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Duality properties and Riesz representationtheorem in Besiovith-Musielak-Orlizspae of almost periodi funtionsA. Daoui, M. Morsli, M. SmaaliAbstrat. This paper is an extension of the work done in [Morsli M., Bedouhene F.,Boulahia F.,Duality properties and Riesz representation theorem in the Besiovith-Orliz spae of almost periodi funtions, Comment. Math. Univ. Carolin. 43(2002), no. 1, 103{117℄ to the Besiovith-Musielak-Orliz spae of almost pe-riodi funtions. Neessary and suÆient onditions for the reexivity of thisspae are given. A Riesz type \duality representation theorem" is also stated.Keywords: Orliz norm, Amemiya norm, onjugate funtion, Besiovith-Musielak-Orliz spaes, almost periodi funtions, reexivity, Riesz theoremClassi�ation: 46B20, 42A751. IntrodutionThe Besiovith-Musielak-Orliz spae of almost periodi funtions was re-ently introdued in [9℄ and [10℄, where the authors haraterized also some of itsmetri properties with respet to the Luxemburg norm.In the present work, this spae is endowed with the so-alled Orliz norm.Di�erent properties and formulations of this norm are pointed out.Next, neessary and suÆient onditions for the reexivity of the spae aregiven. A Riesz type \duality representation theorem" is also stated in this spae.2. PreliminariesLet ' be a Musielak-Orliz funtion, i.e. ' : R � R+ �! R+ is suh that:(1) 8t 2 R, '(t; �) is onvex on R+ ;(2) 8x 2 R+ , '(�; x) is Lebesgue measurable on R and '(t; x) = 0 i� x = 0,8t 2 R;(3) 8t 2 R, limx!+1'(t;x)x = +1 and limx!0 '(t;x)x = 0.In the sequel we assume that ' veri�es also the following two onditions:(4) '(�; �) is ontinuous on R � R+ ;(5) 8x 2 R+ , '(�; x) is periodi with period T independent of x (we maysuppose T = 1).



238 A. Daoui, M. Morsli, M. SmaaliWe denote by  the funtion omplementary to ', i.e. (t; x) = supy�0fxy � '(t; y)g; 8t 2 R; 8x 2 R+ :Reall that  is also a Musielak-Orliz funtion (see [11℄). The pair (';  )satis�es the Young inequality:xy � '(t; x) +  (t; y) for all t 2 R; and x; y 2 R+ :Let now M(R; C ) =M be the set of all Lebesgue measurable funtions on Rwith values in C . The funtional�' :M �! [0;+1℄f �! �'(f) = limT!+1 12T Z +T�T '(t; jf(t)j) dt =M ['(�; jf(�)j)℄is a onvex pseudo-modular on M (see [1℄). The assoiated modular spae:B' = ff 2 M : lim�!0 �'(�f) = 0g= ff 2 M : �'(�f) < +1; for some � > 0gis alled the Besiovith-Musielak-Orliz spae. This spae is naturally endowedwith the Luxemburg norm:kfk' = inf �k > 0; �'�fk� � 1� :We an also onsider the so-alled Amemiya norm de�ned as follows:kfkA' = inf �1k (�'(kf) + 1); k > 0� :These two norms are in fat equivalent:(2.1) kfk' � kfkA' � 2kfk'; for all f 2 B' (see [7℄):Let A be the set of all generalized trigonometri polynomials, i.e.,A = fPn(t) = j=nXj=1 ajei�j t; aj 2 C ; �j 2 R; n 2 Ng:The Besiovith-Musielak-Orliz spae of almost periodi funtions denoted byB'a:p: is the losure of the set A with respet to the Luxemburg norm,B'a:p: = �f 2 B' : 9fpng 2 A s.t. limn!+1 kf � pnk' = 0� :



