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Distint equilateral triangle dissetions of onvex regionsDiane M. Donovan, James G. Lefevre,Thomas A. MCourt, Niholas J. CavenaghAbstrat. We de�ne a proper triangulation to be a dissetion of an integer sidedequilateral triangle into smaller, integer sided equilateral triangles suh that nopoint is the vertex of more than three of the smaller triangles. In this paperwe establish neessary and suÆient onditions for a proper triangulation of aonvex region to exist. Moreover we establish preisely when at least two suhequilateral triangle dissetions exist.We also provide neessary and suÆient onditions for some onvex regionswith up to four sides to have either one, or at least two, proper triangulationswhen an internal triangle is spei�ed.Keywords: equilateral triangle dissetion, latin tradeClassi�ation: 05B451. IntrodutionThe dissetion of an integer sided equilateral triangle into smaller, integer sidedequilateral triangles is a lassi problem onsidered by Tutte [12℄. He showedvarious properties of suh a dissetion, inluding the fat that some of the smallertriangles must have equal sides.If we apply an extra restrition to suh a dissetion, namely that no point isthe vertex of more than three of the smaller triangles, then the dissetion givesrise to a latin trade within the addition table for the integers modulo n ([3℄). Weall suh a dissetion a proper triangulation. (It was Dr�apal, in [3℄, who �rstobserved the onnetion between latin trades and proper triangulations, and asa onsequene of this in some papers (see [2℄ and [11℄) proper triangulations arealso known as Dr�apal Triangulations.) More details about this onnetion andlatin trades may be found in [1℄, [3℄, [4℄, [6℄ and [7℄.This appliation of triangle dissetions to latin trades is our key motivation. Inpartiular, the results in this paper are applied to lassify aws in ryptographiappliations of latin squares [2℄. However, the results have some geometri interestin their own right.It is onjetured that there exists a onstant  suh that for eah integer n, thereexists a non-trivial proper triangulation of an integer sided equilateral triangleontaining at most  log p triangles, where p is the least prime that divides n([3℄). The results in this paper may provide insights into this question. A further



190 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. Cavenaghpossible appliation is the enumeration of proper triangulations (see [5℄). Other,laterally related result on triangulations inlude [8℄, [9℄ and [10℄.In Setion 2 we introdue neessary terminology. In Setion 3 we establishpreisely when a onvex regions has at least one or at least two proper triangula-tions (Theorem 3.6). In Setion 4 we onsider the same question when an internaltriangle is spei�ed; our results are restrited to onvex region with at most foursides whih are not retangles.2. Proper triangulationsFor ease of notation we onsider the equivalent problem of dissetions of right-angled isoseles triangles into smaller suh objets, where eah triangle has hy-potenuse of gradient �1. To see this equivalene, onsider suh a dissetion withthe large triangle lying in the �rst quadrant with its right angle at the origin.Then the linear transformation T (x) = xA given byA = � 1 00:5 p3=2 �shows the equivalene to an equilateral triangle dissetion.Let k; i; xi; yi 2 Z and 0 � i � k� 1. Let R = (x0; y0); (x1; y1); : : : ; (xi; yi); : : : ;(xk�1; yk�1) be a sequene of points whih satis�es the following ondition: forall 0 � i � k � 1,xi = xi+1 (mod k) or yi = yi+1 (mod k) or xi + yi = xi+1 (mod k) + yi+1 (mod k):Then we say that R is a region in the plane R2 . The redued form R0 of R isformed by suessively deleting any points (xi; yi) from R whenever (xi�1; yi�1),(xi; yi) and (xi+1; yi+1) are ollinear.If the straight line segments between (ui; vi) 2 R0 and (ui+1 (mod l); vi+1 (mod l))2 R0, 0 � i � l�1 = jR0j�1, form the boundary of a onvex polygon (where R0 isthe redued form of R), then R is alled a onvex region. Furthermore, the regionR is denoted by R = (x0; y0) ! (x1; y1) ! : : : ! (xi; yi) ! : : : ! (xk�1; yk�1),and if 1 < jRj, we refer to the elements of the redued form of R as the ornersof R.If the redued form of R has preisely three orners, then R is said to be atriangle. Let 0 � x, denote the regionFT (z1;z2)x = (z1; z2)! (z1 + x; z2)! (z1; z2 + x) as a forward triangle andBT (z1;z2)x = (z1; z2)! (z1 � x; z2)! (z1; z2 � x) as a bakward triangle :Let R be the union of regions R1; R2; : : : ; Rt; that is, R = S1�i�tRi. If foreah 1 � i < j � t, the regions Ri and Rj interset in at most their respetiveboundaries, then fRi j 1 � i � tg is alled a tessellation of R and eah Ri is asubregion of R.



Distint equilateral triangle dissetions of onvex regions 191If eah of the subregions Ri is a triangle, R is said to have a triangulation,namely fRi j 1 � i � tg, furthermore eah subregion, Ri, is referred to as asubtriangle of R. If, in addition, eah element (a; b) 2 R is the orner of atmost three distint subtriangles, fRi j 1 � i � tg is alled a proper triangulationof the region R. It is this property whih makes the problem of �nding propertriangulations of a spei�ed region non-trivial.Example 2.1. In Figure 1 we provide an example of a region, R, that has atriangulation but no possible proper triangulation and a region S that has aproper triangulation.Figure 1. A triangulation and a proper triangulationR S
Consider the following group of matries, isomorphi to the Dihedral groupD6:G =� � 0 11 0 � ; � 0 1�1 1 � �.Let � 2 G, (p; q) 2 R2 and S � R2 . In this paper the set f(m;n)� + (p; q) j(m;n) 2 Sg is denoted by S�+ (p; q).If there exists some (i; j) 2 Z2 and some � 2 G suh that R2 = R1�+(i; j), thenR1 and R2 are said to be equivalent . Observe that the property of possessing aproper triangulation is invariant under this equivalene, even though the gradientsof lines may hange. We frequently make use of this observation.Reall that, for a proper triangulation, the ondition that eah vertex of atriangle is the vertex of at most three triangles must be satis�ed. Suppose thatfRi j 1 � i � pg is a tessellation of a region R and that eah subregion Ri has aproper triangulation Qi, where 1 � i � p. Then the set of triangles[1�i�pQidoes not neessarily form a proper triangulation of R.Example 2.2. In Figure 2 we provide an example of a tessellation of a region Rfor whih eah region has a proper triangulation and the union of the subtrianglesdoes not yield a proper triangulation of the region R.To avoid this problem, whenever two distint regions Ri and Rj in the tessel-lation of R both have a triangulation ontaining more than one triangle, then weensure that their boundaries do not share a line segment of non zero length.



