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Duality properties and Riesz representation
theorem in Besicovitch-Musielak-Orlicz

space of almost periodic functions
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Abstract. This paper is an extension of the work done in [Morsli M., Bedouhene F.,
Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-
Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43
(2002), no. 1, 103-117] to the Besicovitch-Musielak-Orlicz space of almost pe-
riodic functions. Necessary and sufficient conditions for the reflexivity of this
space are given. A Riesz type “duality representation theorem” is also stated.
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1. Introduction

The Besicovitch-Musielak-Orlicz space of almost periodic functions was re-
cently introduced in [9] and [10], where the authors characterized also some of its
metric properties with respect to the Luxemburg norm.

In the present work, this space is endowed with the so-called Orlicz norm.
Different properties and formulations of this norm are pointed out.

Next, necessary and sufficient conditions for the reflexivity of the space are

given. A Riesz type “duality representation theorem” is also stated in this space.

2. Preliminaries

Let ¢ be a Musielak-Orlicz function, i.e. ¢ : R x Rt — R* is such that:
(1) Vt € R, ¢(t,-) is convex on R*;
(2) Vz € R, ¢(-, ) is Lebesgue measurable on R and ¢(¢,2) = 0 iff z = 0,
vVt € R;

(3) Vt e R, e(t.z)

T

Ap(t7it) — 0

T

lim
z—+400

In the sequel we assume that ¢ verifies also the following two conditions:

= 400 and lim
x—0

(4) (") is continuous on R x R*;
(5) Yz € RT, (-, x) is periodic with period T independent of z (we may
suppose T = 1).
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We denote by ¢ the function complementary to ¢, i.e.

(t,@) = supfaoy — o(t,y)}, VEER, Vae R
y>0

Recall that ¢ is also a Musielak-Orlicz function (see [11]). The pair (¢, )
satisfies the Young inequality:

zy < @(t,x) +9(t,y) forall t€R, and z,y € RT.

Let now M(R,C) = M be the set of all Lebesgue measurable functions on R
with values in C. The functional

pp: M — [0, 4]

— 1 [T —
£ e =T o [ el 50D dt = Tl 1))

T—+oo T

is a convex pseudo-modular on M (see [1]). The associated modular space:

B = {feM:lm p.(af) =0}
= {feM:p,(\f) < +oc, for some A > 0}

is called the Besicovitch-Musielak-Orlicz space. This space is naturally endowed
with the Luxemburg norm:

11, =int {0, 5, (£) <1}.

We can also consider the so-called Amemiya norm defined as follows:

. 1
11112 = inf { 10, (k1) + 1.k > 0}
These two norms are in fact equivalent:

(2.1) 11l < WAIZ < 20 fllg, forall f e B (see [7]).

Let A be the set of all generalized trigonometric polynomials, i.e.,
ji=n

A={P,(t) = Zaje“‘ft, a; €C, X\j €R, neN}L
j=1

The Besicovitch-Musielak-Orlicz space of almost periodic functions denoted by
B¥a.p. is the closure of the set A with respect to the Luxemburg norm,

Bfa.p. = {f € BY : I{p,} € As.t. nll)g_loo If —palle = 0} .
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When ¢(t, z) = |z| the space B¥a.p. is denoted by Bla.p. The closure of the set
A with respect to the modular p, is the subspace of B¥ denoted by Bfa.p.:

B%ap.={f € B?:3{p,} € Asit. EIE po(a(f —pn)) =0 for some a > 0}.

Let {u.a.p.} denote the classical Bohr’s algebra of almost periodic functions. It
is known that {u.a.p.} is the closure of the set .4 with respect to the uniform
norm. It is easily seen that {u.a.p.} C B¥a.p. C B'a.p. Moreover, in view of
Theorem 2.8 in [2] we have the following property:
If f € {u.a.p.}, o(-,") is continuous and (-, z) is uniformly almost
periodic with respect to z then (-, |f(-)]) € {u.a.p.}.
Therefore a fortiori, this holds true for a Musielak-Orlicz function satisfying the
conditions (4) and (5) presented above.
A fundamental result concerning the functions in B¥a.p. is the following:

(2.2) If f€ B%a.p., then o(-|f(-)]) € B'a.p. (see [10]).

