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G-nilpotent units of commutative group rings

PETER DANCHEV

Abstract. Suppose R is a commutative unital ring and G is an abelian group.
We give a general criterion only in terms of R and G when all normalized units
in the commutative group ring RG are G-nilpotent. This extends recent results
published in [Extracta Math., 2008-2009] and [Ann. Sci. Math. Québec, 2009].
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1. Introduction

Throughout the present paper, let it be agreed that all groups are multiplica-
tively written and abelian as is customary when studying group rings, and all rings
are commutative with identity 1 (further called commutative unital). For such a
ring R and a group G, suppose N(R) is the nil-radical of R and G; is the torsion
part of G with p-component G,. Likewise, suppose RG is the group ring of G' over
R with group of normalized units V(RG). Standardly, I(LG; @) is the fundamen-
tal ideal of LG where L < R and I(RG; H) is the relative augmentation ideal of
RG with respect to H < G. As usual, imitating [13], id(R) = {e € R|e* = e},
inv(R) = {p|p-1 € U(R)}, where p is a prime number, U(R) is the unit group of
R, zd(R) = {p|3r € R\ {0} : pr = 0}, and supp(G) = {p| G, # 1c}.

Following [8], [9] we define the idempotent subgroup Id(RG) as follows:

1d(RG) = {6191 ++ergr | e; €1d(R),

Sei=Tloeie; =0 #).0i € Gl <ij <k},
i

It is self-evident that Id(RG) is a group and that Id(RG) < V(RG).

All other notations and notions are standard and follow essentially those from
the survey paper [9] and the classical monographs [8], [10], [11] and [12].

The purpose of this article is to establish a necessary and sufficient condition
in terms associated only with R and G when all normalized units are G-nilpotent.
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Definition. A normalized unit v € V(RG) is said to be G-nilpotent if v can be
uniquely expressed as v = gw where g € G and w € 1 + I(N(R)G; G).

This is tantamount to ask when the decomposition
V(RG)=G x (1+I(N(R)G;@q))

holds; note that G N (1 + I(N(R)G;G)) = 1.

Some explorations that are closely related to this theme are given in [3], [4]
and [5] (compare with Section 2). Here we shall amend our technique and, as a
result, we will generalize the main assertions from these papers.

2. Preliminaries and main results

Before proving the chief statements, we need some technicalities.

Lemma 1. For each ring R the following equality is fulfilled:
U(R/N(R))={r+ N(R) |r € U(R)}.

ProoF: Clearly the left hand-side contains the right one because there exist
r, f € R with rf =1 and hence (r + N(R))(f+ N(R)) =rf+ N(R) =1+ N(R).

As for the converse inclusion, let € U(R/N(R)) be given. Then, z = r+N(R
for some r € R such that there exists f € R with (r + N(R))(f + N(R))
rf+ N(R) =1+ N(R). Consequently, rf —1 € N(R) which means that rf
1+ N(R) CU(R). Therefore, it is easily seen that r € U(R) as required.

~

Om

Lemma 2. For any ring R the following equality holds:
inv(R) = inv(R/N(R)).

PROOF: Assume that p € inv(R). Then p-1 € U(R) and hence in view of Lemma 1
we have p(1+ N(R)) =p-1+ N(R) € U(R/N(R)). Thus p € inv(R/N(R)) and
the inclusion “C” is obtained.

As for the converse containment “2”, choose p € inv(R/N(R)), whence p(1 +
N(R)) e U(R/N(R)). In accordance with Lemma 1 we may write p-1+ N(R) =
a + N(R) where a € U(R). Furthermore, p-1 € U(R) + N(R) = U(R) so that
p € inv(R), as required. O

Let R be a ring. Define np(R) = {p|3r € R\ N(R) : pr € N(R)}. The
following claim is useful.

Lemma 3. For every ring R the following equality is true:

2d(R/N(R)) = np(R).
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ProOF: Given p € zd(R/N(R)), there is r ¢ N(R) such that p(r + N(R)) =
pr+ N(R) = N(R). Thus pr € N(R) and p € np(R).

