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Distin
t equilateral triangle disse
tions of 
onvex regionsDiane M. Donovan, James G. Lefevre,Thomas A. M
Court, Ni
holas J. CavenaghAbstra
t. We de�ne a proper triangulation to be a disse
tion of an integer sidedequilateral triangle into smaller, integer sided equilateral triangles su
h that nopoint is the vertex of more than three of the smaller triangles. In this paperwe establish ne
essary and suÆ
ient 
onditions for a proper triangulation of a
onvex region to exist. Moreover we establish pre
isely when at least two su
hequilateral triangle disse
tions exist.We also provide ne
essary and suÆ
ient 
onditions for some 
onvex regionswith up to four sides to have either one, or at least two, proper triangulationswhen an internal triangle is spe
i�ed.Keywords: equilateral triangle disse
tion, latin tradeClassi�
ation: 05B451. Introdu
tionThe disse
tion of an integer sided equilateral triangle into smaller, integer sidedequilateral triangles is a 
lassi
 problem 
onsidered by Tutte [12℄. He showedvarious properties of su
h a disse
tion, in
luding the fa
t that some of the smallertriangles must have equal sides.If we apply an extra restri
tion to su
h a disse
tion, namely that no point isthe vertex of more than three of the smaller triangles, then the disse
tion givesrise to a latin trade within the addition table for the integers modulo n ([3℄). We
all su
h a disse
tion a proper triangulation. (It was Dr�apal, in [3℄, who �rstobserved the 
onne
tion between latin trades and proper triangulations, and asa 
onsequen
e of this in some papers (see [2℄ and [11℄) proper triangulations arealso known as Dr�apal Triangulations.) More details about this 
onne
tion andlatin trades may be found in [1℄, [3℄, [4℄, [6℄ and [7℄.This appli
ation of triangle disse
tions to latin trades is our key motivation. Inparti
ular, the results in this paper are applied to 
lassify 
aws in 
ryptographi
appli
ations of latin squares [2℄. However, the results have some geometri
 interestin their own right.It is 
onje
tured that there exists a 
onstant 
 su
h that for ea
h integer n, thereexists a non-trivial proper triangulation of an integer sided equilateral triangle
ontaining at most 
 log p triangles, where p is the least prime that divides n([3℄). The results in this paper may provide insights into this question. A further
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ation is the enumeration of proper triangulations (see [5℄). Other,laterally related result on triangulations in
lude [8℄, [9℄ and [10℄.In Se
tion 2 we introdu
e ne
essary terminology. In Se
tion 3 we establishpre
isely when a 
onvex regions has at least one or at least two proper triangula-tions (Theorem 3.6). In Se
tion 4 we 
onsider the same question when an internaltriangle is spe
i�ed; our results are restri
ted to 
onvex region with at most foursides whi
h are not re
tangles.2. Proper triangulationsFor ease of notation we 
onsider the equivalent problem of disse
tions of right-angled isos
eles triangles into smaller su
h obje
ts, where ea
h triangle has hy-potenuse of gradient �1. To see this equivalen
e, 
onsider su
h a disse
tion withthe large triangle lying in the �rst quadrant with its right angle at the origin.Then the linear transformation T (x) = xA given byA = � 1 00:5 p3=2 �shows the equivalen
e to an equilateral triangle disse
tion.Let k; i; xi; yi 2 Z and 0 � i � k� 1. Let R = (x0; y0); (x1; y1); : : : ; (xi; yi); : : : ;(xk�1; yk�1) be a sequen
e of points whi
h satis�es the following 
ondition: forall 0 � i � k � 1,xi = xi+1 (mod k) or yi = yi+1 (mod k) or xi + yi = xi+1 (mod k) + yi+1 (mod k):Then we say that R is a region in the plane R2 . The redu
ed form R0 of R isformed by su

essively deleting any points (xi; yi) from R whenever (xi�1; yi�1),(xi; yi) and (xi+1; yi+1) are 
ollinear.If the straight line segments between (ui; vi) 2 R0 and (ui+1 (mod l); vi+1 (mod l))2 R0, 0 � i � l�1 = jR0j�1, form the boundary of a 
onvex polygon (where R0 isthe redu
ed form of R), then R is 
alled a 
onvex region. Furthermore, the regionR is denoted by R = (x0; y0) ! (x1; y1) ! : : : ! (xi; yi) ! : : : ! (xk�1; yk�1),and if 1 < jRj, we refer to the elements of the redu
ed form of R as the 
ornersof R.If the redu
ed form of R has pre
isely three 
orners, then R is said to be atriangle. Let 0 � x, denote the regionFT (z1;z2)x = (z1; z2)! (z1 + x; z2)! (z1; z2 + x) as a forward triangle andBT (z1;z2)x = (z1; z2)! (z1 � x; z2)! (z1; z2 � x) as a ba
kward triangle :Let R be the union of regions R1; R2; : : : ; Rt; that is, R = S1�i�tRi. If forea
h 1 � i < j � t, the regions Ri and Rj interse
t in at most their respe
tiveboundaries, then fRi j 1 � i � tg is 
alled a tessellation of R and ea
h Ri is asubregion of R.
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h of the subregions Ri is a triangle, R is said to have a triangulation,namely fRi j 1 � i � tg, furthermore ea
h subregion, Ri, is referred to as asubtriangle of R. If, in addition, ea
h element (a; b) 2 R is the 
orner of atmost three distin
t subtriangles, fRi j 1 � i � tg is 
alled a proper triangulationof the region R. It is this property whi
h makes the problem of �nding propertriangulations of a spe
i�ed region non-trivial.Example 2.1. In Figure 1 we provide an example of a region, R, that has atriangulation but no possible proper triangulation and a region S that has aproper triangulation.Figure 1. A triangulation and a proper triangulationR S
Consider the following group of matri
es, isomorphi
 to the Dihedral groupD6:G =� � 0 11 0 � ; � 0 1�1 1 � �.Let � 2 G, (p; q) 2 R2 and S � R2 . In this paper the set f(m;n)� + (p; q) j(m;n) 2 Sg is denoted by S�+ (p; q).If there exists some (i; j) 2 Z2 and some � 2 G su
h that R2 = R1�+(i; j), thenR1 and R2 are said to be equivalent . Observe that the property of possessing aproper triangulation is invariant under this equivalen
e, even though the gradientsof lines may 
hange. We frequently make use of this observation.Re
all that, for a proper triangulation, the 
ondition that ea
h vertex of atriangle is the vertex of at most three triangles must be satis�ed. Suppose thatfRi j 1 � i � pg is a tessellation of a region R and that ea
h subregion Ri has aproper triangulation Qi, where 1 � i � p. Then the set of triangles[1�i�pQidoes not ne
essarily form a proper triangulation of R.Example 2.2. In Figure 2 we provide an example of a tessellation of a region Rfor whi
h ea
h region has a proper triangulation and the union of the subtrianglesdoes not yield a proper triangulation of the region R.To avoid this problem, whenever two distin
t regions Ri and Rj in the tessel-lation of R both have a triangulation 
ontaining more than one triangle, then weensure that their boundaries do not share a line segment of non zero length.
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onstru
t a proper triangulationR1Dr�apal Triangulations of ea
h subregion
Triangulation of R

