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Enumeration of nilpotent loops up to isotopyLu
ien ClavierAbstra
t. We modify tools introdu
ed in [Daly D., Vojt�e
hovsk�y P., Enumerationof nilpotent loops via 
ohomology, J. Algebra 322 (2009), no. 11, 4080{4098℄ to
ount, for any odd prime q, the number of nilpotent loops of order 2q up toisotopy, instead of isomorphy.Keywords: loop, nilpotent, enumeration, 
ohomology, isomorphy, isotopyClassi�
ation: 20N051. Introdu
tionRe
all that a set Q equipped with a binary operation � is a loop if it possessesa neutral element and if for ea
h a, b in Q there exist unique x, y su
h thata � x = b and y � a = b:As usual, we write these respe
tively as x = anb and y = b=a. We abbre-viate x � y as xy, and adopt the usual 
onvention that multipli
ation should beperformed �rst between 
ontiguous elements, and then between dotted elements.For instan
e, xy � z is the same as (x � y) � z.Re
all that groups are exa
tly asso
iative loops. Also, normalized latin squaresare exa
tly multipli
ation tables of �nite loops.The 
enter Z(Q) of a loop Q 
onsists of all elements x in Q su
h thatxy = yx; xy � z = x � yz; yx � z = y � xz and yz � x = y � zxfor every y, z in Q.Normal subloops are kernels of loop homomorphisms. The 
enter Z(Q) is anormal subloop of Q. The upper 
entral series Z0(Q) � Z1(Q) � : : : is de�nedindu
tively by Z0(Q) = 1; Q=Zi+1(Q) = Z(Q=Zi(Q)):If Zn�1(Q) < Zn(Q) = Q for some n, we say that Q is (
entrally) nilpotent of
lass n.A triple t = (�; �; 
) of bije
tions between two loops (L1; �) and (L2; �) is anisotopism if �(x) � �(y) = 
(x � y)



160 L. Clavierfor ea
h x, y in L1. If su
h a triple exists, L1 and L2 are said to be isotopi
.Isotopy de�nes a relation of equivalen
e; if two loops are isomorphi
, they mustbe isotopi
 (it is the 
ase when we 
an 
hoose � = � = 
). We write �= for therelation of isomorphy and ' for the relation of isotopy.An autotopism of a loop L is an isotopism from L to L. We write Atp(L) forthe set of all autotopisms of a loop L; it is a group with respe
t to the law of
omposition.We believe the present arti
le is more or less self-
ontained, but we invite thereader to see [DV09℄ for any short
ut we may have used. Also, sin
e both arti
leshave the same s
heme, most ideas here will appear more natural to those readersthat are already well a
quainted with [DV09℄.Here is a summary of the paper, with A an abelian group, F a loop.Se
tion 2. This se
tion is identi
al to Se
tion 2 in [DV09℄, and was added forthe sake of 
ompleteness. Namely, 
entral extensions of A by F are in one-to-one
orresponden
e with (normalized) 
o
y
les. If two 
o
y
les di�er by a 
oboundary,their asso
iated loops are isomorphi
.Se
tion 3. The group Atp(F;A) = Atp(F ) � Aut(A) a
ts on C(F;A) via, fort = (�; �; 
): (t; h) : � 7! N(h�(��1; ��1))where N is the \normalizing" proje
tion de�ned byN(m)(x; y) = m(x; y)�m(x; 1)�m(1; y) +m(1; 1):This indu
es an a
tion on H(F;A); every orbit under this a
tion 
onsists of 
o
y-
les whose asso
iated loops are isotopi
.Se
tion 4. For a given 
o
y
le �, if every 
entral extension of A by F isotopi
to the loop Q(F;A; �) is in the orbit of �, we say that � is separable. We providesome 
onditions under whi
h 
o
y
les are separable.Se
tion 5. We de�ne (starred) invariant spa
es of subgroups of Atp(F;A) inthe same way as in [DV09℄. Therefore, if every 
o
y
le is separable, we 
an 
ountthe number of 
entral extensions of A by F up to isotopy, as soon as we knowthe subgroup stru
ture of Atp(F;A) and the 
ardinality of the starred invariantspa
e of ea
h subgroup of Atp(F;A).Se
tion 6. We study the 
ase where A = Z2, F = Zq with q an odd prime.In that 
ase, we know from [Cla12℄ the subgroup stru
ture of Atp(F ) (see Sub-se
tion 6.1). Thus, we only have left to 
ompute the invariant (resp. starredinvariant) spa
es of su
h subgroups. This is done in Subse
tion 6.2 (resp. 6.3).Subsequently, we 
an 
ompute the number eN (2q) of nilpotent loops of order2q up to isotopy (Theorem 6.10), and des
ribe the asymptoti
 growth of eN (2q)(Corollary 6.11).Se
tion 7. We provide some ideas related to the present work. See also Se
tion10 in [DV09℄.
