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On extension of fun
torsL. Kar
hevska, T. RadulAbstra
t. A. Chigogidze de�ned for ea
h normal fun
tor on the 
ategory Compan extension whi
h is a normal fun
tor on the 
ategory Ty
h. We 
onsider thisextension for any fun
tor on the 
ategory Comp and investigate whi
h propertiesit preserves from the de�nition of normal fun
tor. We investigate as well sometopologi
al properties of su
h extension.Keywords: Chigogidze extension of fun
tors, 1-preimage preserving propertyClassi�
ation: 18B30, 54B30, 57N20Introdu
tionThe general theory of fun
tors a
ting in the 
ategory Comp of 
ompa
t Haus-dor� spa
es (
ompa
ta) and 
ontinuous mappings was founded by E.V. Sh
hepin[15℄. He distinguished some elementary properties of su
h fun
tors and de�nedthe notion of normal fun
tor that has be
ome very fruitful. The 
lass of normalfun
tors in
ludes many 
lassi
al 
onstru
tions: the hyperspa
e exp, the fun
tor ofprobability measures P , the power fun
tor and many other fun
tors (see [13℄, [9℄for more details). But some important fun
tors do not satisfy some of the prop-erties from the Sh
hepin list. Omitting some properties we obtain wider 
lassesof fun
tors su
h as weakly normal fun
tors and almost normal fun
tors.The properties from the de�nition of normal fun
tor 
ould be easily generalizedfor the fun
tors on the 
ategory Ty
h of Ty
honov spa
es and 
ontinuous maps.Let us remark that Ty
h 
ontains Comp as a sub
ategory. A. Chigogidze de�nedfor ea
h normal fun
tor on the 
ategory Comp an extension whi
h is a normal fun
-tor on the 
ategory Ty
h [6℄. This extension 
ould be 
onsidered for any fun
toron the 
ategory Comp. But the situation is more 
ompli
ated for wider 
lassesof fun
tors. For example, the extension of the proje
tive power fun
tor (whi
h isweakly normal) does not preserve embeddings, whi
h makes su
h extension use-less (see for example [13, p. 67℄). However, if we apply the Chigogidze extensionto su
h weakly normal fun
tors as the fun
tor O of order-preserving fun
tionals,the fun
tor G of in
lusion hyperspa
es, the superextension, we obtain fun
tors onthe 
ategory Ty
h whi
h preserve embeddings.The main aim of this paper is to investigate whi
h properties from the de�ni-tion of normal fun
tor are preserved by Chigogidze extension, spe
ially we 
on-
entrate our attention on the preserving of embeddings. The results devoted tothis problem are 
ontained in Se
tion 2. We de�ne in this se
tion the 1-preimages
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hevska, T. Radulpreserving property whi
h is 
ru
ial for preserving of embeddings. In Se
tion 3we 
onsider whi
h fun
tors have the 1-preimages preserving property.T. Banakh and R. Cauty obtained topologi
al 
lassi�
ation of the Chigogidzeextension of the fun
tor of probability measures for separable metri
 spa
es. Wegeneralize this result to 
onvex fun
tors in Se
tion 4.x1All spa
es are assumed to be Ty
honov, all mappings are 
ontinuous. Allfun
tors are assumed to be 
ovariant. In the present paper we will 
onsiderfun
tors a
ting in two 
ategories: the 
ategory Ty
h and its sub
ategory Comp.Let us re
all the de�nition of normal fun
tor. A fun
tor F : Comp! Comp is
alled monomorphi
 (epimorphi
) if it preserves embeddings (surje
tions). For amonomorphi
 fun
tor F and an embedding i : A! X we shall identify the spa
eF (A) and the subspa
e F (i)(F (A)) � F (X).A monomorphi
 fun
tor F is said to be preimage-preserving if for ea
h mapf : X ! Y and ea
h 
losed subset A � Y we have (F (f))�1(F (A)) = F (f�1(A)).For a monomorphi
 fun
tor F the interse
tion-preserving property is de�ned asfollows: F (TfX� j � 2 Ag) = TfF (X�) j � 2 Ag for every family fX� j � 2 Agof 
losed subsets of X .A fun
tor F is 
alled 
ontinuous if it preserves the limits of inverse systemsS = fX�; p��;Ag over a dire