This property ensures the existence of the limit in the expression of p,(f).
In order to end this introductory section, we define the so-called Orlicz norm
in B¥a.p.,
1£11% = sup {M(|fgl), g€ BYap., pylg) <1}.
Using the Young inequality it is easy to see that

(23 115 < U2, forall £ € Beap.

3. Auxiliary results

The fundamental convergence results of measure theory cannot be used directly
in B¥a.p. A key role in our computations is played by the set function 7 defined
on the o-algebra X(R) = ¥ of Lebesgue measurable sets as follows:

— 1 [*T — 1
n(A)= 1l — t)ydt = 1i —u(AN[-T,+T
) = o7 /_T xaydi = lim opu(AN =T, +T),
where p denotes the Lebesgue measure on R. Note that & is not a measure.

We list here definitions and some properties concerning convergence type results
with respect to the set function 7.

Let {fn} be a sequence in B¥. We say that:

e {fn} is Tn convergent to f (and denote by f, N f) when, Vn > 0,
Jim 7i{t €R:[fo = fl >0} =0;

e {fn} is modular convergent to f when, Ja > 0 such that:

lim p,(a(fa—f)) = 0.

n—

We have the following relations between the different kinds of convergence:
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Lemma 1. (1) nEToo”fn - fll, =0 iff Ya>0, nETmpW(a(f” -f)=0
(see [11]).
(2) If lim_py(fa— f) =0 then f, 2, # (see Lemma 2 in [10]).

—+00

(3) Let {fu} C BY and f € BY. If f, - f and max(fn,f) < g with
g € B¥a.p., then p,(fn) — p,(f) (see Lemma 5 in [10]).

(4) Let {f,} C B¥ be such that f, -~ f and g(t,z) a continuous function
on R x Rt , periodic with respect to t. Then g(-, fa(-)) = g(-, f(-)) (see
the proof of Proposition 1 in [10]).

The following two results are very useful in our computations and proofs:
Lemma 2. Let f € B%a.p., p,(f) > 0, and {f,} be a sequence @ convergent
to f. Then we have:

(1) thereexista, 8,0 with0 < a < ;60 €]0,1[ and G = {t e R, < |f(t)] <
B} such that u(G) > 6 (see [10]);

(2) there exist o', 8,6 with0<a < ;6 €]0,1] and G, = {t e R’ <
|fu()] < B'} such that T(G,) >0 (see [8]).

In the following we denote by L¥(]0,1]) the usual Musielak-Orlicz space of
functions defined on [0, 1]. The proposition below shows that L#([0, 1]) is isomet-
rically imbedded into the Besicovitch-Musielak-Orlicz space of almost periodic
functions Ewa.p.

Proposition 1 ([10]). Let f € L¥([0,1]). Then,

(1) if f is the periodic extension of f to the whole R (with period T = 1),
we have fE g“aa.p.;

(2) the injection map i : L¥(]0,1]) — Béap., i(f) = f is an isometry with
respect to the modulars and for the respective Luxemburg norms.

Definition 1. e We say that a function f € B¥ is absolutely integrable
when:

Ve>0, 36>0 VQ e X, Q) <d= p,(fxg) <e.
e A sequence {f,} C B¥ is said equi-absolutely integrable when:
Ve>0, 30>0 Inge N VQeX, u(Q) <d and n>ng = py(fuxg) <e.
Remark that all the functions in B¥a.p. are absolutely integrable [10].
Lemma 3. Let {f,} C B' be 1t convergent to f € Bla.p. Then, if {f,} is
equi-absolutely integrable we have p1(fn,) — p1(f)-

n—-+4oo

Proor: Fix 6 > 0 and consider the set:

AL = {t e R:[fult) = F(1)] > 6}.
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Since the sequence {f,} is 7 convergent to f, we have

(3.1) lim_ (49 = 0.
Now
pi(lfn = f1) < pi(lfn — flxae) + p1(Ifa — fixcas)
< e fnlxae) + p1([flxas) + p1(Ifn = flxcas)
<

Pl(anAg) + p1(fXAgL) + 6.

