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Singular points of order k ofClarke regular and arbitrary funtionsLud�ek Zaj���ekAbstrat. Let X be a separable Banah spae and f a loally Lipshitz realfuntion on X. For k 2 N, let �k(f) be the set of points x 2 X, at whih theClarke subdi�erential �Cf(x) is at least k-dimensional. It is well-known that if fis onvex or semionvex (semionave), then �k(f) an be overed by ountablymany Lipshitz surfaes of odimension k. We show that this result holds evenfor eah Clarke regular funtion (and so also for eah approximately onvexfuntion). Motivated by a resent result of A.D. Io�e, we prove also two resultson arbitrary funtions, whih work with Hadamard diretional derivatives andan be onsidered as generalizations of our theorem on �k(f) of Clarke regularfuntions (sine eah of them easily implies this theorem).Keywords: Clarke regular funtions, singularities, Hadamard derivativeClassi�ation: Primary 49J52; Seondary 26B251. IntrodutionIfX is a Banah spae and f a real funtion onX , then by the singular set �(f)of f we mean the set of all points x 2 X at whih f is not Gateâux di�erentiable. Iff is a ontinuous onvex (or semionvex, or semionave) funtion, then �(f) =fx 2 X : dim �f(x) � 1g, where �f(x) is the subdi�erential (or the Clarkesubdi�erential) of f at x.It is natural and useful to onsider also the set �k(f) = fx 2 X : dim �f(x) �kg (where k 2 N) of singular points of order k (or of magnitude k by [4℄). Foronvex funtions, the smallness of sets �k(f) was onsidered (using formally dif-ferent de�nition) e.g. in [3℄, [12℄ and [11℄, and for semionvex (resp. semionave)funtions in [2℄, [1℄ and [4℄.For ontinuous onvex funtions in separable Banah spaes, the best possibleresult on smallness of sets �k(f) is the following theorem whih is a reformulation(via Lemma 2.4) of results of [12℄.Theorem A. Let f be a ontinuous onvex funtion de�ned on an open onvexsubset C of a separable Banah spae X . Let dimX > k 2 N. Then the set �k(f)an be overed by ountably many DC surfaes of odimension k.The researh was supported by the grant MSM 0021620839 from the Czeh Ministry ofEduation and by the grant GA�CR 201/09/0067.



52 L. Zaj���ek(For a omplete haraterization of singular sets �(f) = �1(f) for onvexfuntions f in Rn see [10℄.)For ontinuous semionvex (resp. semionave) funtions, the following analo-gous result was fatually proved in [1℄. Indeed, the proof in [1℄ works, if we workwith Lipshitz surfaes of odimension k (see De�nition 2.2 below) instead with\1� k reti�able sets" of [1℄.Theorem B. Let f be a ontinuous loally semionvex (or semionave) funtionde�ned on an open subset G of a separable Banah spae X . Let dimX > k 2N. Then the set �k(f) an be overed by ountably many Lipshitz surfaes ofodimension k.Note that this result an be improved ([5℄) in the spirit of Theorem A. Namely,in superreexive spaes, the Lipshitz surfaes of Theorem B an be \parametrizedby di�erenes of Lipshitz semionvex funtions".In the present artile we prove the following generalization of Theorem B.Theorem 1.1. Let f be a loally Lipshitz Clarke regular funtion de�ned onan open onvex subset G of a separable Banah spae X . Let dimX > k 2N. Then the set �k(f) an be overed by ountably many Lipshitz surfaes ofodimension k.In partiular Theorem B holds with the weaker assumption that f is approx-imately onvex in the sense of [8℄. (For the fat that eah approximately onvexfuntion is Clarke regular see [8, Corollary 3.5 and Theorem 3.6℄.)Theorem 1.1 is an easy onsequene of the following Proposition 1.2 on loallyLipshitz mappings. So, this proposition, whih is perhaps of an independentinterest, an be onsidered as a generalization of Theorem 1.1.Proposition 1.2. LetX be a separable Banah spae, Y a Banah spaes, G � Xan open set, and f : G ! Y a loally Lipshitz mapping. Let dimX > k 2 N.Denote by ��k(f) the set of those x 2 G, for whih there exists a k-dimensionalspae Vx � X , suh that, for eah 0 6= v 2 Vx, the one-sided diretional deriv-ative f 0+(x; v) exists but the (two-sided) diretional derivative f 0(x; v) does notexist. Then the set ��k(f) an be overed by ountably many Lipshitz surfaesof odimension k.Note that, if f is a Clarke regular funtion, then it is easy to show that �k(f) =��k(f) (see Lemma 2.4), and so Proposition 1.2 yields Theorem 1.1.We will obtain also another generalization of Theorem 1.1 whih onern lowerdiretional derivatives d�f(x; v) of arbitrary loally Lipshitz funtions:Proposition 1.3. Let X be a separable Banah spae, G � X an open set, andf a loally Lipshitz funtion on G. Let dimX > k 2 N. Denote by ~�k(f) theset of those x 2 G, for whih there exists a k-dimensional spae Vx � X , suhthat d�f(x; v) + d�f(x;�v) > 0 for eah 0 6= v 2 Vx. Then the set ~�k(f) an beovered by ountably many Lipshitz surfaes of odimension k.