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o
y
les and 
oboundariesLet A be an abelian group and F a loop. A loop Q is a 
entral extension of Aby F if A � Z(Q) and Q=A �= F .A mapping � : F � F ! A is a (normalized) 
o
y
le if it satis�es for everyx 2 F �(1; x) = �(x; 1) = 0:For a 
o
y
le �, de�ne Q(F;A; �) to be F �A equipped with the multipli
ation:(x; a)(y; b) = (xy; a+ b+ �(x; y)) :The following 
hara
terization of 
entral loop extensions is folklore, and is in
omplete analogy with the asso
iative 
ase:Theorem 2.1. The loop Q is a 
entral extension of A by F if and only if thereis a 
o
y
le � su
h that Q �= Q(F;A; �).The 
o
y
les form an abelian group C(F;A) with respe
t to the natural addi-tion; when A is a �eld, C(F;A) is a ve
tor spa
e over A with the natural s
alarmultipli
ation.De�ne Map0(F;A) = f� : F ! A; �(1) = 0g;Hom(F;A) = f� : F ! A; � is a homomorphism of loopsg:Lemma 2.2. The mapping b : Map0(F;A) ! C(F;A); � 7! b� de�ned byb� (x; y) = �(xy) � �(x) � �(y)is a group homomorphism with kernel Hom(F;A).The image B(F;A) = \C(F;A) �= Map0(F;A)=Hom(F;A)is a subgroup (subspa
e) of C(F;A); its elements are referred to as 
oboundaries .Coboundaries play a prominent role in 
lassi�
ations due to this simple observa-tion:Lemma 2.3. Let b� 2 B(F;A). Then f : Q(F;A; �) ! Q(F;A; � + b� ) de�ned byf(x; a) = (x; a+ �(x))is an isomorphism of loops.Thus, it is suÆ
ient to 
onsider 
o
y
les modulo 
oboundaries, and we de�nethe se
ond 
ohomology H(F;A) = C(F;A)=B(F;A):



162 L. Clavier3. A
tion of autotopism groupsFollowing [DV09℄, we are going to de�ne an a
tion of Atp(F;A) on C(F;A)and H(F;A). For any 
o
y
le � and any autotopism t = (�; �; 
) of F , we wouldlike to de�ne something like the map(x; y) 7! �(��1(x); ��1(y))but this is usually not a normalized 
o
y
le.Instead, let N be the fun
tion de�ned for any m : F � F ! A byN(m)(x; y) = m(x; y)�m(x; 1)�m(1; y) +m(1; 1):Noti
e that N(m) is always a 
o
y
le, and that N restri
ted to C(F;A) is theidentity map; thus, when A is a �eld, N is a proje
tion from Map(F �F;A) ontoC(F;A).Now, let Atp(F;A) = Atp(F )�Aut(A):Write for every t = (�; �; 
) 2 Atp(F ) and every h 2 Aut(A)(t;h)� = N(h�(��1; ��1)):By 
onvention, �(��1; ��1) stands for the element of Map(F � F;A) de�ned by�(��1; ��1)(x; y) = �(��1x; ��1y).Lemma 3.1. The group Atp(F;A) a
ts on C(F;A) via(t; h) � � =(t;h) �:Proof: The proof is straightforward. Nevertheless, we would like to prove as-so
iativity here, 
onsidering the following 
omputation to be non-trivial fromthe formal point of view. For all (t1; h1); (t2; h2) 2 Atp(F;A), � 2 C(F;A) andx; y 2 F , (t1;h1) �(t2;h2)�� (x; y) de
omposes into 16 terms. Namely, it equals afterunpa
king (t1;h1) �(t2;h2)�� into (t1;h1) �(x; y) 7! �(t2;h2)�� (x; y)�:h1h2� ���12 ��11 (x) ; ��12 ��11 (y)� � h1h2� ���12 ��11 (x); ��12 (1)�� h1h2� ���12 (1); ��12 ��11 (y)� + h1h2� ���12 (1); ��12 (1)�� h1h2� ���12 ��11 (x); ��12 ��11 (1)� + h1h2� ���12 ��11 (x); ��12 (1)�+ h1h2� ���12 (1); ��12 ��11 (1)� � h1h2� ���12 (1); ��12 (1)�� h1h2� ���12 ��11 (1); ��12 ��11 (y)� + h1h2� ���12 ��11 (1); ��12 (1)�+ h1h2� ���12 (1) ; ��12 ��11 (y)� � h1h2� ���12 (1) ; ��12 (1)�+ h1h2� ���12 ��11 (1); ��12 ��11 (1)� � h1h2� ���12 ��11 (1); ��12 (1)�� h1h2� ���12 (1) ; ��12 ��11 (1)� + h1h2� ���12 (1); ��12 (1)�whi
h be
omes after 
an