Conversely, let p € np(R). Then there is r € R\ N(R) with pr € N(R).
Consequently, p(r + N(R)) = N(R) and r + N(R) # N(R) which implies that
p € zd(R/N(R)). a

Lemma 4. Suppose R is a ring. Then
id(R) = {0,1} < id(R/N(R)) = {0,1}.

ProOF: “=". Because of the classical fact that idempotents can always be lifted
through N(R) (see, e.g., [1]) if R/N(R) has a non-trivial idempotent, then the
same must be true of R, a contradiction.

“<”. Choose an arbitrary element r € R with r> = r, hence r + N(R)
r2+ N(R) = (r+ N(R))2. Therefore, either r + N(R) = N(R), whencer € N(R
and thus r =0, or r + N(R) = 1+ N(R), whence r € 1 + N(R) C U(R). Bu
then r(1 —r) = 0 ensures that 1 —r = 0 that is r = 1, as required. O

—+ ~—

Another topological approach in proving the above can be based on the follow-
ing two standard facts in commutative ring theory:
Let A be any commutative unital ring. Then the following are true (e.g., cf. [1]):

(i) A has no non-trivial idempotents if and only if Spec(A), the set of prime
ideals of A equipped with the Zariski topology, is a connected topological
space;

(ii) the canonical surjection from Spec(A/N(A)) to Spec(A), sending P +
N(A) to P, is a homeomorphism (relative to the Zariski topology on each
space).

Proposition 5. Suppose R is a ring and ¢ : R — R/N(R) is the natural
map. Define ® : RG — (R/N(R))G and its restriction ®y(ra) @ V(RG) —
VRIN(R)G) by ©(X,e6799) = e a)g = ¥ pecry + N(R))g. Then
the following relations are valid:

(a) @ is a surjective homomorphism;
(b) ker® = N(R)G and ker @y (rg) = 1 + I(N(R)G;G).

ProoF: (a) That ® is a ring (and hence a group) homomorphism follows easily
since so is ¢.

As for the epimorphism (= surjection), we will restrict our attention only on
V(RG) because for RG this is evident. And so, choose z € V((R/N(R))G)
whence there is y € RG with ®(y) = z. Moreover, there are ' € (R/N(R))G
such that z2' = 1 and y' € RG such that ®(y') = z'. Therefore, 1 = &(y)®(y') =
®(yy'), so that ®(yy’' — 1) = 0 and point (b) below applies to write that yy' —1 €
N(RG). Finally, yy' € 1+ N(RG) C U(RG) and thus y € U(RG). Furthermore,
since U(RG) = V(RG) x U(R), U((R/N(R))G) = V((R/N(R))G) x U(R/N(R))
and ®(V(RG)) C V((R/N(R))G), ®(U(R)) CU(R/N(R)), it easily follows now
that ®(V(RG)) = V((R/N(R))G), as expected.
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(b) Clearly, 1 + I(N(R)G;G) C V(RG) because I(N(R)G;G) C N(R)G C
N(RG).

On the other hand, it is plainly seen that ker® = N(R)G. Moreover, one
checks that ker &y (rg) = (1 4+ I(RG;G)) N (1 + N(R)G) =1+ I(N(R)G;G) as
asserted. O

Remark 1. Actually, the pre-image y can be chosen with augmentation 1, and
therefore y € U(RG) directly implies that y € V(RG). In fact, if z = (r1 +
N(R))g1 + -+ (rs + N(R))gs with ry +---+rs —1 = @ € N(R), then y =
r191+- - -+7s9s—alg satisfies the required property that ®(y) = z and aug(y) = 1.

Proposition 6. Suppose G is a group and R is a ring. Then the following
equivalence holds:

V(RG) = G x (1+ I(N(R)G:G)) < V((R/N(R))G) = G.

PRrROOF: “=7”. Applying Proposition 5(a) and taking ® in the both sides of the
given equality, we derive that ®(V(RG)) = ®(G)®(1 + I(N(R)G;G)). This is
equivalent to V((R/N(R))G) = G because ®(G) = G and ®(1+I(N(R)G;G)) =
1, as stated.