R2R2R1
Original tessellation of R

Example 2.3. In Figure 3 we provide an example of a tessellation of a region Rfor whi
h ea
h region has a proper triangulation and the union of the subtrianglesyields a proper triangulation of the region R.3. Proper triangulations of 
onvex regionsFor �; � 2 Z, let:Z0 = (0; 0),Z1 = (0; 0)! (1; 0)! (1; �)! (0; �) where 0 < �,Z2 = (1; 0)! (�; 0)! (�; 1)! (0; 1) where 0 < �,Z3 = (�; 0) ! (�; �) ! (0; �) ! (0; � � 1) ! (�� 1; � � 1)! (�� 1; 0)where 1 < �; �,Z4 = (2; 0)! (2; 2)! (0; 2)! (0; 1)! (1; 0),Z5 = (3; 0)! (3; 1)! (1; 3)! (0; 3)! (0; 1)! (1; 0) andZ6 = (2; 0)! (2; 1)! (1; 2)! (0; 2)! (0; 1)! (1; 0).Let Z be the set of all regions equivalent to any Zi, where 0 � i � 6 (see theAppendix for an illustration of these regions).By inspe
tion, the regions equivalent to Zi where 0 � i � 5 have a uniqueproper triangulation, while Z6 has no proper triangulation. The aim of this
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ting a proper triangulationOriginal tessellation of R

Dr�apal Triangulation of R
R2 R3R1 R4R1 R2 R3Dr�apal Triangulations of ea
h subregion R4

se
tion is to show that any 
onvex region not belonging to Z has at least twoproper triangulations (Theorem 3.6).We begin by investigating when it is possible for a region with three or foursides to have at least two distin
t proper triangulations.Lemma 3.1. Let R be a region with three or four 
orners (sides). Thus R isequivalent to R1 = (Æ; 0)! (0; Æ)! (0; 0); orR2 = (�; 0)! (�; �)! (0; �)! (
; 0);where 0 < Æ, and either 
 = 0 and 0 < � � �, or 
 = � and 0 < � < �. ThenR has a proper triangulation. Further, if 1 < Æ, there exists a se
ond distin
tproper triangulation of R1 and, unless R2 is equivalent to Z1 or Z2, there existsa se
ond distin
t proper triangulation of R2.Proof: Sin
e R1 is a triangle, a proper triangulation trivially exists. If Æ = 1,then, by inspe
tion, R1 = FT (0;0)1 has pre
isely one proper triangulation. However
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ond distin
t proper triangulation of R1.There are two 
ases to 
onsider for R2: Case A, 
 = 0 and Case B, 
 = �.Case A: 
 = 0.Consider the tessellation fFT (0;0)� ; BT (�;�)� R3 = (�; 0) ! (�; �) ! (�; �) !(�; 0)g of R2. If � = �, then R3 is empty and we are done. Otherwise, R3 is are
tangular region with area stri
tly less than ��. Thus, by re
ursion, R1 has aproper triangulation.If � = 1, then R is equivalent to Z1 and by inspe
tion it has pre
isely oneproper triangulation. When 1 < �, the se
ond distin
t proper triangulation isobtained by applying the argument given for R1 to the triangle FT (0;0)� .Case B: 
 = �.Let 1 < �. Consider the tessellation fBT (�;�)� ; S = (�; 0) ! (�; �) !(�; �) ! (�; 0)g of R2. If 1 < � � �, the argument presented in Case A im-plies S has two distin
t proper triangulations. If � � � = 1, then the abovegives one proper triangulation. Consider the proper triangulation fBT (�;�)� g [S1�i��fFT (i;��i)1 ; BT (i;��i+1)1 g of R2. This yields a se
ond distin
t proper tri-angulation of R2.If � = 1, then R2 is equivalent to Z2 and by inspe
tion it has pre
isely oneproper triangulation. �An L-region will be de�ned to be a region equivalent to(Æ; 0)! (Æ; �)! (0; �)! (0; �)! (
; �)! (
; 0);where 0 < � < � and 0 < 
 < Æ.In order to obtain a similar result to Lemma 3.1 for 
onvex regions with �vesides we �rst prove the following result detailing when an L-region has at leasttwo distin
t proper triangulations.Lemma 3.2. Let 0 < � < � and 0 < 
 < Æ. The L-region L1 = (Æ; 0)! (Æ; �)!(0; �)! (0; �)! (
; �)! (
; 0) has a proper triangulation, and a se
ond distin
tproper triangulation when L1 is not equivalent to Z3.Proof: Several 
ases are 
onsidered whi
h, together with the asso
iated 
ondi-tions, are summarized in the following table.Case A Case B Case C Case D�+ 
 � Æ; � Æ � �+ 
 < � � � �+ 
 < Æ �+ 
 < �; ÆCase A: �+ 
 � Æ; �.
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; R1 = (Æ; 0) ! (Æ; � + 
 � Æ) !(
; �) ! (
; 0); R2 = (
; �) ! (� + 
 � �; �) ! (0; �) ! (0; �)g of L1. ByLemma 3.1, L1 has a proper triangulation.Provided R1 or R2 are not both equivalent to Z2 then Lemma 3.1 implies thereexists a se
ond distin
t proper triangulation of L1. When both R1 and R2 areequivalent to Z2, then ��� = Æ�
 = 1, L1 is equivalent to Z3 and by inspe
tionit has pre
isely one proper triangulation.Case B: Æ � �+ 
 < �.Consider the tessellation fBT (Æ;�+
)Æ ; FT (0;�)
 ; R1 = (Æ; 0) ! (Æ; � + 
 � Æ) !(
; �)! (
; 0); R2 = (Æ; �+
)! (Æ; �)! (0; �)! (0; �+
)g of L1. As �+
 < �,R2 is not equivalent to Z0. By Lemma 3.1, L1 has a proper triangulation. If atleast one of R1 and R2 is equivalent to neither Z1 nor Z2, then L1 has a se
onddistin
t proper triangulation.If 1 < 
, then, by Lemma 3.1, FT (0;�)
 (and hen
e L1) has a se
ond distin
tproper triangulation.If R1 and R2 are ea
h equivalent to either Z1 or Z2 and 
 = 1, then Æ�
 = 
 =� � �� 
 = 1, hen
e, Æ = 2. Consider the tessellation fBT (2;�+2)2 ; FT (0;�)2 ; R1 =(2; 0) ! (2; �) ! (1; �) ! (1; 0)g of L1. By Lemma 3.1 there exists a se
onddistin
t proper triangulation of L1.Case C: � � �+ 
 < Æ.Via the transformation L1 [ 0 11 0 ℄ this region is equivalent to the region in Case B.Case D: �+ 
 < �; Æ.Consider the tessellation fBT (�+
;�+
)�+
 ; FT (0;�)
 ; FT (
;0)� ; R1 = (Æ; 0) ! (Æ; �)! (0; �) ! (0; � + 
) ! (� + 
; � + 
) ! (� + 
; 0)g of L1. Observe that R1is an L-region, so is equivalent to one of the regions given in Case A, B, C or(re
ursively) D. For Cases B and C, there exists at least two distin
t propertriangulations so we are done. Otherwise we have the following sub
ases:Sub
ase D:1: Suppose that R1 is equivalent to a region given in Case A. Ifeither � 6= 1, 
 6= 1, � � � � 
 6= 1 or Æ � � � 
 6= 1, then, by Lemma 3.1, thereexist two distin
t proper triangulations of L1.Otherwise, � = 
 = � � �� 
 = Æ � �� 
 = 1. Then � = 
 = 1 and � = Æ =3. Consider the triangulation fBT (3;3)3 ; BT (2;1)1 ; FT (0;1)2 ; FT (1;0)1 ; FT (2;0)1 g of L1.This is a se
ond distin
t (to the above) proper triangulation of L1.Sub
ase D:2:Otherwise R1 is equivalent to a region given in Case D. Note that R1 has areastri
tly less than L1, so by re
ursion there exists a proper triangulation of R1.Moreover, the tessellation of R2 
ontains the triangle FT (0;�+
)�+
 . But �+ 
 � 2,so by Lemma 3.1 there exists a se
ond distin
t proper triangulation. �We will now make use of Lemmas 3.1 and 3.2 to determine when there existspre
isely one and when there exists at least two distin
t proper triangulations of
onvex regions with �ve sides.
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onvex region with �ve 
orners (sides). Then R has aproper triangulation. Moreover, whenever R is not equivalent to Z4 then R hasa se
ond distin
t proper triangulation.Proof: Under the appropriate transformation, we may assume without loss ofgenerality that R = (�; 0) ! (�; 
) ! (0; 
) ! (0; �) ! (�; 0), where 0 < � <� � 
.Consider the tessellation fBT (�;�)� ; R1 = (�; 0) ! (�; 
) ! (0; 
) ! (0; �) !(�; �) ! (�; 0)g of R. By Lemma 3.2 the region R has a proper triangulation.Provided R1 is not equivalent to Z3 (
 � � 6= 1 or � � � 6= 1), Lemma 3.1and 3.2 imply a se
ond triangulation of R1, and so R has a se
ond distin
t propertriangulation.Suppose that R1 is equivalent to Z3. Then 
 � � = 1 and 
 = �. If inaddition � = 1, then � = 
 = 2, and hen
e R = Z4; otherwise 2 < � = 
and fBT (�;
)
 gS1�i���1fFT (i�1;
�i)1 ; BT (i;
�i)1 gSFT (��1;0)1 is a se
ond distin
tproper triangulation of R. �We will now prove another te
hni
al lemma whi
h we will use to establish whena 
onvex region with six sides has a proper triangulation and when it has at leasttwo distin
t proper triangulations.Let R be a region equivalent to(�; 0)! (�; Æ + 
 � �)! (
; Æ)! (
; Æ � 
)! (0; Æ)! (0; �)! (�; 0)with 0 � � < �; Æ; 0 < 
 < �; Æ + 1; and 0 � Æ + 
 � � (this region is illustratedin Figure 4). Figure 4. Illustration of the region R.(
; Æ)
(�; Æ + 
 � �)