ted set A. Let us also note that for any 
ontinuousfun
tor F : Comp ! Comp the map F : C(X;Y ) ! C(FX;FY ) (the spa
eC(X;Y ) is 
onsidered with the 
ompa
t-open topology) is 
ontinuous.Finally, a fun
tor F is 
alled weight-preserving if w(X) = w(F (X)) for everyin�nite X 2 Comp.A fun
tor F is 
alled normal [15℄ if it is 
ontinuous, monomorphi
, epimor-phi
, preserves weight, interse
tions, preimages, singletons and the empty spa
e.A fun
tor F is said to be weakly normal (almost normal) if it satis�es all theproperties from the de�nition of a normal fun
tor ex
ept perhaps the preimage-preserving property (epimorphi
ity) (see [13℄ for more details).Similarly, one 
an de�ne the same properties for a fun
tor F : Ty
h ! Ty
hwith the only di�eren
e that the property of preserving surje
tions is repla
ed bythe property of sending k-
overing maps to surje
tions (re
all that f : X ! Y isa k-
overing map if for any 
ompa
t set B � Y there exists a 
ompa
t set A � Xwith f(A) = B) (see [13, De�nition 2.7.1℄).A. Chigogidze de�ned an extension 
onstru
tion of a fun
tor in Comp ontoTy
h the following way [6℄. For any normal fun
tor F : Comp ! Comp and anyX 2 Ty
h, the spa
eF�(X) = fa 2 F (�X) j there exists a 
ompa
t set A � X with a 2 F (A)gis 
onsidered with the topology indu
ed from F (�X), where �X is the Stone-�Ce
h
ompa
ti�
ation of the spa
e X . Next, given any 
ontinuous mapping f : X ! Ybetween Ty
honov spa
es, put F�(f) = F (�f)jF�(X). Then F� forms a 
ovariant
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tors 271fun
tor in the 
ategory Ty
h. Chigogidze showed that in 
ase F is normal, thefun
tor F� is also normal.x2Let us modify the Chigogidze 
onstru
tion for any fun
tor F : Comp! Comp.For X 2 Ty
h we putF�(X) = fa 2 F (�X) j there exists a 
ompa
t set A � Xwith a 2 F (iA)(F (A))gwhere by iA we denote the natural embedding iA : A ,! X (we do not assumethat the map F (iA) is an embedding). Evidently F� preserves empty set andone-point spa
e i� F does.Now we 
onsider the problem when F� preserves embeddings. Extension ofany normal fun
tor preserves embeddings, but, if we drop the preimage preserv-ing property, the situation 
ould be di�erent. However, the examples from theintrodu
tion show that the preimage-preserving property is not ne
essary. We de-�ne some weaker property whi
h will give us a ne
essary and suÆ
ient 
ondition.De�nition 1. We say that a monomorphi
 fun
tor F : Comp! Comp preserves1-preimages , if for any f : X ! Y , where X;Y 2 Comp, any 
losed A � Y su
hthat f jf�1(A) is a homeomorphism, we have that (Ff)�1(FA) = F (f�1(A)). (Letus remark it is equivalent to the 
ondition that the map Ff j (Ff)�1(FA) is ahomeomorphism.)Let us note that this de�nition was independently introdu
ed by T. Banakh,M. Klymenko and A. Ku
harski [3℄.Proposition 1. If F is a monomorphi
 fun
tor that preserves 1-preimages in the
lass of open mappings, then F preserves 1-preimages.Proof: Take any mapping f : X ! Y su
h that f jf�1(A) is a homeomorphismfor some 
losed subset A � Y . Let i1 : X ! X � Y be the embedding de�nedby the formula i1(x) = (x; f(x)). Denote Z = X � Y=", where the relation " isgiven by " = fpr�1Y (a) j a 2 Ag (prY : X � Y ! Y is the respe
tive proje
tion).Let q : X � Y ! Z be the quotient mapping. The map h : Z ! Y given bythe 
onditions h(z) = y for any z = (x; y) 2 Z n q(X � A) and h(z) = a forany z = q(pr�1Y (a)), a 2 A, is open and satis�es the following two 
onditions:prY = h Æ q, hjh�1(A) is a homeomorphism. Apparently, the map i = q Æ i1 is anembedding, moreover, h Æ i = f . Sin
e F preserves 1-preimages in the 
lass ofopen mappings, we have (Fh)�1(FA) = F (h�1(A)), whi
h gives us the equality(Ff)�1(FA) = F (f�1(A)). �Proposition 2. If F is a monomorphi
 fun
tor that preserves 1-preimages, thenF� preserves embeddings.
