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On the exterior problem in 2D for stationaryows of uids with shear dependent visosityM. Bildhauer, M. FuhsAbstrat. On the omplement of the unit disk B we onsider solutions of theequations desribing the stationary ow of an inompressible uid with sheardependent visosity. We show that the veloity �eld u is equal to zero provideduj�B = 0 and limjxj!1 jxj1=3ju(x)j = 0 uniformly. For slow ows the latterondition an be replaed by limjxj!1 ju(x)j = 0 uniformly. In partiular, theseresults hold for the lassial Navier-Stokes ase.Keywords: equations of Navier-Stokes type, stationary ase, exterior problemin 2DClassi�ation: 76D05, 35Q301. IntrodutionIn our note we investigate the following exterior problem for the stationaryow of a generalized Newtonian uid: let B denote the open unit disk in R2 andsuppose that the veloity �eld u: R2 n B ! R2 and the pressure �: R2 n B ! Rsatisfy the equations(1.1) � div [DH ("(u))℄ + uk�ku+r� = 0and(1.2) div u = 0on R2 nB together with the boundary ondition(1.3) u = 0 on �B:Here "(u) denotes the symmetri gradient of the �eld u, uk�ku represents theonvetive term (the onvention of summation is used throughout this paper) andwe assume that the stress tensor T is generated by a given potential H in thesense that TD = DH , where TD is the deviatori part of T .We further assume the strutural ondition(1.4) H(") = h (j"j)



222 M. Bildhauer, M. Fuhswith presribed funtion h : [0;1)! [0;1) of lass C2. From (1.4) it followsDH(") = � (j"j) "with visosity funtion �(t) := h0(t)t and, together with (1.2), this means that weonsider stationary ows of inompressible generalized Newtonian uids being ofshear thikening type if � is an inreasing funtion, and of shear thinning type ifthe visosity dereases.For further mathematial and also physial explanations the reader is referredto the monographs of Ladyzhenskaya [La℄, Galdi [Ga1℄,[Ga2℄ and M�alek, Ne�as,Rokyta, R�u�zi�ka [MNRR℄ (see also [FuSe℄).In the partiular ase h(t) = t2=2, the equations (1.1){(1.3) redue to theexterior problem for the stationary Navier-Stokes equations, and it is a hallengingtask to prove (or disprove) that(1.5) �(R) := supjxj�R ju(x)j ! 0 as R!1;implies that the veloity �eld u is identially zero. Further details inludingthe historial bakground and related problems are presented in Chapter X.3 ofGaldi's book [Ga2℄ and in his paper [Ga3℄.Of ourse we will not give an answer to this open question: our goal is toshow that with the help of rather elementary energy estimates one an obtain thefollowing results.Suppose that the uid is shear thikening or shear thinning. Let u denote asolution of (1.1){(1.3). Then we have u = 0 if(i) (1.5) holds and the onvetive term is negleted (\slow ows")or if(ii) (1.5) is replaed by the stronger ondition(1.6) limR!1R1=3�(R) = 0:In order to make these statements preise, we �rst have to introdue a reason-able lass of solutions.De�nition 1.1. A funtion u 2 C1(R2 n B), i.e. u and ru are ontinuous upto �B, is a solution of (1.1){(1.3), if (1.2) and (1.3) hold in the lassial sense andif(1.7) ZR2nB DH ("(u)) : "(') dx + ZR2nB uk�kui'i dx = 0holds for all ' 2 C10 (R2 nB) satisfying div' = 0.



