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Nonmonotone nononvolution funtionsof positive type and appliationsTom�a�s B�artaAbstrat. We present two suÆient onditions for nononvolution kernels to beof positive type. We apply the results to obtain stability for one-dimensionalmodels of hemially reating visoelasti materials.Keywords: funtions of positive type, nononvolution integral equation, hemi-ally reating visoelasti uidClassi�ation: 42A82, 45A05, 45M05, 76A101. IntrodutionReently, models of hemially reating uids have been studied by severalauthors. See Bul���ek, M�alek and Rajagopal [2℄ for a general existene result andreferenes therein for other works on this topi. The model studied in [2℄ is of theform(1) div v = 0; vt +div(v 
 v) = divS + f �rp; t +div(v) = � div q;where v is the veloity of the uid,  is onentration of a hemial, p pressure, Sthe stress tensor, q heat ux and f an external fore. A model for visoelastimaterials was proposed by Rajagopal and Wineman in [10℄. Aording to [10℄, thevisoelasti part of the stress tensor depends on the onentration in the followingway(2) Z t0 a((t; x); t � s)rv(s; x) ds; in partiular Z t0 e��((t;x))(t�s)rv(s; x) ds;where � is a positive funtion. So, we obtain an integrodi�erential equation with anononvolution kernel. Another situation where suh equations appear are modelsof aging of materials (see Rajagopal and Wineman [9℄).In the theory of integral and integrodi�erential equations, kernels of positivetype (sometimes alled positive de�nite) play an important role. See Gripenberg,Londen and Sta�ans [4℄, Chapter 3, 17 and 20, Pr�uss [8℄, Chapter 3 and 7, or Re-nardy, Hrusa and Nohel [11℄, Chapter IV.4. For more reent results see CannarsaThis work is part of the projet MSM 0021620839 and is partially supported by GACR201/09/0917



212 T. B�artaand Sforza [3℄ or Tatar [12℄, for nononvolutionary ase see Halanay [5℄, Ki�e [6℄,or Mustapha and MLean [7℄.Therefore, we present two suÆient onditions for nononvolution kernels tobe of positive type. Let us mention that suÆient onditions yielding positivede�niteness are usually based on monotoniity of the kernel and its derivatives. Itis also partially the ase of our �rst ondition (Theorem 2.1). However, the seondresult (Theorem 2.4) needs no monotoniity. It says that if a nononvolutionkernel is a small perturbation of a onvolution kernel of strong positive type, thenit is itself of (strong) positive type. This is more appropriate for the systems like(1), where no monotoniity of  an be required.The main abstrat results are ontained in Setion 2 (Theorems 2.1 and 2.4).In Setion 3 we show stability resp. exponential stability for two one-dimensionalmodels of hemially reating visoelasti materials.2. Nononvolution funtions of positive typeIn this setion we give two suÆient onditions for a nononvolution kernel ato be of positive type.Let us remind that a onvolution kernel b : R+ ! R (R+ = [0;+1)) is alledto be of positive type, if for every T > 0 and every w 2 L2([0; T ℄) the inequality(3) Z