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Enumeration of nilpotent loops up to isotopyLuien ClavierAbstrat. We modify tools introdued in [Daly D., Vojt�ehovsk�y P., Enumerationof nilpotent loops via ohomology, J. Algebra 322 (2009), no. 11, 4080{4098℄ toount, for any odd prime q, the number of nilpotent loops of order 2q up toisotopy, instead of isomorphy.Keywords: loop, nilpotent, enumeration, ohomology, isomorphy, isotopyClassi�ation: 20N051. IntrodutionReall that a set Q equipped with a binary operation � is a loop if it possessesa neutral element and if for eah a, b in Q there exist unique x, y suh thata � x = b and y � a = b:As usual, we write these respetively as x = anb and y = b=a. We abbre-viate x � y as xy, and adopt the usual onvention that multipliation should beperformed �rst between ontiguous elements, and then between dotted elements.For instane, xy � z is the same as (x � y) � z.Reall that groups are exatly assoiative loops. Also, normalized latin squaresare exatly multipliation tables of �nite loops.The enter Z(Q) of a loop Q onsists of all elements x in Q suh thatxy = yx; xy � z = x � yz; yx � z = y � xz and yz � x = y � zxfor every y, z in Q.Normal subloops are kernels of loop homomorphisms. The enter Z(Q) is anormal subloop of Q. The upper entral series Z0(Q) � Z1(Q) � : : : is de�nedindutively by Z0(Q) = 1; Q=Zi+1(Q) = Z(Q=Zi(Q)):If Zn�1(Q) < Zn(Q) = Q for some n, we say that Q is (entrally) nilpotent oflass n.A triple t = (�; �; ) of bijetions between two loops (L1; �) and (L2; �) is anisotopism if �(x) � �(y) = (x � y)



160 L. Clavierfor eah x, y in L1. If suh a triple exists, L1 and L2 are said to be isotopi.Isotopy de�nes a relation of equivalene; if two loops are isomorphi, they mustbe isotopi (it is the ase when we an hoose � = � = ). We write �= for therelation of isomorphy and ' for the relation of isotopy.An autotopism of a loop L is an isotopism from L to L. We write Atp(L) forthe set of all autotopisms of a loop L; it is a group with respet to the law ofomposition.We believe the present artile is more or less self-ontained, but we invite thereader to see [DV09℄ for any shortut we may have used. Also, sine both artileshave the same sheme, most ideas here will appear more natural to those readersthat are already well aquainted with [DV09℄.Here is a summary of the paper, with A an abelian group, F a loop.Setion 2. This setion is idential to Setion 2 in [DV09℄, and was added forthe sake of ompleteness. Namely, entral extensions of A by F are in one-to-oneorrespondene with (normalized) oyles. If two oyles di�er by a oboundary,their assoiated loops are isomorphi.Setion 3. The group Atp(F;A) = Atp(F ) � Aut(A) ats on C(F;A) via, fort = (�; �; ): (t; h) : � 7! N(h�(��1; ��1))where N is the \normalizing" projetion de�ned byN(m)(x; y) = m(x; y)�m(x; 1)�m(1; y) +m(1; 1):This indues an ation on H(F;A); every orbit under this ation onsists of oy-les whose assoiated loops are isotopi.Setion 4. For a given oyle �, if every entral extension of A by F isotopito the loop Q(F;A; �) is in the orbit of �, we say that � is separable. We providesome onditions under whih oyles are separable.Setion 5. We de�ne (starred) invariant spaes of subgroups of Atp(F;A) inthe same way as in [DV09℄. Therefore, if every oyle is separable, we an ountthe number of entral extensions of A by F up to isotopy, as soon as we knowthe subgroup struture of Atp(F;A) and the ardinality of the starred invariantspae of eah subgroup of Atp(F;A).Setion 6. We study the ase where A = Z2, F = Zq with q an odd prime.In that ase, we know from [Cla12℄ the subgroup struture of Atp(F ) (see Sub-setion 6.1). Thus, we only have left to ompute the invariant (resp. starredinvariant) spaes of suh subgroups. This is done in Subsetion 6.2 (resp. 6.3).Subsequently, we an ompute the number eN (2q) of nilpotent loops of order2q up to isotopy (Theorem 6.10), and desribe the asymptoti growth of eN (2q)(Corollary 6.11).Setion 7. We provide some ideas related to the present work. See also Setion10 in [DV09℄.