ellation:h1h2� ���12 ��11 (x); ��12 ��11 (y)�� h1h2� ���12 ��11 (x); ��12 ��11 (1)��h1h2� ���12 ��11 (1); ��12 ��11 (y)�+ h1h2� ���12 ��11 (1); ��12 ��11 (1)�
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ognize �(t1t2;h1h2)�� (x; y), and we are done. It is also easy to 
he
k that(t;h)(�1 + �2) =(t;h) �1 +(t;h) �2. �We provided this heavy 
omputation to emphasize that, at this point, thereason why N gives rise to an a
tion of Atp(F;A) on B(F;A) seems to lie on alu
ky 
oin
iden
e. N is a
tually far more that just a naively-de�ned proje
tion,and we will see in the proof of Theorem 4.1 that it expresses well the relationbetween 
entral extensions and their prin
ipal isotopes.Moreover, it is easy to 
he
k that(t;h)b� = b� 0where � 0 2 Map0 is de�ned by� 0(x) = h�
�1(x) � h�
�1(1):Therefore, the a
tion of Atp(F;A) on C(F;A) indu
es an a
tion on B(F;A)and H(F;A).The following lemma asserts that any orbit for the a
tion of Atp(F;A) is 
on-stituted of loops with the same isotopism type.Lemma 3.2. For any t = (�; �; 
) 2 Atp(F ), h 2 Aut(A), the triple t = (�; �; 
)de�ned by 8><>:�(x; a) = ��(x); ha+ h�(x; ��1(1))��(y; b) = ��(y); hb+ h�(��1(1); y)�
(z; 
) = �
(z); h
+ h�(��1(1); ��1(1))�is an isotopism from Q(F;A; �) to Q(F;A;(t;h) �).Proof: Let �� be the multipli
ation in Q(F;A; �) and �(t;h)� the multipli
ation inQ(F;A;(t;h) �). Then�(x; a) �(t;h)� �(y; b) = ��(x); ha+ h�(x; ��1(1))��(t;h)� ��(y); hb+ h�(��1(1); y)�= ��(x)�(y); ha + hb+ h�(x; ��1(1)) + h�(��1(1); y)+N(h�(��1; ��1))(�(x); �(y))�= �
(xy); ha+ hb+ h�(x; y) + h�(��1(1); ��1(1))�= 
(xy; a+ b+ �(x; y))= 
((x; a) �� (y; b)): �4. SeparabilityAs in [DV09℄, we de�ne isotopy separability in the following way:



164 L. ClavierWrite � � � if � =(t;h) � + � for some (t; h) 2 Atp(F;A), � 2 B(F;A). � isan equivalen
e relation on C(F;A), and by Lemmas 2.3 and 3.2, if � � � , thenQ(F;A; �) ' Q(F;A; �). We say that � is (isotopy) separable if the 
onverse alsoholds, i.e. if whenever Q(F;A; �) ' Q(F;A; �) for some 
o
y
le �, we also have� � �.Theorem 4.1. Let � 2 C(F;A). Set Q� = Q(F;A; �). If Aut(Q�) a
ts transi-tively on fK � Z(Q�); K �= A; Q�=K ' Fgthen � is isotopy separable.Proof: Let t = (�; �; 
) be an isotopism between Q� and Q� = Q(F;A; �), forsome 
o
y
le �.The �rst step of the proof is to 
onsider the splitting of t into an isomor-phism and a prin
ipal isotopism (i.e. an isotopism that has identity as its third
omponent, see [P
90℄).Thus, let (L; �) be the loop de�ned on F �A so that 
 is an isomorphism fromQ� to (L; �). Then (� = �
�1; � = �
�1; Id) is a prin
ipal isotopism between Land Q�. Q� (
; 
; 
)- (L; �)Q�(�; �; 
) ?� (�; �; Id)We would like to understand the multipli
ation in L.Let e be the neutral of the loop L. Write (x0; a0) = �(e), (y0; b0) = �(e). t isa isotopism, thus �(x; a) �� �(y; b) = (x; a) � (y; b):In parti
ular, (�(x; a) �� (x0; a0) = (x; a) � e = (x; a)(y; b) �� �(y; b) = (y; b) � e = (y; b) :We 
an invert this system to �nd(�(x; a) = (x=x0; a� a0 � �(x=x0; x0))�(y; b) = (y0ny; b� b0 � �(y0; y0ny)) :



Enumeration of nilpotent loops up to isotopy 165Therefore, the multipli
ation in L is simply(x; a) � (y; b) = �(x; a) �� �(y; b)= �x=x0:y0ny; a+ b� a0 � b0 � �(x=x0; x0)� �(y0; y0ny)+ �(x=x0; y0ny)�:To put it in a more familiar form, let us write (z0; 
0) = e. Now sin
e�(e) �� �(e) = e � e = ei.e. (y0; b0) �� (x0; a0) = (y0x0; a0 + b0 + �(y0; x0)) = (z0; 