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hevska, T. RadulProof: Take any embedding f : X ! Y . Then the map F�(f) is 
losed as therestri
tion of a 
losed map onto a full preimage and, moreover, inje
tive, hen
ean embedding. �For any X 2 Ty
h and any its 
ompa
ti�
ation bX we 
an de�neFb(X) = fa 2 F (bX) j there is a 
ompa
t subset A � Xwith a 2 F (A)g � F (bX)and 
onsider it with the respe
tive subspa
e topology.Corollary 1. If F is a monomorphi
, 1-preimage-preserving fun
tor, thenF�(X) �= Fb(X) for any Ty
honov spa
e X and its 
ompa
ti�
ation bX .Proposition 3. If F is monomorphi
, preserves 1-preimages and weight, thenF� preserves weight.Proof: The statement follows from the previous 
orollary and the fa
t that forany X 2 Ty
h there exists its 
ompa
ti�
ation bX whi
h has the same weightas X . �As the following proposition shows, the reverse impli
ation to that of Proposi-tion 2 also holds.Proposition 4. Let F be a 
ontinuous fun
tor su
h that F� preserves embed-dings. Then F preserves 1-preimages.Proof: Assume the 
ontrary. Then there exist a map f : X ! Y and a
losed subset A � Y su
h that f jf�1(A) is a homeomorphism and Ff�1(FA) 6=F (f�1(A)). We 
an suppose that the map f is open by Proposition 1. Thereexist � 2 FA and � 2 FXnF (f�1(A)) su
h that Ff(�) = �. We will 
onstru
t aspa
e S 2 Ty
h and its 
ompa
ti�
ation 
S su
h that the map F�(id S) : F�(S)!F�(
S) = F (
S) is not an embedding, where id S : S ! 
S is an identity embed-ding.First put Z = X��N, where the spa
e of natural numbers N is 
onsidered withthe dis
rete topology and �N = N [ f�g is the one-point 
ompa
ti�
ation of N.De�ne a 
ontinuous fun
tion g : Z ! Y by g(x; n) = f(x) for any x 2 X , n 2 �N.Let T = Z=" be a quotient spa
e, where " is an equivalen
e relation de�ned byits 
lasses of equivalen
e ffxg j x 2 (X n f�1(A)) � Ng [ fg�1(y) \ X � f�g jy 2 Y n Ag [ ffag � �N j a 2 f�1(A)g. By q : Z ! T we denote the respe
tivequotient mapping. Then the map h : T ! Y de�ned by the equality g = h Æ qis 
ontinuous. The set D = q(X � f�g) is 
ompa
t as a 
ontinuous image of a
ompa
t set and moreover hjD is one-to-one, hen
e a homeomorphism betweenD and Y . We denote by j : Y ! T the inverse embedding. Also, for any n 2 Nthe spa
e Sn = q(X � fng) is homeomorphi
 to X and we de�ne jn : X ! T byjn(x) = q(x; n). Then we have hÆjn = f . Finally note that T is a 
ompa
ti�
ationof the spa
e S = Tnq((X n f�1(A))� f�g).