Enumeration of nilpotent loops up to isotopy 1612. Central extensions, oyles and oboundariesLet A be an abelian group and F a loop. A loop Q is a entral extension of Aby F if A � Z(Q) and Q=A �= F .A mapping � : F � F ! A is a (normalized) oyle if it satis�es for everyx 2 F �(1; x) = �(x; 1) = 0:For a oyle �, de�ne Q(F;A; �) to be F �A equipped with the multipliation:(x; a)(y; b) = (xy; a+ b+ �(x; y)) :The following haraterization of entral loop extensions is folklore, and is inomplete analogy with the assoiative ase:Theorem 2.1. The loop Q is a entral extension of A by F if and only if thereis a oyle � suh that Q �= Q(F;A; �).The oyles form an abelian group C(F;A) with respet to the natural addi-tion; when A is a �eld, C(F;A) is a vetor spae over A with the natural salarmultipliation.De�ne Map0(F;A) = f� : F ! A; �(1) = 0g;Hom(F;A) = f� : F ! A; � is a homomorphism of loopsg:Lemma 2.2. The mapping b : Map0(F;A) ! C(F;A); � 7! b� de�ned byb� (x; y) = �(xy) � �(x) � �(y)is a group homomorphism with kernel Hom(F;A).The image B(F;A) = \C(F;A) �= Map0(F;A)=Hom(F;A)is a subgroup (subspae) of C(F;A); its elements are referred to as oboundaries .Coboundaries play a prominent role in lassi�ations due to this simple observa-tion:Lemma 2.3. Let b� 2 B(F;A). Then f : Q(F;A; �) ! Q(F;A; � + b� ) de�ned byf(x; a) = (x; a+ �(x))is an isomorphism of loops.Thus, it is suÆient to onsider oyles modulo oboundaries, and we de�nethe seond ohomology H(F;A) = C(F;A)=B(F;A):



162 L. Clavier3. Ation of autotopism groupsFollowing [DV09℄, we are going to de�ne an ation of Atp(F;A) on C(F;A)and H(F;A). For any oyle � and any autotopism t = (�; �; ) of F , we wouldlike to de�ne something like the map(x; y) 7! �(��1(x); ��1(y))but this is usually not a normalized oyle.Instead, let N be the funtion de�ned for any m : F � F ! A byN(m)(x; y) = m(x; y)�m(x; 1)�m(1; y) +m(1; 1):Notie that N(m) is always a oyle, and that N restrited to C(F;A) is theidentity map; thus, when A is a �eld, N is a projetion from Map(F �F;A) ontoC(F;A).Now, let Atp(F;A) = Atp(F )�Aut(A):Write for every t = (�; �; ) 2 Atp(F ) and every h 2 Aut(A)(t;h)� = N(h�(��1; ��1)):By onvention, �(��1; ��1) stands for the element of Map(F � F;A) de�ned by�(��1; ��1)(x; y) = �(��1x; ��1y).Lemma 3.1. The group Atp(F;A) ats on C(F;A) via(t; h) � � =(t;h) �:Proof: The proof is straightforward. Nevertheless, we would like to prove as-soiativity here, onsidering the following omputation to be non-trivial fromthe formal point of view. For all (t1; h1); (t2; h2) 2 Atp(F;A), � 2 C(F;A) andx; y 2 F , (t1;h1) �(t2;h2)�� (x; y) deomposes into 16 terms. Namely, it equals afterunpaking (t1;h1) �(t2;h2)�� into (t1;h1) �(x; y) 7! �(t2;h2)�� (x; y)�:h1h2� ���12 ��11 (x) ; ��12 ��11 (y)� � h1h2� ���12 ��11 (x); ��12 (1)�� h1h2� ���12 (1); ��12 ��11 (y)� + h1h2� ���12 (1); ��12 (1)�� h1h2� ���12 ��11 (x); ��12 ��11 (1)� + h1h2� ���12 ��11 (x); ��12 (1)�+ h1h2� ���12 (1); ��12 ��11 (1)� � h1h2� ���12 (1); ��12 (1)�� h1h2� ���12 ��11 (1); ��12 ��11 (y)� + h1h2� ���12 ��11 (1); ��12 (1)�+ h1h2� ���12 (1) ; ��12 ��11 (y)� � h1h2� ���12 (1) ; ��12 (1)�+ h1h2� ���12 ��11 (1); ��12 ��11 (1)� � h1h2� ���12 ��11 (1); ��12 (1)�� h1h2� ���12 (1) ; ��12 ��11 (1)� + h1h2� ���12 (1); ��12 (1)�whih beomes after anellation:h1h2� ���12 ��11 (x); ��12 ��11 (y)�� h1h2� ���12 ��11 (x); ��12 ��11 (1)��h1h2� ���12 ��11 (1); ��12 ��11 (y)�+ h1h2� ���12 ��11 (1); ��12 ��11 (1)�



Enumeration of nilpotent loops up to isotopy 163We reognize �(t1t2;h1h2)�� (x; y), and we are done. It is also easy to hek that(t;h)(�1 + �2) =(t;h) �1 +(t;h) �2. �We provided this heavy omputation to emphasize that, at this point, thereason why N gives rise to an ation of Atp(F;A) on B(F;A) seems to lie on aluky oinidene. N is atually far more that just a naively-de�ned projetion,and we will see in the proof of Theorem 4.1 that it expresses well the relationbetween entral extensions and their prinipal isotopes.Moreover, it is easy to hek that(t;h)b� = b� 0where � 0 2 Map0 is de�ned by� 0(x) = h��1(x) � h��1(1):Therefore, the ation of Atp(F;A) on C(F;A) indues an ation on B(F;A)and H(F;A).The following lemma asserts that any orbit for the ation of Atp(F;A) is on-stituted of loops with the same isotopism type.Lemma 3.2. For any t = (�; �; ) 2 Atp(F ), h 2 Aut(A), the triple t = (�; �; )de�ned by 8><>:�(x; a) = ��(x); ha+ h�(x; ��1(1))��(y; b) = ��(y); hb+ h�(��1(1); y)�(z; ) = �(z); h+ h�(��1(1); ��1(1))�is an isotopism from Q(F;A; �) to Q(F;A;(t;h) �).Proof: Let �� be the multipliation in Q(F;A; �) and �(t;h)� the multipliation inQ(F;A;(t;h) �). Then�(x; a) �(t;h)� �(y; b) = ��(x); ha+ h�(x; ��1(1))��(t;h)� ��(y); hb+ h�(��1(1); y)�= ��(x)�(y); ha + hb+ h�(x; ��1(1)) + h�(��1(1); y)+N(h�(��1; ��1))(�(x); �(y))�= �(xy); ha+ hb+ h�(x; y) + h�(��1(1); ��1(1))�= (xy; a+ b+ �(x; y))= ((x; a) �� (y; b)): �4. SeparabilityAs in [DV09℄, we de�ne isotopy separability in the following way:



164 L. ClavierWrite � � � if � =(t;h) � + � for some (t; h) 2 Atp(F;A), � 2 B(F;A). � isan equivalene relation on C(F;A), and by Lemmas 2.3 and 3.2, if � � � , thenQ(F;A; �) ' Q(F;A; �). We say that � is (isotopy) separable if the onverse alsoholds, i.e. if whenever Q(F;A; �) ' Q(F;A; �) for some oyle �, we also have� � �.Theorem 4.1. Let � 2 C(F;A). Set Q� = Q(F;A; �). If Aut(Q�) ats transi-tively on fK � Z(Q�); K �= A; Q�=K ' Fgthen � is isotopy separable.Proof: Let t = (�; �; ) be an isotopism between Q� and Q� = Q(F;A; �), forsome oyle �.The �rst step of the proof is to onsider the splitting of t into an isomor-phism and a prinipal isotopism (i.e. an isotopism that has identity as its thirdomponent, see [P90℄).Thus, let (L; �) be the loop de�ned on F �A so that  is an isomorphism fromQ� to (L; �). Then (� = ��1; � = ��1; Id) is a prinipal isotopism between Land Q�. Q� (; ; )- (L; �)Q�(�; �; ) ?� (�; �; Id)We would like to understand the multipliation in L.Let e be the neutral of the loop L. Write (x0; a0) = �(e), (y0; b0) = �(e). t isa isotopism, thus �(x; a) �� �(y; b) = (x; a) � (y; b):In partiular, (�(x; a) �� (x0; a0) = (x; a) � e = (x; a)(y; b) �� �(y; b) = (y; b) � e = (y; b) :We an invert this system to �nd(�(x; a) = (x=x0; a� a0 � �(x=x0; x0))�(y; b) = (y0ny; b� b0 � �(y0; y0ny)) :



