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G-nilpotent units of ommutative group ringsPeter DanhevAbstrat. Suppose R is a ommutative unital ring and G is an abelian group.We give a general riterion only in terms of R and G when all normalized unitsin the ommutative group ring RG are G-nilpotent. This extends reent resultspublished in [Extrata Math., 2008{2009℄ and [Ann. Si. Math. Qu�ebe, 2009℄.Keywords: group rings, normalized units, nilpotents, idempotents, deomposi-tions, abelian groupsClassi�ation: 16S34, 16U60, 20K10, 20K20, 20K211. IntrodutionThroughout the present paper, let it be agreed that all groups are multiplia-tively written and abelian as is ustomary when studying group rings, and all ringsare ommutative with identity 1 (further alled ommutative unital). For suh aring R and a group G, suppose N(R) is the nil-radial of R and Gt is the torsionpart of G with p-omponent Gp. Likewise, suppose RG is the group ring of G overR with group of normalized units V (RG). Standardly, I(LG;G) is the fundamen-tal ideal of LG where L � R and I(RG;H) is the relative augmentation ideal ofRG with respet to H � G. As usual, imitating [13℄, id(R) = fe 2 R j e2 = eg,inv(R) = fp j p � 1 2 U(R)g, where p is a prime number, U(R) is the unit group ofR, zd(R) = fp j 9r 2 R n f0g : pr = 0g, and supp(G) = fp jGp 6= 1Gg.Following [8℄, [9℄ we de�ne the idempotent subgroup Id(RG) as follows:Id(RG) = ne1g1 + � � �+ ekgk j ei 2 id(R);Xi ei = 1; eiej = 0 (i 6= j); gi 2 G; 1 � i; j � ko:It is self-evident that Id(RG) is a group and that Id(RG) � V (RG).All other notations and notions are standard and follow essentially those fromthe survey paper [9℄ and the lassial monographs [8℄, [10℄, [11℄ and [12℄.The purpose of this artile is to establish a neessary and suÆient onditionin terms assoiated only with R and G when all normalized units are G-nilpotent.



180 P. DanhevDe�nition. A normalized unit v 2 V (RG) is said to be G-nilpotent if v an beuniquely expressed as v = gw where g 2 G and w 2 1 + I(N(R)G;G).This is tantamount to ask when the deompositionV (RG) = G� (1 + I(N(R)G;G))holds; note that G \ (1 + I(N(R)G;G)) = 1.Some explorations that are losely related to this theme are given in [3℄, [4℄and [5℄ (ompare with Setion 2). Here we shall amend our tehnique and, as aresult, we will generalize the main assertions from these papers.2. Preliminaries and main resultsBefore proving the hief statements, we need some tehnialities.Lemma 1. For eah ring R the following equality is ful�lled:U(R=N(R)) = fr +N(R) j r 2 U(R)g:Proof: Clearly the left hand-side ontains the right one beause there existr; f 2 R with rf = 1 and hene (r+N(R))(f +N(R)) = rf +N(R) = 1+N(R).As for the onverse inlusion, let x 2 U(R=N(R)) be given. Then, x = r+N(R)for some r 2 R suh that there exists f 2 R with (r + N(R))(f + N(R)) =rf +N(R) = 1 +N(R). Consequently, rf � 1 2 N(R) whih means that rf 21 +N(R) � U(R). Therefore, it is easily seen that r 2 U(R) as required. �Lemma 2. For any ring R the following equality holds:inv(R) = inv(R=N(R)):Proof: Assume that p 2 inv(R). Then p�1 2 U(R) and hene in view of Lemma 1we have p(1 +N(R)) = p � 1 +N(R) 2 U(R=N(R)). Thus p 2 inv(R=N(R)) andthe inlusion \�" is obtained.As for the onverse ontainment \�", hoose p 2 inv(R=N(R)), whene p(1 +N(R)) 2 U(R=N(R)). In aordane with Lemma 1 we may write p � 1+N(R) =� +N(R) where � 2 U(R). Furthermore, p � 1 2 U(R) +N(R) = U(R) so thatp 2 inv(R), as required. �Let R be a ring. De�ne np(R) = fp j 9r 2 R n N(R) : pr 2 N(R)g. Thefollowing laim is useful.Lemma 3. For every ring R the following equality is true:zd(R=N(R)) = np(R):