0)we must have (y0x0 = z0�a0 � b0 = �(y0; x0)� 
0 :Thus the multipli
ation in L takes the form:(x; a) � (y; b) = (x=x0:y0ny; a+ b� 
0 + e�(x; y))for e� de�ned bye�(x; y) = �(x=x0; y0ny)� �(x=x0; y0nz0)� �(z0=x0; y0ny) + �(z0=x0; y0nz0):The se
ond step of the proof is now to re
ognize some subgroup of Q� on whi
hwe 
an apply the hypothesis.Noti
e that we always have(z0; a+ 
0) � (z0; b+ 
0) = (z0; a+ b+ 
0):Thus the map a 7! (z0; a+ 
0) is an isomorphism from A ontoK0 = f(z0; a); a 2 Ag;K0 being equipped with the multipli
ation �.Similarly, it is easy to 
he
k that K0 � Z(L). In parti
ular, L=K0 is a loop,and F is isotopi
 to it via the triple of bije
tions F ! L=K0:8><>:x 7! (xx0; 0) �K0y 7! (y0 y; 0) �K0z 7! (z; 0) �K0 :Therefore, 
�1 being an isomorphism between L and Q�, we 
an apply thehypothesis to 
�1(K0); thus there exists some automorphism g of Q� su
h that



166 L. Clavierg(1� A) = 
�1(K0). As a 
on
lusion, pre
omposing with g if ne
essary, we 
analways assume that 
(1�A) = K0:Now, what we have left to do is simply to express this fa
t with mappings.This is in dire
t analogy with [DV09℄.De�ne a map h : A! A by
(1; a) = (z0; h(a) + 
0):Noti
e that
(1; a) � 
(1; b) = (z0; h(a) + 
0) � (z0; h(b) + 
0) = (z0; h(a) + h(b) + 
0):Sin
e 
 is an isomorphism between Q� and L, this is also
((1; a) �� (1; b)) = 
(1; a+ b) = (z0; h(a+ b) + 
0):Thus, h 2 Aut(A).De�ne also k : F ! F and � : F ! A by
(x; 0) = (k(x); �(x) + 
0):We have of 
ourse 
(1; 0) = e = (z0; 
0), so k(1) = z0 and �(1) = 0; in parti
ular� 2 Map0(F;A).Moreover, 
omputing in two ways 
(xy; 0) = 
(x; 0)�
(y; 0) yields the followingidentity for k: k(x)=x0:y0nk(y) = k(xy):We 
an now express 
 in term of these maps:
(z; 
) = 
((z; 0) �� (1; 
)) = (k(z); �(z) + 
0) � (z0; hz + 
0)= (k(z); hz + �(z) + 
0):Re
all that we also know the expression of � = �
�1 and � = �
�1, so by
omposition with 
, we get:(�(x; a) = (k(x)=x0; hx+ �(x) + 
0 � a0 � �(k(x)=x0; x0))�(y; b) = (y0nk(y); hy + �(y) + 
0 � b0 � �(y0; y0nk(y))) :After writing expli
itly that �(x; a) ���(y; b) is always equal to 
((x; a) �� (y; b)),we get h� + b� = N(�(e�; e�))



Enumeration of nilpotent loops up to isotopy 167where et = (e�; e�; e
) is de�ned to be the triple8><>:e�(x) = k(x)=x0e�(y) = y0nk(y)e
(z) = k(z) :Now et 2 Atp(F ), h 2 Aut(A) and � 2 Map0(F;A), so � � �.Thus � is separable. �We leave to the reader to 
he
k that the following results, proved in [DV09,3.3{3.7℄, still hold in our setting, thanks to Theorem 4.1 (we re
all that if a loopis isotopi
 to a group, then it is isomorphi
 to it, see [P
90℄).Proposition 4.2. If Q(F;A; �) is an abelian group, and A = Zp for p a primeinteger, then � is isotopy separable.Lemma 4.3. Let Q = Q�, A = Zp, p a prime. Assume further that one of thefollowing 
onditions is satis�ed:(i) jQj = p,(ii) jQj = pq, where q is a prime,(iii) [Q : Z(Q)℄ � 2,(iv) jQj < 12.Then � is isotopy separable.5. The invariant subspa
esFollowing [DV09℄, de�ne for (t; h) 2 Atp(F;A):Inv(t; h) = f� 2 C(F;A); � �(t;h) � 2 B(F;A)gand for ; 6= H � Atp(F;A):Inv(H) = \(t;h)2H Inv(t; h):We state the following, the proof of whi
h is exa
tly the same as in [DV09℄:Lemma 5.1. Let ; 6= H � Atp(F;A). ThenInv(H) = Inv(hHi):Corollary 5.2. Let H;K � Atp(F;A). ThenInv(H) \ Inv(K) = Inv(hH [Ki):For t; u 2 Atp(F ) and h; k 2 Aut(A), let ut = utu�1, kh = khk�1.Lemma 5.3. Let (t; h); (u; k) 2 Atp(F;A). Then� 2 Inv(t; h) if and only if (u;k)� 2 Inv(ut;k h):