Enumeration of nilpotent loops up to isotopy 165Therefore, the multipliation in L is simply(x; a) � (y; b) = �(x; a) �� �(y; b)= �x=x0:y0ny; a+ b� a0 � b0 � �(x=x0; x0)� �(y0; y0ny)+ �(x=x0; y0ny)�:To put it in a more familiar form, let us write (z0; 0) = e. Now sine�(e) �� �(e) = e � e = ei.e. (y0; b0) �� (x0; a0) = (y0x0; a0 + b0 + �(y0; x0)) = (z0; 0)we must have (y0x0 = z0�a0 � b0 = �(y0; x0)� 0 :Thus the multipliation in L takes the form:(x; a) � (y; b) = (x=x0:y0ny; a+ b� 0 + e�(x; y))for e� de�ned bye�(x; y) = �(x=x0; y0ny)� �(x=x0; y0nz0)� �(z0=x0; y0ny) + �(z0=x0; y0nz0):The seond step of the proof is now to reognize some subgroup of Q� on whihwe an apply the hypothesis.Notie that we always have(z0; a+ 0) � (z0; b+ 0) = (z0; a+ b+ 0):Thus the map a 7! (z0; a+ 0) is an isomorphism from A ontoK0 = f(z0; a); a 2 Ag;K0 being equipped with the multipliation �.Similarly, it is easy to hek that K0 � Z(L). In partiular, L=K0 is a loop,and F is isotopi to it via the triple of bijetions F ! L=K0:8><>:x 7! (xx0; 0) �K0y 7! (y0 y; 0) �K0z 7! (z; 0) �K0 :Therefore, �1 being an isomorphism between L and Q�, we an apply thehypothesis to �1(K0); thus there exists some automorphism g of Q� suh that



166 L. Clavierg(1� A) = �1(K0). As a onlusion, preomposing with g if neessary, we analways assume that (1�A) = K0:Now, what we have left to do is simply to express this fat with mappings.This is in diret analogy with [DV09℄.De�ne a map h : A! A by(1; a) = (z0; h(a) + 0):Notie that(1; a) � (1; b) = (z0; h(a) + 0) � (z0; h(b) + 0) = (z0; h(a) + h(b) + 0):Sine  is an isomorphism between Q� and L, this is also((1; a) �� (1; b)) = (1; a+ b) = (z0; h(a+ b) + 0):Thus, h 2 Aut(A).De�ne also k : F ! F and � : F ! A by(x; 0) = (k(x); �(x) + 0):We have of ourse (1; 0) = e = (z0; 0), so k(1) = z0 and �(1) = 0; in partiular� 2 Map0(F;A).Moreover, omputing in two ways (xy; 0) = (x; 0)�(y; 0) yields the followingidentity for k: k(x)=x0:y0nk(y) = k(xy):We an now express  in term of these maps:(z; ) = ((z; 0) �� (1; )) = (k(z); �(z) + 0) � (z0; hz + 0)= (k(z); hz + �(z) + 0):Reall that we also know the expression of � = ��1 and � = ��1, so byomposition with , we get:(�(x; a) = (k(x)=x0; hx+ �(x) + 0 � a0 � �(k(x)=x0; x0))�(y; b) = (y0nk(y); hy + �(y) + 0 � b0 � �(y0; y0nk(y))) :After writing expliitly that �(x; a) ���(y; b) is always equal to ((x; a) �� (y; b)),we get h� + b� = N(�(e�; e�))



Enumeration of nilpotent loops up to isotopy 167where et = (e�; e�; e) is de�ned to be the triple8><>:e�(x) = k(x)=x0e�(y) = y0nk(y)e(z) = k(z) :Now et 2 Atp(F ), h 2 Aut(A) and � 2 Map0(F;A), so � � �.Thus � is separable. �We leave to the reader to hek that the following results, proved in [DV09,3.3{3.7℄, still hold in our setting, thanks to Theorem 4.1 (we reall that if a loopis isotopi to a group, then it is isomorphi to it, see [P90℄).Proposition 4.2. If Q(F;A; �) is an abelian group, and A = Zp for p a primeinteger, then � is isotopy separable.Lemma 4.3. Let Q = Q�, A = Zp, p a prime. Assume further that one of thefollowing onditions is satis�ed:(i) jQj = p,(ii) jQj = pq, where q is a prime,(iii) [Q : Z(Q)℄ � 2,(iv) jQj < 12.Then � is isotopy separable.5. The invariant subspaesFollowing [DV09℄, de�ne for (t; h) 2 Atp(F;A):Inv(t; h) = f� 2 C(F;A); � �(t;h) � 2 B(F;A)gand for ; 6= H � Atp(F;A):Inv(H) = \(t;h)2H Inv(t; h):We state the following, the proof of whih is exatly the same as in [DV09℄:Lemma 5.1. Let ; 6= H � Atp(F;A). ThenInv(H) = Inv(hHi):Corollary 5.2. Let H;K � Atp(F;A). ThenInv(H) \ Inv(K) = Inv(hH [Ki):For t; u 2 Atp(F ) and h; k 2 Aut(A), let ut = utu�1, kh = khk�1.Lemma 5.3. Let (t; h); (u; k) 2 Atp(F;A). Then� 2 Inv(t; h) if and only if (u;k)� 2 Inv(ut;k h):