G-nilpotent units of ommutative group rings 181Proof: Given p 2 zd(R=N(R)), there is r =2 N(R) suh that p(r + N(R)) =pr +N(R) = N(R). Thus pr 2 N(R) and p 2 np(R).Conversely, let p 2 np(R). Then there is r 2 R n N(R) with pr 2 N(R).Consequently, p(r + N(R)) = N(R) and r + N(R) 6= N(R) whih implies thatp 2 zd(R=N(R)). �Lemma 4. Suppose R is a ring. Thenid(R) = f0; 1g () id(R=N(R)) = f0; 1g:Proof: \)". Beause of the lassial fat that idempotents an always be liftedthrough N(R) (see, e.g., [1℄) if R=N(R) has a non-trivial idempotent, then thesame must be true of R, a ontradition.\(". Choose an arbitrary element r 2 R with r2 = r, hene r + N(R) =r2+N(R) = (r+N(R))2. Therefore, either r+N(R) = N(R), whene r 2 N(R)and thus r = 0, or r +N(R) = 1 +N(R), whene r 2 1 +N(R) � U(R). Butthen r(1� r) = 0 ensures that 1� r = 0 that is r = 1, as required. �Another topologial approah in proving the above an be based on the follow-ing two standard fats in ommutative ring theory:Let A be any ommutative unital ring. Then the following are true (e.g., f. [1℄):(i) A has no non-trivial idempotents if and only if Spe(A), the set of primeideals of A equipped with the Zariski topology, is a onneted topologialspae;(ii) the anonial surjetion from Spe(A=N(A)) to Spe(A), sending P +N(A) to P , is a homeomorphism (relative to the Zariski topology on eahspae).Proposition 5. Suppose R is a ring and � : R ! R=N(R) is the naturalmap. De�ne � : RG ! (R=N(R))G and its restrition �V (RG) : V (RG) !V ((R=N(R))G) by �(Pg2G rgg) = Pg2G �(rg)g = Pg2G(rg + N(R))g. Thenthe following relations are valid:(a) � is a surjetive homomorphism;(b) ker� = N(R)G and ker�V (RG) = 1 + I(N(R)G;G).Proof: (a) That � is a ring (and hene a group) homomorphism follows easilysine so is �.As for the epimorphism (= surjetion), we will restrit our attention only onV (RG) beause for RG this is evident. And so, hoose x 2 V ((R=N(R))G)whene there is y 2 RG with �(y) = x. Moreover, there are x0 2 (R=N(R))Gsuh that xx0 = 1 and y0 2 RG suh that �(y0) = x0. Therefore, 1 = �(y)�(y0) =�(yy0), so that �(yy0� 1) = 0 and point (b) below applies to write that yy0� 1 2N(RG). Finally, yy0 2 1 +N(RG) � U(RG) and thus y 2 U(RG). Furthermore,sine U(RG) = V (RG)�U(R), U((R=N(R))G) = V ((R=N(R))G)�U(R=N(R))and �(V (RG)) � V ((R=N(R))G), �(U(R)) � U(R=N(R)), it easily follows nowthat �(V (RG)) = V ((R=N(R))G), as expeted.



182 P. Danhev(b) Clearly, 1 + I(N(R)G;G) � V (RG) beause I(N(R)G;G) � N(R)G �N(RG).On the other hand, it is plainly seen that ker� = N(R)G. Moreover, oneheks that ker�V (RG) = (1 + I(RG;G)) \ (1 +N(R)G) = 1 + I(N(R)G;G) asasserted. �Remark 1. Atually, the pre-image y an be hosen with augmentation 1, andtherefore y 2 U(RG) diretly implies that y 2 V (RG). In fat, if x = (r1 +N(R))g1 + � � � + (rs + N(R))gs with r1 + � � � + rs � 1 = � 2 N(R), then y =r1g1+� � �+rsgs��1G satis�es the required property that �(y) = x and aug(y) = 1.Proposition 6. Suppose G is a group and R is a ring. Then the followingequivalene holds:V (RG) = G� (1 + I(N(R)G;G)) () V ((R=N(R))G) = G:Proof: \)". Applying Proposition 5(a) and taking � in the both sides of thegiven equality, we derive that �(V (RG)) = �(G)�(1 + I(N(R)G;G)). This isequivalent to V ((R=N(R))G) = G beause �(G) = G and �(1+ I(N(R)G;G)) =1, as stated.\(". Choose an arbitrary element x2V (RG). We have �(x)2V ((R=N(R))G)= G. Thus we may write �(x) = g = �(g) for some g 2 G. Furthermore,�(x)[�(g)℄�1 = �(x)�(g�1) = �(xg�1) = 1. Hene xg�1 2 ker�V (RG) =1 + I(N(R)G;G) utilizing Proposition 5(b). Finally, x 2 G� (1 + I(N(R)G;G))as required. �The following statement is an amended version of [3, Proposition℄.Proposition 7. Suppose G is a group with jGj = 3 and R is a ring suh that3 2 inv(R). Then V (RG) = G if and only if U(R) = 1 and the equation r2+f2+rf + r + f = 0 has only trivial solutions in R.Proof: \)". What we need to show is that har(R) = 2. Assume the ontrary,2 6= 0. Then we observe that 23 + 23g � 13g2 is a non-trivial unit with the inverse23 � 13g+ 23g2. This ontradition allows us to onlude that 2 = 0. Furthermore,we apply the proof of Proposition on p. 51 from [3℄ to dedue that U(R) = 1 andr2 + f2 + rf + r + f = 0 is possible unique when r = 0, f = 0 or r = 1, f = 0 orr = 0, f = 1.