168 L. ClavierFor H � Atp(F;A), letInv�(H) = f� 2 C(F;A); � 2 Inv(t; h) if and only if (t; h) 2 Hg;Inv�
(H) = [(t;h)2Atp(F;A) Inv�((t;h)H):If G is a group and H � G, let NG(H) = fa 2 G; aH = Hg be the normalizerof H in G.Lemma 5.4. Let H � G = Atp(F;A). Thenj Inv�
(H)j = j Inv�(H)j � [G : NG(H)℄:For a group G, denote by Sub
(G) a set of subgroups of G su
h that for everyH � G there is pre
isely one K 2 Sub
(G) su
h that K is 
onjugate to H .Theorem 5.5. Let F be a loop and A an abelian group. Assume that � isseparable for every � 2 C(F;A). Let G = Atp(F;A). Then there areXH2Sub
(G) j Inv�
(H)jjB(F;A)j � [G : H ℄ = XH2Sub
(G) j Inv�(H)jjB(F;A)j � [NG(H) : H ℄
entral extensions of A by F , up to isotopism.6. Nilpotent loops of order 2q, q primeWe now investigate the 2q order 
ase, with q an odd prime integer throughout.The dis
ussion in [DV09℄ showing that we 
an suppose A = Z2, F = Zq and thatea
h 
o
y
le is admissible is still valid; we 
an therefore use fully Theorem 5.5 inthe 
omputation of the number of nilpotent loops of order 2q. In order to do so,the �rst step is to understand the stru
ture of Atp(F ).6.1 Subgroup stru
ture of Atp(Zq). We re
all the following proposition from[Cla12℄.Proposition 6.1. Let G be a �nite abelian group. Then� : Aut(G)nG2 ! Atp(G)(h; x0; y0) 7! th;x0;y0is an isomorphism, where the multipli
ation on Aut(G) nG2 is given by(h;X)(h0; X 0) = (hh0; hX 0 +X)and where the autotopisms th;x0;y0 are de�ned by8><>:x 7! hx+ x0y 7! hy + y0z 7! hz + x0 + y0 :



Enumeration of nilpotent loops up to isotopy 169Let us introdu
e some notation. For m a generator of F n f0g �= Zq�1, d adivisor of q � 1, X 2 F 2 and y 2 F , de�ne8><>:HXd = h(md; X)i = f(mkd; 1�mkd1�md X); k 2 ZgKy = h(1; (1; y))i = f(1; (k; ky)); k 2 ZgeK = h(1; (0; 1))i = f(1; (0; k)); k 2 Zg :Sin
e by [Cla12℄ for a �xed d all HXd are 
onjugate (see Table 1), we simplywrite Hd instead of H(0;0)d . Note that this notation is 
onsistent with the onein [DV09℄.Here are now all subgroups of Atp(F ), up to 
onjuga
ysubgroup H normalizer NG(H) 
onjugates [NG(H) : H ℄f1g Atp(F ) only itself q2(q � 1)Hd; d 6= q � 1 Aut(F ) every HXd dKy or eK Atp(F ) only itself q(q � 1)Hd �Ky, d 6= q � 1 Aut(F ) �Ky every HXd �Ky dHd � eK, d 6= q � 1 Aut(F ) � eK every HXd � eK dHd n F 2 Atp(F ) only itself dTable 1. Representatives for 
onjuga
y 
lasses of F = Atp(Zq)and their normalizer.Proof: See [Cla12, Example 3.4℄. �6.2 dim(Inv(H)), H � Atp(Zq). In the next proposition, we 
ompute the dimen-sions of the invariant spa
es of the subgroups of Atp(F ), with as before A = Z2,F = Zq and q an odd prime (see Subse
tion 6.1 for notations).Proposition 6.2. The dimensions of the invariant spa
es of the subgroups ofAtp(F ) are indi
ated in Table 2 below, where d is any divisor of q � 1.subgroup H Hd Hd �Ky, y =2 f0;�1g otherdim(Inv(H)=B(F;A)) (q � 2)d d 0Table 2. Representatives for 
onjuga
y 
lasses of F = Atp(Zq)and dimension of their invariant subspa
es.Proof: The proof will take us the entire subse
tion, and will be divided in lem-mas and 
orollaries as mu
h as possible.Note that sin
e the a
tion of Atp(F;A) we de�ned on C(F;A) 
oin
ides (byrestri
tion) with the a
tion of Aut(F;A) de�ned in [DV09℄, the �rst 
olumn ofTable 2 dire
tly follows from [DV09℄. Thus, let us start with the 
ase H = Ky.