On the exterior problem in 2D for stationary ows of uids 223Remark 1.1. Obviously (1.7) is the weak form of (1.1) and in the shear thikeningase we an replae De�nition 1.1 just by the requirement that u is an element ofa suitable loal energy spae having �nite energy on the annulus 1 < jxj < r.In the shear thinning ase the situation beomes more deliate and we deidedto work with De�nition 1.1.From the various hypotheses onerning h and the alulations presented belowthe reader atually an dedue the minimal requirements onerning the �eld uin the ases under investigation. However we emphasize that we do not assumethe validity of global energy bounds like RR2nB h(j"(u)j) dx < 1 for our lass ofsolutions.Next we formulate our hypotheses imposed on the density h ourring in thestrutural ondition (1.4). We suppose that h satis�es:(A1) h is stritly inreasing and onvex; we have h00(0) > 0 and limt!0 h(t)t = 0.There is a onstant a > 0 suh that h(2t) � ah(t) for all t � 0(A2) (doubling property).(A3I) In the shear thikening ase we have h0(t)t � h00(t) for all t > 0.(A3II) In the shear thinning ase we have h00(t) � h0(t)t for all t > 0:Remark 1.2. (i) From (A1) it immediately follows that h(0) = h0(0) andh0(t) > 0 for any t > 0.(ii) By onsidering ddt h0(t)t it is immediate that (A3I) and (A3II) express thefat that the uid is shear thikening and shear thinning, respetively.(iii) (A1) together with (A2) implies the balaning ondition(1.8)  th0(t) � h(t) � th0(t) for all t � 0and for a suitable positive onstant . In fat, 0 = h(0) � h(t) � th0(t)holds by onvexity, whereas by (A2) and the monotoniity of h0h(t) � 1ah(2t) = 1a Z 2t0 h0(s) ds � 1a Z 2tt h0(s) ds � 1ath0(t):(iv) It is easy to see that from (A2) it followsh(t) � h(1)ta for all t � 1;



224 M. Bildhauer, M. Fuhsthus(1.9) h(t) �  [ta + 1℄ for all t � 0:(v) If we are in the shear thikening ase (A3I), then h0(t)t � lims!0 h0(s)s =h00(0) gives(1.10) h(t) � 12h00(0)t2 for all t � 0;and (A1) implies on aount of h00(0) > 0 that our energy is of at leastquadrati growth.(vi) In the shear thinning ase we have(1.11) h(t) � 12h00(0)t2and(1.12) h0(t)2 � h(t)for any t � 0. For (1.12) we observe h0(t) � th00(0), whih is an immediateonsequene of h0(t)=t � lims!0 h0(s)=s, thush0(t)2 � th00(0)h0(t) (1.8)� h00(0)h(t):Note that aording to (1.11) the ondition (A3II) implies that the energyhas subquadrati growth.Atually, even the ase of linear growth is overed, whih means thatwe an easily give examples of densities h satisfying (A1){(A3II) for whihlimt!1 h(t)=t 2 (0;1).(vii) It is not hard to show that (A1) and (A3II) already imply (A2), we referto the Appendix of [BF℄.After these preparations we an state our main theorem:Theorem 1.1. Suppose that u is a solution of (1.1){(1.3) in the sense of De�-nition 1.1 with H from (1.4), where h satis�es (A1,2), (A3I) or (A1,2), (A3II).Then u is identially zero, if(i) ju(x)j ! 0 uniformly as jxj ! 1, i.e. (1.5) holds, and if uk�ku is negleted(ii) or if jxj1=3ju(x)j ! 0 uniformly as jxj ! 1, i.e. we have (1.6).In the subsequent setions we will present the proof of Theorem 1.1 distin-guishing the ases of inreasing and dereasing visosity.However, in both ases we apply energy estimates originating in the papers[Fu℄ and [FuZha℄ dealing with entire solutions of equations (1.1) and (1.2).We �nally remark that our arguments immediately extend to the exterior prob-lem in Rn leading to appropriate bounds in part a) and b) of Theorem 1.1. The