(0; Æ)
(0; �) (�; 0)(�; 0) (
; Æ � 
)

It will be shown that R possesses at least two distin
t proper triangulations,ex
ept when R is equivalent to any of the following (see the Appendix for illus-trations):
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onvex regions 197X1 = (�; 0)! (�; ��1)! (��1; �)! (��1; 1)! (0; �)! (0; ��1)!(� � 1; 0);X2 = (3; 0)! (1; 2)! (1; 1)! (0; 2)! (0; 1)! (1; 0);X3 = (3; 0)! (3; 1)! (1; 3)! (1; 2)! (0; 3)! (0; 1)! (1; 0);X4 = (3; 0)! (3; 2)! (2; 3)! (2; 1)! (0; 3)! (0; 1)! (1; 0);X5 = (�; 0) ! (�; � � 2) ! (� � 1; � � 1) ! (� � 1; 0) ! (0; � � 1) !(0; � � 2)! (� � 2; 0).Let X be the set of all regions equivalent to any Xi, where 1 � i � 5.By inspe
tion the regions equivalent to Xi, where 2 � i � 5, have a uniqueproper triangulation. Furthermore, by inspe
tion, the region X1 has no propertriangulation.Lemma 3.4. Let 0 � � < �; Æ; 0 < 
 < �; Æ + 1; and 0 � Æ + 
 � �. The regionR = (�; 0) ! (�; 
 + Æ � �) ! (
; Æ) ! (
; Æ � 
) ! (0; Æ) ! (0; �) ! (�; 0)has a proper triangulation if and only if R 6= X1 and a se
ond distin
t propertriangulation if and only if R is not equivalent to any Xi, where 1 � i � 5.Proof: Consider the transformation R�+(Æ+
; 0), where � = ��1 0�1 1 � 2 G. Thistransformation repla
es � with Æ + 
 � � and � with Æ + 
 � �. Hen
e, withoutloss of generality, we may assume that Æ + 
 � � � �.Several 
ases are 
onsidered whi
h, together with the asso
iated 
onditions,are summarized in the following table.Case A Case B Case C Case D
 < Æ; 
 + 2 � �; 
 < Æ; 
 + 2 � �; 
 < Æ; � = 
 + 1 Æ = 
� < 
 � � 
For Case B several additional sub
ases are 
onsidered whi
h are summarizedin the following table.B1 �� 
 � 
 + Æ � �B2 �� 
 < 
 + Æ � � B2:1 � � 
 > Æ � �B2:2 � � 
 = Æ � � B2:2:1 � � 2B2:2:2 � � 1Case A: 
 < Æ, 
 + 2 � � and � < 
.The 
onditions for this 
ase together with the assumption Æ+ 
�� � � implyÆ < �.Consider the tessellation fFT (�;0)Æ�� ; R1 = (�; 0) ! (�; 
 + Æ � �) ! (
; Æ) !(
; Æ � 
) ! (Æ; 0); R2 = (�; 0) ! (�; Æ � �) ! (0; Æ) ! (0; �)g of R. ByLemmas 3.1 and 3.3, there exists a proper triangulation of R.Unless either R1 is equivalent to one of Z2 or Z4 or R2 is equivalent to one of Z0or Z1, Lemmas 3.1 and 3.3 imply the existen
e of a se
ond proper triangulationof R.Suppose that R1 is equivalent to Z2.Then � � Æ = 1 and Æ + 
 � � = 0, so 
 = 1.
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ase Lemma 3.1 applied to R3in the tessellation fFT (1;0)Æ ; R3 = (1; 0)! (1; Æ� 1)! (0; Æ)! (0; 0)g veri�es theexisten
e of a se
ond proper triangulation of R.Otherwise suppose R1 is equivalent to Z4. Then 
 = 2, ��
 = 2, ��Æ = 1 andÆ + 
 � � = 1. Hen
e � = 4, Æ = 3 and sin
e Æ + 
 � � � � and � < 
 it followsthat � = 1. In whi
h 
ase fFT (0;1)2 ; FT (2;0)2 ; FT (1;0)1 ; FT (2;2)1 ; FT (3;1)1 ; BT (1;1)1 ;BT (2;1)1 ; BT (3;2)1 ; BT (4;1)1 g is a se
ond distin
t proper triangulation of R.Sub
ase B1: 
 < Æ, 
 + 2 � �, 
 � � and �� 
 � 
 + Æ � �.From the 
onditions for this sub
ase and the assumption that 0 < 
 it followsthat 
 + Æ � � < � or equivalently 
 + Æ � � < �.Consider the tessellation fFT (
;��
)Æ+
�� ; R1 = (�; 0)! (�; 
+ Æ��)! (2
+ Æ��; � � 
) ! (
; � � 
) ! (�; 0); R2 = (
; � � 
) ! (
; Æ � 
) ! (0; Æ) ! (0; �)gof R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.By Lemmas 3.1 and 3.3 either there exists a se
ond proper triangulation of Ror R1 is equivalent to an element of fZ0; Z1; Z2; Z4g and R2 is equivalent to Z1.Hen
eforth, assume the latter.Suppose that Æ = 2. Then 
 = � = 1 and so R is equivalent to X2 and byinspe
tion there does not exist a se
ond distin
t proper triangulation of R. Thus,Æ > 2.Sin
e R2 is equivalent to Z1, either 
 = 1 or Æ � � = 1.First suppose 
 = 1 and Æ � � = 1. The fa
t that Æ > 2 implies � > 1. Inthis 
ase 
onsider the tessellation fFT (0;Æ�1)1 ; FT (1;Æ�1)1 ; BT (2;Æ�1)2 ; R3 = (�; 0)!(�; Æ + 
 � �)! (2; Æ � 1)! (2; �� 2)! (�; 0)g.Se
ondly, suppose 
 = 1 and Æ�� > 1 and so Æ � �+2. Furthermore Æ�� > 1implies that 
 + Æ � � > 2, so R1 is not equivalent to Z4; thus � � 2. If � = 1,then R1 is equivalent to Z0, and the 
onditions 0 � Æ + 
 � � � � � 
 implyÆ + 
 � � = 0. Here we take the tessellation fFT (0;1)Æ�1 ; FT (1;Æ�1)1 ; R4 = (�; 0) !(2; Æ�1)! (1; Æ�1)! (Æ�1; 1)! (0; 1)! (1; 0)g of R. Note R4 is equivalent toZ3 and hen
e there exists a proper triangulation of R4. Otherwise � = 2 and wetake the tessellation fFT (1;2)Æ�2 ; BT (2;2)2 ; R5 = (�; 0)! (�; 
+Æ��)! (Æ�1; 2)!(2; 2)! (2; 0); R6 = (1; 2)! (1; Æ � 1)! (0; Æ)! (0; 2)g.Thirdly, suppose 
 > 1 and Æ�� = 1. Thus 
+Æ�� > 2, so R2 is not equivalentto Z4. If � 6= 
, R1 is not equivalent to Z0, thus Æ�
 = (Æ��)+(��
) = 2; takethe tessellation fFT (
;2)
 ; BT (
+1;2)2 ; R7 = (�; 0)! (�; 
+Æ��)! (Æ+
�2; 2)!(
 +1; 2)! (�; 0); R8 = (
; Æ� 
)! (0; Æ)! (0; �)! (
 � 1; Æ� 
)g. Otherwise� = 
. When � = 
+2, from the 
onditions for this sub
ase 
+Æ�� � ��
 = 0,so, Æ � 2, hen
e, as 
 < Æ for this 
ase, 
 � 1, a 
ontradi
tion. Thus � � 
 + 3;take the tessellation fFT (�;0)2 ; R2; R9 = (�; 0)! (
; Æ)! (
; 2)! (
 + 2; 0)g.In ea
h of the above 
ases the given tessellation, together with Lemmas 3.1,3.2 and 3.3, verify the existen
e of a se
ond distin
t proper triangulation of R.Sub
ase B2:1: 
 < Æ, 
 + 2 � �, 
 � �, �� 
 < 
 + Æ � � and � � 
 > Æ � �.
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t equilateral triangle disse
tions of 
onvex regions 199Note that 
 > 0 and � � 
 imply � > 0. Also sin
e � � 
 < 
 + Æ � �, then
 + Æ � � � 1.Consider the tessellation fFT (
;��
)��
 ; R1 = (�; � � 
) ! (�; 
 + Æ � �) !(
; Æ) ! (
; � + � � 2
); R2 = (
; � � 
) ! (
; Æ � 
) ! (0; Æ) ! (0; �); R3 =(�; 0) ! (�; � � 
) ! (
; � � 
) ! (�; 0)g of R. By Lemma 3.1, there exists aproper triangulation of R.Lemma 3.1 veri�es the existen
e of a se
ond proper triangulation of R unlessR1 is equivalent to Z1, R2 is equivalent to Z1 and R3 is equivalent to one of Z0or Z2.Suppose that R1 is equivalent to Z1. This supposition together with the 
on-dition 
 + 2 � � imply that �� 
 + 1 = 
 + Æ � �.If � > 
, then take the tessellation fFT (
;��
+1)��
 ; BT (
+1;��
+1)2 R4 = (
; ��
 + 1) ! (
; Æ � 
) ! (0; Æ) ! (0; �) ! (
 � 1; � � 
 + 1); R5 = (�; 0) !(�; � � 
 + 1)! (
 + 1; �� 
 + 1)! (
 + 1; �� 
 � 1)! (�; 0)g.If � = 
, then R3 = Z0 and Æ + 
 � � = 1. In this 
ase further suppose thatR2 is equivalent to Z1. Under this supposition either 
 = 1 or Æ � � = 1. When
 = 1, � = 1 and so the 
ondition Æ + 
 � � = 1 implies � = Æ, or equivalently� � 
 = � � 1 = Æ � 1 = Æ � �, 
ontradi
ting the 
ondition that � � 
 > Æ � �.Hen
e 
 > 1. If Æ � � = 1 and 
 + 2 = �, the 
ondition Æ + 
 � � = 1 impliesÆ = 3 and � = 2, whi
h in turn implies 
 = 2; in this 
ase R is equivalent to X4and there exists only one proper triangulation of R. So it is left to 
he
k the 
asewhere � = 
, Æ�� = 1 and 
+2 < �. Under these 
onditions take the tessellationfFT (
;0)��
�1; R2; R6 = (�; 0)! (�; 1)! (
; Æ)! (
; � � 
 � 1)! (� � 1; 0)g.In ea
h of the above 
ases the given tessellation together with Lemmas 3.1and 3.3, verify the existen
e of a se
ond distin
t proper triangulation of R.Sub
ase B2:2:1: 
 < Æ, 
 + 2 � �, 
 � �, � � 
 = Æ � � and � � 2.Note that Æ + 
 � � = �.If 2 � 
, then, as 
 = �+��Æ, 2 � (
+Æ��)�(��
), so, ��
+2 � 
+Æ��.So, 
onsider the tessellation fFT (
�1;��
+1)��
 ; BT (�;��
+2)2 ; R1 = (�; ��
+2)!(�; Æ+
��)! (
