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Nonmonotone non
onvolution fun
tionsof positive type and appli
ationsTom�a�s B�artaAbstra
t. We present two suÆ
ient 
onditions for non
onvolution kernels to beof positive type. We apply the results to obtain stability for one-dimensionalmodels of 
hemi
ally rea
ting vis
oelasti
 materials.Keywords: fun
tions of positive type, non
onvolution integral equation, 
hemi-
ally rea
ting vis
oelasti
 
uidClassi�
ation: 42A82, 45A05, 45M05, 76A101. Introdu
tionRe
ently, models of 
hemi
ally rea
ting 
uids have been studied by severalauthors. See Bul���
ek, M�alek and Rajagopal [2℄ for a general existen
e result andreferen
es therein for other works on this topi
. The model studied in [2℄ is of theform(1) div v = 0; vt +div(v 
 v) = divS + f �rp; 
t +div(v
) = � div q
;where v is the velo
ity of the 
uid, 
 is 
on
entration of a 
hemi
al, p pressure, Sthe stress tensor, q
 heat 
ux and f an external for
e. A model for vis
oelasti
materials was proposed by Rajagopal and Wineman in [10℄. A

ording to [10℄, thevis
oelasti
 part of the stress tensor depends on the 
on
entration in the followingway(2) Z t0 a(
(t; x); t � s)rv(s; x) ds; in parti
ular Z t0 e��(
(t;x))(t�s)rv(s; x) ds;where � is a positive fun
tion. So, we obtain an integrodi�erential equation with anon
onvolution kernel. Another situation where su
h equations appear are modelsof aging of materials (see Rajagopal and Wineman [9℄).In the theory of integral and integrodi�erential equations, kernels of positivetype (sometimes 
alled positive de�nite) play an important role. See Gripenberg,Londen and Sta�ans [4℄, Chapter 3, 17 and 20, Pr�uss [8℄, Chapter 3 and 7, or Re-nardy, Hrusa and Nohel [11℄, Chapter IV.4. For more re
ent results see CannarsaThis work is part of the proje
t MSM 0021620839 and is partially supported by GACR201/09/0917



212 T. B�artaand Sforza [3℄ or Tatar [12℄, for non
onvolutionary 
ase see Halanay [5℄, Ki�e [6℄,or Mustapha and M
Lean [7℄.Therefore, we present two suÆ
ient 
onditions for non
onvolution kernels tobe of positive type. Let us mention that suÆ
ient 
onditions yielding positivede�niteness are usually based on monotoni
ity of the kernel and its derivatives. Itis also partially the 
ase of our �rst 
ondition (Theorem 2.1). However, the se
ondresult (Theorem 2.4) needs no monotoni
ity. It says that if a non
onvolutionkernel is a small perturbation of a 
onvolution kernel of strong positive type, thenit is itself of (strong) positive type. This is more appropriate for the systems like(1), where no monotoni
ity of 
 
an be required.The main abstra
t results are 
ontained in Se
tion 2 (Theorems 2.1 and 2.4).In Se
tion 3 we show stability resp. exponential stability for two one-dimensionalmodels of 
hemi
ally rea
ting vis
oelasti
 materials.2. Non
onvolution fun
tions of positive typeIn this se
tion we give two suÆ
ient 
onditions for a non
onvolution kernel ato be of positive type.Let us remind that a 
onvolution kernel b : R+ ! R (R+ = [0;+1)) is 