On the exterior problem in 2D for stationary ows of uids 225details are left to the reader. Moreover, it should be noted that Theorem 1.1 in-ludes the exterior problem for the stationary Navier-Stokes equations as a speialase.2. Some tehnial preliminariesOur �rst tool is a slight extension (presented in [FuZha℄) of the \"-Lemma"due to Giaquinta and Modia (see Lemma 0.5 in [GM℄):Lemma 2.1. Let Q := QR(z) := fx 2 R2 : jxi � zij < R; i = 1; 2g denote anarbitrary square. Suppose that we are given non-negative funtions f , f1, . . . , flfrom the spae L1(Q) and exponents �1, . . . , �l > 0. Then we an �nd a number"0 > 0 depending on �1, . . . , �l as follows: if for " 2 (0; "0) it is possible toalulate a onstant (") > 0 suh that the inequalityZQr(y) f dx � " ZQ2r(y) f dx+ (") lXj=1 r��j ZQ2r(y) fj dxholds for all squares Q2r(y) b Q, then there is a onstant  > 0 (independentof Q) with the propertyZQr(y) f dx �  lXj=1 r��j ZQ2r(y) fj dxagain for all squares Q2r(y) b Q.In order to onstrut solenoidal testfuntions, we will make use of the followingbasi lemma (see, e.g. [Ga1, Chapter III, Setion 3℄).Lemma 2.2. Suppose that we are given numbers 1 < p1 � p � p2 < 1. Thenthere is a onstant  = (p1; p2) with the following property: if f 2 Lp(BR(x0)),BR(x0) := fx 2 R2 : jx� x0j < Rg, satis�es RBR(x0) f dx = 0, then there exists a�eld v in the Sobolev lass ÆW 1p(BR(x0)) suh that div v = f on the disk BR(x0)together with the estimate(2.1) ZBR(x0) jrvjs dx �  ZBR(x0) jf js dxfor any exponent s 2 [p1; p℄. The same is true if the disk is replaed by a squareQR(x0) or an annulus B2R(x0) nBR(x0).For handling the shear thikening ase we need the following result stated inLemma 2.5 of [Fu℄ and being a onsequene of (1.8) and (1.9).Lemma 2.3. Let h satisfy (A1), (A2) and (A3I). Then there exists a number� 2 (1; 2℄ suh that(2.2) h0(t) � �h(t)1=� + t� for all t � 0;



226 M. Bildhauer, M. Fuhswhere  denotes a suitable positive onstant.3. Shear thinning aseLet h satisfy (A1), (A2), (A3II) and suppose that we have a solution u in thesense of De�nition 1.1 satisfying at least (1.5). Note that in this ase u is anelement of the spae L1(R2 ). We �x a square Q having positive distane to theunit disk B and onsider subsquares Q2r(z) b Q.Our �rst goal is to obtain an estimate (see (3.8)) for the energyRQr(z) h(j"(u)j) dx. To this purpose we let in equation (1.7) ' = �2u � v, where� 2 C10 (Q2r(z)), 0 � � � 1, � = 1 on Qr(z), jr�j � =r.The �eld v is de�ned aording to Lemma 2.2 with the hoies s = p1 = p2 = 2,f = div(�2u) (1.2)= r�2 � u and with BR(x0) replaed by Q2r(z). We obtainfrom (1.7)
(3.1) ZQ2r(z) �2DH ("(u)) : "(u) dx+ 2 ZQ2r(z) �H�"i� ("(u)) ��� �ui dx� ZQ2r(z)DH ("(u)) : "(v) dx+ ZQ2r(z) uk�kuiui�2 dx� ZQ2r(z) uk�kuivi dx= T1 + T2 � T3 + T4 � T5 = 0:From (1.4) and (1.8) it follows(3.2) T1 = ZQ2r(z) �2h0 (j"(u)j) "(u)j"(u)j : "(u) dx �  ZQ2r(z) �2h (j"(u)j) dx:By Young's inequality and again (1.8) we havejT2j �  ZQ2r(z) h0 (j"(u)j) �jr�jjuj dx=  ZQ2r(z) �h0 (j"(u)j)j"(u)j � 12 jr�jjuj��h0 (j"(u)j) j"(u)j� 12 dx� Æ ZQ2r(z) �2h (j"(u)j) dx+ (Æ) ZQ2r(z) h0 (j"(u)j)j"(u)j jr�j2juj2 dx:If Æ is hosen suÆiently small, we dedue from the above estimate in ombinationwith (3.1) and (3.2) and by realling the inequality stated after (1.12)(3.3) ZQ2r(z) �2h (j"(u)j) dx � "r�2 ZQ2r(z) juj2 dx+ jT3j+ jT4j+ jT5j# :