Given any e > 0, the equi-absolute integrability of {f,} ensures the existence of
n; € N and é; > 0 s.t.

(3.2) VQ eSS, T(Q) <8 and n>ny = pi(faxo) < %

On the other hand the absolute integrability of f ensures the existence of a ds s.t.

(3-3) Q) < b2 = p1(fxq) <

N ™

Put § = min(d;,0d2). Then by (3.1) there exists ny € N s.t. Vn > ny we have
AP < 6. Hence for ng = max(ny,ns), we get ¥n > ng

=l

N ™

max(p1(fxas), p1(faxas)) <

and then:
VE>07 EanENa vn2n07 Pl(|fn_f‘)§5+0
Letting n tending to infinity we get:

lim pi(fn—f) 0.

n—+o00
Finally, since 8§ > 0 is arbitrary we deduce that lirf p1(fn —f) = 0, ie.
n—-+oo
pilfn) <2 p(f): O

Remark 1. Under the same hypothesis, the result of Lemma 3 remains true

when {f,} C B¥ and f € B¥a.p., i.e. py(fn) n_}—_|_>oo po(f)-

Corollary 1. Let {f,} C B¥ be such that 113_1 | fn—fllo =0, with f € B®a.p.
n o0
Then py(fn) _>—> po(f)-

n—-+4oo

PRrOOF: Since the sequence {f,} is & convergent to f, it suffices to show that it
is equi-absolutely integrable. In fact: py(fn) < 204 (2(fn — f)) + 390 (2f).
Given any € > 0, since 2f € B¥a.p. there exists 6 > 0 s.t. V@Q € ¥ we have
Q) <6 = pp(2fxq) <e.

241
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On the other hand there exists ng € N s.t. p,(2(fn — f)) <€, ¥Yn > ng. Finally,
we have the following:

pelfixa) < 5052 = NxQ) + 395(2fxQ) <& V> mo, VQET.

Lemma 4. (1) If f € B¥a.p. with ||f||, # 0, then Pw(ﬁ) =1.

(2) If f € BYa.p., g € B¥a.p., then f-g € B'a.p. Moreover we have the
so-called Hélder’s inequality

M(If-gl) <2017l - lgllw-
(3) If f € B?a.p., then [|f[|, < 2|l

Proor: (1) follows immediately from the property: ||f|l, = 1 iff p,(f) = 1 for
f € B?a.p. (see [10]).

(2) Let f € B%a.p., g € BYap., |flly # 0, llglly # 0. From the Young
inequality we have:

F@)] 9] ()] lg@)]
17le Talls =% (t’ ||f||¢> v (t’ ||g||¢> '

—( Ifg ) < f ) ( g )
M| ———— — 2
<||f||¢||g||¢ =2 \Tifm) P il ) =

M(|f-gl) <2l £llo - llgll-

On the other hand f - g € Bla.p. Indeed, let {p,}, {g.} be two sequences in A
such that lim ||p, — f]|=0and lim [|g, — g]| =0. Then
n—-+4oo n—+o00

Hence

Then

M(f-9=pn-tul) = M(f 9= fou+ ftn—Pn-nl)
< M(If-19 = anl) + M(Igul - |f = pul)
< 2([[flle - lg = anlly + llgnlle - [1f = pnlly)
< 2([fllg - Mlg = gnlly + (Slip llgnlle) - I1f = pnlly)-

Letting n tending to infinity, we get: 113_1 M(|f+g—pn-qn]) =0. Consequently
n [ee]
we have: f-g € Bla.p. and M(f-g9)=M(f-g) <2||flls - 19lle-

(3) Let f € B¥a.p., [|fl|% = sup{M(|fg]),g9 € B¥ap.,py(g) < 1}.
In view of Holder’s inequality we have:

M(|f - gl) < 20lfllg - lglly, Vf € B¥a.p., Vg€ Bap.