170 L. ClavierFor every y0 2 F , de�ne on C(F;A) the operator S (depending on y0) by:S : C(F;A) ! C(F;A)� 7!(1;t1;1;y0 ) � � �using the notation of Proposition 6.1; otherwise put, S is de�ned for every � 2C(F;A) byS�(x; y) = �(x+ 1; y + y0)� �(x+ 1; y0)� �(1; y + y0) + �(1; y0)� �(x; y):Similarly, de�ne on the spa
e Map(F � F;A) of non-normalized 
o
y
les theoperator eS by: eS : Map(F � F;A)! Map(F � F;A)� 7! �(�+ 1; �+ y0)� �i.e. for every � 2 Map(F � F;A):eS�(x; y) = �(x+ 1; y + y0)� �(x; y):Like in [DV09℄, sin
e Inv(Ky0) = S�1(B(F;A)), we are interested in 
omputingthe kernel KerS �rst. In analogy with [DV09℄, we are going to prove that it isspanned by these 
o
y
les �i that take the value 1 on exa
tly one orbit of thea
tion on F 2 by the translation (x; y) 7! (x+ 1; y+ y0); or rather by their imageN(�i) under N (this is the 
ontent of Corollary 6.5).Namely, for 0 � i � q � 1, de�ne �i 2 Map(F � F;A) by�i(k; ly0) = Æl�k;i = (1 if l � k = i mod q0 otherwise :Note that these span Ker eS. Also,KerS = N(Ker eS + V )where V is some ve
tor spa
e spanned by parti
ular solutions to the systemseS� = �for every � in a 
hosen basis of KerN .Lemma 6.3. For any y0 2 F , we 
an 
hoose V so that V � KerN .Proof: We have to separate two 
ases.Suppose �rst that y0 6= 0. For 0 � i; j � q � 1, de�ne Li; Cj by(Li(x; y) = Æx;iCj(x; y) = Æy;j :



Enumeration of nilpotent loops up to isotopy 171Note that these elements of Map(F�F;A) are in KerN ; write 1 =Pi Li =Pj Cjfor the 
onstant map equalling 1 everywhere. Now, KerN is easily seen to havedimension 2q � 1, with basis for instan
ef1; L1; : : : ; Lq�1; C1; : : : ; Cq�1gor, better,f1; L0 � L1; : : : ; Lq�2 � Lq�1; C0 � Cy0 ; : : : ; C(q�2)y0 � C(q�1)y0g:Therefore, we 
an 
hoose Li+1 (resp. C(j+1)y0 ), with 0 � i; j � q � 2 as solutionsto eS� = Li � Li+1 (resp. Cjy0 � C(j+1)y0)and V has dimension at least 2(q � 1). Let us show that it 
annot be more, byshowing that the 
onstant map 1 does not have any solution in Map(F � F;A).Indeed, if it were the 
ase, an easy indu
tion for su
h a solution � would implythat for every integer k � 1 �(k; ky0) = �(0; 0) + k:In parti
ular for k = q,�(0; 0) = �(q; qy0) = �(0; 0) + q = �(0; 0) + 1:This is absurd, so V has dimension 2(q� 1), and 
an be 
hosen to be in
luded inKerN .Now, assume y0 = 0. This 
ase is similar, but here no Cj for 0 � j � q� 1 hasa solution in Map(F � F;A). Indeed, were it the 
ase,�(k; j) = �(0; j) + kwould hold for every integer k � 1; taking k = q, we would have �(q; j) =�(0; j) + 1, absurd. Thus we 
an 
hoose V = Span1�i�q�1(Li), and we aredone. �Lemma 6.4. For any y0 6= 0, Ker eS \KerN = Span(1).Proof: Suppose we have some � 2 Ker eS \ KerN . Then for every integersk; l � 1, we have�(k + 1; (l + 1)y0) = �(k + 1; 0) + �(0; (l + 1)y0)� �(0; 0):But this is also �(k; ly0) = �(k; 0) + �(0; ly0)� �(0; 0):Thus �(k + 1; 0)� �(k; 0) does not depend on k, i.e.�(k + 1; 0) = �(k; 0) + 




172 L. Clavierfor some 
onstant 
 2 A. Then by a qui
k indu
tion�(0; 0) = �(q; 0) = �(0; 0) + q
 = �(0; 0) + 
so 
 = 0. Therefore �(k + 1; 0) = �(k; 0) for all k.Similarly, �(0; (l+1)y0) = �(0; ly0) for all l. But then � must be 