On the exterior problem in 2D for stationary ows of uids 227For any Æ > 0 it holds on aount of (2.1) and (1.12)jT3j � Æ ZQ2r(z) h0 (j"(u)j)2 dx+ Æ�1 ZQ2r(z) jrvj2 dx� "Æ ZQ2r(z) h (j"(u)j) dx+ Æ�1r�2 ZQ2r(z) juj2 dx# ;and if we replae  Æ by Æ we get from this estimate in ombination with (3.3)(3.4) ZQr(z) h (j"(u)j) dx� Æ ZQ2r(z) h (j"(u)j) dx+ "Æ�1r�2 ZQ2r(z) juj2 dx+ jT4j+ jT5j# :We further haveT4 = 12 ZQ2r(z) uk�kjuj2�2 dx (1.2)= �12 ZQ2r(z) u � r�2juj2 dx;hene(3.5) jT4j � 1r ZQ2r(z) juj3 dx;moreover it holds
(3.6) jT5j (1.2)= �����ZQ2r(z) ukui�kvi dx������ "ZQ2r(z) juj4 dx# 12 "ZQ2r(z) jrvj2 dx# 12(2.1)�  r�1 "ZQ2r(z) juj4 dx ZQ2r(z) juj2 dx# 12�  r�1 "ZQ2r(z) juj4 dx+ ZQ2r(z) juj2 dx# :From (3.4){(3.6) we �nally obtain(3.7) ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ "Æ�1r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx#



228 M. Bildhauer, M. Fuhsbeing valid for any Æ > 0 and all squares Q2r(z) � Q. Inequality (3.7) shows thatwe an apply Lemma 2.1 with the result(3.8) ZQr(z) h (j"(u)j) dx� "r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx# ;whih holds for all squares Q2r(z) � Q. Let us onsider a square Q = QR(x0)with side length R > 1. Choosing r = R=4, z = x0 in (3.8) and realling theboundedness of u we get(3.9) ZQR4 (x0) h (j"(u)j) dx � R�1 ZQR2 (x0) juj2 dx:With (3.9) we return to the derivation of (3.7) with the hoies r = R=8, z = x0,but this time we estimate jT5j through the quantity r�1[RQ2r(z) juj4 dx RQ2r(z) juj2 dx℄1=2 (ompare (3.6)) and again we make use ofthe boundedness of u, whih means that in (3.5) we replae juj3 by onstjuj2.This yields for any Æ > 0:ZQR8 (x0) h (j"(u)j) dx � 24ÆR�1 ZQR2 (x0) juj2 dx+ Æ�1R�2 ZQR4 (x0) juj2 dx+R�1 24ZQR4 (x0) juj4 dx ZQR4 (x0) juj2 dx35 12375 :If we hoose Æ = R�1=2, this inequality implies(3.10) ZQR8 (x0) h (j"(u)j) dx � 24R� 32 ZQR2 (x0) juj2 dx+R�1 24ZQR2 (x0) juj4 dx ZQR2 (x0) juj2 dx35 12375 :Next we �x an annulus TR := B2R(0) nBR(0) of very large radius R and overits losure with a �nite number N of squares QR8 (xi) having enters xi in TR.Note that N an be hosen independent of the radius R. We apply (3.10) to thesesquares and estimate juj on QR2 (xi) just through �(R=4) being de�ned in (1.5).



On the exterior problem in 2D for stationary ows of uids 229After summation with respet to i we dedue(3.11) ZTR h (j"(u)j) dx � "R 12��R4 �2 +R��R4 �3# :Note that assumption (1.6) immediately implies the vanishing of RTR h(j"(u)j) dxpassing to the limit R!1.In the absene of the onvetive term this is already true under the weakerhypothesis (1.5): under the assumption uk�ku � 0 inequality (3.8) redues toZQr(z) h (j"(u)j) dx �  r�2 ZQ2r(z) juj2 dx;and (3.11) has to be replaed byZTR h (j"(u)j) dx � ��R4 �2 :In a next step we show that (1.6) implies(3.12) Zjxj>1 h (j"(u)j) dx = 0;whih fores u to be a rigid motion, hene u = 0 on aount of the boundaryondition (1.3).For proving (3.12) it just remains to verify the validity of(3.13) limR!1 Z1<jxj<R h (j"(u)j) dx = 0under the hypothesis (1.6) (or (1.5) in ase uk�ku = 0).To this purpose we �x a radius R� 1 and hoose' := (u if 1 � jxj � R;�2u� v if R � jxj � 2Ras testfuntion in equation (1.7) with � = 1 on 1 � jxj � R, 0 � � � 1 in1 � jxj � 2R, � = 0 outside of jxj � 2R and jr�j � =R.The �eld v is de�ned aording to Lemma 2.2 with the hoies s = p1 = p2 = 2,f = div(�2u) and for the domain TR, i.e. v 2 ÆW 12(TR), div v = f on TR and vsatis�es (2.1). Note (reall (1.3)) that ' vanishes on jxj = 1, moreover we have(3.14) ZTR f dx = 0;