T0 w(t) Z t0 b(t� s)w(s) ds dt � 0holds. All positive noninreasing onvex funtions are of positive type, but thereare other funtions of positive type that do not satisfy these monotoniity as-sumptions (for example os t or e�t os t). Funtion b is alled to be of strongpositive type, if there exists " > 0 suh that t 7! b(t) � "e�t is of positive type.For example, e�Æt, e�t os t are of strong positive type.For nononvolution kernels one usually requiresZ T0 w(t) Z t0 k(t; s)w(s) ds dt � 0:However, sine our appliations ontain integral terms of the formZ t0 a(t; t� s)w(s) ds;we will use the following de�nition.De�nition 2.1. Denote by DT the set f(t; s) 2 R2 : 0 � s � t � Tg andD := f(t; s) 2 R2 : 0 � s � tg. A funtion a 2 L2lo(D) is alled to be of-positive type if Z t0 w(s) Z s0 a(s; s� �)w(�) d� ds � 0



Nonmonotone nononvolution funtions of positive type and appliations 213for all t > 0 and w 2 L2([0; t℄). A funtion a 2 L2lo(D) is alled to be of "-strong-positive type if (t; s) 7! a(t; s) � "e�s is of -positive type. The funtion a isalled to be of strong -positive type if it is of "-strong -positive type for some" > 0.Obviously, there is a orrespondene with the usual de�nition: Funtion a 2L2lo(D) is of -positive type if and only if k(t; s) := a(t; t� s) is of positive type.Observe further that a funtion b 2 L2(R+ ) is of positive type, if and only ifa(t; s) := b(s) is of -positive type. If a funtion b is de�ned on [0; S℄ only, we saythat it is of positive type, if the extension of b to R+ by 0 is of positive type (i.e.,the inequality (3) holds for all T � S).Consider the following assumptions on a 2 X(D), whereX(D) := fa 2 L2lo(D) : �1a 2 L2lo(D)g(�j denotes the derivative with respet to j's variable).(a1) There is " > 0 suh that for every T > 0, a(T; �) is of "-strong positivetype,(a2) for every T > 0, ��1a(T; �) is of positive type.Theorem 2.1. Let a 2 X(D) satisfy (a1), (a2). Then a is of "-strong -positivetype.Proof: Let us take " > 0 from (a1) and writea(t; r)� "e�r = a(T; r)� "e�r � Z Tt �1a(s; r) ds:Using this equality we get
(4) Z T0 w(t) Z t0 [a(t; t� �)� "e�(t��)℄w(�) d� dt= Z T0 w(t) Z t0 "a(T; t� �)� "e�(t��) � Z Tt �1a(s; t� �) ds#w(�) d� dt= Z T0 w(t) Z t0 [a(T; t� �) � "e�(t��)℄w(�) d� dt+ Z T0 Z Tt w(t) Z t0 ��1a(s; t� �)w(�) d� ds dt =: I1 + I2:Here I1 is nonnegative by (a1) and I2 is by Fubini's Theorem equal toZ T0 Z s0 w(t) Z t0 ��1a(s; t� �)w(�) d� dt ds:This expression is nonnegative by (a2). �



214 T. B�artaCorollary 2.2. Let a 2 X(D) satisfy (a1) with " = 0 and (a2). Then a is of-positive type.Example 2.3. Let a1 2 W 1;2lo (I) be positive and dereasing (noninreasing),a2 2 L2lo(I) be of positive type and a(t; s) := a1(t)a2(s). Then a is of -positivetype. Moreover, if a1 � Æ for some Æ > 0 and a2 of strong positive type, then a isof strong -positive type. In partiular, we an take a2(s) := e��s, a(t; t � s) =a1(t)e��(t�s), � > 0.Consider a seond system of assumptions on a 2 Y , whereY := fa : R2+ ! R : a; �1a 2 L2lo(D); �1a; �22�1a 2 L1lo(R+ ; L1(R+ ))g:By k � k1 we denote the norm in L1(R+ ). Assume that(A) There exists Æ > 0 and for every T > 0 there exists "(T ) > 0 and v1, v2,v3 2 L1([0; T ℄) suh that(A1) a(T; �) is of "(T )-strong positive type,(A2) for a.a. t 2 [0; T ℄, �1a(t; 0) = lims!