; Æ)! (
; Æ�
)! (��2; ��
+2); R2 = (�; 0)! (�; ��
)!(� � 1; � � 
 + 1) ! (
 � 1; � � 
 + 1) ! (�; 0); R3 = (
 � 1; � � 
 + 1) !(
 � 1; Æ � 
 + 1) ! (0; Æ) ! (0; �)g of R. By Lemmas 3.1 and 3.3, thereexists a proper triangulation of R. As 2 � 
 and 
 +2 � �, there exists a se
onddistin
t proper triangulation of R1 and hen
e there exists a se
ond distin
t propertriangulation of R.If 
 = 1, then the sub
ase 
ondition � = 
+Æ�� implies ��
+1 = 
+Æ��.Consider the tessellation fFT (0;�)��
 ; BT (�;�)2 ; R4 = (�; �) ! (1; Æ) ! (1; Æ � 1) !(� � 1; �); R5 = (�; 0) ! (�; � � 2) ! (� � 2; �) ! (0; �) ! (�; 0)g of R. ByLemmas 3.1 and 3.3, there exists a proper triangulation of R.Note that R4 is equivalent to Z2, so unless R5 is equivalent to Z1, Lemmas 3.1and 3.3 verify the existen
e of a se
ond distin
t proper triangulation of R.
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Court, N.J. CavenaghSuppose R5 is equivalent to Z1; then � = 2 and � = 3. Sin
e Æ+
�� = �, Æ =4. In this 
ase R = (3; 0)! (3; 2)! (1; 4)! (1; 3)! (0; 4)! (0; 2)! (2; 0) anda se
ond distin
t proper triangulation of R is fFT (1;2)2 ; FT (0;3)1 ; FT (0;2)1 ; FT (2;0)1 ;FT (2;1)1 ; BT (2;2)2 ; BT (1;3)1 ; BT (3;2)1 ; BT (3;1)1 g.Sub
ase B2:2:2: 
 < Æ, 
 + 2 � �, 
 � �, � � 
 = Æ � � and � � 1.From the 
onditions for this sub
ase, 0 < 
 � �; it follows that � = 
 = 1. Inaddition, 
 + 2 � �, so 3 � � = Æ. Consider the tessellation fFT (0;2)Æ�2 ; BT (��1;2)2 ;R1 = (� � 1; 2) ! (1; Æ) ! (1; Æ � 1) ! (� � 2; 2); R2 = (�; 0) ! (�; 1) !(� � 1; 2) ! (� � 1; 0); R3 = (� � 1; 0) ! (� � 3; 2) ! (0; 2) ! (0; 1) ! (1; 0)gof R. By Lemmas 3.1 and 3.3, there exists a proper triangulation of R.Note that both R1 and R2 are equivalent to Z2. So unless R3 is equivalent toZ2 or Z4, by Lemmas 3.1 and 3.3, there exists a se
ond proper triangulation of R.Suppose R3 is equivalent to Z2; then � = 3 and so R is equivalent to X3. Inthis 
ase by inspe
tion there does not exist a se
ond distin
t proper triangulationof R.Suppose R3 is equivalent to Z4; then � = 4. Then R = (4; 0) ! (4; 1) !(1; 4) ! (1; 3) ! (0; 4) ! (0; 1) ! (1; 0) and fFT (2;0)2 ; FT (1;2)2 ; FT (0;1)1 ; FT (0;2)1 ;FT (0;3)1 ; FT (1;0)1 ; FT (3;1)1 ; BT (2;2)2 ; BT (1;1)1 ; BT (1;3)1 ; BT (3;2)1 ; BT (4;1)1 g is a se
onddistin
t proper triangulation of R.Sub
ase C: 
 < Æ and � = 
 + 1.Sin
e Æ + 
 � � � �, it follows, from the 
onditions for this sub
ase, thatÆ � � � 1. However, from the 
onditions for this lemma, � < Æ, so Æ = �+ 1.Now, from the 
onditions for this sub
ase, 0 < Æ � 
 and � � 1 = 
, so0 < (�+1)� (��1); thus ��2 < �. From the 
onditions for this lemma, � < �,so it follows that � = � � 1.Thus, R = X1 and by inspe
tion there does not exist a proper triangulationof R.Sub
ase D: Æ = 
.In this 
ase the region R is the union of the region R1 = (
; 0) ! (0; 
) !(0; �) ! (�; 0) and the region R2 = (�; 0) ! (�; 2
 � �) ! (
; 
) ! (
; 0).Furthermore, R1 \ R2 = f(0; 
)g. By Lemma 3.1, there exists a proper t rian-gulation of R and if either one of R1 or R2 is not equivalent to Z2, then thereexists a se
ond distin
t proper triangulation. If R1 and R2 are both equivalentto Z2, then R is equivalent to X5 and by inspe
tion has only one possible propertriangulation. �Now that we have established Lemma 3.4 we 
an use it in 
onjun
tion withLemmas 3.1 and 3.2 to establish when a 
onvex region with six sides has a propertriangulation and when it has at least two distin
t proper triangulations.Lemma 3.5. Let R be a 
onvex region with six 
orners (sides). Whenever R isnot equivalent to Z6 then R has a proper triangulation; moreover, whenever R isnot equivalent to Z5 or Z6 then R has a se
ond distin
t proper triangulation.
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tions of 
onvex regions 201Proof: Re
all that if a proper triangulation for some region, R, exists, then aproper triangulation exists for all regions equivalent to R.The region R is equivalent to (�; 0) ! (�; 
 � Æ) ! (� � Æ; 
) ! (0; 
) !(0; �)! (�; 0), where 0 < �; Æ < �; 
.Two 
ases are 
onsidered; Case A where 
 � Æ � �+ Æ � � and Case B where
 � Æ > �+ Æ � �.Case B has several additional sub
ases whi
h are summarized in the followingtable.B1 The 
ondition � = � � Æ = 
 � Æ = 1 does not holdB2 � = � � Æ = 
 � Æ = 1 B2:1 The 
ondition Æ = � � � = 
 � � = 1does not holdB2:2 Æ = � � � = 
 � � = 1Sub
ase A: 
 � Æ � �+ Æ � �.Consider the tessellation fFT (��Æ;�+Æ��)�+
���Æ ; R1 = (�; 0)! (�; 0)! (�; 
� Æ)!(2� + 
 � � � 2Æ; � + Æ � �) ! (� � Æ; � + Æ � �); R2 = (� � Æ; � + Æ � �) !(� � Æ; 
)! (0; 
)! (0; �)g of R. By Lemmas 3.1 and 3.3 there exists a propertriangulation of R. Moreover if neither R1 nor R2 is equivalent to an element offZ0; Z2; Z4g, then there exists a se
ond distin
t proper triangulation of R.As �; Æ < �; 
, both R1 and R2 are not equivalent to Z0. Let R1 and R2 bothbe equivalent to Z2. Then 1 = � � Æ = 
 � Æ = � + Æ � �, thus, � = 
 = Æ + 1and � = 2.From the 
ondition for this 
ase 
 + � � � � 2Æ. Re
all that 0 < � < �; 
,so 1 � � � � and 2 � 
. Hen
e, 3 � 2Æ, thus, 2 � Æ. Consider the tessellationfFT (2;1)��2 ; BT (2;2)2 ; R3 = (2; 0) ! (�; 0) ! (�; 1) ! (2; 1); R4 = (0; 2) ! (2; 2) !(2; 
 � 1) ! (1; 
) ! (0; 
)g of R. By Lemmas 3.1 and 3.3 there exists a se
onddistin
t proper triangulation of R.As R2 has four 
orners it is not equivalent to Z4. Let R1 be equivalent to Z2and R2 be equivalent to Z4 then (�; �; 
; Æ) = (3; 4; 4; 3) and, fFT (2;1)2 ; FT (3;0)1 ;FT (0;3)1 ; FT (1;3)1 ; BT (2;3)2 ; BT (3;1)1 ; BT (4;1)1 ; BT (1;4)1 g is a se
ond distin
t proper tri-angulation of R.Sub
ase B1: 
� Æ > �+ Æ�� and the 
ondition � = �� Æ = 
� Æ = 1 doesnot hold.Consider the tessellation fFT (��Æ;
�Æ)Æ ; R1 = (�; 0) ! (�; 0) ! (�; 
 � Æ) !(� � Æ; 
 � Æ)! (� � Æ; 
)! (0; 
)! (0; �)g of R. As the 
ondition � = � � Æ =
 � Æ = 1 does not hold, R1 is not equivalent to X1. By Lemma 3.4, there existsa proper triangulation of R and if R1 =2 X , there exists a se
ond distin
t propertriangulation of R.Let R1 2 X . As 
 � Æ > � + Æ � �, R1 is not equivalent to X5. Re
all that� < 
; �, so, R1 is not equivalent to X2. Thus, R1 is equivalent to either X3 orX4. If R1 is equivalent to X4, then, by inspe
tion, there exists a se
ond distin
t
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tion there exists pre
isely one proper triangulation of R.Sub
ase B2:1: 
 � Æ > � + Æ � �, � = � � Æ = 
 � Æ = 1 and the 
onditionÆ = � � � = 
 � � = 1 does not hold.Consider the linear transformation R�+ (
; �) where � = � 0 �1�1 0 � 2 G. Thistransformation inter
hanges � with 
 and � with Æ. Thus, in this sub
ase theregion R is equivalent to a region in Sub
ase B1.Sub
ase B2:2: 
 � Æ > �+ Æ � �, � = � � Æ = 
 � Æ = Æ = � � � = 
 � � = 1.In this sub
ase (�; �; 
; Æ) = (1; 2; 2; 1), hen
e, R is equivalent to Z6 and, byinspe
tion, R has no possible proper triangulation. �We 
an now state the �rst major result of this paper.Theorem 3.6. Let R be any 
onvex region. Then if R is not equivalent to Z6,it has a proper triangulation. Moreover, whenever R =2 Z then R has a se
onddistin
t proper triangulation.Proof: This follows immediately from Lemmas 3.1, 3.3 and 3.5. �4. Distin
t proper triangulations 
ontaining a �xed triangleWe now move on to the question of establishing when it is possible to �nd twodistin
t proper triangulations of a region when some triangle is for
ed to o