230 M. Bildhauer, M. Fuhswhih justi�es the appliation of Lemma 2.2: in fat, by the hoie of � it holdsZTR f dx = Z�TR �2uNTRdH1 = � Z�BR u � N�BRdH1(1.3)= � Z�(BRnB) u � N�(BRnB)dH1= � ZBRnB div u dx = 0and (3.14) follows. Here N denotes the exterior normal of the domains underonsideration and H1 denotes the one-dimensional Hausdor� measure.Equation (1.7) then yields0 = Z1<jxj<RDH ("(u)) : "(u) dx+ ZTR DH ("(u)) : "(�2u) dx� ZTR DH ("(u)) : "(v) dx + Z1<jxj<2R uk�kui'i dxor equivalently(3.15) Z1<jxj<2R �2DH("(u)) : "(u) dx= � ZTR DH ("(u)) : �r�2 
 u� dx+ ZTR DH ("(u)) : "(v) dx� Z1<jxj<2R uk�kui'i dx:We have����ZTR DH ("(u)) : �r�2 
 u� dx���� � ZTR h0 (j"(u)j) jr�jjuj dx�  �ZTR h0 (j"(u)j)2 dx+R�2 ZTR juj2 dx�(1.12)�  �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx�as well as����ZTR DH ("(u)) : "(v) dx���� � ZTR h0 (j"(u)j) j"(v)j dx�  �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx� ;



On the exterior problem in 2D for stationary ows of uids 231where we used Young's inequality and the de�nition of v. Returning to (3.15) we�nd (reall (1.8))(3.16) Z1<jxj<R h (j"(u)j) dx �  �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx+ jSj� ;S := Z1<jxj<2R uk�kui'i dx:With (3.11) we immediately see that (3.16) implies our laim (3.13), i.e. �nishesthe proof in the presene of the onvetive term, as soon as we an show that(3.17) limR!1S = 0:It holds(3.18) S = � Z1<jxj<2R ukui�k'i dx= � Z1<jxj<2R ukui�k(�2ui) dx + ZTR ukui�kvi dx=: �T1 + T2;and for T2 we havejT2j � ZTR juj2jrvj dx� �ZTR juj4 dx� 12 �ZTR jrvj2 dx� 12� R�1 �ZTR juj4 dx� 12 �ZTR juj2 dx� 12 � R�(R)3;thus by (1.6)(3.19) limR!1 T2 = 0:For T1 we observe the identity (realling (1.3))T1 = Z1<jxj<2R �k(ukui�2ui) dx� Z1<jxj<2R �k(ukui)�2ui dx= � Z1<jxj<2R �k(ukui)�2ui dx = �12 Z1<jxj<2R uk�kjuj2�2 dx= 12 Z1<jxj<2R ukjuj2�k�2 dx;



232 M. Bildhauer, M. Fuhsand this immediately shows(3.20) limR!1 T1 = 0:With (3.19) and (3.20) we obtain (3.17), and as outlined before this ompletesthe proof of Theorem 1.1 in the shear thinning ase. �4. Shear thikening aseWith h satisfying (A1), (A2) and (A3I) we onsider a solution u of the exteriorproblem (1.1){(1.3) as explained in De�nition 1.1. We further assume the validityof (1.6) (or of (1.5) in the ase that uk�ku = 0). The alulations follow the sameideas as in the previous setion, for the neessary adjustments we bene�t from[Fu, Setion 4℄.Let p := ���1 � 2 with exponent � being de�ned in Lemma 2.3. For l 2 NsuÆiently large we let ' := �2lu�v with � as introdued in front of equation (3.1),but now we hoose v 2 ÆW 1p(Q2r(z)) suh that div v = div(�2lu)(= r�2l � u) onQ2r(z) together with(4.1) krvkLp(Q2r(z)) � kr�2l � ukLp(Q2r(z)) andkrvkL2(Q2r(z)) � kr�2l � ukL2(Q2r(z)):Replaing �2 by �2l in (3.1) we obtain for the terms Ti, i = 1; : : : ; 5
(4.2) T1 �  ZQ2r(z) �2lh (j"(u)j) dx;jT2j �  ZQ2r(z) h0 (j"(u)j) �2l�1jr�jjuj dx(2.2)�  ZQ2r(z) �2l�1jr�jjuj hh (j"(u)j) 1� + j"(u)ji dx� Æ ZQ2r(z) �(2l�1)�h (j"(u)j) dx+ (Æ) ZQ2r(z) jr�jpjujp dx+ Æ ZQ2r(z) �(2l�1)2j"(u)j2 dx+ (Æ) ZQ2r(z) jr�j2juj2 dx;where we have used Young's inequality with arbitrary Æ > 0. Observing (1.10)and seleting l so large that (2l � 1)� � 2l, we see that after suitable hoie of Æ