Singular points of order k 53Note that, if f is a Clarke regular funtion, then (2.6) easily implies ~�k(f) =��k(f) and so ~�k(f) = �k(f).In a reent artile [6℄, A.D. Io�e has shown that some results onerning(Dini) derivatives of Lipshitz funtion an be generalized to results onerningHadamard derivatives of arbitrary funtions. Following this idea, we will prove thefollowing theorems on Hadamard derivatives of arbitrary mappings (funtions),whih learly imply (via (2.3) and (2.4)) Propositions 1.2 and 1.3.Theorem 1.4. Let X be a separable Banah spae, Y a Banah spae, G � Xan open set, and f : G ! Y an arbitrary mapping. Let dimX > k 2 N. Denoteby ��H;k(f) the set of those x 2 G, for whih there exists a k-dimensional spaeVx � X , suh that, for eah 0 6= v 2 Vx, the Hadamard one-sided diretionalderivative f 0H+(x; v) exists but the (two-sided) Hadamard diretional derivativef 0H(x; v) does not exist. Then the set ��H;k(f) an be overed by ountably manyLipshitz surfaes of odimension k.Theorem 1.5. Let X be a separable Banah spae, G � X an open set, and fan arbitrary real funtion on G. Let dimX > k 2 N. Denote by ~�H;k(f) theset of those x 2 G, for whih there exists a k-dimensional spae Vx � X , suhthat f�H (x; v) + f�H (x;�v) > 0 for eah 0 6= v 2 Vx. Then the set ~�H;k(f) an beovered by ountably many Lipshitz surfaes of odimension k.Note that, in the ase k = 1, Proposition 1.3 easily follows from Lemma 2 of[13℄ and, for k = 1, Theorem 1.5 follows from [6, Theorem 1.3(a)℄ (whih dealwith funtions f : X ! [�1;1℄).Further note that our results do not deal with the ase dimX = k, but a slightmodi�ation of our proofs give that exeptional sets (�k(f); : : : ) from the aboveresults are ountable in this ase.In Setion 2, we will reall some de�nitions and well-known fats. In Setion 3and Setion 4 we prove Theorem 1.4 and Theorem 1.5, respetively.2. PreliminariesIn the following, if it is not said otherwise, X will be a real Banah spae. ByspanM we denote the linear span of M � X . If X = E � F , then we denote by�E;F the projetion of X on E along the spae F . The symbol B(x; r) denotesthe open ball with enter x and radius r.For a Banah spae Y , we set SY := fy 2 Y : kyk = 1g. If C � Y is anonempty onvex set, then we set dimC := dim(span(C�C)) 2 (N[f0g[f1g).It is well-known that, for k 2 N, the inequality dimC � k holds i� there exists ak-dimensional spae V � Y ,  2 Y and r > 0 suh that (+ V ) \ B(; r) � C.Let X , Y be Banah spaes, ; 6= G � X an open set, and f : G ! Y amapping. The diretional and one-sided diretional derivatives of f at x 2 G inthe diretion v 2 X are de�ned respetively byf 0(x; v) := limt!0 f(x+ tv)� f(x)t ;



