
Comment.Math.Univ.Carolin. 53,2 (2012) 179{187 179
G-nilpotent units of 
ommutative group ringsPeter Dan
hevAbstra
t. Suppose R is a 
ommutative unital ring and G is an abelian group.We give a general 
riterion only in terms of R and G when all normalized unitsin the 
ommutative group ring RG are G-nilpotent. This extends re
ent resultspublished in [Extra
ta Math., 2008{2009℄ and [Ann. S
i. Math. Qu�ebe
, 2009℄.Keywords: group rings, normalized units, nilpotents, idempotents, de
omposi-tions, abelian groupsClassi�
ation: 16S34, 16U60, 20K10, 20K20, 20K211. Introdu
tionThroughout the present paper, let it be agreed that all groups are multipli
a-tively written and abelian as is 
ustomary when studying group rings, and all ringsare 
ommutative with identity 1 (further 
alled 
ommutative unital). For su
h aring R and a group G, suppose N(R) is the nil-radi
al of R and Gt is the torsionpart of G with p-
omponent Gp. Likewise, suppose RG is the group ring of G overR with group of normalized units V (RG). Standardly, I(LG;G) is the fundamen-tal ideal of LG where L � R and I(RG;H) is the relative augmentation ideal ofRG with respe
t to H � G. As usual, imitating [13℄, id(R) = fe 2 R j e2 = eg,inv(R) = fp j p � 1 2 U(R)g, where p is a prime number, U(R) is the unit group ofR, zd(R) = fp j 9r 2 R n f0g : pr = 0g, and supp(G) = fp jGp 6= 1Gg.Following [8℄, [9℄ we de�ne the idempotent subgroup Id(RG) as follows:Id(RG) = ne1g1 + � � �+ ekgk j ei 2 id(R);Xi ei = 1; eiej = 0 (i 6= j); gi 2 G; 1 � i; j � ko:It is self-evident that Id(RG) is a group and that Id(RG) � V (RG).All other notations and notions are standard and follow essentially those fromthe survey paper [9℄ and the 
lassi
al monographs [8℄, [10℄, [11℄ and [12℄.The purpose of this arti
le is to establish a ne
essary and suÆ
ient 
onditionin terms asso
iated only with R and G when all normalized units are G-nilpotent.
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hevDe�nition. A normalized unit v 2 V (RG) is said to be G-nilpotent if v 
an beuniquely expressed as v = gw where g 2 G and w 2 1 + I(N(R)G;G).This is tantamount to ask when the de
ompositionV (RG) = G� (1 + I(N(R)G;G))holds; note that G \ (1 + I(N(R)G;G)) = 1.Some explorations that are 
losely related to this theme are given in [3℄, [4℄and [5℄ (
ompare with Se
tion 2). Here we shall amend our te
hnique and, as aresult, we will generalize the main assertions from these papers.2. Preliminaries and main resultsBefore proving the 
hief statements, we need some te
hni
alities.Lemma 1. For ea
h ring R the following equality is ful�lled:U(R=N(R)) = fr +N(R) j r 2 U(R)g:Proof: Clearly the left hand-side 
ontains the right one be
ause there existr; f 2 R with rf = 1 and hen
e (r+N(R))(f +N(R)) = rf +N(R) = 1+N(R).As for the 
onverse in
lusion, let x 2 U(R=N(R)) be given. Then, x = r+N(R)for some r 2 R su
h that there exists f 2 R with (r + N(R))(f + N(R)) =rf +N(R) = 1 +N(R). Consequently, rf � 1 2 N(R) whi