192 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghFigure 2. Failing to onstrut a proper triangulationR1Dr�apal Triangulations of eah subregion
Triangulation of R

R2R2R1
Original tessellation of R

Example 2.3. In Figure 3 we provide an example of a tessellation of a region Rfor whih eah region has a proper triangulation and the union of the subtrianglesyields a proper triangulation of the region R.3. Proper triangulations of onvex regionsFor �; � 2 Z, let:Z0 = (0; 0),Z1 = (0; 0)! (1; 0)! (1; �)! (0; �) where 0 < �,Z2 = (1; 0)! (�; 0)! (�; 1)! (0; 1) where 0 < �,Z3 = (�; 0) ! (�; �) ! (0; �) ! (0; � � 1) ! (�� 1; � � 1)! (�� 1; 0)where 1 < �; �,Z4 = (2; 0)! (2; 2)! (0; 2)! (0; 1)! (1; 0),Z5 = (3; 0)! (3; 1)! (1; 3)! (0; 3)! (0; 1)! (1; 0) andZ6 = (2; 0)! (2; 1)! (1; 2)! (0; 2)! (0; 1)! (1; 0).Let Z be the set of all regions equivalent to any Zi, where 0 � i � 6 (see theAppendix for an illustration of these regions).By inspetion, the regions equivalent to Zi where 0 � i � 5 have a uniqueproper triangulation, while Z6 has no proper triangulation. The aim of this



Distint equilateral triangle dissetions of onvex regions 193Figure 3. Construting a proper triangulationOriginal tessellation of R

Dr�apal Triangulation of R
R2 R3R1 R4R1 R2 R3Dr�apal Triangulations of eah subregion R4

setion is to show that any onvex region not belonging to Z has at least twoproper triangulations (Theorem 3.6).We begin by investigating when it is possible for a region with three or foursides to have at least two distint proper triangulations.Lemma 3.1. Let R be a region with three or four orners (sides). Thus R isequivalent to R1 = (Æ; 0)! (0; Æ)! (0; 0); orR2 = (�; 0)! (�; �)! (0; �)! (; 0);where 0 < Æ, and either  = 0 and 0 < � � �, or  = � and 0 < � < �. ThenR has a proper triangulation. Further, if 1 < Æ, there exists a seond distintproper triangulation of R1 and, unless R2 is equivalent to Z1 or Z2, there existsa seond distint proper triangulation of R2.Proof: Sine R1 is a triangle, a proper triangulation trivially exists. If Æ = 1,then, by inspetion, R1 = FT (0;0)1 has preisely one proper triangulation. However



194 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. Cavenaghif 1 < Æ, then fFT (1;0)Æ�1 g [ fFT (0;0)1 g [ [1�i�Æ�1fFT (0;i)1 ; BT (1;i)1 gis a seond distint proper triangulation of R1.There are two ases to onsider for R2: Case A,  = 0 and Case B,  = �.Case A:  = 0.Consider the tessellation fFT (0;0)� ; BT (�;�)� R3 = (�; 0) ! (�; �) ! (�; �) !(�; 0)g of R2. If � = �, then R3 is empty and we are done. Otherwise, R3 is aretangular region with area stritly less than ��. Thus, by reursion, R1 has aproper triangulation.If � = 1, then R is equivalent to Z1 and by inspetion it has preisely oneproper triangulation. When 1 < �, the seond distint proper triangulation isobtained by applying the argument given for R1 to the triangle FT (0;0)� .Case B:  = �.Let 1 < �. Consider the tessellation fBT (�;�)� ; S = (�; 0) ! (�; �) !(�; �) ! (�; 0)g of R2. If 1 < � � �, the argument presented in Case A im-plies S has two distint proper triangulations. If � � � = 1, then the abovegives one proper triangulation. Consider the proper triangulation fBT (�;�)� g [S1�i��fFT (i;��i)1 ; BT (i;��i+1)1 g of R2. This yields a seond distint proper tri-angulation of R2.If � = 1, then R2 is equivalent to Z2 and by inspetion it has preisely oneproper triangulation. �An L-region will be de�ned to be a region equivalent to(Æ; 0)! (Æ; �)! (0; �)! (0; �)! (; �)! (; 0);where 0 < � < � and 0 <  < Æ.In order to obtain a similar result to Lemma 3.1 for onvex regions with �vesides we �rst prove the following result detailing when an L-region has at leasttwo distint proper triangulations.Lemma 3.2. Let 0 < � < � and 0 <  < Æ. The L-region L1 = (Æ; 0)! (Æ; �)!(0; �)! (0; �)! (; �)! (; 0) has a proper triangulation, and a seond distintproper triangulation when L1 is not equivalent to Z3.Proof: Several ases are onsidered whih, together with the assoiated ondi-tions, are summarized in the following table.Case A Case B Case C Case D�+  � Æ; � Æ � �+  < � � � �+  < Æ �+  < �; ÆCase A: �+  � Æ; �.



Distint equilateral triangle dissetions of onvex regions 195Consider the tessellation R = fBT (Æ;�)�+Æ���; R1 = (Æ; 0) ! (Æ; � +  � Æ) !(; �) ! (; 0); R2 = (; �) ! (� +  � �; �) ! (0; �) ! (0; �)g of L1. ByLemma 3.1, L1 has a proper triangulation.Provided R1 or R2 are not both equivalent to Z2 then Lemma 3.1 implies thereexists a seond distint proper triangulation of L1. When both R1 and R2 areequivalent to Z2, then ��� = Æ� = 1, L1 is equivalent to Z3 and by inspetionit has preisely one proper triangulation.Case B: Æ � �+  < �.Consider the tessellation fBT (Æ;�+)Æ ; FT (0;�) ; R1 = (Æ; 0) ! (Æ; � +  � Æ) !(; �)! (; 0); R2 = (Æ; �+)! (Æ; �)! (0; �)! (0; �+)g of L1. As �+ < �,R2 is not equivalent to Z0. By Lemma 3.1, L1 has a proper triangulation. If atleast one of R1 and R2 is equivalent to neither Z1 nor Z2, then L1 has a seonddistint proper triangulation.If 1 < , then, by Lemma 3.1, FT (0;�) (and hene L1) has a seond distintproper triangulation.If R1 and R2 are eah equivalent to either Z1 or Z2 and  = 1, then Æ� =  =� � ��  = 1, hene, Æ = 2. Consider the tessellation fBT (2;�+2)2 ; FT (0;�)2 ; R1 =(2; 0) ! (2; �) ! (1; �) ! (1; 0)g of L1. By Lemma 3.1 there exists a seonddistint proper triangulation of L1.Case C: � � �+  < Æ.Via the transformation L1 [ 0 11 0 ℄ this region is equivalent to the region in Case B.Case D: �+  < �; Æ.Consider the tessellation fBT (�+;�+)�+ ; FT (0;�) ; FT (;0)� ; R1 = (Æ; 0) ! (Æ; �)! (0; �) ! (0; � + ) ! (� + ; � + ) ! (� + ; 0)g of L1. Observe that R1is an L-region, so is equivalent to one of the regions given in Case A, B, C or(reursively) D. For Cases B and C, there exists at least two distint propertriangulations so we are done. Otherwise we have the following subases:Subase D:1: Suppose that R1 is equivalent to a region given in Case A. Ifeither � 6= 1,  6= 1, � � � �  6= 1 or Æ � � �  6= 1, then, by Lemma 3.1, thereexist two distint proper triangulations of L1.Otherwise, � =  = � � ��  = Æ � ��  = 1. Then � =  = 1 and � = Æ =3. Consider the triangulation fBT (3;3)3 ; BT (2;1)1 ; FT (0;1)2 ; FT (1;0)1 ; FT (2;0)1 g of L1.This is a seond distint (to the above) proper triangulation of L1.Subase D:2:Otherwise R1 is equivalent to a region given in Case D. Note that R1 has areastritly less than L1, so by reursion there exists a proper triangulation of R1.Moreover, the tessellation of R2 ontains the triangle FT (0;�+)�+ . But �+  � 2,so by Lemma 3.1 there exists a seond distint proper triangulation. �We will now make use of Lemmas 3.1 and 3.2 to determine when there existspreisely one and when there exists at least two distint proper triangulations ofonvex regions with �ve sides.