On the Orliz norm in B'a:p: 239When '(t; x) = jxj the spae B'a:p: is denoted by B1a:p. The losure of the setA with respet to the modular �' is the subspae of B' denoted by eB'a:p::eB'a:p: = ff 2 B' : 9fpng 2 A s.t. limn!+1 �'(�(f � pn)) = 0 for some � > 0g:Let fu:a:p:g denote the lassial Bohr's algebra of almost periodi funtions. Itis known that fu:a:p:g is the losure of the set A with respet to the uniformnorm. It is easily seen that fu:a:p:g � B'a:p: � B1a:p. Moreover, in view ofTheorem 2.8 in [2℄ we have the following property:If f 2 fu:a:p:g, '(�; �) is ontinuous and '(�; x) is uniformly almostperiodi with respet to x then '(�; jf(�)j) 2 fu:a:p:g.Therefore a fortiori, this holds true for a Musielak-Orliz funtion satisfying theonditions (4) and (5) presented above.A fundamental result onerning the funtions in B'a:p: is the following:(2.2) If f 2 B'a:p:; then '(�; jf(�)j) 2 B1a:p: (see [10℄):This property ensures the existene of the limit in the expression of �'(f).In order to end this introdutory setion, we de�ne the so-alled Orliz normin B'a:p:, kfko' = sup�M(jfgj); g 2 B a:p:; � (g) � 1	 :Using the Young inequality it is easy to see that(2.3) kfko' � kfkA' ; for all f 2 B'a:p:3. Auxiliary resultsThe fundamental onvergene results of measure theory annot be used diretlyin B'a:p. A key role in our omputations is played by the set funtion � de�nedon the �-algebra �(R) = � of Lebesgue measurable sets as follows:�(A) = limT!+1 12T Z +T�T �A(t) dt = limT!+1 12T �(A \ [�T;+T ℄);where � denotes the Lebesgue measure on R. Note that � is not a measure.We list here de�nitions and some properties onerning onvergene type resultswith respet to the set funtion �.Let ffng be a sequene in B'. We say that:� ffng is � onvergent to f (and denote by fn ��! f) when, 8� > 0,limn!+1�ft 2 R : jfn � f j > �g = 0;� ffng is modular onvergent to f when, 9� > 0 suh that:limn!+1�'(�(fn � f)) = 0.We have the following relations between the di�erent kinds of onvergene:



240 A. Daoui, M. Morsli, M. SmaaliLemma 1. (1) limn!+1kfn � fk' = 0 i� 8� > 0, limn!+1�'(�(fn � f)) = 0(see [11℄).(2) If limn!+1�'(fn � f) = 0 then fn ��! f (see Lemma 2 in [10℄).(3) Let ffng � B' and f 2 B'. If fn ��! f and max(fn; f) � g withg 2 B'a:p:, then �'(fn) �! �'(f) (see Lemma 5 in [10℄).(4) Let ffng � B' be suh that fn ��! f and g(t; x) a ontinuous funtionon R � R+ , periodi with respet to t. Then g(�; fn(�)) ��! g(�; f(�)) (seethe proof of Proposition 1 in [10℄).The following two results are very useful in our omputations and proofs:Lemma 2. Let f 2 B'a:p:, �'(f) > 0, and ffng be a sequene � onvergentto f . Then we have:(1) there exist �, �, � with 0 < � < �; � 2℄0; 1[ and G = ft 2 R; � � jf(t)j ��g suh that �(G) � � (see [10℄);(2) there exist �0 , �0 , �0 with 0 < �0 < �0 ; �0 2℄0; 1[ and Gn = ft 2 R; �0 �jfn(t)j � �0g suh that �(Gn) � �0 (see [8℄).In the following we denote by L'([0; 1℄) the usual Musielak-Orliz spae offuntions de�ned on [0; 1℄. The proposition below shows that L'([0; 1℄) is isomet-rially imbedded into the Besiovith-Musielak-Orliz spae of almost periodifuntions eB'a:p:Proposition 1 ([10℄). Let f 2 L'([0; 1℄). Then,(1) if ef is the periodi extension of f to the whole R (with period � = 1),we have ef 2 eB'a:p:;(2) the injetion map i : L'([0; 1℄) ,! eB'a:p:; i(f) = ef is an isometry withrespet to the modulars and for the respetive Luxemburg norms.De�nition 1. � We say that a funtion f 2 B' is absolutely integrablewhen:8" > 0; 9Æ > 0 8Q 2 �; �(Q) � Æ =) �'(f�Q) � ":� A sequene ffng � B' is said equi-absolutely integrable when:8" > 0; 9Æ > 0 9n0 2 N 8Q 2 �; �(Q) � Æ and n � n0 =) �'(fn�Q) � ":Remark that all the funtions in B'a:p: are absolutely integrable [10℄.Lemma 3. Let ffng � B1 be � onvergent to f 2 B1a:p. Then, if ffng isequi-absolutely integrable we have �1(fn) �!n!+1 �1(f).Proof: Fix � > 0 and onsider the set:A�n = ft 2 R : jfn(t)� f(t)j > �g:



On the Orliz norm in B'a:p: 241Sine the sequene ffng is � onvergent to f , we have(3.1) limn!+1 �(A�n) = 0:Now �1(jfn � f j) � �1(jfn � f j�A�n) + �1(jfn � f j�CA�n)� �1(jfnj�A�n) + �1(jf j�A�n) + �1(jfn � f j�CA�n)� �1(fn�A�n) + �1(f�A�n) + �:Given any " > 0, the equi-absolute integrability of ffng ensures the existene ofn1 2 N and Æ1 > 0 s.t.(3.2) 8Q 2 �; �(Q) � Æ1 and n � n1 =) �1(fn�Q) � "2 :On the other hand the absolute integrability of f ensures the existene of a Æ2 s.t.(3.3) �(Q) � Æ2 =) �1(f�Q) � "2 :Put Æ = min(Æ1; Æ2). Then by (3.1) there exists n2 2 N s.t. 8n � n2 we have�(A�n) � Æ. Hene for n0 = max(n1; n2), we get 8n � n0max(�1(f�A�n); �1(fn�A�n)) � "2 ;and then: 8" > 0; 9n0 2 N; 8n � n0; �1(jfn � f j) � "+ �:Letting n tending to in�nity we get:limn!+1 �1(fn � f) � �:Finally, sine � > 0 is arbitrary we dedue that limn!+1�1(fn � f) = 0, i.e.�1(fn) �!n!+1 �1(f). �Remark 1. Under the same hypothesis, the result of Lemma 3 remains truewhen ffng � B' and f 2 B'a:p:, i.e. �'(fn) �!n!+1 �'(f).Corollary 1. Let ffng � B' be suh that limn!+1kfn�fk' = 0, with f 2 B'a:p.Then �'(fn) �!n!+1 �'(f).Proof: Sine the sequene ffng is � onvergent to f , it suÆes to show that itis equi-absolutely integrable. In fat: �'(fn) � 12�'(2(fn � f)) + 12�'(2f).Given any " > 0, sine 2f 2 B'a:p: there exists Æ > 0 s.t. 8Q 2 � we have�(Q) � Æ =) �'(2f�Q) � ".



242 A. Daoui, M. Morsli, M. SmaaliOn the other hand there exists n0 2 N s.t. �'(2(fn � f)) � ", 8n � n0. Finally,we have the following:�'(fn�Q) � 12�'(2(fn � f)�Q) + 12�'(2f�Q) � "; 8n � n0; 8Q 2 �: �Lemma 4. (1) If f 2 B'a:p: with kfk' 6= 0, then �'( fkfk' ) = 1.(2) If f 2 B'a:p:, g 2 B a:p:, then f � g 2 B1a:p. Moreover we have theso-alled H�older's inequalityM(jf � gj) � 2kfk' � kgk :(3) If f 2 B'a:p:, then kfko' � 2kfk'.Proof: (1) follows immediately from the property: kfk' = 1 i� �'(f) = 1 forf 2 B'a:p: (see [10℄).(2) Let f 2 B'a:p:, g 2 B a:p:, kfk' 6= 0, kgk 6= 0. From the Younginequality we have:jf(t)jkfk' � jg(t)jkgk � '�t; jf(t)jkfk'�+  �t; jg(t)jkgk � :Hene M � jf � gjkfk'kgk � � �'� fkfk'�+ � � gkgk � � 2:Then M(jf � gj) � 2kfk' � kgk :On the other hand f � g 2 B1a:p. Indeed, let fpng, fqng be two sequenes in Asuh that limn!+1kpn � fk = 0 and limn!+1kqn � gk = 0. ThenM(jf � g � pn � qnj) = M(jf � g � fqn + fqn � pn � qnj)� M(jf j � jg � qnj) +M(jqnj � jf � pnj)� 2 (kfk' � kg � qnk + kqnk � kf � pnk')� 2(kfk' � kg � qnk + (supn kqnk ) � kf � pnk'):Letting n tending to in�nity, we get: limn!+1M(jf � g� pn � qnj) = 0. Consequentlywe have: f � g 2 B1a:p: and M(f � g) =M(f � g) � 2kfk' � kgk .(3) Let f 2 B'a:p:, kfko' = supfM(jfgj); g 2 B a:p:; � (g) � 1g.In view of H�older's inequality we have:M(jf � gj) � 2kfk' � kgk ; 8f 2 B'a:p:; 8g 2 B a:p:



On the Orliz norm in B'a:p: 243Hene(3.4) kfko' � 2kfk': �4. Equality between Orliz norm and Amemiya normWe are now ready to state the following omparison result:Theorem 1. If f 2 B'a:p:, thenkfko' = inf �1k (1 + �'(kf)); k > 0� :Moreover, kfko' = 1k0 (1 + �'(k0f)); for some k0 > 0:Proof: I) We suppose �rst that ' is stritly onvex with respet to x for allt 2 R and has a ontinuous derivative '0(t; x) = Æ'Æx (t; x) on R � R+ . In this asethe onjugate funtion  veri�es the same properties as '.We prove the theorem in several steps:Step 1. Case where f = p is a generalized trigonometri polynomial. In view ofthe inequality (2.3) it suÆes to show the onverse inequality:kfko' � 1k0 (1 + �'(k0f)); for some k0 > 0:For, onsider the funtion F (k); k � 0 de�ned as follows,F (k) = � ('0 (�; kjp(�)j)) = limT!+1 12T Z +T�T  (t; '0(t; kjp(t)j)) dt:We laim that limk!+1F (k) = +1. Indeed, from Lemma 2 there exist � > 0,� 2℄0; 1[ and a set G = ft 2 R : jp(t)j � �g suh that �(G) � �. ThenF (k) � limT!+1 12T Z[�T;+T ℄\G  (t; '0(t; k�)) dt� limT!+1 12T Z[�T;+T ℄\G inft2R (t; '0(t; k�)) dt� �(G) (t0; '0(t0; k�))� � (t0; '0(t0; k�))� � �t0; '(t0; k�)k� � :



244 A. Daoui, M. Morsli, M. SmaaliSine limx!+1'(t;x)x = +1, 8t 2 R, we get limk!+1F (k) = +1.We will show now that F is ontinuous on [0;+1[. Let k� 2 [0;+1[ and fkngbe a sequene in [0;+1[ onvergent to k�. It is lear thatknjp(�)j is � onvergent to k�jp(�)j:Moreover, using Lemma 1(4), we get:'0(�; knjp(�)j) ��! '0(�; k�jp(�)j):Sine fkng is bounded we have max('0(�; knjp(�)j); '0(�; k�jp(�)j)) � '0(�;M jp(�)j)with '0(�;M jp(�)j) 2 fu:a:p:g � B a:p. Using Lemma 1(3), we dedue thatlimn!+1� ('0(�; knjp(�)j)) = � ('0(�; k�jp(�)j)). This proves the ontinuity of F .Consequently, sine F (0) = 0 and limk!+1F (k) = +1, there exists a k0 2℄0;+1[suh that � ('0(�; k0jp(�)j)) = 1. Now, onsidering the ase of equality in Young'sinequality we getkpko' � 1k0M �k0jpj'0(�; k0jp(�)j)�� 1k0 ��'(k0jpj) + � ('0(�; k0jp(�)j))�(4.1) � 1k0 (�'(k0jpj) + 1) :Combining inequalities (4.1) and (2.3) we getkpko' = inf �1k (1 + �'(kjpj))� = 1k0 (�'(k0jpj) + 1) :Note also that we have(4.2) kpko' =M(jp(�)j'0 (�; k0jp(�)j)):Step 2. Now we will prove that the result remains true for f 2 B'a:p:Let fpng � A be suh that limn!+1kpn � fk' = 0.From Step 1, for all n 2 N, there exists kn 2℄0;+1[ suh that(4.3) kpnko' = 1kn (�'(knp) + 1) :Using the inequality (3.4), we get1kn � kpnko' � 2kpnk' � 2 supn kpnk';