ur inboth proper triangulations. We answer this question 
ompletely for three-sidedregions, and also for non-re
tangular four-sided regions. We deal with the four-sided regions �rst; the two 
hoi
es for the dire
tion of the internal triangle yieldtwo theorems.Theorem 4.1. Let 1 � � � �, 0 < � � �, 0 < 
 � ���, 0 � Æ � ��� and � �
+Æ; then there exists a proper triangulation of the region R = (�; 0)! (�; �)!(0; �)! (�; 0) whi
h 
ontains FT (
;Æ)� if and only if (�; �; 
; Æ; �) 6= (2; 3; 1; 1; 1).If � = 1 or (�; �) = (2; 2) or (�; �; 
Æ; �) 2 f(2; 3; 2; 1; 1); (2; 3; 2; 0; 1);(2; 4; 2; 1; 1)g, then there exists pre
isely one proper triangulations of R 
ontainingFT (
;Æ)� .Otherwise there exists a se
ond distin
t proper triangulations of R 
ontainingFT (
;Æ)� .Proof: If (�; �; 
; Æ; �) = (2; 3; 1; 1; 1), then, by inspe
tion, there does not exista proper triangulation of R 
ontaining FT (
;Æ)� .If � = 1 or (�; �) = (2; 2) or (�; �; 
Æ; �) 2 f(2; 3; 2; 1; 1); (2; 3; 2; 0; 1);(2; 4; 2; 1; 1)g, then, by inspe
tion, there exists pre
isely one proper triangulationof R 
ontaining FT (
;Æ)� .By inspe
tion, the other 
ases where � + � � 6 have two distin
t propertriangulations of R 
ontaining FT (
;Æ)� .
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tions of 
onvex regions 203Hen
eforth, assume that 1 < � and 6 < � + �. Two sub
ases are 
onsidered:Case A where � � 
 and Case B where � > 
 (see Figure 5 for illustrations ofthese 
ases and their sub
ases).Figure 5. Tessellations for 
ases of Lemma 4.1.
Case B,m1 = �, m2 = �R2 R2m1 = 
 + Æ + �, m2 = 
 + �Case B, Case B,m1 = �, m2 = 
 + �R2