On the exterior problem in 2D for stationary ows of uids 233it follows from (4.2)(4.3) ZQ2r(z) �2lh (j"(u)j) dx � "r�p ZQ2r(z) jujp dx+r�2 ZQ2r(z) juj2 dx+ jT3j+ jT4j+ jT5j# :From (2.2) and Young's inequality we getjT3j �  ZQ2r(z) h0 (j"(u)j) j"(v)j dx�  ZQ2r(z) hh(j"(u)j) 1� + j"(u)ji j"(v)j dx� Æ ZQ2r(z) h (j"(u)j) dx+ Æ1�p ZQ2r(z) j"(v)jp dx+Æ ZQ2r(z) j"(u)j2 dx+ Æ�1 ZQ2r(z) j"(v)j2 dx;and if we use (4.1) and (1.10) we have shown(4.4) jT3j � Æ ZQ2r(z) h (j"(u)j) dx+ "Æ1�pr�p ZQ2r(z) jujp dx+ Æ�1r�2 ZQ2r(z) juj2 dx# :Returning to (4.3) and using (4.4) we obtain in plae of (3.4)ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ "Æ1�pr�p ZQ2r(z) jujp dx+Æ�1r�2 ZQ2r(z) juj2 dx+ jT4j+ jT5j#;and sine the estimates for T4 and T5 remain unhanged we dedue in plae of (3.7)
(4.5) ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ "Æ1�pr�p ZQ2r(z) jujp dx+ Æ�1r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx#:



234 M. Bildhauer, M. FuhsInequality (4.5) enables us to use Lemma 2.1, hene(4.6) ZQr(z) h (j"(u)j) dx � "r�p ZQ2r(z) jujp dx + r�2 ZQ2r(z) juj2 dx+r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx# :With the notation introdued after (3.8) we see that (4.6) implies in a �rst stepthe inequality (3.9), that is we obtain(4.7) ZQR4 (x0) h (j"(u)j) dx � R�1 ZQR2 (x0) juj2 dx:With the help of (4.7) we then proeed exatly as done after (3.9) and get (forany Æ > 0)ZQR8 (x0) h (j"(u)j) dx � 24ÆR�1 ZQR2 (x0) juj2 dx+ Æ1�pR�p ZQR4 (x0) jujp dx+Æ�1R�2 ZQR4 (x0) juj2 dx+R�1 24ZQR4 (x0) juj4 dx ZQR4 (x0) juj2 dx35 12375 :Let Æ = R�1=2. The above inequality implies (3.10) with the additional termR� 12� p2 ZQR2 (x0) jujp dxon the right-hand side. Therefore we get in plae of (3.11)ZTR h (j"(u)j) dx � "R 12��R4 �2 + R��R4 �3 +R 32� p2��R4 �p# ;but on aount of p � 2 and the vanishing of � it learly holdsR 12��R4 �2 � R 32� p2��R4 �p ;and as in Setion 3 we obtainlimR!1 ZTR h (j"(u)j) dx = 0



On the exterior problem in 2D for stationary ows of uids 235under the assumption (1.6) (or (1.5) for slow ows).It remains to verify (3.13). We use the same testfuntion ' as introdued after(3.13) observing that v satis�es(4.8) krvkLs(TR) � kr�2 � ukLs(TR)for s = 2 and s = p.Passing to (3.15) the �rst two terms on the right-hand side are now estimatedas follows:����ZTR DH ("(u)) : �r�2 
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