On the Orlicz norm in B¥a.p. 243

Hence

(3.4) 17115 < 2171l

4. Equality between Orlicz norm and Amemiya norm
We are now ready to state the following comparison result:

Theorem 1. If f € B¥a.p., then

. 1
111 = int {50+, (k). > 0}
Moreover,
IfIlg = ( + py(kof)), for some ko > 0.

ProoF: I) We suppose first that o is strictly convex with respect to z for all
t € R and has a continuous derivative ¢ (t,2) = ‘;—“;(t, z) on R x R*. In this case
the conjugate function ¢ verifies the same properties as .

We prove the theorem in several steps:

Step 1. Case where f = p is a generalized trigonometric polynomial. In view of
the inequality (2.3) it suffices to show the converse inequality:

1
g > k_o(l + py(kof)), for some ko > 0.

For, consider the function F(k); k > 0 defined as follows,
+T

F(k) = pu( ClpOD) = T 5 [ e i) .

We claim that kli:r_l F(k) = +oo. Indeed, from Lemma 2 there exist a > 0,
—+400
6 €]0,1] and a set G = {t € R : |p(t)| > a} such that 7(G) > 6. Then

Py > Em oo f ity (1 ko)) dt
T,+TING

T—+o0 2
S 1
> i —
- TETDO 2T [-T+TING %g}gw(t 14 (t ka))d
> (G P(to, ¢ (to, ka))
> 0p(to. ¢ (to, ka))
>

83 (tg, LZ;’“‘)) .
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Since lim @ =400, Vt€R, we get lim F(k) = +oo.
k—+o00

z—+400
We will show now that F is continuous on [0, +o00[. Let k. € [0, +oc[ and {k,}
be a sequence in [0, +oo[ convergent to k.. It is clear that

knlp(-)| is 7 convergent to k.|p(-)|.

Moreover, using Lemma 1(4), we get:

0 (o knlp()) = @ (L Ralp()).

Since {k,} is bounded we have max(¢' (-, kalp(-)]), ¢ (- kulp(-)])) < ¢ (-, M|p()])
with ¢ (-, M|p(")]) € {w.ap.} C BYap. Using Lemma 1(3), we deduce that
im_py (¢ (+kalp()) = pul¢ (- kulp())). This proves the continuity of F.

Consequently, since F'(0) = 0 and \ lir+n F(k) = 400, there exists a ko €]0, +00]
—+00

such that py (¢ (-, ko|p(-)|)) = 1. Now, considering the case of equality in Young’s
inequality we get

Il > 5 (Kalole' (- olo)))
(4.1) > (potholal) + oo Coolp()1))
> o (polkolpl) + ).

Combining inequalities (4.1) and (2.3) we get

1+ p¢<kp|>>} = = (pullln) + 1),

x| =

Il = inf {
Note also that we have

(4.2) IplIZ, = M (Ip()]¢' (- kolp(-)]))-

Step 2. Now we will prove that the result remains true for f € B¥a.p.
Let {p.} C A be such that lirf llpn — fll, = 0.
n—-+oo

From Step 1, for all n € N, there exists k,, €]0,+oc[ such that

(4.3) [Pallf = 7= (po(knp) + 1)

1
k,
Using the inequality (3.4), we get

1 e}
7 < lpnlly < 2[pally < 2sup||[pally,
n n
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hence
1
n> o
2supy, [|Ipnll,
On the other hand {k,} is bounded from above. Indeed, in the opposite case, there
will exist a subsequence still denoted by {k,} such that lig_] kn = +o00. Then,
n——+0o0o

k =C; >0, VneN

again from Lemma 2, there exist a > 0, § €]0,1[ and G,, = {t € R : |p,(t)| > a},
such that 7(G,) > 0. Thus,