196 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghLemma 3.3. Let R be a onvex region with �ve orners (sides). Then R has aproper triangulation. Moreover, whenever R is not equivalent to Z4 then R hasa seond distint proper triangulation.Proof: Under the appropriate transformation, we may assume without loss ofgenerality that R = (�; 0) ! (�; ) ! (0; ) ! (0; �) ! (�; 0), where 0 < � <� � .Consider the tessellation fBT (�;�)� ; R1 = (�; 0) ! (�; ) ! (0; ) ! (0; �) !(�; �) ! (�; 0)g of R. By Lemma 3.2 the region R has a proper triangulation.Provided R1 is not equivalent to Z3 ( � � 6= 1 or � � � 6= 1), Lemma 3.1and 3.2 imply a seond triangulation of R1, and so R has a seond distint propertriangulation.Suppose that R1 is equivalent to Z3. Then  � � = 1 and  = �. If inaddition � = 1, then � =  = 2, and hene R = Z4; otherwise 2 < � = and fBT (�;) gS1�i���1fFT (i�1;�i)1 ; BT (i;�i)1 gSFT (��1;0)1 is a seond distintproper triangulation of R. �We will now prove another tehnial lemma whih we will use to establish whena onvex region with six sides has a proper triangulation and when it has at leasttwo distint proper triangulations.Let R be a region equivalent to(�; 0)! (�; Æ +  � �)! (; Æ)! (; Æ � )! (0; Æ)! (0; �)! (�; 0)with 0 � � < �; Æ; 0 <  < �; Æ + 1; and 0 � Æ +  � � (this region is illustratedin Figure 4). Figure 4. Illustration of the region R.(; Æ)
(�; Æ +  � �)

(0; Æ)
(0; �) (�; 0)(�; 0) (; Æ � )

It will be shown that R possesses at least two distint proper triangulations,exept when R is equivalent to any of the following (see the Appendix for illus-trations):



Distint equilateral triangle dissetions of onvex regions 197X1 = (�; 0)! (�; ��1)! (��1; �)! (��1; 1)! (0; �)! (0; ��1)!(� � 1; 0);X2 = (3; 0)! (1; 2)! (1; 1)! (0; 2)! (0; 1)! (1; 0);X3 = (3; 0)! (3; 1)! (1; 3)! (1; 2)! (0; 3)! (0; 1)! (1; 0);X4 = (3; 0)! (3; 2)! (2; 3)! (2; 1)! (0; 3)! (0; 1)! (1; 0);X5 = (�; 0) ! (�; � � 2) ! (� � 1; � � 1) ! (� � 1; 0) ! (0; � � 1) !(0; � � 2)! (� � 2; 0).Let X be the set of all regions equivalent to any Xi, where 1 � i � 5.By inspetion the regions equivalent to Xi, where 2 � i � 5, have a uniqueproper triangulation. Furthermore, by inspetion, the region X1 has no propertriangulation.Lemma 3.4. Let 0 � � < �; Æ; 0 <  < �; Æ + 1; and 0 � Æ +  � �. The regionR = (�; 0) ! (�;  + Æ � �) ! (; Æ) ! (; Æ � ) ! (0; Æ) ! (0; �) ! (�; 0)has a proper triangulation if and only if R 6= X1 and a seond distint propertriangulation if and only if R is not equivalent to any Xi, where 1 � i � 5.Proof: Consider the transformation R�+(Æ+; 0), where � = ��1 0�1 1 � 2 G. Thistransformation replaes � with Æ +  � � and � with Æ +  � �. Hene, withoutloss of generality, we may assume that Æ +  � � � �.Several ases are onsidered whih, together with the assoiated onditions,are summarized in the following table.Case A Case B Case C Case D < Æ;  + 2 � �;  < Æ;  + 2 � �;  < Æ; � =  + 1 Æ = � <  � � For Case B several additional subases are onsidered whih are summarizedin the following table.B1 ��  �  + Æ � �B2 ��  <  + Æ � � B2:1 � �  > Æ � �B2:2 � �  = Æ � � B2:2:1 � � 2B2:2:2 � � 1Case A:  < Æ,  + 2 � � and � < .The onditions for this ase together with the assumption Æ+ �� � � implyÆ < �.Consider the tessellation fFT (�;0)Æ�� ; R1 = (�; 0) ! (�;  + Æ � �) ! (; Æ) !(; Æ � ) ! (Æ; 0); R2 = (�; 0) ! (�; Æ � �) ! (0; Æ) ! (0; �)g of R. ByLemmas 3.1 and 3.3, there exists a proper triangulation of R.Unless either R1 is equivalent to one of Z2 or Z4 or R2 is equivalent to one of Z0or Z1, Lemmas 3.1 and 3.3 imply the existene of a seond proper triangulationof R.Suppose that R1 is equivalent to Z2.Then � � Æ = 1 and Æ +  � � = 0, so  = 1.