\(". Certainly U(R) = 1 implies that �1 = 1, i.e., 2 = 0. Thus har(R) = 2and the further argument follows as that in [3, p. 51, Proposition℄. �Remark 2. Note also that 2 =2 U(R) sine otherwise 12 + 12g 2 V (RG) with theinverse 1� g + g2. Moreover, we point out that the equations here and in [3℄ arethe same, whih follows via the substitutions a = 1 + r and b = 1 + f .Now we list the following riterion from [4℄ whih will be useful in the sequel.Theorem A. Let R be a ring and G a group. Then V (RG) = G if and onlyif id(R) = f0; 1g, N(R) = 0, V (RGt) = Gt and preisely one of the followingonditions is true:



G-nilpotent units of ommutative group rings 183(1) G = Gt;(2) G 6= Gt, supp(G) \ (inv(R) [ zd(R)) = ;.Now we are planning to give a new, more oneptual, proof of the followingresult from [3℄.Theorem B. Suppose G is a group and R is a ring suh that supp(G)\ inv(R) 6=;. Then V (RG) = G if and only if id(R) = f0; 1g, N(R) = 0 and at most one ofthe following onditions holds:(1) jGj = jU(R)j = 2;(2) jGj = 3, U(R) = 1 and the equation a2 + b2 + ab+ 1 = 0 has only trivialsolutions in R for eah pair (a; b).Proof: \)". If either the set id(R) ontains a non-trivial idempotent e or thenil-ideal N(R) ontains a non-trivial nilpotent r, taking g 2 G we an onstrutone of the elements xe = eg+1�e or xr = 1�r+rg| for eah of them it is easilyveri�ed that xe 2 V (RG) nG with inverse x�1e = eg�1+1� e, or xr 2 V (RG) nGas the sum of 1 and the nilpotent �r + rg = r(g � 1), a ontradition in eah ofthe two situations. That is why both id(R) and N(R) are trivial.Claim that G is �nite of order 2 or 3. In fat, assume in a way of ontraditionthat G is in�nite. Sine there is a prime, say q, suh that Gq 6= 1 and q 2 inv(R),it is well known that there exists an idempotent e 2 RF where F � Gq is a�nite subgroup. Choose g =2 F (this hoie is possible sine G is in�nite whileF is �nite) and in the same manner as above one an onstrut the elementxe = eg+1� e 2 V (RG) nG. Thus G is neessarily �nite. By the same reason, itfollows that G does not ontain proper subgroups, that is, G is of prime ardinality| thereby jGj is a prime, say q. Furthermore, we laim that G has ardinality 2or 3. To show this, we assume the ontrary that jGj � 5 and onsider the elementu = (1+ g)q�1 � 2q�1�1q (1+ g+ � � �+ gq�1) where G = hgi with gq = 1. It is wellknown that u is a unit with augmentation 1 whih does not lie in G (see, e.g.,[12℄). This ontradition shows that jGj � 4. Finally, either jGj = 2 or jGj = 3 aslaimed.Moreover, another approah is to notie that there is a nontrivial idempotente = 12 (1 + g) or e = 13 (1 + g + g2) where g is either of order 2 or 3. If g0 =2 hgi,then 1� e+ eg0 is a nontrivial unit.Next, we onsider separately these two possibilities:Case 1. G is yli of order 2.Firstly, note that 2 2 U(R). We laim that if r 2 U(R) is an arbitrary element,then either r = 1 or r = �1; so 2 = �1 and hene 3 = 0 sine 2 = 1 does nothold. In fat, onsider the element xr = 12 � r2 + ( 12 + r2 )g. It is simple hekedthat xr 2 V (RG) with the inverse xr�1 = 12 � r�12 +( 12 + r�12 )g. Sine there existonly trivial units, it must be ful�lled that r2 = 12 or r2 = � 12 , i.e., r = 1 or r = �1.Thus U(R) has only two elements, as laimed.Case 2. G is yli of order 3.It follows immediately from Proposition 7.