I —_— 1 !
= (¢ CalpnOD) 2 B om |l ()
. 1 ,
T .
- Tgrfw 2T [T, +T|NG» gg}gw(t, 14 (t, kna)) di
> (@)(to, ¢ (to, ka))
> 91/)(750780, (to, knav))
>

61/) <t0= cp(t()?kna)) )
kna

and then 1lim py (@ (-, kn|pn(-)])) = 400, a contradiction.
n—+oo

Now {k,} being bounded, there exists a subsequence denoted again by {k,}
that converges to some ky > 0. We have lirf lknpn — kofll, = 0 and by
n—-—+0o0

Corollary 1 we deduce that

lim py(knpn) = pnp(kOf)'

n—+o00

Finally, using inequality (3.4) and letting n tending to infinity in (4.3) we get:

n n—+oo n

1 1
111 = Jim ol = i (7 (oolapn + 1)) = 1 (5 (haf) + 1)

IT) To complete the proof of the theorem, we will prove that the result remains
true for a general Musielak-Orlicz function .
Indeed, for all € > 0, we can find a Musielak-Orlicz function . with a contin-

uous derivative ¢, = 55“;5 (t,x) on R x Rt verifying the inequality

o(t,7) < pe(t,7) <ot (1+e)z), VEER VoeR'.

An example of such a function . is the following (see [3], [7]),

* 1 (1+E) gO(t,S) +
gos(t,x) —m/m p dS, VtE]R, Ve € R".

*0e(t, z) verifies pe(t,z) = 0 iff z = 0 for all ¢t € R.
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Moreover, defining the new function
o (t,2)t = p(t,(1 + )z —eln(z + 1)),

we can easily check that (¢ is strictly convex with respect to z € Rt for all t € R
and satisfies the inequality

p(t,z) <@ (t,x) < @(t, (1 +e)z), VEER, VreR'.

Summing up, we claim that for all e > 0, there exists a strictly convex Musielak-
Orlicz function ¢. with a continuous derivative ¢_(t,z) = ‘;f; (t,z) on R x R*
satisfying:

(4.4) p(t,7) < . (La) < plt, (1 +€)a).
From this, it follows immediately (see [3], [7]) that:
B¥a.p. = B¥a.p.
and

(4.5) 17112 < IFllz, < @ +lfE s I < IFIS, < L+l fg:

Recall that it was proved in Step 1 that,
(4.6) 1£1%, = I£115.

This equality remains true for ¢. Indeed, we already know that || f||2 < ||f||:2
Then using (4.6) and (4.4) we can write

A5 < NF1E < MANG. = 1A, < e+l

Finally, since € is arbitrarily small, we deduce that

112 = I£115-
To end the proof, let us show that

1
fI1 = ™ (pylkof) +1) for some ko > 0.

For all € > 0 we have
1
112, = == (oo (e ) + 1),

for some k. > 0 such that
po. (. (k=) = 1.

tSince the function (1 + &)z — eln(1 + ) is s.c. and @(t,z) = 0 iff & = 0 then ¢°(¢,z) is
strictly convex (see [5]).
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Using the same reasoning as in the previous part, we can deduce that the se-
quence {k.} is bounded. Then we can extract a subsequence also denoted by
{ke} convergent to some kg > 0.

Now, we have from (4.5) that

1915 = i = (e (b $)+ 1)

On the other hand

1

£ (o) + 1) S 1 (e (ko §) 4 1) < - (palRe(L42)1) + 1),

?r'|,_\

Letting ¢ tending to zero together with the continuity of the function @ —
ps(af) we deduce that:

1 1
lim k_s(p%(k f)+1) = ko (po(kof) +1) = ”ng

e—0
This completes the proof of Theorem 1. d

Lemma 5. The Orlicz norm is equivalent to the Luxemburg norm in B¥a.p.

