 o] <

whenever ||z —v|| < d, and 0 < t < 6.
Since Sy is compact, we can find a finite set F' C Sy such that

(3.3) Sy c |J B(,6,/4).

veF

Choose p € N such that 1/p < min{d,/4: v € F}.
Now we will show that

(3.4) if UeVy and p(U,V) < 1/p, then a € Byn,p.

The condition (3.4) clearly implies (i) and (since Dy, is dense in V) also (ii).

So suppose that U € V;, with p(U,V) < 1/p be given. To prove a € By p,
consider arbitrary ¢,7 € (0,1/p), u € Sy, and w,z € X fulfilling ||u — w|| <
1/p, |lu—z|| < 1/p. Since p(U,V) < 1/p, we can find ¢ € Sy with [|ju— || < 1/p.
By (3.3) we choose v € F such that ||v — || < d,/4. Then |jv — z|| < [jv —0]| +
|6 — ul| + [Ju — z]| < dy, and so (3.2) implies

TR P
f(a_tzt)_f(a)—f}_[+(a,—’l)) <8in-

Similarly we obtain ||v — w|| < §,, and so (3.2) implies

f(a+7—1i) _f(a) _f}l+(a:w)H < 8%
Therefore
Hf<a+rw> ~f@) _flatt)~f@)| _ L
T t 4n
and
|ferrn= i), JoZ =IO a0+ fia -l - 3
=e(v) — ﬁ > -

Soaé€ BU,mp- O
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Lemma 3.2. Let X and Y be Banach spaces and f : X — Y an arbitrary
mapping. Let dim X > k € N and let V C X be a space of dimension k. Let
B = By or B = By, where By and By, , are as in Lemma 3.1. Then B can
be covered by countably many V -Lipschitz surfaces.

Proor: By Lemma 3.1(i), it is sufficient to prove the statement for B := By,
(where n, p € N). By Lemma 2.3, it is sufficient to prove that T'(B, z)NV = {0} for

each x € B. Suppose to the contrary that there exist € B and v € T(B,z)NV.
We can and will suppose that ||v]| = 1. Set 7 := ﬁ, y :=x+7v and C :=

M. Since v € T'(B, x), we can clearly find z € X with ||z — v|] < 1/p and

0<t< m such that a := = +tz € B. Since x € B = By, we have
— — 1
655) [OELCERCERCT Y

Set w := 2p(y — a). Then ¢,7 € (0,1/p), ||v — z|| < 1/p and also

1

lo = wll =12y = 2) = 2p(y = @)l = 2plla — =l = 2ptljl| < 2p- -

Consequently, since = a —tz, y = a+ 7w and a € B = By, p, we have by (3.1)

(3.6) H fy) ; fla)  f(z) = f(a)

Using (3.5) and (3.6), we obtain
Hf(w) — f(a) ‘ > Hf(y) —fla) f(w);f(a)

) Hf(y) —f@)  fla) - f()

— > .
t 2n

‘ L

Consequently, ||f(z) — f(a)|| > 4np On the other hand, by (3.5) and the defini-
tions of C and ¢, we obtain

1) - Fla)ll = ¢ Hf7>

1 1
<t({C+—) < —,
‘ - ( - 4n> dnp
which is a contradiction. O

PROOF OF THEOREM 1.4: By definition of ¥} ,(f) and Lemma 3.1(ii), we have

Sia(f)= U Br c U Bun.p-
Ve U€eDy ,neN,peN

Since D, is countable, the assertion of Theorem 1.4 follows from Lemma 3.2. O
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4. Proof of Theorem 1.5

We will first prove two lemmas and then show that they easily imply Theo-
rem 1.5.

Lemma 4.1. Let X be a Banach space and f a real function on X. For each
finitely dimensional space V. C X and n € N, denote

(a) by Ay the set of all a € X such that
(4.1) fala,v)+ fgla,—v) >0 foreach 0#veV

and
(b) by Ay, the set of all a € Ay such that

(4.2) flatTw) - fa)  fla—tz) - f(a)

T t

> 1/n,

whenever t,7 € (0,1/n), v € Sy, and w,z € X fulfil ||v — w| < 1/n,
v —z|| < 1/n.