onstant, andwe are done. �Corollary 6.5. If y0 = 0, then KerS = 0. Else, KerS has dimension q � 1 andbasis fN�ig1�i�q�1.Proof: This is a dire
t 
orollary of Lemmas 6.3 and 6.4. �The last step is now to 
ompute the interse
tion KerS \ B.Lemma 6.6. If y0 = �1 then KerS � B. Else, KerS \ B = 0.Proof: In this proof, we use A = Z2 without warning. For 
onvenien
e, we alsode�ne z0 = y0 + 1.First, if y0 = �1, every �i is in B. Thus, let us suppose y0 is neither 0 nor �1,and take some b� =X
6=0 �
 b�
that veri�es Sb� = 0, where as in [DV09℄ we de�ne every �
 by�
(x) = Æx;
Sin
e S b�
 = ([�
�z0 + b�
 if 
 6= z0P
0 6=0; 
0 6=z0 b� 0
 otherwisewe have Sb� = X
6=0; 
6=z0 �
([�
�z0 + b�
) + �z0 � X
6=0; 
6=z0 b�
= X
6=0; 
6=z0; 
6=�z0(�
+z0 + �
 + �z0)b�
+ �2z0
�z0 + (�z0 + ��z0)d��z0 :Be
ause the �
 for 
 6= 0 form a basis of B(F;A), we must 
on
lude that�2z0 = 0 = 2�z0�3z0 = �2z0 + �z0 = 3�z0: : :�(q�1)z0 = (q � 1)�z0 = 0��z0 = �z0 :



Enumeration of nilpotent loops up to isotopy 173Thus �z0 = 0, so �kz0 = 0 for every k, hen
e b� = 0. �As a qui
k 
orollary, we are done for the se
ond 
olumn of Table 2, in the 
ased = q � 1:Corollary 6.7. dim(Inv(Ky)=B(F;A)) = q�1 whenever y =2 f0;�1g. Moreover,the invariant spa
es of K0, K�1 and eK are null mod B(F;A).Proof: The only 
ase that was not already investigated is H = eK, but this issymmetri
 to the 
ase H = K0. �Note that any subgroup H in the third 
olumn of Table 2 has either K0, K�1or eK as a subgroup. Thus, its invariant spa
e is also null mod B(F;A).The only remaining 
ases in Proposition 6.2 are H = Hd �Ky, for y =2 f0;�1gand d 6= q � 1. Start with a 
o
y
le � 2 Span1�i�q�1(N�i)� B(F;A)� =Xi6=0 �iN�i + �:Then (h;(0;0))� � � 2 B(F;A) if and only ifXi6=0 �i(N�hi �N�i) 2 B(F;A)but sin
e the �i are linearly independent over KerN , this is equivalent toXi6=0 �i(�hi � �i) = 0i.e. Xi6=0 �i(�h�1i � �i) = 0i.e. �i = �hi for all i. Thus for any y =2 f0;�1g,dim � Inv �f(h; (0; 0))g [Ky�=B(F;A)� = q � 1jhjand all the 
ases in Proposition 6.2 are 
overed. �6.3 j Inv�(H)j, H � Atp(Zq) and eN (2q). Before 
omputing the number of nilpo-tent loops of order 2q up to isotopism, we still have to 
ompute the 
ardinalitiesof the starred invariant spa
es for the subgroups of Atp(F;A). This is the 
ontentof Proposition 6.8.Proposition 6.8. The 
ardinalities of the starred invariant spa
es for the sub-groups of Atp(F;A) are provided in Table 3 below, where as in [DV09℄, we de�nefor every integer d:Pred(d) = fd0; 1 � d0 < d; d=d0 is a primeg:



174 L. Claviersubgroup H 
ardinality j Inv�(H)jf1g 2(q�2)(q�1) + q2 � XD�Pred(q�1)(�1)jDj2(q�2) g
d(D)�(q � 2)�2q�1 + q2 � XD�Pred(q�1)(�1)jDj2g
d(D)��(q � 3)(q � 1)(q + 1)Hd; d =2 f1; q � 1g 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) g
d(D)�(q � 2)�2d + XD�Pred(d)(�1)jDj2g
d(D)�H1 2q�2 � (q � 1)Ky; y =2 f0;�1g 2q�1 + q � XD�Pred(q�1)(�1)jDj2g
d(D) + q � 1Hd �Ky; d =2 f1; q � 1g 2d + XD�Pred(d)(�1)jDj2g
d(D)y =2 f0;�1gH1 �Ky; y =2 f0;�1g 1Atp(F;A) 1other 0Table 3. Representatives for 
onjuga
y 
lasses of F = Atp(Zq)and their starred invariant spa
es.