alledto be of positive type, if for every T > 0 and every w 2 L2([0; T ℄) the inequality(3) Z T0 w(t) Z t0 b(t� s)w(s) ds dt � 0holds. All positive nonin
reasing 
onvex fun
tions are of positive type, but thereare other fun
tions of positive type that do not satisfy these monotoni
ity as-sumptions (for example 
os t or e�t 
os t). Fun
tion b is 
alled to be of strongpositive type, if there exists " > 0 su
h that t 7! b(t) � "e�t is of positive type.For example, e�Æt, e�t 
os t are of strong positive type.For non
onvolution kernels one usually requiresZ T0 w(t) Z t0 k(t; s)w(s) ds dt � 0:However, sin
e our appli
ations 
ontain integral terms of the formZ t0 a(t; t� s)w(s) ds;we will use the following de�nition.De�nition 2.1. Denote by DT the set f(t; s) 2 R2 : 0 � s � t � Tg andD := f(t; s) 2 R2 : 0 � s � tg. A fun
tion a 2 L2lo
(D) is 
alled to be of
-positive type if Z t0 w(s) Z s0 a(s; s� �)w(�) d� ds � 0
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ations 213for all t > 0 and w 2 L2([0; t℄). A fun
tion a 2 L2lo
(D) is 
alled to be of "-strong
-positive type if (t; s) 7! a(t; s) � "e�s is of 
-positive type. The fun
tion a is
alled to be of strong 
-positive type if it is of "-strong 
-positive type for some" > 0.Obviously, there is a 
orresponden
e with the usual de�nition: Fun
tion a 2L2lo
(D) is of 
-positive type if and only if k(t; s) := a(t; t� s) is of positive type.Observe further that a fun
tion b 2 L2(R+ ) is of positive type, if and only ifa(t; s) := b(s) is of 
-positive type. If a fun
tion b is de�ned on [0; S℄ only, we saythat it is of positive type, if the extension of b to R+ by 0 is of positive type (i.e.,the inequality (3) holds for all T � S).Consider the following assumptions on a 2 X(D), whereX(D) := fa 2 L2lo
(D) : �1a 2 L2lo
(D)g(�j denotes the derivative with respe
t to j's variable).(a1) There is " > 0 su
h that for every T > 0, a(T; �) is of "-strong positivetype,(a2) for every T > 0, ��1a(T; �) is of positive type.Theorem 2.1. Let a 2 X(D) satisfy (a1), (a2). Then a is of "-strong 
-positivetype.Proof: Let us take " > 0 from (a1) and writea(t; r)� "e�r = a(T; r)� "e�r � Z Tt �1a(s; r) ds:Using this equality we get
(4) Z T0 w(t) Z t0 [a(t; t� �)� "e�(t��)℄w(�) d� dt= Z T0 w(t) Z t0 "a(T; t� �)� "e�(t��) � Z Tt �1a(s; t� �) ds#w(�) d� dt= Z T0 w(t) Z t0 [a(T; t� �) � "e�(t��)℄w(�) d� dt+ Z T0 Z Tt w(t) Z t0 ��1a(s; t� �)w(�) d� ds dt =: I1 + I2:Here I1 is nonnegative by (a1) and I2 is by Fubini's Theorem equal toZ T0 Z s0 w(t) Z t0 ��1a(s; t� �)w(�) d� dt ds:This expression is nonnegative by (a2). �



214 T. B�artaCorollary 2.2. Let a 2 X(D) satisfy (a1) with " = 0 and (a2). Then a is of
-positive type.Example 2.3. Let a1 2 W 1;2lo
 (I) be positive and de
reasing (nonin
reasing),a2 2 L2lo
(I) be of positive type and a(t; s) := a1(t)a2(s). Then a is of 
-positivetype. Moreover, if a1 � Æ for some Æ > 0 and a2 of strong positive type, then a isof strong 
-positive type. In parti
ular, we 
an take a2(s) := e��s, a(t; t � s) =a1(t)e��(t�s), � > 0.Consider a se
ond system of assumptions on a 2 Y , whereY := fa : R2+ ! R : a; �1a 2 L2lo
(D); �1a; �22�1a 2 L1lo