Case B,m1 = 
 + Æ + �, m2 = �R2m1 = �Case A,
R1R3 R2Case A,m1 = 
 + Æ + � R1R2R3

R8R9R8R9R8R9
R8R9

Let m1 = minf
 + Æ + �; �g and m2 = minf
 + �; �g.Case A: � � 
.Note that for this 
ase m2 = �.Consider the tessellation fBT (
;�)� ; BT (m1;Æ+�)m1�
 ; FT (
;Æ)� ; R1 = (�; 0) ! (m1; 
+ Æ + � �m1) ! (
 + �; Æ) ! (
; Æ) ! (
; 0); R2 = (�; 0) ! (�; �) ! (
; �) !(
; Æ + �) ! (m1; Æ + �) ! (m1; 0); R3 = (
; 0) ! (
 � �; �) ! (0; �) ! (�; 0)gof R. By Lemmas 3.1, 3.2 and 3.3, there exists a proper triangulation of R
ontaining FT (
;Æ)� , and if fR1; R2; R3g 6� Z , then there exists a se
ond distin
tproper triangulation of R 
ontaining FT (
;Æ)� . So, assume that fR1; R2; R3g � Z .Consider the tessellation fBT (
;Æ+�)Æ+� ; BT (m1;�)�+m1�
�Æ��; FT (
;Æ)� ; R1; R4 = (�; 0)! (�; �) ! (m1; �) ! (m1; 0); R5 = (
; Æ + �) ! (
 + Æ + �� �; �) ! (0; �) !(�; 0) ! (
; 0) ! (
 � Æ � �; Æ + �)g of R. By Lemmas 3.1, 3.2 and 3.3, unlessÆ + � = �, there exists a se
ond distin
t proper triangulation of R 
ontainingFT (
;Æ)� .If Æ + � = � and � 6= 1, 
onsider the tessellation fBT (
;��1)��1 ; BT (m1;�)m1�
 ;BT (
;�)1 ; FT (
;Æ)� ; R1; R4; R6 = (
; � � 1) ! (
 � 1; �) ! (0; �) ! (�; 0) !(
; 0) ! (
 � � + 1; � � 1)g of R. By Lemmas 3.1, 3.2 and 3.3, there exists ase
ond distin
t proper triangulation of R 
ontaining FT (
;Æ)� .If Æ+ � = �, � = 1 and 
 + � < �, re
all that fR1; R2; R3g � Z , hen
e, � � 3and � � 6. For 6 < �+� � 9 a pair of proper triangulations of R both 
ontainingFT (
;Æ)� = FT (
;Æ)1 is shown in Figure 6.
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ase A of Lemma 4.1.