54 L. Zaj���ekf 0+(x; v) := limt!0+ f(x+ tv)� f(x)t :The Hadamard diretional and one-sided diretional derivatives of f at x 2 G inthe diretion v 2 X are de�ned respetively byf 0H(x; v) := limz!v;t!0 f(x+ tz)� f(x)t ;f 0H+(x; v) := limz!v;t!0+ f(x+ tz)� f(x)t :It is easy to see that f 0(x; v) exists if and only if f 0+(x;�v) = �f 0+(x; v) and(2.1) f 0H(x; v) exists if and only if f 0H+(x;�v) = �f 0H+(x; v).It is easy to prove that, if f 0H(x; v) exists for eah v 2 X , then(2.2) f 0H(x; �) is a ontinuous funtion.It is well-known and easy to prove that, if f is loally Lipshitz on G, then(2.3) f 0(x; v) = f 0H(x; v) (resp. f 0+(x; v) = f 0H+(x; v))whenever one of these two derivatives exists.Now we suppose that f is a real funtion de�ned on an open subset G ofX . Theupper and lower (Dini) one-sided diretional derivative of f at x in the diretionv are de�ned respetively byd+f(x; v) := lim supt!0+ (f(x+ tv)� f(x))t�1;d�f(x; v) := lim inft!0+ (f(x+ tv)� f(x))t�1:Following [6℄ we denote the upper and lower Hadamard one-sided diretionalderivatives of f at x in the diretion v byf+H (x; v) := lim supz!v;t!0+(f(x+ tz)� f(x))t�1;f�H (x; v) := lim infz!v;t!0+(f(x+ tz)� f(x))t�1:It is well-known (f. [6℄) and easy to prove that, if f is loally Lipshitz on G,then(2.4) d+f(x; v) = f+H(x; v) and d�f(x; v) = f�H (x; v)for eah x 2 G and v 2 X .It is also well-known (f. [6, p. 1021℄) and easy to prove that(2.5) f�H (x; �) is a lower semiontinuous funtion.



Singular points of order k 55Further we suppose that f is loally Lipshitz on G. Thenf0(a; v) := lim supz!a;t!0+ f(z + tv)� f(z)tis the Clarke derivative of f at a in the diretion v and�Cf(a) := fx� 2 X� : x�(v) � f0(a; v) for all v 2 Xgis the Clarke subdi�erential of f at a. Reall that(2.6) f0(a; �) is a onvex funtion,�Cf(a) is a nonempty onvex set, and(2.7) f0(a; v) = maxfx�(v) : x� 2 �Cf(a)g:We say that f is Clarke regular at x 2 G if f0(x; v) = f 0+(x; v) for eah v 2 X .We say that f is Clarke regular on G, if f is Clarke regular at eah point of G.Let X be a Banah spae and Y , Z be losed non-trivial (i.e., di�erent fromf0g) subspaes of X . Then the gap between Y and Z (alled also the opening orthe deviation of Y and Z) is de�ned by(Y; Z) = maxf supy2Y \S(X)dist(y; Z); supz2Z\S(X) dist(z; Y )g:The gap need not be a metri on the set of all non-trivial subspaes of X ; thisproperty has the distane �(Y; Z) (alled also the spherial opening) between Yand Z de�ned as the Hausdor� distane between Y \ S(X) and Z \ S(X). It iswell-known (see e.g., [7℄) that always(2.8) �(Y; Z)=2 � (Y; Z) � �(Y; Z):For eah k 2 N, we will denote by Vk(X) the set of all k-dimensional subspaesof X equipped with the metri �. We will need the following fat; beause of thelak of a referene we supply a proof.Lemma 2.1. Let X be a separable Banah spae and k 2 N. Then Vk(X) is aseparable metri spae.Proof: Let C be a ountable dense subset of X . Denote by Dk the set of allspaes from Vk(X) whih has a basis formed by elements of C. Then Dk islearly ountable. To prove that Dk is dense in Vk(X), onsider an arbitraryV 2 Vk(X) with the basis v1; : : : ; vk. For eah " > 0, we an by [14, Lemma 2.4℄�nd Æ > 0 suh that the inequalities kw1 � v1k < Æ; : : : ; kwk � vkk < Æ implythat W := spanfw1; : : : ; wkg 2 Vk(X) and (V;W ) < ". So, using (2.8) and thedensity of C in X , we easily obtain that V belongs to the losure of Dk. �



56 L. Zaj���ekDe�nition 2.2. Let X be a Banah spae and A � X .(i) Let F be a losed subspae of X . We say that A is an F -Lipshitz surfaeif there exists a topologial omplement E of F and a Lipshitz mapping' : E ! F suh that A = fx+ '(x) : x 2 Eg.(ii) Let 1 � n < dimX be a natural number. We say that A � X isa Lipshitz surfae of odimension n if A is an F -Lipshitz surfae forsome n-dimensional spae F � X . A Lipshitz surfae of odimension 1is said to be a Lipshitz hypersurfae.Note that the sets whih an be overed by ountably many Lipshitz hyper-surfaes are sometimes alled sparse sets (see [13℄ and [6℄).If X is a Banah spae, A � X and x 2 X , then we denote by T (A; x) theBouligand's tangent (or ontingent) one of A at x. Reall that v 2 T (A; x) ifand only if there exist sequenes vn ! v and tn ! 0+ suh that x + tnvn 2 A,n 2 N. We will need the following fat whih is essentially a reformulation of [9,Lemma 2.10℄.Lemma 2.3. Let X be a Banah spae and V a �nite dimensional subspae ofX with dimX > dimV � 1. Let A � X and let T (A; a) \ V = f0g for eaha 2 A. Then A an be overed by ountably many V -Lipshitz surfaes.Reall that, if A � X�, thenA? := fx 2 X : x�(x) = 0 for eah x� 2 Agis a losed linear subspae of X . It is well-known and easy to prove that if Z � X�is a linear spae and k 2 N, then(2.9) dimZ � k , odimZ? � k:Now suppose that f is a Clarke regular funtion on an open set G � X anda 2 G. Consider the losed linear spae La := (�f(a)� �f(a))? = (span(�f(a)��f(a)))?. Then(2.10) La = fv 2 X : f 0(a; v) existsg:This fat immediately follows from the observation that f 0(a; v) exists i�0 = f 0+(a; v) + f 0+(a;�v) = f0(a; v) + f0(a;�v)= supfy1(v) : y1 2 �f(a)g+ supfy2(�v) : y2 2 �f(a)g= supfy1(v) : y1 2 �f(a)g � inffy2(v) : y2 2 �f(a)g= supf(y1 � y2)(v) : y1 2 �f(a); y2 2 �f(a)g:Using (2.10), it is easy to show that, for eah k 2 N,(2.11) a 2 ��k(f) if and only if odim(La) � k:After these observations, we easily obtain the following fat.