I£1le <A < 201flly, f € BYap.

PRroOOF: This is an immediate consequence of (2.1) and Theorem 1. We give here
another and direct proof of this result. It remains only to prove the left inequality,
or equivalently that pw(ﬁ) <1.
First let p € A, p # 0 and let ¢ € B¥a.p.; then we have to consider two cases:
* py(g) <1, in this case we have M(|p- g|) < ||pl|%;
e py(g) > 1 in this case we have py(5-4) < pwl( 7+ pulg) < 1, hence

M(lp- 52571 < llpllg-
It follows that in each case we have
M(|p- gl) < max(1, py(9))lpll5-

Using the case of equality in Young’s inequality we get for a suitable g,

(nzﬁw) +oulo) = (\ﬁ 9\) < max(L, py(9)),

and then ”*”(W) <1
Let now f € B¥a.p. satisfy || f|| # 0 and take {p,} in A such that Erf llpn —
n (e}

flle =0.
Let k, = ——. From inequality (3.4) we have lim k, = kg =
Hp"H<p n—+oo I

If112

. Then

ngffwllknpn - k'ochp =0,

247
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and using Corollary 1 we deduce that

Dn f )
Pe (npnn;) nSreo P <||f||g, '

Now since pW(HP B ) <1, for all n € N, it follows that pg,(ITfHLO) < 1. Finally, we

have

1flle < IAIS < 20171,

5. Duality in B%a.p.
5.1 Reflexivity of the space E“’a.p.

Definition 2. We say that ¢ satisfies the AQBI condition if there exist a constant
k > 0 and a positive function h with p; (h) < 400 such that,

o(t,2z) < ko(t,z) + h(t), for almost all t € R, and all z € RF.

1
We say that ¢ is Vfl if o is AP .

Definition 3. The function ¢ is uniformly convex on RY (see [6]) when, Ya €
10,1[,3é(a) €]0,1][, Vb € [0, qa):

z+ by o(t, ) + o(t, by)

) < (1 - () S AR,

for almost all £t € R and all z € RT.

o(t,

Theorem 2. The space B?a.p. is reflexive iff ¢ € AQBI N VQBI.

PROOF: Necessity: suppose that B¥a.p. is reflexive. From [10] we know that
B¥a.p. contains an isometric copy of the Musielak-Orlicz space L#?[0, 1]. From [6]
a necessary and sufficient condition for the reflexivity of L¥[0, 1] is that ¢ satisfies
the AL" VL' condition?. In this case ¢ satisfies also the AB" N VB" conditions
(see the proof of Theorem 1 in [10, p.457]).

Sufficiency: Suppose that ¢ € A2Bl N V2Bl. One can see directly that ¢ €
A%l N V%l. Then from [6] there exists a Musielak-Orlicz function ¢; defined on
[0,1] x R* uniformly convex and equivalent to the restriction of ¢ on [0,1] x RT.
Now the I-periodic extension of ¢; denoted by 3%, defined on R x Rt is also
uniformly convex and equivalent to ¢. We deduce that (B¥1a.p., | - |z,) is
uniformly convex (see [9]) and so reflexive. Hence B¥a.p. is reflexive. O

fwe say that ¢ is ALI if there exist a constant £ > 0 and a positive function h with
fo t)dt < +00 s.t. ¢(t,2z) < kp(t,z) + h(t), for almost all ¢ € [0,1] and all z > 0.

From the construction of @1 made in [6] page 61, we remark that @1 inherits the continuity
of p on R x R,
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5.2 Riesz representation theorem in B¥a.p.. In view of (4.4), we may sup-
pose in the following that ¢ has a continuous derivative ¢ and is strictly convex

(or equivalently that © (t,) is strictly increasing with respect to x € Rt and all
t € R).