On the Orliz norm in B'a:p: 245hene kn � 12 supn kpnk' = C1 > 0; 8n 2 N:On the other hand fkng is bounded from above. Indeed, in the opposite ase, therewill exist a subsequene still denoted by fkng suh that limn!+1kn = +1. Then,again from Lemma 2, there exist � > 0, � 2℄0; 1[ and Gn = ft 2 R : jpn(t)j � �g,suh that �(Gn) � �. Thus,1 = � �'0(�; knjpn(�)j)� � limT!+1 12T Z[�T;+T ℄\Gn  (t; '0(t; kn�)) dt� limT!+1 12T Z[�T;+T ℄\Gn inft2R (t; '0(t; kn�)) dt� �(G) (t0; '0(t0; k�))� � (t0; '0(t0; kn�))� � �t0; '(t0; kn�)kn� � ;and then limn!+1� ('0(�; knjpn(�)j)) = +1, a ontradition.Now fkng being bounded, there exists a subsequene denoted again by fkngthat onverges to some k0 > 0. We have limn!+1kknpn � k0fk' = 0 and byCorollary 1 we dedue that limn!+1�'(knpn) = �'(k0f):Finally, using inequality (3.4) and letting n tending to in�nity in (4.3) we get:kfko' = limn!+1kpnko' = limn!+1� 1kn (�'(knpn + 1))� = 1k0 (�'(k0f) + 1) :II) To omplete the proof of the theorem, we will prove that the result remainstrue for a general Musielak-Orliz funtion '.Indeed, for all " > 0, we an �nd a Musielak-Orliz funtion '" with a ontin-uous derivative '0" = Æ'"Æx (t; x) on R � R+ verifying the inequality'(t; x) � '"(t; x) � '(t; (1 + ")x); 8t 2 R; 8x 2 R+ :An example of suh a funtion '" is the following (see [3℄, [7℄),'"(t; x)� = 1ln(1 + ") Z (1+")xx '(t; s)s ds; 8t 2 R; 8x 2 R+ :�'"(t; x) veri�es '"(t; x) = 0 i� x = 0 for all t 2 R.



246 A. Daoui, M. Morsli, M. SmaaliMoreover, de�ning the new funtion'"(t; x)y = '(t; (1 + ")x� " ln(x+ 1));we an easily hek that '" is stritly onvex with respet to x 2 R+ for all t 2 Rand satis�es the inequality'(t; x) � '"(t; x) � '(t; (1 + ")x); 8t 2 R; 8x 2 R+ :Summing up, we laim that for all " > 0, there exists a stritly onvexMusielak-Orliz funtion '" with a ontinuous derivative '0"(t; x) = Æ'"Æx (t; x) on R � R+satisfying:(4.4) '(t; x) � '"(t; x) � '(t; (1 + ")x):From this, it follows immediately (see [3℄, [7℄) that:B'a:p: = B'"a:p:and(4.5) kfkA' � kfkA'" � (1 + ")kfkA' ; kfko' � kfko'" � (1 + ")kfko':Reall that it was proved in Step 1 that,(4.6) kfko'" = kfkA'":This equality remains true for '. Indeed, we already know that kfko' � kfkA' .Then using (4.6) and (4.4) we an writekfko' � kfkA' � kfkA'" = kfko'" � (1 + ")kfko':Finally, sine " is arbitrarily small, we dedue thatkfko' = kfkA' :To end the proof, let us show thatkfko' = 1k0 (�'(k0f) + 1) for some k0 > 0:For all " > 0 we have kfk0'" = 1k" (�'"(k"f) + 1) ;for some k" > 0 suh that � "('0"(�; k"f)) = 1:ySine the funtion (1 + ")x � " ln(1 + x) is s.. and '(t; x) = 0 i� x = 0 then '"(t; x) isstritly onvex (see [5℄).