+1 �1a(t; s) = 0,(A3) for a.a. t 2 [0; T ℄, j�2�1a(t; 0)j � v1(t), lims!+1 �2�1a(t; s) = 0,(A4) for a.a. t 2 [0; T ℄, k�1a(t; �)k1 � v2(t), k�22�1a(t; �)k1 � v3(t),(A5) R T0 v1(t) + v2(t) + v3(t) dt+ Æ � "(T ).If a(t; t� s) = ~a(t� s) is independent on the �rst variable, it is a onvolutionkernel and assumptions (A2){(A5) are satis�ed trivially. Assumptions (A2){(A5)mean that �1a is small, so a is a small perturbation of a onvolution kernel.Theorem 2.4. If a 2 Y (D) satis�es (A), then a is of Æ-strong -positive type.In the proof we use the same omputations as in the proof of Theorem 2.1.But this time, the integral I2 in (4) an be negative. However, we show that I2 in(4) is dominated by I1, so their sum is nonnegative. We start with the followingtwo lemmas.Lemma 2.5. Let b 2W 2;1(R+ ) satisfy b(0) = limt!+1 b(t) = limt!+1 b0(t) = 0.Then (1 + !2)jb̂(i!)j � jb0(0)j+ kbk1 + kb00k1 for all ! 2 R:Proof: We have!2b̂(i!) = i!(�i!) Z +10 e�i!sb(s) ds = i! �[e�i!sb(s)℄+10 � Z +10 e�i!sb0(s) ds�= �i! Z +10 e�i!sb0(s) ds = [e�i!sb0(s)℄+10 � Z +10 e�i!sb00(s) ds:Hene, !2jb̂(i!)j � jb0(0)j+ Z +10 jb00(s)j ds:Sine jb̂(i!)j � kbk1, the assertion follows. �



Nonmonotone nononvolution funtions of positive type and appliations 215Lemma 2.6. Let a 2 L2([0; T ℄) and for eah s 2 [0; T ℄, bs(�) 2 L1([0; s℄) suhthat the mapping (s; t) 7! bs(t) belongs to L2(DT ). Let ; k 2 L1([0; T ℄), knonnegative, R T0 k(s) ds � 1. Let us de�ne A(!) = ̂(i!) � ̂(i!). Assume<â(i!) � A(!) and jbbs(i!)j � k(s)A(!) for all ! 2 R:Then(5) Z T0 w(t) Z t0 a(t� �)w(�) d� dt+ Z T0 Z s0 w(t) Z t0 bs(t� �)w(�) d� dt ds � 0for all w 2 L2([0; T ℄).Proof: The �rst integral in (5) is equal toZRhwT (i!); wT (i!)ba(i!)i d! = ZR jwT (i!)j2<ba(i!) d! � ZR jwT (i!)j2A(!) d!;= ZR wT (i!)̂(i!) � wT (i!)̂(i!) d! = Z T0 ����Z t0 (t� �)wT (�) d�����2 dtwhere wT := w � �[0;T ℄. Absolute value of the integral from 0 to s in (5) is equalto ����ZRhws(i!);ws(i!)bbs(i!)i d!���� � ZR jws(i!)j2k(s)A(!) d!= k(s) Z s0 ����Z t0 (t� �)ws(�) d�����2 dt = k(s) Z s0 ����Z t0 (t� �)wT (�) d�����2 dt:Hene, the expression on the left-hand side of (5) is larger or equal toZ T0 ����Z t0 (t� �)wT (�) d�����2 dt� Z T0 k(s) Z s0 ����Z t0 (t� �)wT (�) d�����2 dt ds= Z T0 ����Z t0 (t� �)wT (�) d�����2 dt� Z T0 Z Tt k(s) ����Z t0 (t� �)wT (�) d�����2 ds dt� Z T0  1� Z Tt k(s) ds! � ����Z t0 (t� �)wT (�) d�����2 dt � 0: �Now, let us prove Theorem 2.4.Proof: Take T > 0 and w 2 L2([0; T ℄) �xed. Writinga(t; t� s)� Æe�(t�s) = a(T; t� s)� Æe�(t�s) � Z Tt �1a(r; t� s)dr