Lemma 6. If f € BYa.p. then

1115 sup{|M(f - g)|,g € B®a.p., py(g) <1}
= sup{|M(f-g)l.g € {uap}, pylg) <1}

PRroOF: Consider the case f = p € A. From the Hoélder’s inequality we have:

M(p-q)l < M(lp-ql) <|lplly, Vg €{uap}, pyla) <1

From the proof of Theorem 1, we know that there exists kg > 0 such that
pe(¥ (-, kolp(-)])) = 1, and

lplly, = M (Ip() (o kolp()DI) = M (p() sign p()e (- Kolp()])) -

Note that sign p(-)4 (-, ko|p(-)]) € {u.a.p.}. Indeed, let

u ,
— ) (t,kolu if u#0,
F(t,u) _ ‘u| ( 0| D 7£
0 else.

Then F' is continuous on R x Rt and periodic in ¢ uniformly with respect to .
Since

sign p(t)y) (¢, kolp(t)]) = F(t,p(t))
the conclusion follows from Theorem 2.8 in ([2]). Summarizing all these, we have
llplly, = M(p- q), where g(-) = sign p(-)¥ (-, ko|p(-)]). Then we can assert that:

(5.1) llplly, =sup{|M(p-q)|, q € {u.ap.}, p,(q) <1}

Now let us show that (5.1) remains true for f € B%a.p. Let {p,} C A be a
sequence such that: liIJ_l llpn — flly = 0 and consider the quantity
n—-+0oo

I(f) =sup{|M(f - 9)|, q€{uwap}, py(q) <1}.
It is clear that we have

1) < I

Moreover, for a fixed £ > 0, we have || f[[}, < [|pally, +¢, ¥R > no, for some ng > 0.
Hence

1 £1l5 — & < llpnlly, = sup{|M (pn - )|, ¢ € {u.a.p.}, py(q) <1}

249



250 A. Daoui, M. Morsli, M. Smaali

Using Holder’s inequality we assert that:

Ipnlly, < sup{llpn — flly - llalle, g € {v.ap.}, pylq) <1}

+sup{|M(fq)|, ¢ € {u.ap.}, py(q) <1}
< e+ I(f), Yn > ng.

Then

AN < I(f) + 2e.
Finally, since € is arbitrary, we conclude that

1115 < I(f).
Consequently,

1£115 = 1(f)-
This completes the proof. O
Theorem 3. If ¢ € AP'NV5 | then (B?a.p., ||- llo)* is isomorphically isometric
to (BYa.p., || l|7,). More precisely: if G is a linear continuous functional on B¥a.p.

then there exists a unique g € E’pa.p. such that:
o G(f) = M(fg),Vf € B?a.p. and
o |Gl =llgll-

Conversely, the condition ¢ € AB' N VP is necessary for this identification.
ProOF: Consider the linear mapping

A (BYap, |-17) — (B2ap., |-l
9 — Alg), Al@f)=M(f-g)

A is well defined. Moreover, using Lemma 6 we have:

Al = sup [A(g)(f) = sup [A(g)(f)| = llglly-
71, <1 pe(£)<1

A is then an isometry.

It remains to show that A is surjective. Let E = A(BYa.p.). Then E is a
complete subspace of (B¢a.p.)*. From Banach’s classical results, it is sufficient to
show that for each F € (B¥a.p.)** such that F(A(g)) = 0, Vg € B¥a.p., we have
F(h) =0, Yh € (B¥a.p.)*.

Let then F € (B¥a.p.)** be such that F(A(g)) = 0, Vg € B¥a.p. Since B¥a.p.
is reflexive, there exists f € B¥a.p. such that n(f) = F, i.e.

7(f)(A(9) = A(9)(f) = M(f - 9) =0, Vg€ B ap.

Using Lemma 6 we deduce that || ||, = 0 and so ||F|| = 0.
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Conversely, if the identification (E“aa.p.)* = E’pa.p. holds, we will also have

(B?a.p.)** = (B¥a.p.)* = B%a.p.

So E“"a.p. is reflexive and, consequently, ¢ € AQBI N VQBI. O

1]
2]

(3]

(10]

(11]
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