“«<”. Choose an arbitrary element z € V(RG). We have ®(z) e V((R/N(R))G)
= G. Thus we may write ®(z) = g = ®(g) for some g € G. Furthermore,
®(z)[@(g9)] ' = (2)®(¢g") = P(xg ') = 1. Hence zg' € ker®y(pg) =
1+ I(N(R)G; G) utilizing Proposition 5(b). Finally, z € G x (1+ I(N(R)G;Q))
as required. O

The following statement is an amended version of [3, Proposition].

Proposition 7. Suppose G is a group with |G| = 3 and R is a ring such that
3 € inv(R). Then V(RG) = G if and only if U(R) = 1 and the equation r*> + f> +
rf +r+ f =0 has only trivial solutions in R.

PrOOF: “=”. What we need to show is that char(R) = 2. Assume the contrary,
2 # 0. Then we observe that % + %g — %gQ is a non-trivial unit with the inverse
2 — 19+ 24°. This contradiction allows us to conclude that 2 = 0. Furthermore,
we apply the proof of Proposition on p. 51 from [3] to deduce that U(R) = 1 and
r2 4+ f24+rf+r+ f =0is possible unique when r =0, f =0orr =1, f =0 or
r=0,f=1

“«<”. Certainly U(R) = 1 implies that —1 =1, i.e., 2 = 0. Thus char(R) = 2
and the further argument follows as that in [3, p. 51, Proposition]. O
Remark 2. Note also that 2 ¢ U(R) since otherwise £ + g € V(RG) with the

inverse 1 — g + g?. Moreover, we point out that the equations here and in [3] are
the same, which follows via the substitutionsa=1+r and b=1+ f.

Now we list the following criterion from [4] which will be useful in the sequel.

Theorem A. Let R be a ring and G a group. Then V(RG) = G if and only
if id(R) = {0,1}, N(R) = 0, V(RG:) = G; and precisely one of the following
conditions is true:
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(1) G =Gy
(2) G # Gy, supp(G) N (inv(R) Uzd(R)) = 0.

Now we are planning to give a new, more conceptual, proof of the following
result from [3].

Theorem B. Suppose G is a group and R is a ring such that supp(G)Ninv(R) #
. Then V(RG) = G if and only if id(R) = {0,1}, N(R) = 0 and at most one of
the following conditions holds:
(1) |G| = [U(R)| = 2;
(2) |G| =3, U(R) =1 and the equation a®> + b* + ab + 1 = 0 has only trivial
solutions in R for each pair (a,b).

PRrROOF: “=7. If either the set id(R) contains a non-trivial idempotent e or the
nil-ideal N(R) contains a non-trivial nilpotent r, taking g € G we can construct
one of the elements z, = eg+1—eor z, = 1 —r+rg— for each of them it is easily
verified that z. € V(RG) \ G with inverse z,;! = eg ! +1—e, or z, € V(RG)\ G
as the sum of 1 and the nilpotent —r + rg = r(g — 1), a contradiction in each of
the two situations. That is why both id(R) and N(R) are trivial.

Claim that @ is finite of order 2 or 3. In fact, assume in a way of contradiction
that G is infinite. Since there is a prime, say ¢, such that G, # 1 and ¢ € inv(R),
it is well known that there exists an idempotent e € RF where F < G, is a
finite subgroup. Choose g ¢ F' (this choice is possible since G is infinite while
F is finite) and in the same manner as above one can construct the element
z, =eg+1—e € V(RG)\G. Thus G is necessarily finite. By the same reason, it
follows that G does not contain proper subgroups, that is, G is of prime cardinality
— thereby |G| is a prime, say ¢. Furthermore, we claim that G has cardinality 2
or 3. To show this, we assume the contrary that |G| > 5 and consider the element
u=(1+g)" 1 - %(1 +g+---+9¢7 ") where G = (g) with g? = 1. Tt is well
known that u is a unit with augmentation 1 which does not lie in G (see, e.g.,
[12]). This contradiction shows that |G| < 4. Finally, either |G| =2 or |G| = 3 as
claimed.

Moreover, another approach is to notice that there is a nontrivial idempotent
e=12(14g) ore=1(1+ g+ g®) where g is either of order 2 or 3. If ¢’ ¢ (g),
then 1 — e + eg’ is a nontrivial unit.