(R+ ; L1(R+ ))g:By k � k1 we denote the norm in L1(R+ ). Assume that(A) There exists Æ > 0 and for every T > 0 there exists "(T ) > 0 and v1, v2,v3 2 L1([0; T ℄) su
h that(A1) a(T; �) is of "(T )-strong positive type,(A2) for a.a. t 2 [0; T ℄, �1a(t; 0) = lims!+1 �1a(t; s) = 0,(A3) for a.a. t 2 [0; T ℄, j�2�1a(t; 0)j � v1(t), lims!+1 �2�1a(t; s) = 0,(A4) for a.a. t 2 [0; T ℄, k�1a(t; �)k1 � v2(t), k�22�1a(t; �)k1 � v3(t),(A5) R T0 v1(t) + v2(t) + v3(t) dt+ Æ � "(T ).If a(t; t� s) = ~a(t� s) is independent on the �rst variable, it is a 
onvolutionkernel and assumptions (A2){(A5) are satis�ed trivially. Assumptions (A2){(A5)mean that �1a is small, so a is a small perturbation of a 
onvolution kernel.Theorem 2.4. If a 2 Y (D) satis�es (A), then a is of Æ-strong 
-positive type.In the proof we use the same 
omputations as in the proof of Theorem 2.1.But this time, the integral I2 in (4) 
an be negative. However, we show that I2 in(4) is dominated by I1, so their sum is nonnegative. We start with the followingtwo lemmas.Lemma 2.5. Let b 2W 2;1(R+ ) satisfy b(0) = limt!+1 b(t) = limt!+1 b0(t) = 0.Then (1 + !2)jb̂(i!)j � jb0(0)j+ kbk1 + kb00k1 for all ! 2 R:Proof: We have!2b̂(i!) = i!(�i!) Z +10 e�i!sb(s) ds = i! �[e�i!sb(s)℄+10 � Z +10 e�i!sb0(s) ds�= �i! Z +10 e�i!sb0(s) ds = [e�i!sb0(s)℄+10 � Z +10 e�i!sb00(s) ds:Hen
e, !2jb̂(i!)j � jb0(0)j+ Z +10 jb00(s)j ds:Sin
e jb̂(i!)j � kbk1, the assertion follows. �
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ations 215Lemma 2.6. Let a 2 L2([0; T ℄) and for ea
h s 2 [0; T ℄, bs(�) 2 L1([0; s℄) su
hthat the mapping (s; t) 7! bs(t) belongs to L2(DT ). Let 
; k 2 L1([0; T ℄), knonnegative, R T0 k(s) ds � 1. Let us de�ne A(!) = 
̂(i!) � 
̂(i!). Assume<â(i!) � A(!) and jbbs(i!)j � k(s)A(!) for all ! 2 R:Then(5) Z T0 w(t) Z t0 a(t� �)w(�) d� dt+ Z T0 Z s0 w(t) Z t0 bs(t� �)w(�) d� dt ds � 0for all w 2 L2([0; T ℄).Proof: The �rst integral in (5) is equal toZRh
wT (i!); 
wT (i!)ba(i!)i d! = ZR j
wT (i!)j2<ba(i!) d! � ZR j
wT (i!)j2A(!) d!;= ZR 
wT (i!)
̂(i!) � 
wT (i!)
̂(i!) d! = Z T0 ����Z t0 
(t� �)wT (�) d�����2 dtwhere wT := w � �[0;T ℄. Absolute value of the integral from 0 to s in (5) is equalto ����ZRh
ws(i!);
ws(i!)bbs(i!)i d!���� � ZR j
ws(i!)j2k(s)A(!) d!= k(s) Z s0 ����Z t0 
(t� �)ws(�) d�����2 dt = k(s) Z s0 ����Z t0 
(t� �)wT (�) d�����2 dt:Hen
e, the expression on the left-hand side of (5) is larger or equal toZ T0 ����Z t0 
(t� �)wT (�) d�����2 dt� Z T0 k(s) Z s0 ����Z t0 
(t� �)wT (�) d�����2 dt ds= Z T0 ����Z t0 
(t� �)wT (�) d�����2 dt� Z T0 Z Tt k(s) ����Z t0 
(t� �)wT (�) d�����2 ds dt� Z T0  1� Z Tt k(s) ds! � ����Z t0 
(t� �)wT (�) d�����2 dt � 0: �Now, let us prove Theorem 2.4.Proof: Take T > 0 and w 2 L2([0; T ℄) �xed. Writinga(t; t� s)� Æe�(t�s) = a(T; t� s)� Æe�(t�s) � Z Tt �1a(r; t� s)dr



216 T. B�artawe 
an use the same 
omputations as in Theorem 2.1 and rewrite the integralZ T0 w(t) Z t0 [a(t; t� �)� Æe�(t��)℄w(�) d� dtin the form Z T0 w(t) Z t0 [a(T; t� �)� Æe�(t��)℄w(�) d� dt+ Z T0 Z s0 w(t) Z t0 ��1a(s; t� �)w(�) d� dt ds:We would like to apply Lemma 2.6 witha(r) := a(T; r)� Æe�r; bs(r) := ��1a(s; r):We will show thatk(t) := 1"(T )� Æ (v1(t) + v2(t) + v3(t)); A(!) := "(T )� Æ1 + !2 ; 