If Æ+� = �, � = 1 and 
+� = �, 
onsider the tessellation fBT (�;Æ)��1 ; BT (
;�)1 ;BT (�;�)1 ; FT (
;Æ)� ; R7 = (�; 0) ! (� � � + 1; Æ) ! (
; Æ) ! (
 � 1; �) ! (0; �) !(�; 0)g of R. By Lemma 3.2, there exists a se
ond distin
t proper triangulationof R.Case B: � > 
.Consider the tessellation fBT (m2;Æ)m2+Æ��; BT (
;�)��Æ ; BT (m1;Æ+�)m1�
 ; FT (
;Æ)� ; R2; R8 =(�; 0) ! (m1; 
 + Æ + � � m1) ! (
 + �; Æ) ! (m2; Æ) ! (m2; � � m2) !(�; 0); R9 = (
; Æ)! (
 + Æ � �; �)! (0; �)! (�� Æ; Æ)g of R. By Lemmas 3.1,3.2 and 3.3, there exists a proper triangulation of R 
ontaining FT (
;Æ)� , and iffR2; R8; R9g 6� Z , then there exists a se
ond distin
t proper triangulation of R
ontaining FT (
;Æ)� .So, assume that fR2; R8; R9g � Z .Re
all the above assumption that 6 < � + �. Consider the tessellationfBT (m2;Æ)m2+Æ��; BT (
;Æ+�)� ; BT (m1;�)�+m1�
�Æ��; FT (
;Æ)� ; R4; R8; R10 = (
; Æ+�)! (
+Æ+���; �) ! (0; �)! (��Æ; Æ)! (
; Æ)! (
��; Æ+�)g of R. By Lemmas 3.1,3.2 and 3.3, unless Æ + � = �, there exists a se
ond distin
t proper triangulationof R 
ontaining FT (
;Æ)� .If Æ + � = � and � 6= 1, 
onsider the tessellation fBT (m2;Æ)m2+Æ��; BT (
;��1)��1 ;BT (m1;�)m1�
 ; BT (
;�)1 ; FT (
;Æ)� ; R4; R8; R11 = (
; � � 1) ! (
 � 1; �) ! (0; �) !(�� Æ; Æ)! (
; Æ)! (
 ��+1; �� 1)g of R. By Lemmas 3.1, 3.2 and 3.3, thereexists a se
ond distin
t proper triangulation of R 
ontaining FT (
;Æ)� .Otherwise Æ + � = � and � = 1. Sin
e � > 
 for this sub
ase, m2 = 
 + 1.Observe that R8 is equivalent to one of Z0; Z1; Z2 or Z4.
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t equilateral triangle disse
tions of 
onvex regions 205If R8 is equivalent to Z4, then � = ��1 = 4 and a pair of proper triangulationsof R both 
ontaining FT (
;Æ)� = FT (
;Æ)1 is shown in Figure 7.Figure 7. Proper triangulations for Sub
ase B of Lemma 4.1.
Otherwise R8 is equivalent to Z0, Z1 or Z2. Thus either 
 = 1 or � � 
 � 2.When R8 is equivalent to Z0 and 
 = 1 then � � 2. But from the 
onditionsof this lemma, � � � and from above 6 < �+ �, 
reating a 
ontradi
tion.When R8 is equivalent to Z1 or Z2 and 
 = 1 
onsider the tessellation fBT (�;Æ)Æ ;BT (1;�)1 ; BT (2;�)1 ; FT (
;Æ)� = FT (1;��1)1 ; R11 = (�; 0) ! (�; �) ! (2; �) !(2; �� 1) ! (�; Æ) ! (�; 0)g of R. As R8 is equivalent to Z1 or Z2 and R2 2 Z ,� � � + 2. So, if � � 2, then � + � � 6 
ontradi
ting our assumption that6 < � + �. Thus, by Lemmas 3.1 and 3.2, we have a proper triangulation of R
ontaining FT (
;Æ)� whi
h is distin
t to the one above.Otherwise 1 < 
 and � � 
 � 2. Note that � = Æ + � < Æ + 
. Suppose that
 � 1 � � � 
. (Equivalently, as � = 1, 
 + Æ � � � � � 
.) Then 
onsider thetessellation fBT (
;�)
 ; BT (�;�)��
 ; FT (
;
+Æ��)��
 ; FT (
;Æ)� = FT (
;��1)1 ; R13 = (�; 0)!(�; 
 + Æ � �) ! (
; 
 + Æ � �) ! (
; � � 
) ! (�; 0); R14 = (�; 
 + Æ � �) !(�; � + 
 � �) ! (
 + 1; Æ) ! (
; Æ)g of R. By Lemmas 3.1 and 3.3, there existsa se
ond distin
t proper triangulation of R 
ontaining FT (
;Æ)� .Otherwise 
 � 1 < � � 
. Then 2 = 
 < � � � � 4. A pair of propertriangulations of R both 
ontaining FT (
;Æ)� = FT (
;Æ)1 is shown in Figure 7. �Theorem 4.2. Let 0 < � � Æ � � � �; 
 � �; � � 
 + Æ � � and R = (�; 0)!(�; �) ! (0; �)! (�; 0).If 1 = � � 
 = � �� = Æ� �, then there does not exist a proper triangulationof R 
ontaining BT (
;Æ)� .Otherwise, if 1 = � or (�; �; 
; Æ; �) = (2; 3; 3; 2; 1) or ��Æ; ��
; 
+Æ���� �1, then there exists pre
isely one proper triangulation of R 
ontaining BT (
;Æ)� .In 
ases other than the above, there exists at least two distin
t proper trian-gulations of R both 
ontaining BT (
;Æ)� .Proof: If 1 = � � 
 = � � � = Æ � �, then, by inspe
tion, there does not exista proper triangulation of R 
ontaining BT (
;Æ)� .Similarly, if 1 = � or (�; �; 
; Æ; �) = (2; 3; 3; 2; 1) or ��Æ; ��
; 
+Æ���� � 1,then, by inspe
tion, there exists pre
isely one proper triangulation of R 
ontainingBT (
;Æ)� .
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tion, the other 
ases where � + � � 6 have two distin
t propertriangulations of R 
ontaining BT (
;Æ)� .Hen
eforth, assume that 1 < �, 6 < � + � and either 1 < � � Æ or 1 < � � 
or 1 < 
 + Æ � �� �.Let m1 = minf
 + Æ; �g, m2 = minfÆ + �; �g and m3 = maxf�+ �� 
; 0g.Consider the tessellation fBT (m1;�)�+m1�
�Æ; BT (
��;m2)m2�m3 ; BT (
;Æ)� ; R1 = (m1; 0)!(m1; 
+ Æ�m1)! (
; Æ)! (
; Æ��)! (
 ��; Æ)! (
��;m3)! (�; 0); R2 =(�; 0)! (�; �)! (m1; �)! (m1; 0); R3 = (
��;m3)! (
+m3�m2��;m2)!(
��;m2)! (
+ Æ��; �)! (0; �)! (�; 0); R4 = (
; Æ)! (
+ Æ�m2;m2)!(
 � �;m2) ! (
 � �; Æ)g of R (see Figure 8 for an illustration of these 
ases).Sin
e the 
ondition 1 = �� 
 = ��� = Æ�� does not hold, the region R1 is notequivalent to the regionX1. By Lemmas 3.1, 3.2, 3.3 and 3.4, there exists a propertriangulation of R 
ontaining BT (
;Æ)� . Furthermore if fR1; R2; R3; R4g 6� X [ Z ,then there exists a se
ond distin
t proper triangulation.Figure 8. Tessellations for 
ases of Lemma 4.2.
R1R4m1 = �, m2 = �,m3 = �+ �� 
R1R4R3m1 = �, m2 = Æ + �,m3 = 0R1R3 R4m1 = �, m2 = Æ + �,m3 = �+ �� 