216 T. B�artawe an use the same omputations as in Theorem 2.1 and rewrite the integralZ T0 w(t) Z t0 [a(t; t� �)� Æe�(t��)℄w(�) d� dtin the form Z T0 w(t) Z t0 [a(T; t� �)� Æe�(t��)℄w(�) d� dt+ Z T0 Z s0 w(t) Z t0 ��1a(s; t� �)w(�) d� dt ds:We would like to apply Lemma 2.6 witha(r) := a(T; r)� Æe�r; bs(r) := ��1a(s; r):We will show thatk(t) := 1"(T )� Æ (v1(t) + v2(t) + v3(t)); A(!) := "(T )� Æ1 + !2 ; (t) := e�tp"(T )� Æsatisfy the assumptions of Lemma 2.6.It is known (see for example the text below De�nition 16.4.1 in [4℄) that everyonvolution kernel f of "-strongly positive type satisfy Re f̂(i!) � "1+!2 . Hene,Re\a(T; �)(i!) � "(T )1 + !2 :Sine Re Z +10 e�i!tÆe�t dt = Re Æ1 + i! = Æ1 + !2 ;we have Re[ \a(T; �)� Æe�(�)(i!)℄ � "(T )� Æ1 + !2 = A(!) :On the other hand we have from Lemma 2.5 for a.e. t 2 [0; T ℄(1 + !2) \�1a(t; �)(i!) � v1(t) + v2(t) + v3(t)(the assumptions of Lemma 2.5 are satis�ed beause of (A2), (A3), (A4)). Hene,bbs(i!) � v1(s) + v2(s) + v3(s)1 + !2 = k(s)A(!): �Corollary 2.7. If a 2 Y (D) satis�es (A) with Æ = 0, then a is of -positive type.



Nonmonotone nononvolution funtions of positive type and appliations 217Example 2.8. Let a(t; s) = e��(t)s with � : R+ ! [�; �℄, 0 < � < � and j�0jsmall enough in omparison to �. Then the assumptions of Theorem 2.4 aresatis�ed. In fat,��1a(t; s) = e��(t)s�0(t)s; ��2�1a(t; s) = e��(t)s�0(t)(1� �(t)s)and ��22�1a(t; s) = e��(t)s�(t)�0(t)(�(t)s � 2):Hene, all the smallness assumptions on �1a are satis�ed if �0(t) is small enoughfor all t 2 R+ .3. AppliationsIn one-dimensional ase, the system (1) (rewritten in Lagrangian oordinates)an be redued to(6) ut = divS + f; t = � div q:Consider q = �r and onstitutive relationS(t; x) = �ru(t; x) + Z t0 A((t; x); t� s)ru(s; x) ds;where � = 0 or � = 1. If A(z; t � s) = e��(z)(t�s) then we obtain the modelpresented by Rajagopal and Wineman in [10℄. We arrive at(7) ut = ��u+ div Z t0 A((t; x); t � s)ru(s; x) ds+ f; t = �:Now, we present two stability results that are standard in the onvolutionaryase and obviously generalizable to the nononvolutionary ase. Then we applythese results to (7). By results of the previous setion we an guarantee that AÆ is of (strong) -positive type, even if we do not know .Problem 1. Consider the initial value problem(8) ut(t; x) = div Z t0 a(t; t� s; x)ru(s; x) ds; u(0; x) = u0(x)with Dirihlet or Neumann boundary onditions. Let a 2 L1(D � 
) suh thatfor almost all x 2 
 the funtion a(�; �; x) is of -positive type.Theorem 3.1. Let u 2 L2lo(R+ ;W 1;2(
)), ut 2 L2lo(R+ ;W�1;2(
)) be a weaksolution to (8). Then ku(t)k2 is bounded on R+ .Proof: Taking uj[0;T ℄ as a test funtion in the weak formulation we obtain12(ku(T )k2 � ku0k2) = � Z T0 hZ t0 a(t; t� s)ru(s) ds;ru(t)i dt:



218 T. B�artaThe right-hand side is by Fubini's Theorem nonpositive, heneku(T )k2 � ku0k2: �Problem 2. Consider the initial value problem(9) ut(t; x) = �u(t; x)+div Z t0 a(t; t�s; x)ru(s; x) ds+f(t; x); u(0; x) = u0(x)with Dirihlet boundary onditions. Let us denote (for d 2 R)fd(t; �) := edtf(t; �) and ad(t; r; �) := a(t; r; �)edr:We assume that there exists Æ > 0 arbitrarily lose to 0, suh thatfÆ 2 L2(R+ ;W�1;2(
))and a 2 L1(D � 
) suh that for almost all x 2 
 the funtion aÆ(�; �; x) is of-positive type.Theorem 3.2. Let u 2 L2lo(R+ ;W 1;2(