Singular points of order k 57Lemma 2.4. Let f be a Clarke regular funtion on an open set G � X andk 2 N. Then �k(f) = ��k(f).Proof: Let a 2 G. Set Z := span(�f(a) � �f(a)); so a 2 �k(f) if and onlyif dim(Z) � k. By (2.9), the latter ondition is equivalent to odimZ? =odim(La) � k, whih is equivalent to a 2 ��k(f) by (2.11). �3. Proof of Theorem 1.4We will �rst prove two lemmas and then show that they easily imply Theo-rem 1.4.Lemma 3.1. Let X and Y be Banah spaes and f : X ! Y an arbitrarymapping. For eah �nitely dimensional spae V � X and n; p 2 N, denote(a) by BV the set of all a 2 X suh that, for eah 0 6= v 2 V , the one-sidedHadamard derivative f 0H+(a; v) exists, but the (bilateral) Hadamard de-rivative f 0H(a; v) does not exist, and(b) by BV;n;p the set of all a 2 X suh that(3.1) f(a+ �w) � f(a)� � f(a+ tz)� f(a)t  < 1=4n;f(a+ �w) � f(a)� + f(a� tz)� f(a)t  > 1=n;whenever t; � 2 (0; 1=p), v 2 SV , and w; z 2 X ful�l kv�wk < 1=p; kv�zk < 1=p.Let k 2 N, and letDk be a dense ountable subset of Vk := Vk(X) (see Lemma 2.1).Then(i) BV � 1[n;p=1BV;n;p for eah V 2 Vk; and(ii) [V 2Vk BV � [U2Dk;n2N;p2N BU;n;p:Proof: Consider arbitrary k 2 N, V 2 Vk and a 2 BV . For v 2 SV , denotee(v) := kf 0H+(a; v)+f 0H+(a;�v)k. Sine f 0H+(a; �) is ontinuous on X (see (2.2)),the funtion e is ontinuous as well. Sine SV is ompat and e is stritly positiveon SV by (2.1), we an �nd n 2 N suh that e(v) > 2=n for eah v 2 SV . Using thede�nition of f 0H+(a; v) and f 0H+(a;�v), we an �nd, for eah v 2 SV , a number



58 L. Zaj���ekÆv > 0 suh that(3.2) f(a+ tz)� f(a)t � f 0H+(a; v) < 18n ;f(a� tz)� f(a)t � f 0H+(a;�v) < 18nwhenever kz � vk < Æv and 0 < t < Æv.Sine SV is ompat, we an �nd a �nite set F � SV suh that(3.3) SV � [v2F B(v; Æv=4):Choose p 2 N suh that 1=p < minfÆv=4 : v 2 Fg.Now we will show that(3.4) if U 2 Vk and �(U; V ) < 1=p; then a 2 BU;n;p:The ondition (3.4) learly implies (i) and (sine Dk is dense in Vk) also (ii).So suppose that U 2 Vk with �(U; V ) < 1=p be given. To prove a 2 BU;n;p,onsider arbitrary t; � 2 (0; 1=p), u 2 SU , and w; z 2 X ful�lling ku � wk <1=p; ku� zk < 1=p. Sine �(U; V ) < 1=p, we an �nd ~v 2 SV with ku� ~vk < 1=p.By (3.3) we hoose v 2 F suh that kv � ~vk < Æv=4. Then kv � zk � kv � ~vk +k~v � uk+ ku� zk < Æv, and so (3.2) impliesf(a+ tz)� f(a)t � f 0H+(a; v) < 18n ;f(a� tz)� f(a)t � f 0H+(a;�v) < 18n :Similarly we obtain kv � wk < Æv, and so (3.2) impliesf(a+ �w) � f(a)� � f 0H+(a; w) < 18n :Therefore f(a+ �w) � f(a)� � f(a+ tz)� f(a)t  < 14nand f(a+ tw)� f(a)� + f(a� tz)� f(a)t  > kf�H (a; v) + f�H (a;�v)k � 14n= e(v)� 14n > 1n :So a 2 BU;n;p. �



Singular points of order k 59Lemma 3.2. Let X and Y be Banah spaes and f : X ! Y an arbitrarymapping. Let dimX > k 2 N and let V � X be a spae of dimension k. LetB = BV or B = BV;n;p, where BV and BV;n;p are as in Lemma 3.1. Then B anbe overed by ountably many V -Lipshitz surfaes.Proof: By Lemma 3.1(i), it is suÆient to prove the statement for B := BV;n;p(where n; p 2 N). By Lemma 2.3, it is suÆient to prove that T (B; x)\V = f0g foreah x 2 B. Suppose to the ontrary that there exist x 2 B and v 2 T (B; x)\V .We an and will suppose that kvk = 1. Set � := 12p , y := x + �v and C :=jf(y)�f(x)j� . Sine v 2 T (B; x), we an learly �nd z 2 X with kz � vk < 1=p and0 < t < 14np2(C+1) suh that a := x+ tz 2 B. Sine x 2 B = BV;n;p, we have(3.5) f(y)� f(x)� � f(a)� f(x)t  < 14n :Set w := 2p(y � a). Then t; � 2 (0; 1=p), kv � zk < 1=p and alsokv � wk = k2p(y � x) � 2p(y � a)k = 2pka� xk = 2ptkzk < 2p � 14p2 � 2 = 1=p:Consequently, sine x = a� tz, y = a+ �w and a 2 B = BV;n;p, we have by (3.1)(3.6) f(y)� f(a)� + f(x)� f(a)t  > 1n :Using (3.5) and (3.6), we obtainf(x)� f(a)�  � f(y)� f(a)� + f(x)� f(a)t � f(y)� f(x)� � f(a)� f(x)t  > 12n :Consequently, kf(x)� f(a)k > 14np . On the other hand, by (3.5) and the de�ni-tions of C and t, we obtainkf(x)� f(a)k = t f(x)� f(a)t  � t�C + 14n� < 14np ;whih is a ontradition. �Proof of Theorem 1.4: By de�nition of ��H;k(f) and Lemma 3.1(ii), we have��H;k(f) = [V 2VkBV � [U2Dk;n2N;p2N BU;n;p:Sine Dk is ountable, the assertion of Theorem 1.4 follows from Lemma 3.2. �



60 L. Zaj���ek4. Proof of Theorem 1.5We will �rst prove two lemmas and then show that they easily imply Theo-rem 1.5.Lemma 4.1. Let X be a Banah spae and f a real funtion on X . For eah�nitely dimensional spae V � X and n 2 N, denote(a) by AV the set of all a 2 X suh that(4.1) f�H (a; v) + f�H (a;�v) > 0 for eah 0 6= v 2 Vand(b) by AV;n the set of all a 2 AV suh that(4.2) f(a+ �w) � f(a)� + f(a� tz)� f(a)t > 1=n;whenever t; � 2 (0; 1=n), v 2 SV , and w; z 2 X ful�l kv � wk < 1=n,kv � zk < 1=n.Let k 2 N, and letDk be a dense ountable subset of Vk := Vk(X) (see Lemma 2.1).Then(i) AV = 1[n=1AV;n for eah V 2 Vk; and(ii) [V 2VkAV = [U2Dk AU :Proof: Consider arbitrary k 2 N, V 2 Vk and a 2 AV . For 0 6= v 2 V , denotee(v) := f�H (a; v) + f�H (a;�v). Sine f�H (a; �) is lower semiontinuous on X (see(2.5)), the funtion e is lower semiontinuous as well. Sine SV is ompat and eis stritly positive on SX , we an �nd " > 0 suh that e(v) > ", v 2 SV . Usingthe lower semiontinuity of f�H (a; �) and the de�nition of f�H (a; v), we an �nd,for eah v 2 SV , a number Æv > 0 suh that(4.3) f�H (a; u) > f�H (a; v)� "8 and f�H (a;�u) > f�H (a;�v)� "8 ;whenever ku� vk < Ævand(4.4)f(a+ tz)� f(a)t > f�H (a; v)� "8 and f(a� tz)� f(a)t > f�H (a;�v)� "8whenever kz � vk < Æv and 0 < t < Æv:



Singular points of order k 61Sine SV is ompat, we an �nd a �nite set F � SV suh that(4.5) SV � [v2F B(v; Æv=4):Choose n 2 N suh that 1=n < min(fÆv=4 : v 2 Fg [ f"=2g). To prove (i), itis suÆient to show that a 2 AV;n. To this end, suppose that t; � 2 (0; 1=n),v 2 SV , and w; z 2 X ful�lling kv � wk < 1=n, kv � zk < 1=n are given. By(4.5), we an hoose v� 2 F suh that kv � v�k < Æv�=4. Then kw � v�k �kv�wk+ kv� v�k < 1=n+ Æv�=4 < Æv� , and similarly kz� v�k < Æv� . Sine alsot; � 2 (0; 1=n) � (0; Æv�), we obtain by (4.4)f(a+ tw)� f(a)� + f(a� tz)� f(a)t > f�H (a; v�)� "8 + f�H (a;�v�)� "8> "� "4 > 1n :To prove (ii), it is suÆient to prove that if U 2 Vk and �(V; U) < 1=n, thena 2 AU . To this end, hoose an arbitrary u 2 SU . Sine �(V; U) < 1=n, we an�nd ~v 2 SV with k~v � uk < 1=n and by (4.5) v 2 F with k~v � vk < Æv=4. Thenkv � uk < 1=n+ Æv=4 < Æv and (4.3) impliesf�H (a; u) + f�H (a;�u) > f�H (a; v) � "8 + f�H (a;�v)� "8 > e(v)� "4 > 0:So learly a 2 AU . �Lemma 4.2. Let X be a Banah spae and f a real funtion on X . Let dimX >k 2 N and let V � X be a spae of dimension k. Let AV be as in Lemma 4.1.Then AV an be overed by ountably many V -Lipshitz surfaes.Proof: By Lemma 4.1(i), it is suÆient to prove that eah A := AV;n (wheren 2 N) an be overed by ountably many V -Lipshitz surfaes. By Lemma 2.3,it is suÆient to prove that T (A; x) \ V = f0g for eah x 2 A.Suppose to the ontrary that there exist x 2 A and v 2 T (A; x) \ V . We anand will suppose that kvk = 1. To infer a ontradition, we will distinguish theases f�H (x; v) =1 and f�H (x; v) <1.If f�H (x; v) = 1, set � := 1n , y := x + �v and p := jf(y) � f(x)j. Sinev 2 T (A; x) and f�H (x; v) =1, we an learly �nd z 2 X with kz� vk < 1=n and0 < t < 14n2 suh that a := x+ tz 2 A and f(a)�f(x)t > 2np. Set w := 2n(y � a).Then �; t 2 (0; 1=n), kv � zk < 1=n and alsokv � wk = k2n(y � x)� 2n(y � a)k = 2nka� xk = 2ntkzk < 2n � 14n2 � 2 = 1n :Consequently, sine x = a� tz, y = a+ �w and a 2 A = AV;n, we have by (4.2)f(y)� f(a)� > f(a)� f(x)t + 1n > 2np:



62 L. Zaj���ekThereforep � f(y)�f(x) = (f(y)�f(a))+(f(a)�f(x)) > � � f(y)� f(a)� +0 � 12n �2np = p;whih is a ontradition.If D := f�H (x; v) < 1, then the de�nition of A = AV;n yields D 2 R. By thede�nition of f�H (x; v), we an �nd ~u 2 X with k~uk < 14n and 0 < � < 14n suhthat y := x+ �(v + ~u) satis�es(4.6) f(y)� f(x)� < D + 14n :Sine v 2 T (A; x) and f�H (x; v) = D 2 R, we an learly �nd z 2 X withkz � vk < 14n and 0 < t < �4n (jD� 14n j+1) suh that a := x+ tz 2 A and(4.7) f(a)� f(x)t > D � 14n :Set w := y�a� . Then �; t 2 (0; 1=n), kv � zk < 1=n and alsokw � vk � y � a� � y � x� + k~uk � ka� xk� + 14n � 2t� + 14n < 1n :Consequently, sine x = a� tz, y = a+ �w and a 2 A = AV;n, we have by (4.2)(4.8) f(y)� f(a)� > f(a)� f(x)t + 1n > D � 14n + 1n > D + 12n :Using (4.6), (4.8) and (4.7), we obtain� �D + 14n� > f(y)� f(x) = (f(y)� f(a)) + (f(a)� f(x))> � �D + 12n�+ t�D � 14n� :Consequently t � jD � 14n j > �( 14n ), whih ontradits t < �4n (jD� 14n j+1) . �Proof of Theorem 1.5: By de�nition of ~�H;k(f) and Lemma 4.1(ii), we have~�H;k(f) = [V 2Vk AV = [U2Dk AU :Sine Dk is ountable, the assertion of Theorem 1.5 follows from Lemma 4.2. �
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