(t) := e�tp"(T )� Æsatisfy the assumptions of Lemma 2.6.It is known (see for example the text below De�nition 16.4.1 in [4℄) that every
onvolution kernel f of "-strongly positive type satisfy Re f̂(i!) � "1+!2 . Hen
e,Re\a(T; �)(i!) � "(T )1 + !2 :Sin
e Re Z +10 e�i!tÆe�t dt = Re Æ1 + i! = Æ1 + !2 ;we have Re[ \a(T; �)� Æe�(�)(i!)℄ � "(T )� Æ1 + !2 = A(!) :On the other hand we have from Lemma 2.5 for a.e. t 2 [0; T ℄(1 + !2) \�1a(t; �)(i!) � v1(t) + v2(t) + v3(t)(the assumptions of Lemma 2.5 are satis�ed be
ause of (A2), (A3), (A4)). Hen
e,bbs(i!) � v1(s) + v2(s) + v3(s)1 + !2 = k(s)A(!): �Corollary 2.7. If a 2 Y (D) satis�es (A) with Æ = 0, then a is of 
-positive type.
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ations 217Example 2.8. Let a(t; s) = e��(t)s with � : R+ ! [�; �℄, 0 < � < � and j�0jsmall enough in 
omparison to �. Then the assumptions of Theorem 2.4 aresatis�ed. In fa
t,��1a(t; s) = e��(t)s�0(t)s; ��2�1a(t; s) = e��(t)s�0(t)(1� �(t)s)and ��22�1a(t; s) = e��(t)s�(t)�0(t)(�(t)s � 2):Hen
e, all the smallness assumptions on �1a are satis�ed if �0(t) is small enoughfor all t 2 R+ .3. Appli
ationsIn one-dimensional 
ase, the system (1) (rewritten in Lagrangian 
oordinates)
an be redu
ed to(6) ut = divS + f; 
t = � div q
:Consider q
 = �r
 and 
onstitutive relationS(t; x) = �ru(t; x) + Z t0 A(
(t; x); t� s)ru(s; x) ds;where � = 0 or � = 1. If A(z; t � s) = e��(z)(t�s) then we obtain the modelpresented by Rajagopal and Wineman in [10℄. We arrive at(7) ut = ��u+ div Z t0 A(
(t; x); t � s)ru(s; x) ds+ f; 
t = �
:Now, we present two stability results that are standard in the 
onvolutionary
ase and obviously generalizable to the non
onvolutionary 
ase. Then we applythese results to (7). By results of the previous se
tion we 
an guarantee that AÆ 
is of (strong) 
-positive type, even if we do not know 
.Problem 1. Consider the initial value problem(8) ut(t; x) = div Z t0 a(t; t� s; x)ru(s; x) ds; u(0; x) = u0(x)with Diri
hlet or Neumann boundary 
onditions. Let a 2 L1(D � 
) su
h thatfor almost all x 2 
 the fun
tion a(�; �; x) is of 
-positive type.Theorem 3.1. Let u 2 L2lo
(R+ ;W 1;2(
)), ut 2 L2lo
(R+ ;W�1;2(
)) be a weaksolution to (8). Then ku(t)k2 is bounded on R+ .Proof: Taking uj[0;T ℄ as a test fun
tion in the weak formulation we obtain12(ku(T )k2 � ku0k2) = � Z T0 hZ t0 a(t; t� s)ru(s) ds;ru(t)i dt:



218 T. B�artaThe right-hand side is by Fubini's Theorem nonpositive, hen
eku(T )k2 � ku0k2: �Problem 2. Consider the initial value problem(9) ut(t; x) = �u(t; x)+div Z t0 a(t; t�s; x)ru(s; x) ds+f(t; x); u(0; x) = u0(x)with Diri
hlet boundary 
onditions. Let us denote (for d 2 R)fd(t; �) := edtf(t; �) and ad(t; r; �) := a(t; r; �)edr:We assume that there exists Æ > 0 arbitrarily 
lose to 0, su
h thatfÆ 2 L2(R+ ;W�1;2(
))and a 2 L1(D � 
) su
h that for almost all x 2 
 the fun
tion aÆ(�; �; x) is of
-positive type.Theorem 3.2. Let u 2 L2lo
(R+ ;W 1;2(
)), ut 2 L2lo
(R+ ;W�1;2(