h means that rf 21 +N(R) � U(R). Therefore, it is easily seen that r 2 U(R) as required. �Lemma 2. For any ring R the following equality holds:inv(R) = inv(R=N(R)):Proof: Assume that p 2 inv(R). Then p�1 2 U(R) and hen
e in view of Lemma 1we have p(1 +N(R)) = p � 1 +N(R) 2 U(R=N(R)). Thus p 2 inv(R=N(R)) andthe in
lusion \�" is obtained.As for the 
onverse 
ontainment \�", 
hoose p 2 inv(R=N(R)), when
e p(1 +N(R)) 2 U(R=N(R)). In a

ordan
e with Lemma 1 we may write p � 1+N(R) =� +N(R) where � 2 U(R). Furthermore, p � 1 2 U(R) +N(R) = U(R) so thatp 2 inv(R), as required. �Let R be a ring. De�ne np(R) = fp j 9r 2 R n N(R) : pr 2 N(R)g. Thefollowing 
laim is useful.Lemma 3. For every ring R the following equality is true:zd(R=N(R)) = np(R):



G-nilpotent units of 
ommutative group rings 181Proof: Given p 2 zd(R=N(R)), there is r =2 N(R) su
h that p(r + N(R)) =pr +N(R) = N(R). Thus pr 2 N(R) and p 2 np(R).Conversely, let p 2 np(R). Then there is r 2 R n N(R) with pr 2 N(R).Consequently, p(r + N(R)) = N(R) and r + N(R) 6= N(R) whi
h implies thatp 2 zd(R=N(R)). �Lemma 4. Suppose R is a ring. Thenid(R) = f0; 1g () id(R=N(R)) = f0; 1g:Proof: \)". Be
ause of the 
lassi
al fa
t that idempotents 
an always be liftedthrough N(R) (see, e.g., [1℄) if R=N(R) has a non-trivial idempotent, then thesame must be true of R, a 
ontradi
tion.\(". Choose an arbitrary element r 2 R with r2 = r, hen
e r + N(R) =r2+N(R) = (r+N(R))2. Therefore, either r+N(R) = N(R), when
e r 2 N(R)and thus r = 0, or r +N(R) = 1 +N(R), when
e r 2 1 +N(R) � U(R). Butthen r(1� r) = 0 ensures that 1� r = 0 that is r = 1, as required. �Another topologi
al approa
h in proving the above 
an be based on the follow-ing two standard fa
ts in 
ommutative ring theory:Let A be any 
ommutative unital ring. Then the following are true (e.g., 
f. [1℄):(i) A has no non-trivial idempotents if and only if Spe
(A), the set of primeideals of A equipped with the Zariski topology, is a 
onne
ted topologi
alspa
e;(ii) the 
anoni
al surje
tion from Spe
(A=N(A)) to Spe
(A), sending P +N(A) to P , is a homeomorphism (relative to the Zariski topology on ea
hspa
e).Proposition 5. Suppose R is a ring and � : R ! R=N(R) is the naturalmap. De�ne � : RG ! (R=N(R))G and its restri
tion �V (RG) : V (RG) !V ((R=N(R))G) by �(Pg2G rgg) = Pg2G �(rg)g = Pg2G(rg + N(R))g. Thenthe following relations are valid:(a) � is a surje
tive homomorphism;(b) ker� = N(R)G and ker�V (RG) = 1 + I(N(R)G;G).Proof: (a) That � is a ring (and hen
e a group) homomorphism follows easilysin
e so is �.As for the epimorphism (= surje
tion), we will restri
t our attention only onV (RG) be
ause for RG this is evident. And so, 
hoose x 2 V ((R=N(R))G)when
e there is y 2 RG with �(y) = x. Moreover, there are x0 2 (R=N(R))Gsu
h that xx0 = 1 and y0 2 RG su
h that �(y0) = x0. Therefore, 1 = �(y)�(y0) =�(yy0), so that �(yy0� 1) = 0 and point (b) below applies to write that yy0� 1 2N(RG). Finally, yy0 2 1 +N(RG) � U(RG) and thus y 2 U(RG). Furthermore,sin
e U(RG) = V (RG)�U(R), U((R=N(R))G) = V ((R=N(R))G)�U(R=N(R))and �(V (RG)) � V ((R=N(R))G), �(U(R)) � U(R=N(R)), it easily follows nowthat �(V (RG)) = V ((R=N(R))G), as expe
ted.