Next, we consider separately these two possibilities:

Case 1. G is cyclic of order 2.

Firstly, note that 2 € U(R). We claim that if » € U(R) is an arbitrary element,
then either r = 1 or r = —1; so 2 = —1 and hence 3 = 0 since 2 = 1 does not
hold. In fact, consider the element z, = % -5+ (% + %)g. It is simple checked
that z, € V(RG) with the inverse z,-1 = — 0 + ($ + %)g Since there exist
only trivial units, it must be fulfilled that § = =
Thus U(R) has only two elements, as claimed.

o=

or —%,i.e.,r:lorr:—l.

1 T
3 0L 3
Case 2. G is cyclic of order 3.

It follows immediately from Proposition 7.
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“«<”. (1) First, note that 1 # —1 and char(R) = 3 because 2 € U(R) = {1, -1}
and thus 2 = —1; the equality 2 = 1 is impossible since it yields that 1 = 0. Let
xz, = 1—r+rg. Then, there is f € R such that (1—r+rg)(1— f+ fg) = 1. This
is equivalent to f(2r—1) = r. Since 2rf —r— f =0, we have (2r—1)(2f-1) =1
and it must be that 2r — 1 € U(R). Consequently, 2r —1 =1or 2r — 1 = —1.
Thus 2r = 2, whence r = 1, or 2r = 0, whence r = 0. Finally, either z, = 1 or
x, = g. In both cases we observe that V(RG) = G, as expected.

(2) Follows by a direct application of Proposition 7. O

Remark 3. First, notice that in clause (2) we must have char(R) = 2 if char(R)
is a prime integer. In fact, always —1 € U(R) and since U(R) = 1, we have that
—1 =1 which is tantamount to 2 = 0 as asserted.

Certainly, in the Main Theorem from [3], point (1) G =1 is not realistic and
cannot be happen since supp(G) # (0.

The question of the triviality of units in commutative group rings will be com-
pletely exhausted if the following can be settled:

Problem 1. Find a criterion only in terms associated with R and G when
V(RG) = G holds, provided that G = G; and supp(G) Ninv(R) = 0.

We have now at our disposal all the information needed to prove the following.

Theorem 8. Suppose G is a group and R is a ring. Then V(RG) = G x (1 +
I(N(R)G;G)) if and only if id(R) = {0,1}, V(RG:) = G¢ x (1 + I(N(R)Gy; Gy))
and at most one of the following conditions holds:

(1) G=Gy;

(2) G # Gy, supp(G) N (inv(R) Unp(R)) = 0.

Proor: Employing Proposition 6 we equivalently reduce the decomposition of
V(RG) to the equality V((R/N(R))G) = G. Next, we subsequently apply Theo-
rem A combined with Lemmas 2, 3 and 4. O

Theorem 9. Suppose G is a group and R is a ring such that supp(G)Ninv(R) # .
Then V(RG) = G x (1+ I(N(R)G; Q)) if and only if id(R) = {0,1} and exactly
one of the following points is valid:
(1) |G| = [U(R/N(R))| = 2;
(2) |G| =3, U(R/N(R)) = 1 and the relation a*> + b> + ab+ 1 € N(R) has
only trivial solutions in R/N(R) for every pair (a,b) € R.

ProoF: By application of Proposition 6 we can write in an equivalent way that
V((R/N(R))G) = G. Hereafter we subsequently employ Theorem B together
with Lemma 2 and Lemma 4. O

As a consequence, we deduce

Corollary 10 ([5]). Suppose char(R) = p is a prime integer and G # 1. Then
V(RG) = G x (1+ I(N(R)G;@)) if and only if id(R) = {0,1} and at most one
of the following holds:
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(a) Gt = ].,

(b) |G| =p=2,R=L+ N(R) with |L| = 2;

(c) p=3,|G|=2and U(R) = £1 + N(R);

(d) p=2,|G| =3, U(R) = 1+ N(R) and the equation X?> + XY +Y? =
1+ N(R) possesses only trivial solutions in R/N(R).