198 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghThus � = 0 and R2 is equivalent to Z0. In this ase Lemma 3.1 applied to R3in the tessellation fFT (1;0)Æ ; R3 = (1; 0)! (1; Æ� 1)! (0; Æ)! (0; 0)g veri�es theexistene of a seond proper triangulation of R.Otherwise suppose R1 is equivalent to Z4. Then  = 2, �� = 2, ��Æ = 1 andÆ +  � � = 1. Hene � = 4, Æ = 3 and sine Æ +  � � � � and � <  it followsthat � = 1. In whih ase fFT (0;1)2 ; FT (2;0)2 ; FT (1;0)1 ; FT (2;2)1 ; FT (3;1)1 ; BT (1;1)1 ;BT (2;1)1 ; BT (3;2)1 ; BT (4;1)1 g is a seond distint proper triangulation of R.Subase B1:  < Æ,  + 2 � �,  � � and ��  �  + Æ � �.From the onditions for this subase and the assumption that 0 <  it followsthat  + Æ � � < � or equivalently  + Æ � � < �.Consider the tessellation fFT (;��)Æ+�� ; R1 = (�; 0)! (�; + Æ��)! (2+ Æ��; � � ) ! (; � � ) ! (�; 0); R2 = (; � � ) ! (; Æ � ) ! (0; Æ) ! (0; �)gof R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.By Lemmas 3.1 and 3.3 either there exists a seond proper triangulation of Ror R1 is equivalent to an element of fZ0; Z1; Z2; Z4g and R2 is equivalent to Z1.Heneforth, assume the latter.Suppose that Æ = 2. Then  = � = 1 and so R is equivalent to X2 and byinspetion there does not exist a seond distint proper triangulation of R. Thus,Æ > 2.Sine R2 is equivalent to Z1, either  = 1 or Æ � � = 1.First suppose  = 1 and Æ � � = 1. The fat that Æ > 2 implies � > 1. Inthis ase onsider the tessellation fFT (0;Æ�1)1 ; FT (1;Æ�1)1 ; BT (2;Æ�1)2 ; R3 = (�; 0)!(�; Æ +  � �)! (2; Æ � 1)! (2; �� 2)! (�; 0)g.Seondly, suppose  = 1 and Æ�� > 1 and so Æ � �+2. Furthermore Æ�� > 1implies that  + Æ � � > 2, so R1 is not equivalent to Z4; thus � � 2. If � = 1,then R1 is equivalent to Z0, and the onditions 0 � Æ +  � � � � �  implyÆ +  � � = 0. Here we take the tessellation fFT (0;1)Æ�1 ; FT (1;Æ�1)1 ; R4 = (�; 0) !(2; Æ�1)! (1; Æ�1)! (Æ�1; 1)! (0; 1)! (1; 0)g of R. Note R4 is equivalent toZ3 and hene there exists a proper triangulation of R4. Otherwise � = 2 and wetake the tessellation fFT (1;2)Æ�2 ; BT (2;2)2 ; R5 = (�; 0)! (�; +Æ��)! (Æ�1; 2)!(2; 2)! (2; 0); R6 = (1; 2)! (1; Æ � 1)! (0; Æ)! (0; 2)g.Thirdly, suppose  > 1 and Æ�� = 1. Thus +Æ�� > 2, so R2 is not equivalentto Z4. If � 6= , R1 is not equivalent to Z0, thus Æ� = (Æ��)+(��) = 2; takethe tessellation fFT (;2) ; BT (+1;2)2 ; R7 = (�; 0)! (�; +Æ��)! (Æ+�2; 2)!( +1; 2)! (�; 0); R8 = (; Æ� )! (0; Æ)! (0; �)! ( � 1; Æ� )g. Otherwise� = . When � = +2, from the onditions for this subase +Æ�� � �� = 0,so, Æ � 2, hene, as  < Æ for this ase,  � 1, a ontradition. Thus � �  + 3;take the tessellation fFT (�;0)2 ; R2; R9 = (�; 0)! (; Æ)! (; 2)! ( + 2; 0)g.In eah of the above ases the given tessellation, together with Lemmas 3.1,3.2 and 3.3, verify the existene of a seond distint proper triangulation of R.Subase B2:1:  < Æ,  + 2 � �,  � �, ��  <  + Æ � � and � �  > Æ � �.



Distint equilateral triangle dissetions of onvex regions 199Note that  > 0 and � �  imply � > 0. Also sine � �  <  + Æ � �, then + Æ � � � 1.Consider the tessellation fFT (;��)�� ; R1 = (�; � � ) ! (�;  + Æ � �) !(; Æ) ! (; � + � � 2); R2 = (; � � ) ! (; Æ � ) ! (0; Æ) ! (0; �); R3 =(�; 0) ! (�; � � ) ! (; � � ) ! (�; 0)g of R. By Lemma 3.1, there exists aproper triangulation of R.Lemma 3.1 veri�es the existene of a seond proper triangulation of R unlessR1 is equivalent to Z1, R2 is equivalent to Z1 and R3 is equivalent to one of Z0or Z2.Suppose that R1 is equivalent to Z1. This supposition together with the on-dition  + 2 � � imply that ��  + 1 =  + Æ � �.If � > , then take the tessellation fFT (;��+1)�� ; BT (+1;��+1)2 R4 = (; �� + 1) ! (; Æ � ) ! (0; Æ) ! (0; �) ! ( � 1; � �  + 1); R5 = (�; 0) !(�; � �  + 1)! ( + 1; ��  + 1)! ( + 1; ��  � 1)! (�; 0)g.If � = , then R3 = Z0 and Æ +  � � = 1. In this ase further suppose thatR2 is equivalent to Z1. Under this supposition either  = 1 or Æ � � = 1. When = 1, � = 1 and so the ondition Æ +  � � = 1 implies � = Æ, or equivalently� �  = � � 1 = Æ � 1 = Æ � �, ontraditing the ondition that � �  > Æ � �.Hene  > 1. If Æ � � = 1 and  + 2 = �, the ondition Æ +  � � = 1 impliesÆ = 3 and � = 2, whih in turn implies  = 2; in this ase R is equivalent to X4and there exists only one proper triangulation of R. So it is left to hek the asewhere � = , Æ�� = 1 and +2 < �. Under these onditions take the tessellationfFT (;0)���1; R2; R6 = (�; 0)! (�; 1)! (; Æ)! (; � �  � 1)! (� � 1; 0)g.In eah of the above ases the given tessellation together with Lemmas 3.1and 3.3, verify the existene of a seond distint proper triangulation of R.Subase B2:2:1:  < Æ,  + 2 � �,  � �, � �  = Æ � � and � � 2.Note that Æ +  � � = �.If 2 � , then, as  = �+��Æ, 2 � (+Æ��)�(��), so, ��+2 � +Æ��.So, onsider the tessellation fFT (�1;��+1)�� ; BT (�;��+2)2 ; R1 = (�; ��+2)!(�; Æ+��)! (; Æ)! (; Æ�)! (��2; ��+2); R2 = (�; 0)! (�; ��)!(� � 1; � �  + 1) ! ( � 1; � �  + 1) ! (�; 0); R3 = ( � 1; � �  + 1) !( � 1; Æ �  + 1) ! (0; Æ) ! (0; �)g of R. By Lemmas 3.1 and 3.3, thereexists a proper triangulation of R. As 2 �  and  +2 � �, there exists a seonddistint proper triangulation of R1 and hene there exists a seond distint propertriangulation of R.If  = 1, then the subase ondition � = +Æ�� implies ��+1 = +Æ��.Consider the tessellation fFT (0;�)�� ; BT (�;�)2 ; R4 = (�; �) ! (1; Æ) ! (1; Æ � 1) !(� � 1; �); R5 = (�; 0) ! (�; � � 2) ! (� � 2; �) ! (0; �) ! (�; 0)g of R. ByLemmas 3.1 and 3.3, there exists a proper triangulation of R.Note that R4 is equivalent to Z2, so unless R5 is equivalent to Z1, Lemmas 3.1and 3.3 verify the existene of a seond distint proper triangulation of R.