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hev(b) Clearly, 1 + I(N(R)G;G) � V (RG) be
ause I(N(R)G;G) � N(R)G �N(RG).On the other hand, it is plainly seen that ker� = N(R)G. Moreover, one
he
ks that ker�V (RG) = (1 + I(RG;G)) \ (1 +N(R)G) = 1 + I(N(R)G;G) asasserted. �Remark 1. A
tually, the pre-image y 
an be 
hosen with augmentation 1, andtherefore y 2 U(RG) dire
tly implies that y 2 V (RG). In fa
t, if x = (r1 +N(R))g1 + � � � + (rs + N(R))gs with r1 + � � � + rs � 1 = � 2 N(R), then y =r1g1+� � �+rsgs��1G satis�es the required property that �(y) = x and aug(y) = 1.Proposition 6. Suppose G is a group and R is a ring. Then the followingequivalen
e holds:V (RG) = G� (1 + I(N(R)G;G)) () V ((R=N(R))G) = G:Proof: \)". Applying Proposition 5(a) and taking � in the both sides of thegiven equality, we derive that �(V (RG)) = �(G)�(1 + I(N(R)G;G)). This isequivalent to V ((R=N(R))G) = G be
ause �(G) = G and �(1+ I(N(R)G;G)) =1, as stated.\(". Choose an arbitrary element x2V (RG). We have �(x)2V ((R=N(R))G)= G. Thus we may write �(x) = g = �(g) for some g 2 G. Furthermore,�(x)[�(g)℄�1 = �(x)�(g�1) = �(xg�1) = 1. Hen
e xg�1 2 ker�V (RG) =1 + I(N(R)G;G) utilizing Proposition 5(b). Finally, x 2 G� (1 + I(N(R)G;G))as required. �The following statement is an amended version of [3, Proposition℄.Proposition 7. Suppose G is a group with jGj = 3 and R is a ring su
h that3 2 inv(R). Then V (RG) = G if and only if U(R) = 1 and the equation r2+f2+rf + r + f = 0 has only trivial solutions in R.Proof: \)". What we need to show is that 
har(R) = 2. Assume the 
ontrary,2 6= 0. Then we observe that 23 + 23g � 13g2 is a non-trivial unit with the inverse23 � 13g+ 23g2. This 
ontradi
tion allows us to 
on
lude that 2 = 0. Furthermore,we apply the proof of Proposition on p. 51 from [3℄ to dedu
e that U(R) = 1 andr2 + f2 + rf + r + f = 0 is possible unique when r = 0, f = 0 or r = 1, f = 0 orr = 0, f = 1.\(". Certainly U(R) = 1 implies that �1 = 1, i.e., 2 = 0. Thus 
har(R) = 2and the further argument follows as that in [3, p. 51, Proposition℄. �Remark 2. Note also that 2 =2 U(R) sin
e otherwise 12 + 12g 2 V (RG) with theinverse 1� g + g2. Moreover, we point out that the equations here and in [3℄ arethe same, whi
h follows via the substitutions a = 1 + r and b = 1 + f .Now we list the following 
riterion from [4℄ whi
h will be useful in the sequel.Theorem A. Let R be a ring and G a group. Then V (RG) = G if and onlyif id(R) = f0; 1g, N(R) = 0, V (RGt) = Gt and pre
isely one of the following
onditions is true:
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ommutative group rings 183(1) G = Gt;(2) G 6= Gt, supp(G) \ (inv(R) [ zd(R)) = ;.Now we are planning to give a new, more 
on
eptual, proof of the followingresult from [3℄.Theorem B. Suppose G is a group and R is a ring su
h that supp(G)\ inv(R) 6=;. Then V (RG) = G if and only if id(R) = f0; 1g, N(R) = 0 and at most one ofthe following 
onditions holds:(1) jGj = jU(R)j = 2;(2) jGj = 3, U(R) = 1 and the equation a2 + b2 + ab+ 1 = 0 has only trivialsolutions in R for ea
h pair (a; b).Proof: \)". If either the set id(R) 
ontains a non-trivial idempotent e or thenil-ideal N(R) 
ontains a non-trivial nilpotent r, taking g 2 G we 
an 
onstru
tone of the elements xe = eg+1�e or xr = 1�r+rg| for ea
h of them it is easilyveri�ed that xe 2 V (RG) nG with inverse x�1e = eg�1+1� e, or xr 2 V (RG) nGas the sum of 1 and the nilpotent �r + rg = r(g � 1), a 
ontradi
tion in ea
h ofthe two situations. That is why both id(R) and N(R) are trivial.Claim that G is �nite of order 2 or 3. In fa
t, assume in a way of 
ontradi
tionthat G is in�nite. Sin
e there is a prime, say q, su
h that Gq 6= 1 and q 2 inv(R),it is well known that there exists an idempotent e 2 RF where F � Gq is a�nite subgroup. Choose g =2 F (this 
hoi
e is possible sin
e G is in�nite whileF is �nite) and in the same manner as above one 
an 
onstru
t the elementxe = eg+1� e 2 V (RG) nG. Thus G is ne
essarily �nite. By the same reason, itfollows that G does not 
ontain proper subgroups, that is, G is of prime 
ardinality| thereby jGj is a prime, say q. Furthermore, we 
laim that G has 
ardinality 2or 3. To show this, we assume the 
ontrary that jGj � 5 and 
onsider the elementu = (1+ g)q�1 � 2q�1�1q (1+ g+ � � �+ gq�1) where G = hgi with gq = 1. It is wellknown that u is a unit with augmentation 1 whi
h does not lie in G (see, e.g.,[12℄). This 
ontradi
tion shows that jGj � 4. Finally, either jGj = 2 or jGj = 3 as
laimed.Moreover, another approa
h is to noti
e that there is a nontrivial idempotente = 12 (1 + g) or e = 13 (1 + g + g2) where g is either of order 2 or 3. If g0 =2 hgi,then 1� e+ eg0 is a nontrivial unit.Next, we 
onsider separately these two possibilities:Case 1. G is 
y
li
 of order 2.Firstly, note that 2 2 U(R). We 
laim that if r 2 U(R) is an arbitrary element,then either r = 1 or r = �1; so 2 = �1 and hen
e 3 = 0 sin
e 2 = 1 does nothold. In fa
t, 
onsider the element xr = 12 � r2 + ( 12 + r2 )g. It is simple 
he
kedthat xr 2 V (RG) with the inverse xr�1 = 12 � r�12 +( 12 + r�12 )g. Sin
e there existonly trivial units, it must be ful�lled that r2 = 12 or r2 = � 12 , i.e., r = 1 or r = �1.Thus U(R) has only two elements, as 
laimed.Case 2. G is 
y
li
 of order 3.It follows immediately from Proposition 7.