)) be a weaksolution to (9). Then eÆtku(t)k2 ! 0 for some Æ > 0.Proof: Take Æ > 0 small enough and denote v(t) := u(t)eÆt. Then v is a weaksolution to_v(t) = (� + ÆI)v(t) + div Z t0 a(t; t� s)eÆ(t�s)rv(s) ds+ eÆtf(t):Taking vj[0;T ℄ as a test fun
tion in the weak formulation we obtain12(kv(T )k2 � ku0k2)� Æ Z T0 kv(t)k2 dt+ Z T0 krv(t)k2 dt= � Z T0 hZ t0 a(t; t� s)eÆ(t�s)rv(s) ds;rv(t)i dt + Z T0 heÆtf(t); v(t)i dt:The �rst term on the right-hand side is by Fubini's Theorem nonpositive, hen
eby Poin
ar�e inequality applied to the se
ond term on the left-hand side, Cau
hy{S
hwartz, H�older and Young inequality applied to the se
ond term on the right-hand side we obtainkv(T )k2 + Z T0 krv(t)k2 dt � 
(ku0k2 + kf Æk2):Hen
e, ku(t)k � Ce�Æt: �
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ations 219Appli
ation 1. Let 
 be the solution of the di�usion equation in (7) with Diri
h-let or Neumann boundary 
onditions and an initial value 
(0) = 
0 smooth enough.If A(z; t� s) = e��(z)(t�s) with � : 
! [�; �℄, � > 0 and ddt�(
(t)) is small, then(by Example 2.8) the fun
tion a(�; �; x) de�ned by a(t; t� s; x) := A(
(t; x); t� s)is of 
-positive type for a.a. x 2 
. Moreover, the fun
tion aÆ(�; �; x) de�ned byaÆ(t; r; �) := a(t; r; �)eÆris of 
-positive type for all Æ < � and a.a. x 2 
 (also by Example 2.8). We havethe following:If the initial 
on
entration 
0 is small enough or if the dependen
e on the
on
entration is small (�0 small) then solutions to (7) are bounded if � = 0 andexponentially 
onvergent to zero if � = 1.Appli
ation 2. Theorem 2.1 and Example 2.3 
ould be applied if we 
ould keepthe fun
tion t 7! 
(t; x) de
reasing and if the kernel is in the form A(
(t); t� s) =�(
(t))e�(t�s). It is not 
lear whether this 
ase is physi
ally relevant. However,in the model of aging of materials presented by Rajagopal and Wineman in [9℄the kernel has this form and monotoni
ity of the aging fun
tion �(
(t)) seems tobe a physi
ally relevant 
ondition.Appli
ation 3. In [1℄ we have shown existen
e of global solution for the quasi-linear hyperboli
 equationutt = �(t; x; ux)uxx+ Z t0 �3a(t; x; t� s) (ux(s))x ds+ g; x 2 [0; 1℄; t 2 [0;+1)for a of strong 
-positive type under appropriate assumptions on  , � and g. Thisyields global existen
e for a one-dimensional vis
oelasti
 problem with dependen
eon the 
on
entration of a 
hemi
al(10) utt = �(
; ux)uxx + Z t0 k(
(t; x); t� s) (ux(s))x ds+ g;
t = 
xx;provided the initial 
on
entration is smooth enough and small enough and k(z; t)= e��(z)t (then a(t; x; t � s) := k(
(t; x); t � s) is of strong 
-positive type byTheorem 2.4 and Example 2.8). Referen
es[1℄ B�arta T., Global existen
e for a nonlinear model of 1D 
hemi
ally rea
ting vis
oelasti
body, preprint, 2012.[2℄ Bul���
ek M., M�alek J., Rajagopal K.R., Mathemati
al results 
on
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hemi
ally rea
ting in
ompressible 
uids (English summary) Partial di�erential equationsand 
uid me
hani
s, 2653, London Math. So
. Le
ture Note Ser., 364, Cambridge Univ.Press, Cambridge, 2009.
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