184 P. Danhev\(". (1) First, note that 1 6= �1 and har(R) = 3 beause 2 2 U(R) = f1;�1gand thus 2 = �1; the equality 2 = 1 is impossible sine it yields that 1 = 0. Letxr = 1� r+ rg. Then, there is f 2 R suh that (1� r+ rg)(1�f +fg) = 1. Thisis equivalent to f(2r�1) = r. Sine 2rf �r�f = 0, we have (2r�1)(2f�1) = 1and it must be that 2r � 1 2 U(R). Consequently, 2r � 1 = 1 or 2r � 1 = �1.Thus 2r = 2, whene r = 1, or 2r = 0, whene r = 0. Finally, either xr = 1 orxr = g. In both ases we observe that V (RG) = G, as expeted.(2) Follows by a diret appliation of Proposition 7. �Remark 3. First, notie that in lause (2) we must have har(R) = 2 if har(R)is a prime integer. In fat, always �1 2 U(R) and sine U(R) = 1, we have that�1 = 1 whih is tantamount to 2 = 0 as asserted.Certainly, in the Main Theorem from [3℄, point (1) G = 1 is not realisti andannot be happen sine supp(G) 6= ;.The question of the triviality of units in ommutative group rings will be om-pletely exhausted if the following an be settled:Problem 1. Find a riterion only in terms assoiated with R and G whenV (RG) = G holds, provided that G = Gt and supp(G) \ inv(R) = ;.We have now at our disposal all the information needed to prove the following.Theorem 8. Suppose G is a group and R is a ring. Then V (RG) = G � (1 +I(N(R)G;G)) if and only if id(R) = f0; 1g, V (RGt) = Gt � (1 + I(N(R)Gt;Gt))and at most one of the following onditions holds:(1) G = Gt;(2) G 6= Gt, supp(G) \ (inv(R) [ np(R)) = ;.Proof: Employing Proposition 6 we equivalently redue the deomposition ofV (RG) to the equality V ((R=N(R))G) = G. Next, we subsequently apply Theo-rem A ombined with Lemmas 2, 3 and 4. �Theorem 9. Suppose G is a group and R is a ring suh that supp(G)\inv(R) 6= ;.Then V (RG) = G� (1 + I(N(R)G;G)) if and only if id(R) = f0; 1g and exatlyone of the following points is valid:(1) jGj = jU(R=N(R))j = 2;(2) jGj = 3, U(R=N(R)) = 1 and the relation a2 + b2 + ab + 1 2 N(R) hasonly trivial solutions in R=N(R) for every pair (a; b) 2 R.Proof: By appliation of Proposition 6 we an write in an equivalent way thatV ((R=N(R))G) = G. Hereafter we subsequently employ Theorem B togetherwith Lemma 2 and Lemma 4. �As a onsequene, we dedueCorollary 10 ([5℄). Suppose har(R) = p is a prime integer and G 6= 1. ThenV (RG) = G � (1 + I(N(R)G;G)) if and only if id(R) = f0; 1g and at most oneof the following holds:



G-nilpotent units of ommutative group rings 185(a) Gt = 1;(b) jGj = p = 2, R = L+N(R) with jLj = 2;() p = 3, jGj = 2 and U(R) = �1 +N(R);(d) p = 2, jGj = 3, U(R) = 1 + N(R) and the equation X2 + XY + Y 2 =1 +N(R) possesses only trivial solutions in R=N(R).Proof: First of all, observe that inv(R) ontains all primes but p. That R isindeomposable follows easily sine 1�r+rg 2 V (RG) is always a non-G-nilpotentunit whenever r 2 id(R) n f0; 1g and g 2 G n f1g. Moreover, if G is torsion-free,everything was done in [6℄, [7℄ (see [8℄ and [9℄ as well). So, assume Gt 6= 1.Further, if Gt 6= Gp we see that supp(G) \ inv(R) 6= ; and hene Theorem 9applies to get the result. If now G is p-mixed, i.e., Gt = Gp, it follows thatV (RG) = G(1 + I(RG;Gp) + I(N(R)G;G)). Hereafter, the proof goes on byarguments similar to these from [5℄ onsidering the ases G = Gt and G 6= Gt.The �rst one leads to jGj = 2 = p, while the seond one is impossible. �Finally, we will apply the results alluded to above to derive a reent ahievementfrom [2℄. First, we need the following tehniality.Lemma 11. Let har(R) = p be a prime integer. ThenV (RG) = GVp(RG) () V (R(G=Gp)) = (G=Gp)Vp(R(G=Gp)):Proof: Consider the natural map  : G ! G=Gp. It is well known that itan be linearly extended to the homomorphism 	 : V (RG) ! V (R(G=Gp))with kernel 1 + I(RG;Gp). Sine 1 + I(RG;Gp) � Vp(RG), it easily follows bystandard arguments that 	 is atually an epimorphism (= surjetive homomor-phism). Moreover, it is also lear that 	(Vp(RG)) = Vp(R(G=Gp)). So, underthe ation of 	 on the both sides of V (RG) = GVp(RG) we immediately obtainthat V (R(G=Gp)) = (G=Gp)Vp(R(G=Gp)) holds, as stated.As for the suÆieny, hoose an arbitrary element x 2 V (RG) and observe thatthere is y 2 V (R(G=Gp)) suh that 	(x) = y. Write y = g0v0 where g0 2 G=Gpand v0 2 Vp(R(G=Gp)). Sine by what we have shown above there exist g 2 Gand v 2 Vp(RG) suh that 	(g) = g0 and 	(v) = v0, we get 	(x) = 	(gv).Furthermore, 	(xg�1v�1) = 1 and thus xg�1v�1 2 ker	 � Vp(RG) as previouslynotied. This leads to x 2 GVp(RG), as required. �So, we are ready to prove the following aÆrmation.Proposition 12 ([2℄). Suppose har(R) = p is a prime natural number. ThenV (RG) = GVp(RG) if and only if(1) G = Gp or(2) G 6= Gp, R is indeomposable and preisely one of the following pointsholds:(2.1) Gt = Gp;(2.2) p = 3, U(R) = �1 +N(R) and G = Gp � C with jCj = 2;



186 P. Danhev(2.3) p = 2, U(R) = 1 +N(R), the equality X2 +XY + Y 2 = 1 +N(R)has only trivial solutions in R=N(R) and G = Gp � C with jCj = 3.Proof: By virtue of Lemma 11, we may with no harm of generality assume thatGp = 1. Sine it is plainly heked that then Vp(RG) = 1 + I(N(R)G;G), weobviously dedue that V (RG) = G�(1+I(N(R)G;G)) | see also [5℄. Heneforth,we employ the main theorem from [5℄ or, respetively, Corollary 10. �We lose the work with the following:Problem 2. Find a neessary and suÆient ondition when the equalityV (RG) = G� (1 + I(N(R)G;G))holds, provided that supp(G) \ inv(R) = ;.In partiular, as an immediate onsequenes, we will extrat the ases Gt = 1(Karpilovsky) and R = Z (May).In onlusion, one an expet that if supp(G)\zd(R) 6= ;, then there is a non-G-nilpotent unit. However, this is not generally true. For instane, a ounterexamplemay be obtained for rings of harateristi 4 by taking R = Z4 = Z=(4) (i.e., Rto be the ring of all integers modulo 4) and G is of order 2. There are only fourelements of augmentation 1, so that the omputations are minimal. If now aounterexample of a ring of harateristi 0 is desired, let G be of order 2 againand let R = Z[x℄ be the polynomial ring of x over Zwhere the element x is subjetto the relations x2 = 2x = 0.Aknowledgment. The author would like to thank Professor David Dobbs forhis valuable ommuniation. The author is also deeply appreiated to the refereesfor their ompetent omments and suggestions.Referenes[1℄ Bourbaki N., Commutative Algebra, Chapters 1{7 , Elements of Mathematis (Berlin),Springer, Berlin, 1989.[2℄ Danhev P., On a deomposition of normalized units in abelian group algebras, An. Univ.Buuresti Mat. 57 (2008), no. 2, 133{138.[3℄ Danhev P., Trivial units in ommutative group algebras, Extrata Math. 23 (2008), no. 1,49{60.[4℄ Danhev P., Trivial units in abelian group algebras, Extrata Math. 24 (2009), no. 1, 47{53.[5℄ Danhev P., G-unipotent units in ommutative group rings, Ann. Si. Math. Qu�ebe 33(2009), no. 1, 39{44.[6℄ Karpilovsky G., On units in ommutative group rings, Arh. Math. (Basel) 38 (1982),420{422.[7℄ Karpilovsky G., On �nite generation of unit groups of ommutative group rings, Arh.Math. (Basel) 40 (1983), 503{508.[8℄ Karpilovsky G., Unit Groups of Group Rings, Longman Sienti� and Tehnial, Harlow,1989.[9℄ Karpilovsky G., Units of ommutative group algebras, Exposition. Math. 8 (1990), 247{287.[10℄ Passman D., The Algebrai Struture of Group Rings, Wiley-Intersiene, New York, 1977.
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