200 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghSuppose R5 is equivalent to Z1; then � = 2 and � = 3. Sine Æ+�� = �, Æ =4. In this ase R = (3; 0)! (3; 2)! (1; 4)! (1; 3)! (0; 4)! (0; 2)! (2; 0) anda seond distint proper triangulation of R is fFT (1;2)2 ; FT (0;3)1 ; FT (0;2)1 ; FT (2;0)1 ;FT (2;1)1 ; BT (2;2)2 ; BT (1;3)1 ; BT (3;2)1 ; BT (3;1)1 g.Subase B2:2:2:  < Æ,  + 2 � �,  � �, � �  = Æ � � and � � 1.From the onditions for this subase, 0 <  � �; it follows that � =  = 1. Inaddition,  + 2 � �, so 3 � � = Æ. Consider the tessellation fFT (0;2)Æ�2 ; BT (��1;2)2 ;R1 = (� � 1; 2) ! (1; Æ) ! (1; Æ � 1) ! (� � 2; 2); R2 = (�; 0) ! (�; 1) !(� � 1; 2) ! (� � 1; 0); R3 = (� � 1; 0) ! (� � 3; 2) ! (0; 2) ! (0; 1) ! (1; 0)gof R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.Note that both R1 and R2 are equivalent to Z2. So unless R3 is equivalent toZ2 or Z4, by Lemmas 3.1 and 3.3, there exists a seond proper triangulation of R.Suppose R3 is equivalent to Z2; then � = 3 and so R is equivalent to X3. Inthis ase by inspetion there does not exist a seond distint proper triangulationof R.Suppose R3 is equivalent to Z4; then � = 4. Then R = (4; 0) ! (4; 1) !(1; 4) ! (1; 3) ! (0; 4) ! (0; 1) ! (1; 0) and fFT (2;0)2 ; FT (1;2)2 ; FT (0;1)1 ; FT (0;2)1 ;FT (0;3)1 ; FT (1;0)1 ; FT (3;1)1 ; BT (2;2)2 ; BT (1;1)1 ; BT (1;3)1 ; BT (3;2)1 ; BT (4;1)1 g is a seonddistint proper triangulation of R.Subase C:  < Æ and � =  + 1.Sine Æ +  � � � �, it follows, from the onditions for this subase, thatÆ � � � 1. However, from the onditions for this lemma, � < Æ, so Æ = �+ 1.Now, from the onditions for this subase, 0 < Æ �  and � � 1 = , so0 < (�+1)� (��1); thus ��2 < �. From the onditions for this lemma, � < �,so it follows that � = � � 1.Thus, R = X1 and by inspetion there does not exist a proper triangulationof R.Subase D: Æ = .In this ase the region R is the union of the region R1 = (; 0) ! (0; ) !(0; �) ! (�; 0) and the region R2 = (�; 0) ! (�; 2 � �) ! (; ) ! (; 0).Furthermore, R1 \ R2 = f(0; )g. By Lemma 3.1, there exists a proper t rian-gulation of R and if either one of R1 or R2 is not equivalent to Z2, then thereexists a seond distint proper triangulation. If R1 and R2 are both equivalentto Z2, then R is equivalent to X5 and by inspetion has only one possible propertriangulation. �Now that we have established Lemma 3.4 we an use it in onjuntion withLemmas 3.1 and 3.2 to establish when a onvex region with six sides has a propertriangulation and when it has at least two distint proper triangulations.Lemma 3.5. Let R be a onvex region with six orners (sides). Whenever R isnot equivalent to Z6 then R has a proper triangulation; moreover, whenever R isnot equivalent to Z5 or Z6 then R has a seond distint proper triangulation.



Distint equilateral triangle dissetions of onvex regions 201Proof: Reall that if a proper triangulation for some region, R, exists, then aproper triangulation exists for all regions equivalent to R.The region R is equivalent to (�; 0) ! (�;  � Æ) ! (� � Æ; ) ! (0; ) !(0; �)! (�; 0), where 0 < �; Æ < �; .Two ases are onsidered; Case A where  � Æ � �+ Æ � � and Case B where � Æ > �+ Æ � �.Case B has several additional subases whih are summarized in the followingtable.B1 The ondition � = � � Æ =  � Æ = 1 does not holdB2 � = � � Æ =  � Æ = 1 B2:1 The ondition Æ = � � � =  � � = 1does not holdB2:2 Æ = � � � =  � � = 1Subase A:  � Æ � �+ Æ � �.Consider the tessellation fFT (��Æ;�+Æ��)�+���Æ ; R1 = (�; 0)! (�; 0)! (�; � Æ)!(2� +  � � � 2Æ; � + Æ � �) ! (� � Æ; � + Æ � �); R2 = (� � Æ; � + Æ � �) !(� � Æ; )! (0; )! (0; �)g of R. By Lemmas 3.1 and 3.3 there exists a propertriangulation of R. Moreover if neither R1 nor R2 is equivalent to an element offZ0; Z2; Z4g, then there exists a seond distint proper triangulation of R.As �; Æ < �; , both R1 and R2 are not equivalent to Z0. Let R1 and R2 bothbe equivalent to Z2. Then 1 = � � Æ =  � Æ = � + Æ � �, thus, � =  = Æ + 1and � = 2.From the ondition for this ase  + � � � � 2Æ. Reall that 0 < � < �; ,so 1 � � � � and 2 � . Hene, 3 � 2Æ, thus, 2 � Æ. Consider the tessellationfFT (2;1)��2 ; BT (2;2)2 ; R3 = (2; 0) ! (�; 0) ! (�; 1) ! (2; 1); R4 = (0; 2) ! (2; 2) !(2;  � 1) ! (1; ) ! (0; )g of R. By Lemmas 3.1 and 3.3 there exists a seonddistint proper triangulation of R.As R2 has four orners it is not equivalent to Z4. Let R1 be equivalent to Z2and R2 be equivalent to Z4 then (�; �; ; Æ) = (3; 4; 4; 3) and, fFT (2;1)2 ; FT (3;0)1 ;FT (0;3)1 ; FT (1;3)1 ; BT (2;3)2 ; BT (3;1)1 ; BT (4;1)1 ; BT (1;4)1 g is a seond distint proper tri-angulation of R.Subase B1: � Æ > �+ Æ�� and the ondition � = �� Æ = � Æ = 1 doesnot hold.Consider the tessellation fFT (��Æ;�Æ)Æ ; R1 = (�; 0) ! (�; 0) ! (�;  � Æ) !(� � Æ;  � Æ)! (� � Æ; )! (0; )! (0; �)g of R. As the ondition � = � � Æ = � Æ = 1 does not hold, R1 is not equivalent to X1. By Lemma 3.4, there existsa proper triangulation of R and if R1 =2 X , there exists a seond distint propertriangulation of R.Let R1 2 X . As  � Æ > � + Æ � �, R1 is not equivalent to X5. Reall that� < ; �, so, R1 is not equivalent to X2. Thus, R1 is equivalent to either X3 orX4. If R1 is equivalent to X4, then, by inspetion, there exists a seond distint