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tors 273Put �n = F (jn)(�) for n 2 N. The sequen
e jn 
onverges to j Æ f in the spa
eC(X;T ). Sin
e F is 
ontinuous, the sequen
e F (jn) 
onverges to F (j Æ f) in thespa
e C(FX;FT ). Hen
e the sequen
e �n 
onverges to F (j Æ f)(�) = F (j)(�) 2F (q(f�1(A) � �N)).Now 
onsider F�(S) as a subspa
e of F (�S). De�ne a map s1 : S ! X by the
ondition s1 Æ jn = idX for all n. Let us show the 
ontinuity of s1. Consider anypoint t 2 S and any open neighborhood U of s1(t) in X . Sin
e the map f is open,the set q(U � �N) = q((U � N) [ (f�1(f(U)) � f�g)) is an open set in T whi
h
ontains the point t. The set V = q(U � �N) \ S is an open neighborhood of tsu
h that s1(V ) � U .Let s : �S ! X be the extension of s1. Then Fs(�n) = � =2 F (f�1(A)). Thenthe sequen
e �n does not 
onverge to any element of F (q(f�1(A) � �N)). Theproposition is proved. �Propositions 2 and 4 yield the followingTheorem 1. For any 
ontinuous monomorphi
 fun
tor F the fun
tor F� pre-serves embeddings if and only if F preserves 1-preimages.The proof of the following proposition is a routine 
he
king and we omit it.Proposition 5. Let F : Comp! Comp be a fun
tor.(1) If F preserves embeddings, 1-preimages and interse
tions then F� pre-serves interse
tions.(2) If F preserves embeddings and preimages then F� preserves preimages.(3) If F preserves surje
tions then F� sends k-
overing maps to surje
tions.Now let us 
onsider 
ontinuity of the Chigogidze extension. The followingexample shows that in the absen
e of the preimage-preserving property of thefun
tor F , it is diÆ
ult to speak of 
ontinuity of F� , sin
e even the extension ofsu
h known weakly normal fun
tor as G does not possess it.Example. Let us de�ne the in
lusion hyperspa
e fun
tor G. Re
all that a 
losedsubset A 2 exp2X (where X 2 Comp) is 
alled an in
lusion hyperspa
e, if forevery A 2 A and every B 2 expX the in
lusion A � B implies B 2 A. Then GXis the spa
e of all in
lusion hyperspa
es with the indu
ed topology from exp2X .For any map f : X ! Y de�ne Gf : GX ! GY by Gf(A) = fB 2 expY jf(A) � B for some A 2 Ag. The fun
tor G is weakly normal (see [13℄ for moredetails). In the next se
tion we will see that the fun
tor G preserves 1-preimages.Let us show that the fun
tor G� is not 
ontinuous. Consider the followinginverse system. For any n 2 N put Xn = N � f1; : : : ; ng (here the spa
es N andf1; : : : ; ng are 
onsidered with the dis
rete topology). De�ne pmn : Xm ! Xn,where m � n, in the following way: pmn (x; k) = (x;minfk; ng). We obtainedthe inverse system S = fXm; pmn ;Ng. Then the limit spa
e X = limS is home-omorphi
 to the spa
e N � A (here A = �N = N [ f�g is the one-point 
om-pa
ti�
ation of N, i.e. a 
onvergent sequen
e; also we put � to be greater thanany natural number), and the limit proje
tions pn : X ! Xn 
an be given by
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hevska, T. Radulpn(x; k) = (x;minfk; ng), k 2 N. The 