)), ut 2 L2lo(R+ ;W�1;2(
)) be a weaksolution to (9). Then eÆtku(t)k2 ! 0 for some Æ > 0.Proof: Take Æ > 0 small enough and denote v(t) := u(t)eÆt. Then v is a weaksolution to_v(t) = (� + ÆI)v(t) + div Z t0 a(t; t� s)eÆ(t�s)rv(s) ds+ eÆtf(t):Taking vj[0;T ℄ as a test funtion in the weak formulation we obtain12(kv(T )k2 � ku0k2)� Æ Z T0 kv(t)k2 dt+ Z T0 krv(t)k2 dt= � Z T0 hZ t0 a(t; t� s)eÆ(t�s)rv(s) ds;rv(t)i dt + Z T0 heÆtf(t); v(t)i dt:The �rst term on the right-hand side is by Fubini's Theorem nonpositive, heneby Poinar�e inequality applied to the seond term on the left-hand side, Cauhy{Shwartz, H�older and Young inequality applied to the seond term on the right-hand side we obtainkv(T )k2 + Z T0 krv(t)k2 dt � (ku0k2 + kf Æk2):Hene, ku(t)k � Ce�Æt: �



Nonmonotone nononvolution funtions of positive type and appliations 219Appliation 1. Let  be the solution of the di�usion equation in (7) with Dirih-let or Neumann boundary onditions and an initial value (0) = 0 smooth enough.If A(z; t� s) = e��(z)(t�s) with � : 
! [�; �℄, � > 0 and ddt�((t)) is small, then(by Example 2.8) the funtion a(�; �; x) de�ned by a(t; t� s; x) := A((t; x); t� s)is of -positive type for a.a. x 2 
. Moreover, the funtion aÆ(�; �; x) de�ned byaÆ(t; r; �) := a(t; r; �)eÆris of -positive type for all Æ < � and a.a. x 2 
 (also by Example 2.8). We havethe following:If the initial onentration 0 is small enough or if the dependene on theonentration is small (�0 small) then solutions to (7) are bounded if � = 0 andexponentially onvergent to zero if � = 1.Appliation 2. Theorem 2.1 and Example 2.3 ould be applied if we ould keepthe funtion t 7! (t; x) dereasing and if the kernel is in the form A((t); t� s) =�((t))e�(t�s). It is not lear whether this ase is physially relevant. However,in the model of aging of materials presented by Rajagopal and Wineman in [9℄the kernel has this form and monotoniity of the aging funtion �((t)) seems tobe a physially relevant ondition.Appliation 3. In [1℄ we have shown existene of global solution for the quasi-linear hyperboli equationutt = �(t; x; ux)uxx+ Z t0 �3a(t; x; t� s) (ux(s))x ds+ g; x 2 [0; 1℄; t 2 [0;+1)for a of strong -positive type under appropriate assumptions on  , � and g. Thisyields global existene for a one-dimensional visoelasti problem with dependeneon the onentration of a hemial(10) utt = �(; ux)uxx + Z t0 k((t; x); t� s) (ux(s))x ds+ g;t = xx;provided the initial onentration is smooth enough and small enough and k(z; t)= e��(z)t (then a(t; x; t � s) := k((t; x); t � s) is of strong -positive type byTheorem 2.4 and Example 2.8). Referenes[1℄ B�arta T., Global existene for a nonlinear model of 1D hemially reating visoelastibody, preprint, 2012.[2℄ Bul���ek M., M�alek J., Rajagopal K.R., Mathematial results onerning unsteady ows ofhemially reating inompressible uids (English summary) Partial di�erential equationsand uid mehanis, 2653, London Math. So. Leture Note Ser., 364, Cambridge Univ.Press, Cambridge, 2009.
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