Proor: First of all, observe that inv(R) contains all primes but p. That R is
indecomposable follows easily since 1—r+rg € V(RG) is always a non-G-nilpotent
unit whenever r € id(R) \ {0,1} and g € G \ {1}. Moreover, if G is torsion-free,
everything was done in [6], [7] (see [8] and [9] as well). So, assume G; # 1.
Further, if G; # G, we see that supp(G) Ninv(R) # @ and hence Theorem 9
applies to get the result. If now G is p-mixed, i.e., G = Gp, it follows that
V(RG) = G(1 + I(RG;G)p) + I(N(R)G;@G)). Hereafter, the proof goes on by
arguments similar to these from [5] considering the cases G = Gy and G # G;.
The first one leads to |G| = 2 = p, while the second one is impossible. O

Finally, we will apply the results alluded to above to derive a recent achievement
from [2]. First, we need the following technicality.

Lemma 11. Let char(R) = p be a prime integer. Then
V(RG) = GVp(RG) <= V(R(G/Gp)) = (G/Gp)Vp(R(G/Gy)).

PRrOOF: Consider the natural map ¢ : G — G/G,. It is well known that it
can be linearly extended to the homomorphism ¥ : V(RG) — V(R(G/G)p))
with kernel 1 + I(RG;G)p). Since 1 + I(RG;G),) C V,(RG), it easily follows by
standard arguments that ¥ is actually an epimorphism (= surjective homomor-
phism). Moreover, it is also clear that ¥(V,(RG)) = V,(R(G/G,)). So, under
the action of ¥ on the both sides of V(RG) = GV,(RG) we immediately obtain
that V(R(G/G)p)) = (G/Gp)Vp(R(G/G)p)) holds, as stated.

As for the sufficiency, choose an arbitrary element z € V(RG) and observe that
there is y € V(R(G/G,)) such that ¥(z) = y. Write y = g'v’ where ¢’ € G/G,
and v' € V,(R(G/G)p)). Since by what we have shown above there exist g € G
and v € V,(RG) such that ¥(g) = ¢’ and ¥(v) = v', we get ¥(z) = ¥(gv).
Furthermore, ¥(zg~'v~!) = 1 and thus zg~'v™" € ker ¥ C V,(RG) as previously
noticed. This leads to & € GV,(RG), as required. O

So, we are ready to prove the following affirmation.

Proposition 12 ([2]). Suppose char(R) = p is a prime natural number. Then
V(RG) = GV,(RQG) if and only if

(1) G=G, or

(2) G # Gy, R is indecomposable and precisely one of the following points
holds:
(2.1) Gy = Gy;

(2.2) p=3, U(R) = £1+ N(R) and G = G,, x C with |C| = 2;
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(2.3) p=2,U(R) =1+ N(R), the equality X> + XY +Y? = 1+ N(R)
has only trivial solutions in R/N(R) and G = G, x C with |C| = 3.

PRroOF: By virtue of Lemma 11, we may with no harm of generality assume that
G, = 1. Since it is plainly checked that then V,(RG) = 1 + I(N(R)G;G), we
obviously deduce that V(RG) = Gx (1+I(N(R)G;G)) — see also [5]. Henceforth,
we employ the main theorem from [5] or, respectively, Corollary 10. O

We close the work with the following:

Problem 2. Find a necessary and sufficient condition when the equality
V(RG) =G x (1+ I(N(R)G; G))
holds, provided that supp(G) Ninv(R) = 0.

In particular, as an immediate consequences, we will extract the cases Gy = 1
(Karpilovsky) and R = Z (May).

In conclusion, one can expect that if supp(G)Nzd(R) # 0, then there is a non-G-
nilpotent unit. However, this is not generally true. For instance, a counterexample
may be obtained for rings of characteristic 4 by taking R = Z4 = Z/(4) (i.e., R
to be the ring of all integers modulo 4) and G is of order 2. There are only four
elements of augmentation 1, so that the computations are minimal. If now a
counterexample of a ring of characteristic 0 is desired, let G be of order 2 again
and let R = Z[z] be the polynomial ring of z over Z where the element z is subject
to the relations 2% = 2z = 0.
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