168 L. ClavierFor H � Atp(F;A), letInv�(H) = f� 2 C(F;A); � 2 Inv(t; h) if and only if (t; h) 2 Hg;Inv�(H) = [(t;h)2Atp(F;A) Inv�((t;h)H):If G is a group and H � G, let NG(H) = fa 2 G; aH = Hg be the normalizerof H in G.Lemma 5.4. Let H � G = Atp(F;A). Thenj Inv�(H)j = j Inv�(H)j � [G : NG(H)℄:For a group G, denote by Sub(G) a set of subgroups of G suh that for everyH � G there is preisely one K 2 Sub(G) suh that K is onjugate to H .Theorem 5.5. Let F be a loop and A an abelian group. Assume that � isseparable for every � 2 C(F;A). Let G = Atp(F;A). Then there areXH2Sub(G) j Inv�(H)jjB(F;A)j � [G : H ℄ = XH2Sub(G) j Inv�(H)jjB(F;A)j � [NG(H) : H ℄entral extensions of A by F , up to isotopism.6. Nilpotent loops of order 2q, q primeWe now investigate the 2q order ase, with q an odd prime integer throughout.The disussion in [DV09℄ showing that we an suppose A = Z2, F = Zq and thateah oyle is admissible is still valid; we an therefore use fully Theorem 5.5 inthe omputation of the number of nilpotent loops of order 2q. In order to do so,the �rst step is to understand the struture of Atp(F ).6.1 Subgroup struture of Atp(Zq). We reall the following proposition from[Cla12℄.Proposition 6.1. Let G be a �nite abelian group. Then� : Aut(G)nG2 ! Atp(G)(h; x0; y0) 7! th;x0;y0is an isomorphism, where the multipliation on Aut(G) nG2 is given by(h;X)(h0; X 0) = (hh0; hX 0 +X)and where the autotopisms th;x0;y0 are de�ned by8><>:x 7! hx+ x0y 7! hy + y0z 7! hz + x0 + y0 :



Enumeration of nilpotent loops up to isotopy 169Let us introdue some notation. For m a generator of F n f0g �= Zq�1, d adivisor of q � 1, X 2 F 2 and y 2 F , de�ne8><>:HXd = h(md; X)i = f(mkd; 1�mkd1�md X); k 2 ZgKy = h(1; (1; y))i = f(1; (k; ky)); k 2 ZgeK = h(1; (0; 1))i = f(1; (0; k)); k 2 Zg :Sine by [Cla12℄ for a �xed d all HXd are onjugate (see Table 1), we simplywrite Hd instead of H(0;0)d . Note that this notation is onsistent with the onein [DV09℄.Here are now all subgroups of Atp(F ), up to onjugaysubgroup H normalizer NG(H) onjugates [NG(H) : H ℄f1g Atp(F ) only itself q2(q � 1)Hd; d 6= q � 1 Aut(F ) every HXd dKy or eK Atp(F ) only itself q(q � 1)Hd �Ky, d 6= q � 1 Aut(F ) �Ky every HXd �Ky dHd � eK, d 6= q � 1 Aut(F ) � eK every HXd � eK dHd n F 2 Atp(F ) only itself dTable 1. Representatives for onjugay lasses of F = Atp(Zq)and their normalizer.Proof: See [Cla12, Example 3.4℄. �6.2 dim(Inv(H)), H � Atp(Zq). In the next proposition, we ompute the dimen-sions of the invariant spaes of the subgroups of Atp(F ), with as before A = Z2,F = Zq and q an odd prime (see Subsetion 6.1 for notations).Proposition 6.2. The dimensions of the invariant spaes of the subgroups ofAtp(F ) are indiated in Table 2 below, where d is any divisor of q � 1.subgroup H Hd Hd �Ky, y =2 f0;�1g otherdim(Inv(H)=B(F;A)) (q � 2)d d 0Table 2. Representatives for onjugay lasses of F = Atp(Zq)and dimension of their invariant subspaes.Proof: The proof will take us the entire subsetion, and will be divided in lem-mas and orollaries as muh as possible.Note that sine the ation of Atp(F;A) we de�ned on C(F;A) oinides (byrestrition) with the ation of Aut(F;A) de�ned in [DV09℄, the �rst olumn ofTable 2 diretly follows from [DV09℄. Thus, let us start with the ase H = Ky.