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hev\(". (1) First, note that 1 6= �1 and 
har(R) = 3 be
ause 2 2 U(R) = f1;�1gand thus 2 = �1; the equality 2 = 1 is impossible sin
e it yields that 1 = 0. Letxr = 1� r+ rg. Then, there is f 2 R su
h that (1� r+ rg)(1�f +fg) = 1. Thisis equivalent to f(2r�1) = r. Sin
e 2rf �r�f = 0, we have (2r�1)(2f�1) = 1and it must be that 2r � 1 2 U(R). Consequently, 2r � 1 = 1 or 2r � 1 = �1.Thus 2r = 2, when
e r = 1, or 2r = 0, when
e r = 0. Finally, either xr = 1 orxr = g. In both 
ases we observe that V (RG) = G, as expe
ted.(2) Follows by a dire
t appli
ation of Proposition 7. �Remark 3. First, noti
e that in 
lause (2) we must have 
har(R) = 2 if 
har(R)is a prime integer. In fa
t, always �1 2 U(R) and sin
e U(R) = 1, we have that�1 = 1 whi
h is tantamount to 2 = 0 as asserted.Certainly, in the Main Theorem from [3℄, point (1) G = 1 is not realisti
 and
annot be happen sin
e supp(G) 6= ;.The question of the triviality of units in 
ommutative group rings will be 
om-pletely exhausted if the following 
an be settled:Problem 1. Find a 
riterion only in terms asso
iated with R and G whenV (RG) = G holds, provided that G = Gt and supp(G) \ inv(R) = ;.We have now at our disposal all the information needed to prove the following.Theorem 8. Suppose G is a group and R is a ring. Then V (RG) = G � (1 +I(N(R)G;G)) if and only if id(R) = f0; 1g, V (RGt) = Gt � (1 + I(N(R)Gt;Gt))and at most one of the following 
onditions holds:(1) G = Gt;(2) G 6= Gt, supp(G) \ (inv(R) [ np(R)) = ;.Proof: Employing Proposition 6 we equivalently redu
e the de
omposition ofV (RG) to the equality V ((R=N(R))G) = G. Next, we subsequently apply Theo-rem A 
ombined with Lemmas 2, 3 and 4. �Theorem 9. Suppose G is a group and R is a ring su
h that supp(G)\inv(R) 6= ;.Then V (RG) = G� (1 + I(N(R)G;G)) if and only if id(R) = f0; 1g and exa
tlyone of the following points is valid:(1) jGj = jU(R=N(R))j = 2;(2) jGj = 3, U(R=N(R)) = 1 and the relation a2 + b2 + ab + 1 2 N(R) hasonly trivial solutions in R=N(R) for every pair (a; b) 2 R.Proof: By appli
ation of Proposition 6 we 
an write in an equivalent way thatV ((R=N(R))G) = G. Hereafter we subsequently employ Theorem B togetherwith Lemma 2 and Lemma 4. �As a 
onsequen
e, we dedu
eCorollary 10 ([5℄). Suppose 
har(R) = p is a prime integer and G 6= 1. ThenV (RG) = G � (1 + I(N(R)G;G)) if and only if id(R) = f0; 1g and at most oneof the following holds:
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ommutative group rings 185(a) Gt = 1;(b) jGj = p = 2, R = L+N(R) with jLj = 2;(
) p = 3, jGj = 2 and U(R) = �1 +N(R);(d) p = 2, jGj = 3, U(R) = 1 + N(R) and the equation X2 + XY + Y 2 =1 +N(R) possesses only trivial solutions in R=N(R).Proof: First of all, observe that inv(R) 
ontains all primes but p. That R isinde
omposable follows easily sin
e 1�r+rg 2 V (RG) is always a non-G-nilpotentunit whenever r 2 id(R) n f0; 1g and g 2 G n f1g. Moreover, if G is torsion-free,everything was done in [6℄, [7℄ (see [8℄ and [9℄ as well). So, assume Gt 6= 1.Further, if Gt 6= Gp we see that supp(G) \ inv(R) 6= ; and hen