Proof: The proof is straightforward, using the following expression, togetherwith Proposition 6.2 and a standard in
lusion/ex
lusion argument.Inv�(H) = Inv(H) n[K Inv(K)= (Inv(H) n f0g) n ([K Inv(K) n f0g)where the union is taken for subgroups K su
h that H is a maximal subgroupof K; Table 4 below provides for ea
h subgroup H the subgroups K in whi
h His maximal.Details are left to the reader. �For 
onvenien
e, let us write eN (n) for the number of nilpotent loops of ordern 
ounted up to isotopism, and N (n) the number of nilpotent loops of order n
ounted up to isomorphism. This notation is 
onsistent with the one in [DV09℄,and we re
all the following:
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h H is maximalf1g every HXd for d 2 Pred(q � 1), any Xevery Ky for y 2 f1; : : : ; q � 2gHd; d 6= q � 1 every Hd0 for d0 2 Pred(d),every Hd �Ky for y 2 f1; : : : ; q � 2gKy; y 2 f1; : : : ; q � 2g every HXd �Ky for d 2 Pred(q � 1) andX 2 f(0; 0); : : : (q � 1; 0)gHd �Ky; y 2 f1; : : : ; q � 2g every Hd0 �Ky for d0 2 Pred(d) andy 2 f1; : : : ; q � 2gTable 4. Representatives for 
onjuga
y 
lasses of F = Atp(Zq)and the non-null invariant-spa
e subgroups in whi
h they aremaximal.Theorem 6.9. Let q be an odd prime. Then the number N (2q) of nilpotentloops of order 2q 
ounted up to isomorphism isN (2q) = Xd divides q�1 1d 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) g
d(D)!:Proof: See [DV09, Theorem 7.1℄. �We have now all ingredients in hand for Theorem 6.10.Theorem 6.10. Let q be an odd prime. Then the number eN (2q) of nilpotentloops of order 2q 
ounted up to isotopism iseN (2q) = 2(q�2)(q�1)q2(q � 1) + 1q � 1 XD�Pred(q�1)(�1)jDj2(q�2) g
d(D)+ Xd stri
tly divides q�1 1d 2(q�2)d + XD�Pred(d)(�1)jDj2(q�2) g
d(D)!+ 1q2�(q � 2)2q�1 + 3)�= N (2q) + 1q2 �� (q + 1)2(q�2)(q�1) + (q � 2)2q�1 + 3�:Proof: Combine Theorem 5.5 and Proposition 6.8. �Re
all from [DV09℄ the following theorem.Theorem 6.11. Let q be an odd prime. Then the number of nilpotent loops oforder 2q 
ounted up to isomorphism is approximately 2(q�2)(q�1)=(q � 1). More



176 L. Clavierpre
isely, limq prime, q!1N (2q) � q � 12(q�2)(q�1) = 1:Proof: See [DV09, Theorem 7.3℄. �We 
an now 
ompare the estimates for N (2q) and eN (2q), this is the purposeof the following 
orollary.Corollary 6.12. Let q be an odd prime. Then the number of nilpotent loops oforder 2q 
ounted up to isotopism is approximately 2(q�2)(q�1)=q2(q � 1). Thus,the ratio between the number of su
h loops 
ounted up to isomorphism and upto isotopism is approximately q2. More pre
isely,limq prime, q!1 eN (2q) � q2(q � 1)2(q�2)(q�1) = 1;limq prime, q!1 N (2q)q2 � eN (2q) = 1:Proof: This is immediate from Theorems 6.10 and 6.11. �Table 5 below provides eN (2q) for any odd prime q � 17. Like in [DV09℄, it isnot a problem to 
ompute eN (2q) for bigger primes, but this would not �t ni
elyin a table.q fN (2q)3 25 637 3;658;00311 1;023;090;941;561;683;953;759;57913 2;684;673;506;279;593;406;254;437;209;960;379;08317 382;103;603;974;564;085;117;495;134;243;710;834;769;544;696;954;218;618;882;023;686;506;659Table 5. Number eN (2q) of nilpotent loops of order 2q up toisotopism, for odd primes q � 17.7. Con
lusionWe invite the reader desiring to know about related works and topi
s to 
he
kSe
tion 10 in [DV09℄.Note that in the present paper we did not 
ompute the number of nilpotentloops of small order (say less that 24) up to isotopy. Undertaking su
h 
ountingappears of interest to us. Possible trouble 
ould be the isotopy non-invarian
e ofthe set of large 
enter 
o
y
les (see Se
tion 8 in [DV09℄), sin
e isotopy does notpreserve 
enters.Also of interest is the enumeration of nilpotent loops of small order in Bol-Moufang varieties (see [PV05℄) up to isomorphy, and up to isotopy (here also,isotopy invarian
e should be a 
on
ern).
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omputation of Table 5 was undertaken using the GAP System for Compu-tational Dis
rete Algebra (see http://www.gap-system.org/). This paper 
omeswith the 
ode used for Table 5 and a �le 
ontaining the numbers eN (2q) of nilpo-tent loops of order 2q for every odd prime q less than 100. The two �les 
an bedownloaded at http://www.math.
ornell.edu/�lp
49/.A
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