170 L. ClavierFor every y0 2 F , de�ne on C(F;A) the operator S (depending on y0) by:S : C(F;A) ! C(F;A)� 7!(1;t1;1;y0 ) � � �using the notation of Proposition 6.1; otherwise put, S is de�ned for every � 2C(F;A) byS�(x; y) = �(x+ 1; y + y0)� �(x+ 1; y0)� �(1; y + y0) + �(1; y0)� �(x; y):Similarly, de�ne on the spae Map(F � F;A) of non-normalized oyles theoperator eS by: eS : Map(F � F;A)! Map(F � F;A)� 7! �(�+ 1; �+ y0)� �i.e. for every � 2 Map(F � F;A):eS�(x; y) = �(x+ 1; y + y0)� �(x; y):Like in [DV09℄, sine Inv(Ky0) = S�1(B(F;A)), we are interested in omputingthe kernel KerS �rst. In analogy with [DV09℄, we are going to prove that it isspanned by these oyles �i that take the value 1 on exatly one orbit of theation on F 2 by the translation (x; y) 7! (x+ 1; y+ y0); or rather by their imageN(�i) under N (this is the ontent of Corollary 6.5).Namely, for 0 � i � q � 1, de�ne �i 2 Map(F � F;A) by�i(k; ly0) = Æl�k;i = (1 if l � k = i mod q0 otherwise :Note that these span Ker eS. Also,KerS = N(Ker eS + V )where V is some vetor spae spanned by partiular solutions to the systemseS� = �for every � in a hosen basis of KerN .Lemma 6.3. For any y0 2 F , we an hoose V so that V � KerN .Proof: We have to separate two ases.Suppose �rst that y0 6= 0. For 0 � i; j � q � 1, de�ne Li; Cj by(Li(x; y) = Æx;iCj(x; y) = Æy;j :



Enumeration of nilpotent loops up to isotopy 171Note that these elements of Map(F�F;A) are in KerN ; write 1 =Pi Li =Pj Cjfor the onstant map equalling 1 everywhere. Now, KerN is easily seen to havedimension 2q � 1, with basis for instanef1; L1; : : : ; Lq�1; C1; : : : ; Cq�1gor, better,f1; L0 � L1; : : : ; Lq�2 � Lq�1; C0 � Cy0 ; : : : ; C(q�2)y0 � C(q�1)y0g:Therefore, we an hoose Li+1 (resp. C(j+1)y0 ), with 0 � i; j � q � 2 as solutionsto eS� = Li � Li+1 (resp. Cjy0 � C(j+1)y0)and V has dimension at least 2(q � 1). Let us show that it annot be more, byshowing that the onstant map 1 does not have any solution in Map(F � F;A).Indeed, if it were the ase, an easy indution for suh a solution � would implythat for every integer k � 1 �(k; ky0) = �(0; 0) + k:In partiular for k = q,�(0; 0) = �(q; qy0) = �(0; 0) + q = �(0; 0) + 1:This is absurd, so V has dimension 2(q� 1), and an be hosen to be inluded inKerN .Now, assume y0 = 0. This ase is similar, but here no Cj for 0 � j � q� 1 hasa solution in Map(F � F;A). Indeed, were it the ase,�(k; j) = �(0; j) + kwould hold for every integer k � 1; taking k = q, we would have �(q; j) =�(0; j) + 1, absurd. Thus we an hoose V = Span1�i�q�1(Li), and we aredone. �Lemma 6.4. For any y0 6= 0, Ker eS \KerN = Span(1).Proof: Suppose we have some � 2 Ker eS \ KerN . Then for every integersk; l � 1, we have�(k + 1; (l + 1)y0) = �(k + 1; 0) + �(0; (l + 1)y0)� �(0; 0):But this is also �(k; ly0) = �(k; 0) + �(0; ly0)� �(0; 0):Thus �(k + 1; 0)� �(k; 0) does not depend on k, i.e.�(k + 1; 0) = �(k; 0) + 



172 L. Clavierfor some onstant  2 A. Then by a quik indution�(0; 0) = �(q; 0) = �(0; 0) + q = �(0; 0) + so  = 0. Therefore �(k + 1; 0) = �(k; 0) for all k.Similarly, �(0; (l+1)y0) = �(0; ly0) for all l. But then � must be onstant, andwe are done. �Corollary 6.5. If y0 = 0, then KerS = 0. Else, KerS has dimension q � 1 andbasis fN�ig1�i�q�1.Proof: This is a diret orollary of Lemmas 6.3 and 6.4. �The last step is now to ompute the intersetion KerS \ B.Lemma 6.6. If y0 = �1 then KerS � B. Else, KerS \ B = 0.Proof: In this proof, we use A = Z2 without warning. For onveniene, we alsode�ne z0 = y0 + 1.First, if y0 = �1, every �i is in B. Thus, let us suppose y0 is neither 0 nor �1,and take some b� =X6=0 � b�that veri�es Sb� = 0, where as in [DV09℄ we de�ne every � by�(x) = Æx;Sine S b� = ([��z0 + b� if  6= z0P0 6=0; 0 6=z0 b� 0 otherwisewe have Sb� = X6=0; 6=z0 �([��z0 + b�) + �z0 � X6=0; 6=z0 b�= X6=0; 6=z0; 6=�z0(�+z0 + � + �z0)b�+ �2z0�z0 + (�z0 + ��z0)d��z0 :Beause the � for  6= 0 form a basis of B(F;A), we must onlude that�2z0 = 0 = 2�z0�3z0 = �2z0 + �z0 = 3�z0: : :�(q�1)z0 = (q � 1)�z0 = 0��z0 = �z0 :