On the Orliz norm in B'a:p: 247Using the same reasoning as in the previous part, we an dedue that the se-quene fk"g is bounded. Then we an extrat a subsequene also denoted byfk"g onvergent to some k0 > 0.Now, we have from (4.5) thatkfko' = lim"!0 1k" (�'"(k"f) + 1) :On the other hand1k" (�'(k"f) + 1) � 1k" (�'"(k"f) + 1) � 1k" (�'(k"(1 + ")f) + 1) :Letting " tending to zero together with the ontinuity of the funtion � �!�'(�f) we dedue that:lim"!0 1k" (�'"(k"f) + 1) = 1k0 (�'(k0f) + 1) = kfko':This ompletes the proof of Theorem 1. �Lemma 5. The Orliz norm is equivalent to the Luxemburg norm in B'a:p:kfk' � kfko' � 2kfk'; f 2 B'a:p:Proof: This is an immediate onsequene of (2.1) and Theorem 1. We give hereanother and diret proof of this result. It remains only to prove the left inequality,or equivalently that �'( fkfko' ) � 1.First let p 2 A, p 6= 0 and let g 2 B a:p:; then we have to onsider two ases:� � (g) � 1, in this ase we have M(jp � gj) � kpko';� � (g) > 1, in this ase we have � ( g� (g) ) � 1� (g) � � (g) � 1, heneM(jp � g� (g) j) � kpko'.It follows that in eah ase we haveM(jp � gj) � max(1; � (g))kpko':Using the ase of equality in Young's inequality we get for a suitable g,�'� pkpko'�+ � (g) =M ����� pkpko' � g����� � max(1; � (g));and then �'( pkpko' ) � 1.Let now f 2 B'a:p: satisfy kfk 6= 0 and take fpng in A suh that limn!+1kpn�fk' = 0.Let kn = 1kpnko' . From inequality (3.4) we have limn!+1kn = k0 = 1kfko' . Thenlimn!+1kknpn � k0fk' = 0;



248 A. Daoui, M. Morsli, M. Smaaliand using Corollary 1 we dedue that�'� pnkpnko'� �!n!+1 �'� fkfko'� :Now sine �'( pnkpnko' ) � 1, for all n 2 N, it follows that �'( fkfko' ) � 1. Finally, wehave kfk' � kfko' � 2kfk': �5. Duality in B'a:p:5.1 Reexivity of the spae eB'a:p.De�nition 2. We say that ' satis�es the �B12 ondition if there exist a onstantk > 0 and a positive funtion h with �1(h) < +1 suh that,'(t; 2x) � k'(t; x) + h(t); for almost all t 2 R; and all x 2 R+ :We say that ' is rB12 if  is �B12 .De�nition 3. The funtion ' is uniformly onvex on R+ (see [6℄) when, 8a 2℄0; 1[; 9Æ(a) 2℄0; 1[; 8b 2 [0; a℄:'(t; x+ by2 ) � (1� Æ(a))'(t; x) + '(t; by)2 ;for almost all t 2 R and all x 2 R+ .Theorem 2. The spae eB'a:p: is reexive i� ' 2 4B12 \ rB12 .Proof: Neessity: suppose that eB'a:p: is reexive. From [10℄ we know thateB'a:p: ontains an isometri opy of the Musielak-Orliz spae L'[0; 1℄. From [6℄a neessary and suÆient ondition for the reexivity of L'[0; 1℄ is that ' satis�esthe 4L12 \rL12 onditionz. In this ase ' satis�es also the 4B12 \rB12 onditions(see the proof of Theorem 1 in [10, p. 457℄).SuÆieny: Suppose that ' 2 �B12 \ rB12 . One an see diretly that ' 2�L12 \ rL12 . Then from [6℄ there exists a Musielak-Orliz funtion '1 de�ned on[0; 1℄�R+ uniformly onvex and equivalent to the restrition of ' on [0; 1℄�R+ .Now the 1-periodi extension of '1 denoted by e'1x, de�ned on R � R+ is alsouniformly onvex and equivalent to '. We dedue that (B e'1a:p:; k � ke'1) isuniformly onvex (see [9℄) and so reexive. Hene B'a:p: is reexive. �zWe say that ' is �L12 if there exist a onstant k > 0 and a positive funtion h withR 10 h(t) dt < +1 s.t. '(t; 2x) � k'(t; x) + h(t), for almost all t 2 [0; 1℄ and all x � 0.xFrom the onstrution of '1 made in [6℄ page 61, we remark that e'1 inherits the ontinuityof ' on R� R+.