202 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. Cavenaghproper triangulation of R. If R1 is equivalent to X3, then R is equivalent to Z5and by inspetion there exists preisely one proper triangulation of R.Subase B2:1:  � Æ > � + Æ � �, � = � � Æ =  � Æ = 1 and the onditionÆ = � � � =  � � = 1 does not hold.Consider the linear transformation R�+ (; �) where � = � 0 �1�1 0 � 2 G. Thistransformation interhanges � with  and � with Æ. Thus, in this subase theregion R is equivalent to a region in Subase B1.Subase B2:2:  � Æ > �+ Æ � �, � = � � Æ =  � Æ = Æ = � � � =  � � = 1.In this subase (�; �; ; Æ) = (1; 2; 2; 1), hene, R is equivalent to Z6 and, byinspetion, R has no possible proper triangulation. �We an now state the �rst major result of this paper.Theorem 3.6. Let R be any onvex region. Then if R is not equivalent to Z6,it has a proper triangulation. Moreover, whenever R =2 Z then R has a seonddistint proper triangulation.Proof: This follows immediately from Lemmas 3.1, 3.3 and 3.5. �4. Distint proper triangulations ontaining a �xed triangleWe now move on to the question of establishing when it is possible to �nd twodistint proper triangulations of a region when some triangle is fored to our inboth proper triangulations. We answer this question ompletely for three-sidedregions, and also for non-retangular four-sided regions. We deal with the four-sided regions �rst; the two hoies for the diretion of the internal triangle yieldtwo theorems.Theorem 4.1. Let 1 � � � �, 0 < � � �, 0 <  � ���, 0 � Æ � ��� and � �+Æ; then there exists a proper triangulation of the region R = (�; 0)! (�; �)!(0; �)! (�; 0) whih ontains FT (;Æ)� if and only if (�; �; ; Æ; �) 6= (2; 3; 1; 1; 1).If � = 1 or (�; �) = (2; 2) or (�; �; Æ; �) 2 f(2; 3; 2; 1; 1); (2; 3; 2; 0; 1);(2; 4; 2; 1; 1)g, then there exists preisely one proper triangulations of R ontainingFT (;Æ)� .Otherwise there exists a seond distint proper triangulations of R ontainingFT (;Æ)� .Proof: If (�; �; ; Æ; �) = (2; 3; 1; 1; 1), then, by inspetion, there does not exista proper triangulation of R ontaining FT (;Æ)� .If � = 1 or (�; �) = (2; 2) or (�; �; Æ; �) 2 f(2; 3; 2; 1; 1); (2; 3; 2; 0; 1);(2; 4; 2; 1; 1)g, then, by inspetion, there exists preisely one proper triangulationof R ontaining FT (;Æ)� .By inspetion, the other ases where � + � � 6 have two distint propertriangulations of R ontaining FT (;Æ)� .



Distint equilateral triangle dissetions of onvex regions 203Heneforth, assume that 1 < � and 6 < � + �. Two subases are onsidered:Case A where � �  and Case B where � >  (see Figure 5 for illustrations ofthese ases and their subases).Figure 5. Tessellations for ases of Lemma 4.1.
Case B,m1 = �, m2 = �R2 R2m1 =  + Æ + �, m2 =  + �Case B, Case B,m1 = �, m2 =  + �R2

Case B,m1 =  + Æ + �, m2 = �R2m1 = �Case A,
R1R3 R2Case A,m1 =  + Æ + � R1R2R3

R8R9R8R9R8R9
R8R9

Let m1 = minf + Æ + �; �g and m2 = minf + �; �g.Case A: � � .Note that for this ase m2 = �.Consider the tessellation fBT (;�)� ; BT (m1;Æ+�)m1� ; FT (;Æ)� ; R1 = (�; 0) ! (m1; + Æ + � �m1) ! ( + �; Æ) ! (; Æ) ! (; 0); R2 = (�; 0) ! (�; �) ! (; �) !(; Æ + �) ! (m1; Æ + �) ! (m1; 0); R3 = (; 0) ! ( � �; �) ! (0; �) ! (�; 0)gof R. By Lemmas 3.1, 3.2 and 3.3, there exists a proper triangulation of Rontaining FT (;Æ)� , and if fR1; R2; R3g 6� Z , then there exists a seond distintproper triangulation of R ontaining FT (;Æ)� . So, assume that fR1; R2; R3g � Z .Consider the tessellation fBT (;Æ+�)Æ+� ; BT (m1;�)�+m1��Æ��; FT (;Æ)� ; R1; R4 = (�; 0)! (�; �) ! (m1; �) ! (m1; 0); R5 = (; Æ + �) ! ( + Æ + �� �; �) ! (0; �) !(�; 0) ! (; 0) ! ( � Æ � �; Æ + �)g of R. By Lemmas 3.1, 3.2 and 3.3, unlessÆ + � = �, there exists a seond distint proper triangulation of R ontainingFT (;Æ)� .If Æ + � = � and � 6= 1, onsider the tessellation fBT (;��1)��1 ; BT (m1;�)m1� ;BT (;�)1 ; FT (;Æ)� ; R1; R4; R6 = (; � � 1) ! ( � 1; �) ! (0; �) ! (�; 0) !(; 0) ! ( � � + 1; � � 1)g of R. By Lemmas 3.1, 3.2 and 3.3, there exists aseond distint proper triangulation of R ontaining FT (;Æ)� .If Æ+ � = �, � = 1 and  + � < �, reall that fR1; R2; R3g � Z , hene, � � 3and � � 6. For 6 < �+� � 9 a pair of proper triangulations of R both ontainingFT (;Æ)� = FT (;Æ)1 is shown in Figure 6.



204 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghFigure 6. Proper triangulations for Subase A of Lemma 4.1.

If Æ+� = �, � = 1 and +� = �, onsider the tessellation fBT (�;Æ)��1 ; BT (;�)1 ;BT (�;�)1 ; FT (;Æ)� ; R7 = (�; 0) ! (� � � + 1; Æ) ! (; Æ) ! ( � 1; �) ! (0; �) !(�; 0)g of R. By Lemma 3.2, there exists a seond distint proper triangulationof R.Case B: � > .Consider the tessellation fBT (m2;Æ)m2+Æ��; BT (;�)��Æ ; BT (m1;Æ+�)m1� ; FT (;Æ)� ; R2; R8 =(�; 0) ! (m1;  + Æ + � � m1) ! ( + �; Æ) ! (m2; Æ) ! (m2; � � m2) !(�; 0); R9 = (; Æ)! ( + Æ � �; �)! (0; �)! (�� Æ; Æ)g of R. By Lemmas 3.1,3.2 and 3.3, there exists a proper triangulation of R ontaining FT (;Æ)� , and iffR2; R8; R9g 6� Z , then there exists a seond distint proper triangulation of Rontaining FT (;Æ)� .So, assume that fR2; R8; R9g � Z .Reall the above assumption that 6 < � + �. Consider the tessellationfBT (m2;Æ)m2+Æ��; BT (;Æ+�)� ; BT (m1;�)�+m1��Æ��; FT (;Æ)� ; R4; R8; R10 = (; Æ+�)! (+Æ+���; �) ! (0; �)! (��Æ; Æ)! (; Æ)! (��; Æ+�)g of R. By Lemmas 3.1,3.2 and 3.3, unless Æ + � = �, there exists a seond distint proper triangulationof R ontaining FT (;Æ)� .If Æ + � = � and � 6= 1, onsider the tessellation fBT (m2;Æ)m2+Æ��; BT (;��1)��1 ;BT (m1;�)m1� ; BT (;�)1 ; FT (;Æ)� ; R4; R8; R11 = (; � � 1) ! ( � 1; �) ! (0; �) !(�� Æ; Æ)! (; Æ)! ( ��+1; �� 1)g of R. By Lemmas 3.1, 3.2 and 3.3, thereexists a seond distint proper triangulation of R ontaining FT (;Æ)� .Otherwise Æ + � = � and � = 1. Sine � >  for this subase, m2 =  + 1.Observe that R8 is equivalent to one of Z0; Z1; Z2 or Z4.