Let k € N, and let Dy, be a dense countable subset of Vj, := V(X)) (see Lemma 2.1).
Then

Ay = U Ay, foreach V €V, and

n=1

U av={J 4v

VeV U€EDs
ProOF: Consider arbitrary £k € N, V € V;, and a € Ay. For 0 # v € V, denote
e(v) := fy(a,v) + fg(a,—v). Since fy(a,-) is lower semicontinuous on X (see

(2.5)), the function e is lower semicontinuous as well. Since Sy is compact and e
is strictly positive on Sx, we can find € > 0 such that e(v) > ¢, v € Sy. Using
the lower semicontinuity of fg(a,-) and the definition of fj(a,v), we can find,
for each v € Sy, a number §, > 0 such that

(4.3) frla,u) > fga,v) — % and fr(a,—u) > fgz(a,—v) — %,
whenever ||u —v|| < &,
and
(4.4)
—f(a+tzt) — /(o) > fgla,v) — % and —f(a — tzt) —fla) > fyla,—v) — %

whenever ||z —v|| <d, and 0 <t < d,.
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Since Sy is compact, we can find a finite set F' C Sy such that

(4.5) Sy C | B(v,6,/4).

veF

Choose n € N such that 1/n < min({d,/4 : v € F} U {e/2}). To prove (i), it
is sufficient to show that a € Ay,. To this end, suppose that ¢,7 € (0,1/n),
v € Sy, and w,z € X fulfilling ||v — w|| < 1/n, ||v — z|]| < 1/n are given. By
(4.5), we can choose v* € F such that ||[v — v*|| < dy+/4. Then |jw — v*|] <
[lo —w]| + ||[v —v*]| < 1/n+ dy+ /4 < dy, and similarly ||z — v*|| < d,«. Since also
t,7 € (0,1/n) C (0,d,+), we obtain by (4.4)

fot ) = o) S0t 6 | o € gy S
€ 1

To prove (ii), it is sufficient to prove that if U € V;, and p(V,U) < 1/n, then
a € Ay. To this end, choose an arbitrary u € Sy. Since p(V,U) < 1/n, we can
find & € Sy with ||0 —ul| < 1/n and by (4.5) v € F with ||o — v|| < §,/4. Then
llv—ul| <1/n+d,/4 < 0, and (4.3) implies

Frla,u) + f(a, —u) > fy(a,v) = % + fr(a,—v) = = > e(v) — Z > 0.

So clearly a € Ay. O

Lemma 4.2. Let X be a Banach space and f a real function on X. Let dim X >
k € N and let V C X be a space of dimension k. Let Ay be as in Lemma 4.1.
Then Ay can be covered by countably many V -Lipschitz surfaces.

PROOF: By Lemma 4.1(i), it is sufficient to prove that each A := Ay, (where
n € N) can be covered by countably many V-Lipschitz surfaces. By Lemma 2.3,
it is sufficient to prove that T'(A4,z) NV = {0} for each z € A.

Suppose to the contrary that there exist z € A and v € T'(4,z) N V. We can
and will suppose that ||v|| = 1. To infer a contradiction, we will distinguish the
cases fy(z,v) = oo and fg(z,v) < o

If f(z,v) = oo, set 7 := %, y :=z+ 7v and p := |f(y) — f(z)]. Since
vE T(A,x) and fg(z,v) = oo, we can clearly find z € X with ||z —v]| < 1/n and
0 <t < ;o such that a :=z + tz € 4 and M > 2np. Set w := 2n(y — a).
Then T, t € (0,1/n), |Jv — z|]| < 1/n and also

1

1
lv —wll = |[2n(y — 2) = 2n(y - a)l| = 2nlla — zl| = 2ntz]| < 2n- 2= .

Consequently, since z =a —tz, y =a+ 7w and a € A = Ay, we have by (4.2)

fly) — f(a) >f(a)_f(w)+l>2np.
T t n
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Therefore

fly) = fla)

p 2 fy)—f(z) = (fly)-F(a)+(f(a)-f(x)) > 7 +02> %-%p =,

which is a contradiction.

If D := f(xz,v) < oo, then the definition of A = Ay, yields D € R. By the
definition of f;(z,v), we can find @ € X with [|a]| < - and 0 < 7 < £~ such
that y := x + 7(v + @) satisfies

(4.6) 710(1’);“:”) <D+%.

Since v € T(A,z) and fr(z,v) = D € R, we can clearly find z € X with

1 —
||z—v||<Hand0<t<msuchthata.—mﬁ—tzezéland

fla)—f@ 1

(4.7) ; in

Set w := 2. Then 7,t € (0,1/n), |[v — z|| < 1/n and also

T

Ja—zl 1 _
n —

+lall <

- - 2t 1 1
||w—v||§Hy R +o< <o
T T 4n n

Consequently, since = a —tz, y =a+ 7w and a € A = Ay, we have by (4.2)

ay WO @@ 1y 11, 1

Using (4.6), (4.8) and (4.7), we obtain

T<D+$>>f@—f@%4ﬂ@—f@ﬁ+ﬁ@—f@»
1 1
>T<D+%>+t<D_E>'
Consequently ¢ - |D — ﬁ\ > r(ﬁ), which contradicts t < m. O

PROOF OF THEOREM 1.5: By definition of g (f) and Lemma 4.1(ii), we have

Sar(f) = U Ay = U Ay

Ve, UeDy

Since Dy, is countable, the assertion of Theorem 1.5 follows from Lemma 4.2. O
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Singular points of order k
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