Enumeration of nilpotent loops up to isotopy 173Thus �z0 = 0, so �kz0 = 0 for every k, hene b� = 0. �As a quik orollary, we are done for the seond olumn of Table 2, in the ased = q � 1:Corollary 6.7. dim(Inv(Ky)=B(F;A)) = q�1 whenever y =2 f0;�1g. Moreover,the invariant spaes of K0, K�1 and eK are null mod B(F;A).Proof: The only ase that was not already investigated is H = eK, but this issymmetri to the ase H = K0. �Note that any subgroup H in the third olumn of Table 2 has either K0, K�1or eK as a subgroup. Thus, its invariant spae is also null mod B(F;A).The only remaining ases in Proposition 6.2 are H = Hd �Ky, for y =2 f0;�1gand d 6= q � 1. Start with a oyle � 2 Span1�i�q�1(N�i)� B(F;A)� =Xi6=0 �iN�i + �:Then (h;(0;0))� � � 2 B(F;A) if and only ifXi6=0 �i(N�hi �N�i) 2 B(F;A)but sine the �i are linearly independent over KerN , this is equivalent toXi6=0 �i(�hi � �i) = 0i.e. Xi6=0 �i(�h�1i � �i) = 0i.e. �i = �hi for all i. Thus for any y =2 f0;�1g,dim � Inv �f(h; (0; 0))g [Ky�=B(F;A)� = q � 1jhjand all the ases in Proposition 6.2 are overed. �6.3 j Inv�(H)j, H � Atp(Zq) and eN (2q). Before omputing the number of nilpo-tent loops of order 2q up to isotopism, we still have to ompute the ardinalitiesof the starred invariant spaes for the subgroups of Atp(F;A). This is the ontentof Proposition 6.8.Proposition 6.8. The ardinalities of the starred invariant spaes for the sub-groups of Atp(F;A) are provided in Table 3 below, where as in [DV09℄, we de�nefor every integer d:Pred(d) = fd0; 1 � d0 < d; d=d0 is a primeg:



174 L. Claviersubgroup H ardinality j Inv�(H)jf1g 2(q�2)(q�1) + q2 � XD�Pred(q�1)(�1)jDj2(q�2) gd(D)�(q � 2)�2q�1 + q2 � XD�Pred(q�1)(�1)jDj2gd(D)��(q � 3)(q � 1)(q + 1)Hd; d =2 f1; q � 1g 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) gd(D)�(q � 2)�2d + XD�Pred(d)(�1)jDj2gd(D)�H1 2q�2 � (q � 1)Ky; y =2 f0;�1g 2q�1 + q � XD�Pred(q�1)(�1)jDj2gd(D) + q � 1Hd �Ky; d =2 f1; q � 1g 2d + XD�Pred(d)(�1)jDj2gd(D)y =2 f0;�1gH1 �Ky; y =2 f0;�1g 1Atp(F;A) 1other 0Table 3. Representatives for onjugay lasses of F = Atp(Zq)and their starred invariant spaes.
Proof: The proof is straightforward, using the following expression, togetherwith Proposition 6.2 and a standard inlusion/exlusion argument.Inv�(H) = Inv(H) n[K Inv(K)= (Inv(H) n f0g) n ([K Inv(K) n f0g)where the union is taken for subgroups K suh that H is a maximal subgroupof K; Table 4 below provides for eah subgroup H the subgroups K in whih His maximal.Details are left to the reader. �For onveniene, let us write eN (n) for the number of nilpotent loops of ordern ounted up to isotopism, and N (n) the number of nilpotent loops of order nounted up to isomorphism. This notation is onsistent with the one in [DV09℄,and we reall the following:



Enumeration of nilpotent loops up to isotopy 175subgroup H subgroups K in whih H is maximalf1g every HXd for d 2 Pred(q � 1), any Xevery Ky for y 2 f1; : : : ; q � 2gHd; d 6= q � 1 every Hd0 for d0 2 Pred(d),every Hd �Ky for y 2 f1; : : : ; q � 2gKy; y 2 f1; : : : ; q � 2g every HXd �Ky for d 2 Pred(q � 1) andX 2 f(0; 0); : : : (q � 1; 0)gHd �Ky; y 2 f1; : : : ; q � 2g every Hd0 �Ky for d0 2 Pred(d) andy 2 f1; : : : ; q � 2gTable 4. Representatives for onjugay lasses of F = Atp(Zq)and the non-null invariant-spae subgroups in whih they aremaximal.Theorem 6.9. Let q be an odd prime. Then the number N (2q) of nilpotentloops of order 2q ounted up to isomorphism isN (2q) = Xd divides q�1 1d 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) gd(D)!:Proof: See [DV09, Theorem 7.1℄. �We have now all ingredients in hand for Theorem 6.10.Theorem 6.10. Let q be an odd prime. Then the number eN (2q) of nilpotentloops of order 2q ounted up to isotopism iseN (2q) = 2(q�2)(q�1)q2(q � 1) + 1q � 1 XD�Pred(q�1)(�1)jDj2(q�2) gd(D)+ Xd stritly divides q�1 1d 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) gd(D)!+ 1q2�(q � 2)2q�1 + 3)�= N (2q) + 1q2 �� (q + 1)2(q�2)(q�1) + (q � 2)2q�1 + 3�:Proof: Combine Theorem 5.5 and Proposition 6.8. �Reall from [DV09℄ the following theorem.Theorem 6.11. Let q be an odd prime. Then the number of nilpotent loops oforder 2q ounted up to isomorphism is approximately 2(q�2)(q�1)=(q � 1). More



176 L. Clavierpreisely, limq prime, q!1N (2q) � q � 12(q�2)(q�1) = 1:Proof: See [DV09, Theorem 7.3℄. �We an now ompare the estimates for N (2q) and eN (2q), this is the purposeof the following orollary.Corollary 6.12. Let q be an odd prime. Then the number of nilpotent loops oforder 2q ounted up to isotopism is approximately 2(q�2)(q�1)=q2(q � 1). Thus,the ratio between the number of suh loops ounted up to isomorphism and upto isotopism is approximately q2. More preisely,limq prime, q!1 eN (2q) � q2(q � 1)2(q�2)(q�1) = 1;limq prime, q!1 N (2q)q2 � eN (2q) = 1:Proof: This is immediate from Theorems 6.10 and 6.11. �Table 5 below provides eN (2q) for any odd prime q � 17. Like in [DV09℄, it isnot a problem to ompute eN (2q) for bigger primes, but this would not �t nielyin a table.q fN (2q)3 25 637 3;658;00311 1;023;090;941;561;683;953;759;57913 2;684;673;506;279;593;406;254;437;209;960;379;08317 382;103;603;974;564;085;117;495;134;243;710;834;769;544;696;954;218;618;882;023;686;506;659Table 5. Number eN (2q) of nilpotent loops of order 2q up toisotopism, for odd primes q � 17.7. ConlusionWe invite the reader desiring to know about related works and topis to hekSetion 10 in [DV09℄.Note that in the present paper we did not ompute the number of nilpotentloops of small order (say less that 24) up to isotopy. Undertaking suh ountingappears of interest to us. Possible trouble ould be the isotopy non-invariane ofthe set of large enter oyles (see Setion 8 in [DV09℄), sine isotopy does notpreserve enters.Also of interest is the enumeration of nilpotent loops of small order in Bol-Moufang varieties (see [PV05℄) up to isomorphy, and up to isotopy (here also,isotopy invariane should be a onern).



Enumeration of nilpotent loops up to isotopy 177The omputation of Table 5 was undertaken using the GAP System for Compu-tational Disrete Algebra (see http://www.gap-system.org/). This paper omeswith the ode used for Table 5 and a �le ontaining the numbers eN (2q) of nilpo-tent loops of order 2q for every odd prime q less than 100. The two �les an bedownloaded at http://www.math.ornell.edu/�lp49/.Aknowledgment. We would like to take this opportunity to give our warmestthanks to Petr Vojt�ehovsk�y and Dan Daly for their ontinued interest and helpfulomments onerning the present work.Referenes[Cla12℄ Clavier L., About the autotopisms of abelian groups, 2012,http://arxiv.org/abs/1201.5655.[DV09℄ Daly D., Vojt�ehovsk�y P., Enumeration of nilpotent loops via ohomology, J. Algebra322 (2009), no. 11, 4080{4098.[P90℄ Pugfelder H.O., Quasigroups and Loops: Introdution, Heldermann, Berlin, 1990.[PV05℄ Phillips J.D., Vojt�ehovsk�y P., The varieties of loops of Bol-Moufang type, AlgebraUniversalis 54 (2005), no. 3, 259{271.Cornell University, 120 Malott Hall, Ithaa, NY 14853, USA(Reeived February 16, 2012, revised April 10, 2012)