ontinuity of G� means that limG�(pn) :G�(limS)! limG�(S) is a homeomorphism. Here both G�(limS) and limG�(S)
an be thought as subspa
es of G(bX), where b is a 
ompa
ti�
ation of X with theproperty bX = lim�S. The �rst in
lusion follows from Corollary 1, and the se
-ond in
lusion is due to 
ontinuity of G (hen
e G(lim �S) = G(bX) = limG(�S))and existen
e of the embedding limG�(S) ,! limG(�S) whi
h is the limit of amorphism that naturally embeds ea
h G�(Xn) into G(�Xn).Now we will 
onstru
t K 2 limG�(S) whi
h does not belong to limG�(pn)(G�(limS)). Consider the spa
e X embedded into its 
ompa
ti�
ation bX . Forany n 2 Anf�g put Kn = f1; : : : ; ng�fng. If we want to obtain a 
losed family ofsets, the set K� = N � f�g must be added to the family eK = fKngn2N. Now putK = fB � bX j Kn � B for some n 2 Ag. Then K 2 limG�(S). However, thereis no element C 2 G�(limS) with limG�(pn)(C) = K. Indeed, the proje
tion ofany 
ompa
t set B � X onto the fa
tor N of N�A is �nite, hen
e limG�(pn)(C)does not 
ontain K� or 
ontains some �nite subsets in N � N � f�g. Hen
e,limG�(pn), being not surje
tive, is not a homeomorphism.x3We start this se
tion with de�nitions of some fun
tors we deal with in thispaper. Let X be a 
ompa
tum. By C(X) we denote the Bana
h spa
e of all
ontinuous fun
tions � : X ! R with the usual sup-norm. We 
onsider C(X)with the natural order. Let � : C(X) ! R be a fun
tional (we do not supposea priori that � is linear or 
ontinuous). We say that � is 1) non-expanding ifj�(')� �( )j � d(';  ) for all ';  2 C(X); 2) weakly additive if for any fun
tion� 2 C(X) and any 
 2 R we have �(� + 
X) = �(�) + 
 (by 
X we denote the
onstant fun
tion); 3) preserves order if for any ';  2 C(X) su
h that ' �  the inequality �(') � �( ) holds; 4) linear if for any �, � 2 R and for any twofun
tions  , � 2 C(X) we have �(�� + � ) = ��(�) + ��( ).Now for any spa
e X denote V X =Q'2C(X)[min';max'℄. For any mappingf : X ! Y de�ne the map V f as follows: V f(�)(') = �('Æf) for every � 2 V X ,' 2 C(Y ). Then V is a 
ovariant fun
tor in the 
ategory Comp [11℄.Let us remark that the spa
e V X 
ould be 
onsidered as the spa
e of all fun
-tionals � : C(X) ! R with the only 
ondition min'(X) � �(') � max'(X) forevery ' 2 C(X). By EX we denote the subset of V X de�ned by the 
ondition 1)(non-expanding fun
tionals; see [5℄ for more details), by EAX the subset de�nedby the 
onditions 1) and 2). The 
onditions 2) and 3) de�ne the subset OX(order-preserving fun
tionals, see [10℄); �nally, the 
onditions 3) and 4) de�ne thewell-known subset PX (probability measures, see for example [13℄). For a mapf : X ! Y the mapping Ff , where F is one of P , O, EA, E, is de�ned as therestri
tion of V f on FX . It is easy to 
he
k that the 
onstru
tions P , O, EAand E de�ne subfun
tors of V . It is known that the fun
tors O and E are weaklynormal (see [10℄ and [5℄). Using the same arguments one 
an 
he
k that EA isweakly normal too.