e Theorem 9applies to get the result. If now G is p-mixed, i.e., Gt = Gp, it follows thatV (RG) = G(1 + I(RG;Gp) + I(N(R)G;G)). Hereafter, the proof goes on byarguments similar to these from [5℄ 
onsidering the 
ases G = Gt and G 6= Gt.The �rst one leads to jGj = 2 = p, while the se
ond one is impossible. �Finally, we will apply the results alluded to above to derive a re
ent a
hievementfrom [2℄. First, we need the following te
hni
ality.Lemma 11. Let 
har(R) = p be a prime integer. ThenV (RG) = GVp(RG) () V (R(G=Gp)) = (G=Gp)Vp(R(G=Gp)):Proof: Consider the natural map  : G ! G=Gp. It is well known that it
an be linearly extended to the homomorphism 	 : V (RG) ! V (R(G=Gp))with kernel 1 + I(RG;Gp). Sin
e 1 + I(RG;Gp) � Vp(RG), it easily follows bystandard arguments that 	 is a
tually an epimorphism (= surje
tive homomor-phism). Moreover, it is also 
lear that 	(Vp(RG)) = Vp(R(G=Gp)). So, underthe a
tion of 	 on the both sides of V (RG) = GVp(RG) we immediately obtainthat V (R(G=Gp)) = (G=Gp)Vp(R(G=Gp)) holds, as stated.As for the suÆ
ien
y, 
hoose an arbitrary element x 2 V (RG) and observe thatthere is y 2 V (R(G=Gp)) su
h that 	(x) = y. Write y = g0v0 where g0 2 G=Gpand v0 2 Vp(R(G=Gp)). Sin
e by what we have shown above there exist g 2 Gand v 2 Vp(RG) su
h that 	(g) = g0 and 	(v) = v0, we get 	(x) = 	(gv).Furthermore, 	(xg�1v�1) = 1 and thus xg�1v�1 2 ker	 � Vp(RG) as previouslynoti
ed. This leads to x 2 GVp(RG), as required. �So, we are ready to prove the following aÆrmation.Proposition 12 ([2℄). Suppose 
har(R) = p is a prime natural number. ThenV (RG) = GVp(RG) if and only if(1) G = Gp or(2) G 6= Gp, R is inde
omposable and pre
isely one of the following pointsholds:(2.1) Gt = Gp;(2.2) p = 3, U(R) = �1 +N(R) and G = Gp � C with jCj = 2;



186 P. Dan
hev(2.3) p = 2, U(R) = 1 +N(R), the equality X2 +XY + Y 2 = 1 +N(R)has only trivial solutions in R=N(R) and G = Gp � C with jCj = 3.Proof: By virtue of Lemma 11, we may with no harm of generality assume thatGp = 1. Sin
e it is plainly 
he
ked that then Vp(RG) = 1 + I(N(R)G;G), weobviously dedu
e that V (RG) = G�(1+I(N(R)G;G)) | see also [5℄. Hen
eforth,we employ the main theorem from [5℄ or, respe
tively, Corollary 10. �We 
lose the work with the following:Problem 2. Find a ne
essary and suÆ
ient 
ondition when the equalityV (RG) = G� (1 + I(N(R)G;G))holds, provided that supp(G) \ inv(R) = ;.In parti
ular, as an immediate 
onsequen
es, we will extra
t the 
ases Gt = 1(Karpilovsky) and R = Z (May).In 
on
lusion, one 
an expe
t that if supp(G)\zd(R) 6= ;, then there is a non-G-nilpotent unit. However, this is not generally true. For instan
e, a 
ounterexamplemay be obtained for rings of 
hara
teristi
 4 by taking R = Z4 = Z=(4) (i.e., Rto be the ring of all integers modulo 4) and G is of order 2. There are only fourelements of augmentation 1, so that the 
omputations are minimal. If now a
ounterexample of a ring of 
hara
teristi
 0 is desired, let G be of order 2 againand let R = Z[x℄ be the polynomial ring of x over Zwhere the element x is subje
tto the relations x2 = 2x = 0.A
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