On the Orliz norm in B'a:p: 2495.2 Riesz representation theorem in B'a:p:. In view of (4.4), we may sup-pose in the following that ' has a ontinuous derivative '0 and is stritly onvex(or equivalently that '0(t; x) is stritly inreasing with respet to x 2 R+ and allt 2 R).Lemma 6. If f 2 B a:p: thenkfko = supfjM(f � g)j; g 2 B'a:p:; �'(g) � 1g= supfjM(f � g)j; g 2 fu:a:p:g; �'(g) � 1g:Proof: Consider the ase f = p 2 A. From the H�older's inequality we have:jM(p � q)j �M(jp � qj) � kpko ; 8q 2 fu:a:p:g; �'(q) � 1:From the proof of Theorem 1, we know that there exists k0 > 0 suh that�'( 0(�; k0jp(�)j)) = 1, andkpko =M �jp(�) 0(�; k0jp(�)j)j� =M �p(�) sign p(�) 0(�; k0jp(�)j)� :Note that sign p(�) 0(�; k0jp(�)j) 2 fu:a:p:g. Indeed, letF (t; u) =8<: ujuj �  0 (t; k0juj) if u 6= 0;0 else.Then F is ontinuous on R � R+ and periodi in t uniformly with respet to u.Sine sign p(t) 0 (t; k0jp(t)j) = F (t; p(t))the onlusion follows from Theorem 2.8 in ([2℄). Summarizing all these, we havekpko =M(p � q), where q(�) = sign p(�) 0(�; k0jp(�)j). Then we an assert that:(5.1) kpko = supfjM(p � q)j; q 2 fu:a:p:g; �'(q) � 1g:Now let us show that (5.1) remains true for f 2 B a:p. Let fpng � A be asequene suh that: limn!+1kpn � fk = 0 and onsider the quantityI(f) = supfjM(f � q)j; q 2 fu:a:p:g; �'(q) � 1g:It is lear that we have I(f) � kfko :Moreover, for a �xed " > 0, we have kfko � kpnko +", 8n � n0, for some n0 > 0.Hene kfko � " � kpnko = supfjM(pn � q)j; q 2 fu:a:p:g; �'(q) � 1g:



250 A. Daoui, M. Morsli, M. SmaaliUsing H�older's inequality we assert that:kpnko � supfkpn � fk � kqk'; q 2 fu:a:p:g; �'(q) � 1g+supfjM(fq)j; q 2 fu:a:p:g; �'(q) � 1g� "+ I(f); 8n � n0:Then kfko � I(f) + 2":Finally, sine " is arbitrary, we onlude thatkfko � I(f):Consequently, kfko = I(f):This ompletes the proof. �Theorem 3. If ' 2 �B12 \rB12 , then ( eB'a:p:; k�k')� is isomorphially isometrito ( eB a:p:; k�ko ). More preisely: if G is a linear ontinuous funtional on eB'a:p:then there exists a unique g 2 eB a:p: suh that:� G(f) =M(fg), 8f 2 eB'a:p: and� kGk = kgko .Conversely, the ondition ' 2 �B12 \ rB12 is neessary for this identi�ation.Proof: Consider the linear mappingA : (B a:p:; k � ko ) �! (B'a:p:; k � k')�g �! A(g); A(g)(f) =M(f � g):A is well de�ned. Moreover, using Lemma 6 we have:kA(g)k = supkfk'�1jA(g)(f)j = sup�'(f)�1jA(g)(f)j = kgko :A is then an isometry.It remains to show that A is surjetive. Let E = A(B a:p:). Then E is aomplete subspae of (B'a:p:)�. From Banah's lassial results, it is suÆient toshow that for eah F 2 (B'a:p:)�� suh that F (A(g)) = 0, 8g 2 B a:p:, we haveF (h) = 0, 8h 2 (B'a:p:)�.Let then F 2 (B'a:p:)�� be suh that F (A(g)) = 0, 8g 2 B a:p. Sine B'a:p:is reexive, there exists f 2 B'a:p: suh that �(f) = F , i.e.�(f)(A(g)) = A(g)(f) =M(f � g) = 0; 8g 2 B a:p:Using Lemma 6 we dedue that kfko' = 0 and so kFk = 0.
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