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tors 275The question arises naturally whi
h of the fun
tors de�ned above have theproperty of preserving 1-preimages. It is easy to 
he
k that we have the in
lusionsPX � OX � EAX � EX � V X . We will show that the fun
tor EA satis�es thisproperty and E does not. Sin
e subfun
tors inherit the 1-preimages preservingproperty, this is the 
omplete answer. Let us also remark that the results of [11℄and [12℄ show that many other known fun
tors 
ould be 
onsidered as subfun
torsof EA, for example the superextension, the hyperspa
e fun
tor, the in
lusionhyperspa
e fun
tor et
. This shows that the 
lass of fun
tors with the 1-preimagespreserving property is wide enough.We start with a de�nition of an AR-
ompa
tum. Re
all that a 
ompa
tum Xis 
alled an absolute retra
t (brie
y X 2 AR) if for any embedding i : X ! Z ofX into 
ompa
tum Z the image i(X) is a retra
t of Z.The next lemma will be needed in the following dis
ussion.Lemma 1. Let F be a monomorphi
 subfun
tor of V whi
h preserves interse
-tions and B be a 
losed subset of a 
ompa
tumX . Then � 2 FB i� �('1) = �('2)for ea
h '1; '2 2 C(X) su
h that '1jB = '2jB .Proof: Ne
essity. The in
lusion � 2 FB � FX means that there exists �0 2 FBwith F (iB)(�0) = �, where iB : B ! X is the natural embedding. Hen
e, for any'1, '2 2 C(X) su
h that '1jB = '2jB we have �('1) = �0('1ÆiB) = �0('2ÆiB) =�('2).SuÆ
ien
y. We 
an �nd an embedding j : B ,! Y , where Y 2 AR. De�ne Zto be the quotient spa
e of the disjoint union X [Y obtained by atta
hing X andY by B. Denote by r : Z ! Y a retra
tion mapping.Now take any � 2 FX � FZ with the property �('1) = �('2) for ea
h '1,'2 2 C(X) su
h that '1jB = '2jB . We 
laim that F (r)(�) = �. Indeed, takeany ' 2 C(Z). Then F (r)(�)(') = �(' Æ r) = �(') sin
e ' Æ rjY = 'jY . Hen
e,� 2 FX \ FY = FB. �Proposition 6. The fun
tor EA preserves 1-preimages.Proof: Let f : X ! Y be a 
ontinuous open map between 
ompa
ta X and Yand B be a 
losed subset of Y su
h that f jf�1(B) is a homeomorphism. Chooseany � 2 EA(B) � EA(Y ). Using Lemma 1 we 
an de�ne �0 2 EA(f�1(B))by the 
ondition �0(') = �( ) for ea
h ' 2 C(X) and  2 C(Y ) su
h that Æ f j f�1(B) = 'jf�1(B).It is enough to show that for ea
h � 2 (EA(f))�1(�) we have � = �0. Supposethe 
ontrary. Then there exist ' 2 C(X) and  2 C(Y ) su
h that  Æ f jf�1(B) = 'jf�1(B) and �(') 6= �( ). We 
an suppose that �(') > �( ). De�nea fun
tion  0 : Y ! R by  0(y) = max'f�1(y) for any y 2 Y . The fun
tion  0is 
ontinuous sin
e f is open. Also, sin
e  0jB =  jB , we have that �( 0) = �( ).Put � = ( 0�D)Æf , where D = supfmax'f�1(y)�min'f�1(y) j y 2 Y g. Thend(�; ') � D but �(') � �(�) = �(') � �(( 0 � D) Æ f) = �(') � �( 0) + D =�(')� �( ) +D > D and we obtain a 
ontradi
tion. The proof is similar for the
ase �(') < �( ).