Distint equilateral triangle dissetions of onvex regions 205If R8 is equivalent to Z4, then � = ��1 = 4 and a pair of proper triangulationsof R both ontaining FT (;Æ)� = FT (;Æ)1 is shown in Figure 7.Figure 7. Proper triangulations for Subase B of Lemma 4.1.
Otherwise R8 is equivalent to Z0, Z1 or Z2. Thus either  = 1 or � �  � 2.When R8 is equivalent to Z0 and  = 1 then � � 2. But from the onditionsof this lemma, � � � and from above 6 < �+ �, reating a ontradition.When R8 is equivalent to Z1 or Z2 and  = 1 onsider the tessellation fBT (�;Æ)Æ ;BT (1;�)1 ; BT (2;�)1 ; FT (;Æ)� = FT (1;��1)1 ; R11 = (�; 0) ! (�; �) ! (2; �) !(2; �� 1) ! (�; Æ) ! (�; 0)g of R. As R8 is equivalent to Z1 or Z2 and R2 2 Z ,� � � + 2. So, if � � 2, then � + � � 6 ontraditing our assumption that6 < � + �. Thus, by Lemmas 3.1 and 3.2, we have a proper triangulation of Rontaining FT (;Æ)� whih is distint to the one above.Otherwise 1 <  and � �  � 2. Note that � = Æ + � < Æ + . Suppose that � 1 � � � . (Equivalently, as � = 1,  + Æ � � � � � .) Then onsider thetessellation fBT (;�) ; BT (�;�)�� ; FT (;+Æ��)�� ; FT (;Æ)� = FT (;��1)1 ; R13 = (�; 0)!(�;  + Æ � �) ! (;  + Æ � �) ! (; � � ) ! (�; 0); R14 = (�;  + Æ � �) !(�; � +  � �) ! ( + 1; Æ) ! (; Æ)g of R. By Lemmas 3.1 and 3.3, there existsa seond distint proper triangulation of R ontaining FT (;Æ)� .Otherwise  � 1 < � � . Then 2 =  < � � � � 4. A pair of propertriangulations of R both ontaining FT (;Æ)� = FT (;Æ)1 is shown in Figure 7. �Theorem 4.2. Let 0 < � � Æ � � � �;  � �; � �  + Æ � � and R = (�; 0)!(�; �) ! (0; �)! (�; 0).If 1 = � �  = � �� = Æ� �, then there does not exist a proper triangulationof R ontaining BT (;Æ)� .Otherwise, if 1 = � or (�; �; ; Æ; �) = (2; 3; 3; 2; 1) or ��Æ; ��; +Æ���� �1, then there exists preisely one proper triangulation of R ontaining BT (;Æ)� .In ases other than the above, there exists at least two distint proper trian-gulations of R both ontaining BT (;Æ)� .Proof: If 1 = � �  = � � � = Æ � �, then, by inspetion, there does not exista proper triangulation of R ontaining BT (;Æ)� .Similarly, if 1 = � or (�; �; ; Æ; �) = (2; 3; 3; 2; 1) or ��Æ; ��; +Æ���� � 1,then, by inspetion, there exists preisely one proper triangulation of R ontainingBT (;Æ)� .



206 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghBy inspetion, the other ases where � + � � 6 have two distint propertriangulations of R ontaining BT (;Æ)� .Heneforth, assume that 1 < �, 6 < � + � and either 1 < � � Æ or 1 < � � or 1 <  + Æ � �� �.Let m1 = minf + Æ; �g, m2 = minfÆ + �; �g and m3 = maxf�+ �� ; 0g.Consider the tessellation fBT (m1;�)�+m1��Æ; BT (��;m2)m2�m3 ; BT (;Æ)� ; R1 = (m1; 0)!(m1; + Æ�m1)! (; Æ)! (; Æ��)! ( ��; Æ)! (��;m3)! (�; 0); R2 =(�; 0)! (�; �)! (m1; �)! (m1; 0); R3 = (��;m3)! (+m3�m2��;m2)!(��;m2)! (+ Æ��; �)! (0; �)! (�; 0); R4 = (; Æ)! (+ Æ�m2;m2)!( � �;m2) ! ( � �; Æ)g of R (see Figure 8 for an illustration of these ases).Sine the ondition 1 = ��  = ��� = Æ�� does not hold, the region R1 is notequivalent to the regionX1. By Lemmas 3.1, 3.2, 3.3 and 3.4, there exists a propertriangulation of R ontaining BT (;Æ)� . Furthermore if fR1; R2; R3; R4g 6� X [ Z ,then there exists a seond distint proper triangulation.Figure 8. Tessellations for ases of Lemma 4.2.
R1R4m1 = �, m2 = �,m3 = �+ �� R1R4R3m1 = �, m2 = Æ + �,m3 = 0R1R3 R4m1 = �, m2 = Æ + �,m3 = �+ �� 

R1R4m1 =  + Æ, m2 = �,m3 = �+ ��  R2 m1 =  + Æ, m2 = �,m3 = 0 R4R1 R2R3
R4R1R3m1 = �, m2 = �,m3 = 0 R1R3 R2R4m1 =  + Æ, m2 = Æ + �,m3 = �+ ��  R1R3 R2R4m1 =  + Æ, m2 = Æ + �,m3 = 0

Otherwise fR1; R2; R3; R4g � X [ Z and we wish to establish the existene ofa seond distint proper triangulation when 1 < �. For 6 < � + � � 12 thereare a small number of ases; these are dealt with individually in [11℄. Heneforth