R1R4m1 = 
 + Æ, m2 = �,m3 = �+ �� 
 R2 m1 = 
 + Æ, m2 = �,m3 = 0 R4R1 R2R3
R4R1R3m1 = �, m2 = �,m3 = 0 R1R3 R2R4m1 = 
 + Æ, m2 = Æ + �,m3 = �+ �� 
 R1R3 R2R4m1 = 
 + Æ, m2 = Æ + �,m3 = 0

Otherwise fR1; R2; R3; R4g � X [ Z and we wish to establish the existen
e ofa se
ond distin
t proper triangulation when 1 < �. For 6 < � + � � 12 thereare a small number of 
ases; these are dealt with individually in [11℄. Hen
eforth
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ases are 
onsidered: Case A where � = 1,Case B where � = 2 and Case C where 3 � �.Case A: � = 1.Suppose �rst that 
 6= � and � = 1 < 
 + Æ � �.From Figure 8, R3 is equivalent to Z0 or Z1 or Z3. Thus � � Æ � 2 and
���� � 1. Sin
e R2 is equivalent to Z0 or Z1, ��m1 � 1. Sin
e R1 2 Z [Xand � = 1 < 
 + Æ � �, the region R1 is equivalent to either Z3 or X2 or X3 orX5.If R1 is equivalent to Z3, then � = � and Æ = 3. Thus, � = � � Æ + 2 = 5, so�+ � � 10, a 
ontradi
tion.If R1 is equivalent to X2, then Æ = 2 and either m1 � 
 = 1, in whi
h 
asem1 = � and m1�� � 3, or m1�
 = 2, in whi
h 
ase ��m1 � 1 and m1�� = 2.Thus, � � Æ+2 = 4 and ��� � 3, so, � � 7. Hen
e �+� � 11, a 
ontradi
tion.If R1 is equivalent to X3, then Æ = 3, �+ �� 
 = 1 and � + �� 
 = 3. Thus,� � Æ + 2 = 5 and � = 2 + � � 7. So �+ � � 12, a 
ontradi
tion.If R1 is equivalent to X5, then Æ = 1, � � m1 � 1, 0 � 
 � � � � � 1 andm1 � 
 = 1. Thus, � � Æ + 2 = 3 and � � � + 4 � 7. So, � + � � 10,a 
ontradi
tion.Se
ondly, suppose that 
 6= � and 
 + Æ � � = � = 1. Hen
e, R1 is equivalentto Z1 or Z2.If 3 � 
, then 
onsider the tessellation fBT (2;�)2 ; BT (m1;��1)m1�2 ; BT (
;Æ)� =BT (
;��
+1)1 ; R1; R5 = (
; Æ) ! (2; � � 1) ! (2; � � 2) ! (
 � 1; Æ); R6 =(�; 0) ! (�; �) ! (2; �) ! (2; � � 1) ! (m1; � � 1) ! (m1; 0)g of R. ByLemmas 3.1 and 3.2, there exists a se
ond distin
t proper triangulation of R
ontaining BT (
;Æ)� .If 
 � � � 2, 
onsider the tessellation fBT (�;2)2 ; BT (��1;�)��2 ; BT (
;Æ)� =BT (
;��
+1)1 ; R7 = (� � 1; 2) ! (
; Æ) ! (
; Æ � 1) ! (� � 2; 2); R8 = (
; Æ) !(1; �) ! (0; �) ! (
 � 1; Æ); R9 = (�; 0) ! (�; �) ! (� � 1; �) ! (� � 1; 2) !(�; 2) ! (�; 0)g of R. By Lemmas 3.1 and 3.2, there exists a se
ond distin
tproper triangulation of R 
ontaining BT (
;Æ)� .Otherwise � � 2 < 
 < 3, so � � 3. As R2 is equivalent to Z0 or Z1 and
 + Æ � � = � = 1 it follows that � � �+ 2. Thus, �+ � � 8, a 
ontradi
tion.Thirdly, suppose that 
 = � and 
 + Æ � � = � = 1; then Æ � 1 = � � �.From the 
onditions for this lemma 0 � Æ � 1 and � � � � 0. Thus � = �and Æ = 1. Note that 6 < � + �, so, 4 � � = �. Consider the tessellationfBT (��1;�)��1 ; BT (
;Æ)� = BT (�;1)1 ; R10 = (�; 1)! (�; �) ! (�� 1; �)! (�� 1; 1)gof R. By Lemma 3.1, there exists a se
ond distin
t proper triangulation of R
ontaining BT (
;Æ)� .Finally assume 
 = � and � = 1 < 
 + Æ � �. Re
all that R3 is equivalent toZ0, Z1 or Z3, so, � � Æ � 2 and 
 � � � � � 1. Hen
e, as 
 = � and � = 1, itfollows that ��2 � �. If � � 2, then � � 4 and thus �+� � 6; therefore, 3 � �.
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Court, N.J. CavenaghIf � � 2 < � + �� Æ, then � � 2 < 2 + �, hen
e, � < 5, thus, 6 < � + � � 8,a 
ontradi
tion.Hen
e, assume �+ �� Æ � � � 2.If �� 2� (�� (�� 2)) < 0, then � < 4, so, �+� � 6, a 
ontradi
tion. Hen
e,�� 2� (�� (� � 2)) � 0.Let m4 = minf��2; Æ�1g. Consider the tessellation fFT (��2;m4)2 ; BT (��2;�)��2 ;BT (
;Æ)� = BT (�;Æ)1 ; R11 = (�; 0)! (�;m4)! (� � 2;m4)! (� � 2; �� � +2)!(�; 0); R12 = (�;m4) ! (�; Æ � 1)! (� � 1; Æ)! (�; Æ) ! (�; �) ! (� � 2; �)!(��2;m4+2)g of R. By Lemmas 3.1 and 3.3 there exists a se
ond distin
t propertriangulation of R 
ontaining BT (
;Æ)� .Case B: � = 2.As R3 is equivalent to Z0, Z1 or Z3 and R4 is equivalent to Z0 or Z2, ��Æ � 1(so, m2 = �) and 
 � � � � � 1. Sin
e R1 is equivalent to Z0, Z1, Z2, Z3, Z4,X4 or X5, m1 = �, � � � � 2, m1 + � � 
 � 4 and Æ � 4. If Æ = 4, then R1 isequivalent to Z3, so, � = � and �� Æ; � � 
; 
 + Æ � �� � � 1 
ontradi
ting ourassumption that either 1 < � � Æ or 1 < � � 
 or 1 < 
 + Æ � � � �. So, Æ � 3.Thus, � � 4 and � � 2 + �, so, �+ � � 10, a 
ontradi
tion.Case C: 3 � �.As Ri 2 X [Z for all 1 � i � 4 it follows that � � 
; �� Æ; 
 + Æ � �� � � 1,a 
ontradi
tion. �Letting � = � in Theorem 4.1 and 4.2 des
ribes pre
isely when at least oneor two proper triangulations exist for a three-sided region 
ontaining any �xedtriangle.Note that, this result is des
ribed in terms of �nding proper triangulations ofa ba
kward triangle. However, the equivalen
es of regions (and indeed propertriangulations) dis
ussed earlier mean that a similar result holds for forward tri-angles. Referen
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riti
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Regions equivalent to X5
Regions equivalent to X4

A Region equivalent to Z6
Regions equivalent to Z4Regions equivalent to Z2Regions equivalent to Z1Regions equivalent to Z3

Regions equivalent to X1 Regions equivalent to X3Regions equivalent to X2
Regions equivalent to Z5
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