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hevska, T. RadulHen
e, EA preserves 1-preimages in the 
lass of open mappings, and, by Propo-sition 1, we are done. �Proposition 7. The fun
tor of nonexpanding fun
tionals E does not preserve1-preimages.Proof: Consider the mapping f : X ! Y between dis
rete spa
esX = fx; y; s; tgand Y = fa; b; 
g whi
h is de�ned as follows: f(x) = a, f(y) = b, f(s) = f(t) = 
.Put A = f' 2 C(X) j '(s) = '(t)g. De�ne the fun
tional � : A ! R as follows:�(') = minf'(x); '(y)g if 'jfx;yg � 0, �(') = maxf'(x); '(y)g if 'jfx;yg � 0,and �(') = 0 otherwise. One 
an 
he
k that � is nonexpanding. Now take thefun
tion  : X ! R de�ned as follows  (x) = 1,  (y) = �1,  (s) = 0,  (t) = 4.One 
an 
he
k that we 
an extend � to a nonexpanding fun
tional on A[f g byde�ning its value on  to be �1. This new fun
tional 
an be further extended toa nonexpanding fun
tional on the whole C(X) [5℄. Denote this extension by e�.Evidently, Ef(e�) 2 E(fa; bg). On the other hand, e� =2 E(fx; yg). �x4We 
onsider in this se
tion a monomorphi
 
ontinuous fun
tor F whi
h pre-serves interse
tions, weight, empty set, point and 1-preimages. We investigate thetopology of the spa
e F�Y where Y is a metrizable separable non-
ompa
t spa
e.We 
onsider Y as a dense subset of a metrizable 
ompa
tum X . It follows fromCorollary 1 that F�Y is homeomorphi
 to FbY � FX (where X is 
onsidered asa 
ompa
ti�
ation bY of Y ) and in what follows we identify F�Y with FbY . Also,the properties we impose on F imply that F�Y is a dense proper subspa
e of FX .T. Banakh proved in [1℄ that F�Y is a F�-subset of FX when Y is lo
ally
ompa
t; F�Y is F�Æ-subset when Y is a GÆ-subset. If Y is not a GÆ-subset, thenF�Y is not analyti
.We 
onsider in the Hilbert 
ube Q = [�1; 1℄! the following subsets: � = f(ti) 2Q j supi jtij < 1g; � = f(ti) 2 Q j ti 6= 0 for �nitely many ig and �! � Q! �= Q.It is shown in [2℄ that any analyti
 P�Y is homeomorphi
 to one of the spa
es�, � or �!. We generalize this result for 
onvex fun
tors.By Conv we denote the 
ategory of 
onvex 
ompa
ta (
ompa
t 
onvex subsetsof lo
ally 
onvex topologi
al linear spa
es) and aÆne maps. Let U : Conv! Compbe the forgetful fun
tor. A fun
tor F is 
alled 
onvex if there exists a fun
torF 0 : Comp ! Conv su
h that F = UF 0. It is easy to see that the fun
tors V ,E, EA, O and P are 
onvex. It is shown in [14℄ that for ea
h 
onvex fun
torF there exists a unique natural transformation l : P ! F su
h that the maplX : PX ! FX is an aÆne embedding for ea
h 
ompa
tum X .Lemma 2. P�Y = (lX)�1(F�Y ).Proof: Take any measure � 2 P (X) su
h that lX(�) = �0 2 F�Y . By thede�nition of F�Y it means that �0 2 FB for some 
ompa
tum B � Y . Wewill show that � 2 PB � P�Y . Choose a 
ompa
t absolute retra
t T whi
h
ontains B and de�ne Z to be the quotient spa
e of the disjoint union X [ T
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tors 277obtained by atta
hing X and T by B. By r : Z ! T denote the retra
tion.Sin
e l is a natural transformation and r is the identity on T � Z, we have thatF (r) Æ lZ(�) = �0 = lT Æ P (r)(�). Hen
e, � = P (r)(�) 2 P (T ) due to inje
tivityof lZ. Therefore, � 2 PX \ PT = PB. The lemma is proved. �We need some notions from in�nite-dimensional topology. See [4℄ for moredetails. All spa
es are assumed to be metrizable and separable. A 
losed subsetA of a 
ompa
tum T is 
alled Z-set if there exists a homotopy H : T � [0; 1℄! Tsu