Distint equilateral triangle dissetions of onvex regions 207we assume that 12 < � + �. Three ases are onsidered: Case A where � = 1,Case B where � = 2 and Case C where 3 � �.Case A: � = 1.Suppose �rst that  6= � and � = 1 <  + Æ � �.From Figure 8, R3 is equivalent to Z0 or Z1 or Z3. Thus � � Æ � 2 and���� � 1. Sine R2 is equivalent to Z0 or Z1, ��m1 � 1. Sine R1 2 Z [Xand � = 1 <  + Æ � �, the region R1 is equivalent to either Z3 or X2 or X3 orX5.If R1 is equivalent to Z3, then � = � and Æ = 3. Thus, � = � � Æ + 2 = 5, so�+ � � 10, a ontradition.If R1 is equivalent to X2, then Æ = 2 and either m1 �  = 1, in whih asem1 = � and m1�� � 3, or m1� = 2, in whih ase ��m1 � 1 and m1�� = 2.Thus, � � Æ+2 = 4 and ��� � 3, so, � � 7. Hene �+� � 11, a ontradition.If R1 is equivalent to X3, then Æ = 3, �+ ��  = 1 and � + ��  = 3. Thus,� � Æ + 2 = 5 and � = 2 + � � 7. So �+ � � 12, a ontradition.If R1 is equivalent to X5, then Æ = 1, � � m1 � 1, 0 �  � � � � � 1 andm1 �  = 1. Thus, � � Æ + 2 = 3 and � � � + 4 � 7. So, � + � � 10,a ontradition.Seondly, suppose that  6= � and  + Æ � � = � = 1. Hene, R1 is equivalentto Z1 or Z2.If 3 � , then onsider the tessellation fBT (2;�)2 ; BT (m1;��1)m1�2 ; BT (;Æ)� =BT (;��+1)1 ; R1; R5 = (; Æ) ! (2; � � 1) ! (2; � � 2) ! ( � 1; Æ); R6 =(�; 0) ! (�; �) ! (2; �) ! (2; � � 1) ! (m1; � � 1) ! (m1; 0)g of R. ByLemmas 3.1 and 3.2, there exists a seond distint proper triangulation of Rontaining BT (;Æ)� .If  � � � 2, onsider the tessellation fBT (�;2)2 ; BT (��1;�)��2 ; BT (;Æ)� =BT (;��+1)1 ; R7 = (� � 1; 2) ! (; Æ) ! (; Æ � 1) ! (� � 2; 2); R8 = (; Æ) !(1; �) ! (0; �) ! ( � 1; Æ); R9 = (�; 0) ! (�; �) ! (� � 1; �) ! (� � 1; 2) !(�; 2) ! (�; 0)g of R. By Lemmas 3.1 and 3.2, there exists a seond distintproper triangulation of R ontaining BT (;Æ)� .Otherwise � � 2 <  < 3, so � � 3. As R2 is equivalent to Z0 or Z1 and + Æ � � = � = 1 it follows that � � �+ 2. Thus, �+ � � 8, a ontradition.Thirdly, suppose that  = � and  + Æ � � = � = 1; then Æ � 1 = � � �.From the onditions for this lemma 0 � Æ � 1 and � � � � 0. Thus � = �and Æ = 1. Note that 6 < � + �, so, 4 � � = �. Consider the tessellationfBT (��1;�)��1 ; BT (;Æ)� = BT (�;1)1 ; R10 = (�; 1)! (�; �) ! (�� 1; �)! (�� 1; 1)gof R. By Lemma 3.1, there exists a seond distint proper triangulation of Rontaining BT (;Æ)� .Finally assume  = � and � = 1 <  + Æ � �. Reall that R3 is equivalent toZ0, Z1 or Z3, so, � � Æ � 2 and  � � � � � 1. Hene, as  = � and � = 1, itfollows that ��2 � �. If � � 2, then � � 4 and thus �+� � 6; therefore, 3 � �.



208 D.M. Donovan, J.G. Lefevre, T.A. MCourt, N.J. CavenaghIf � � 2 < � + �� Æ, then � � 2 < 2 + �, hene, � < 5, thus, 6 < � + � � 8,a ontradition.Hene, assume �+ �� Æ � � � 2.If �� 2� (�� (�� 2)) < 0, then � < 4, so, �+� � 6, a ontradition. Hene,�� 2� (�� (� � 2)) � 0.Let m4 = minf��2; Æ�1g. Consider the tessellation fFT (��2;m4)2 ; BT (��2;�)��2 ;BT (;Æ)� = BT (�;Æ)1 ; R11 = (�; 0)! (�;m4)! (� � 2;m4)! (� � 2; �� � +2)!(�; 0); R12 = (�;m4) ! (�; Æ � 1)! (� � 1; Æ)! (�; Æ) ! (�; �) ! (� � 2; �)!(��2;m4+2)g of R. By Lemmas 3.1 and 3.3 there exists a seond distint propertriangulation of R ontaining BT (;Æ)� .Case B: � = 2.As R3 is equivalent to Z0, Z1 or Z3 and R4 is equivalent to Z0 or Z2, ��Æ � 1(so, m2 = �) and  � � � � � 1. Sine R1 is equivalent to Z0, Z1, Z2, Z3, Z4,X4 or X5, m1 = �, � � � � 2, m1 + � �  � 4 and Æ � 4. If Æ = 4, then R1 isequivalent to Z3, so, � = � and �� Æ; � � ;  + Æ � �� � � 1 ontraditing ourassumption that either 1 < � � Æ or 1 < � �  or 1 <  + Æ � � � �. So, Æ � 3.Thus, � � 4 and � � 2 + �, so, �+ � � 10, a ontradition.Case C: 3 � �.As Ri 2 X [Z for all 1 � i � 4 it follows that � � ; �� Æ;  + Æ � �� � � 1,a ontradition. �Letting � = � in Theorem 4.1 and 4.2 desribes preisely when at least oneor two proper triangulations exist for a three-sided region ontaining any �xedtriangle.Note that, this result is desribed in terms of �nding proper triangulations ofa bakward triangle. However, the equivalenes of regions (and indeed propertriangulations) disussed earlier mean that a similar result holds for forward tri-angles. Referenes[1℄ Cavenagh N.J., Latin trades and ritial sets in latin squares, PhD Thesis, University ofQueensland, Australia, 2003.[2℄ Cavenagh N.J., Donovan D.M., Khodkar A., Lefevre J.G., MCourt T.A., Identifying awsin the seurity of ritial sets in latin squares via triangulations, Australas. J. Combin. 52(2012), 243{268.[3℄ Dr�apal A., On a planar onstrution of quasigroups, Czehoslovak Math. J. 41 (1991),no. 3, 538{548.[4℄ Dr�apal A., Hamming distanes of groups and quasi-groups, Disrete Math. 235 (2001),no. 1{3, 189{197.[5℄ Dr�apal A., H�am�al�ainen C., An enumeration of equilateral triangle dissetions, DisreteApplied Math. 158 (2010), no. 14, 1479{1495.[6℄ Dr�apal A., H�am�al�ainen C., Kala V., Latin bitrades, dissetions of equilateral triangles andabelian groups, J. Combin. Des. 18 (2010), no. 1, 1{24.[7℄ Keedwell A.D., Critial sets in latin squares and related matters: an update, Util. Math.65 (2004), 97{131.
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Regions equivalent to X5
Regions equivalent to X4

A Region equivalent to Z6
Regions equivalent to Z4Regions equivalent to Z2Regions equivalent to Z1Regions equivalent to Z3

Regions equivalent to X1 Regions equivalent to X3Regions equivalent to X2
Regions equivalent to Z5
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