h that H jT�f0g = id T�f0g and H(T � (0; 1℄) \ A = ;; a 
ountable union ofZ-sets of T is 
alled a �Z-set.We do not know if F�Y is 
ontained in a �Z-set of FX for any 
onvex fun
tor F .Thus, we introdu
e some additional property. We 
onsider the 
ompa
tum FXas a 
onvex subset of a lo
ally 
onvex linear spa
e.Re
all that for any subset A of a linear spa
e L the notation a�(A) stands forthe aÆne hull of A, that is, the set a�(A) = fta+ (1� t)b j a; b 2 A; t 2 Rg.De�nition 2. A 
onvex fun
tor F : Comp! Comp is 
alled strongly 
onvex if forea
h 
ompa
tum X , ea
h 
losed subset A � X we have (FX nFA) \ a� FA = ;.Proposition 8. Ea
h 
onvex subfun
tor F of the fun
tor V is strongly 
onvex.Proof: By Lemma 1 any element from a� FA takes the same value at any twofun
tions from C(X) whi
h 
oin
ide on A, whi
h is not true for fun
tionals fromFX n FA. �Proposition 9. Let F be a strongly 
onvex fun
tor. Then F�Y is 
ontained ina �Z-set in FX .Proof: Take any y 2 XnY . Then F�Y � F�(Xnfyg), and Xnfyg 
an berepresented as a 
ountable union of its 
ompa
t subsets An with the propertythat An � intAn+1, hen
e, F�(Xnfyg) = Sn2N F (An). Let us show that allF (An) are Z-sets in FX . Take any � 2 FX n F�(X n fyg) and the set Z =ft� + (1� t)� j t 2 (0; 1℄; � 2 F�(X n fyg)g. Sin
e F is strongly 
onvex, we haveZ \ F�(X n fyg) = ;. Sin
e Z is a 
onvex and dense subset of FX , there exists ahomotopy H : FX� [0; 1℄! FX su
h that H(FX�(0; 1℄) � Z (see, for example,Example 12, 13 to Se
tion 1.2 in [4℄). �Now, we are going to obtain the 
omplete topologi
al 
lassi�
ation of the pair(FX;F�Y ) whereX is a metrizable 
ompa
tum and Y its proper dense GÆ-subset.We need some 
hara
terization theorems.Theorem A ([8℄). Let C be an in�nite-dimensional dense 
onvex subspa
e of a
onvex metrizable 
ompa
tumK, C is 
ontained in a �Z-set of K and additionallylet C be a 
ountable union of its �nite-dimensional 
ompa
t subspa
es. Then thepair (K;C) is homeomorphi
 to (Q; �).Theorem B ([7℄). Let K be a 
onvex metrizable 
ompa
tum, and let C � K beits proper dense 
onvex �-
ompa
t subspa
e that 
ontains an in�nite-dimensional
onvex 
ompa
tum and is 
ontained in a �Z-set of K. Then the pair (K;C) ishomeomorphi
 to the pair (Q;�).
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hevska, T. RadulThe following theorem follows from 5.3.6, 5.2.6, 3.1.10 in [4℄.Theorem C. Let K be a 
onvex 
ompa
t subset of a lo
ally 
onvex linear metri
spa
e, and let C � K be its proper dense 
onvex F�Æ subspa
e su
h that C is
ontained in a �Z-set of K, (K n C) \ a� C = ;, and additionally there exists a
ontinuous embedding h : Q! K su
h that h�1(C) = �!. Then the pair (K;C)is homeomorphi
 to the pair (Q;�!).Theorem 2. Let F be a strongly 
onvex fun
tor, X is a metrizable 
ompa
tumand Y is its proper dense GÆ-subset. The pair (FX;F�Y ) is homeomorphi
 to(1) (Q; �), if Y is a dis
rete subspa
e of X and F (n) is �nite-dimensional forea
h n 2 N;(2) (Q;�), if Y is a dis
rete subspa
e of X and F (n) is in�nite-dimensionalfor some n 2 N or Y is a lo
ally 
ompa
t non-dis
rete subspa
e of X ;(3) (Q;�!), if Y is not lo
ally 
ompa
t.Proof: It is easy to see that F�Y is a 
onvex subset of FX .We prove the �rst assertion. Sin
e X is metrizable, Y is 
ountable. We 
anrepresent Y = S1n=1 Yn where jYnj = n. Then F�Y = S1n=1 FYn. Sin
e PYn
ould be 
onsidered as an (n � 1)-dimensional subspa
e of FYn, the spa
e F�Yis in�nite-dimensional. Moreover, F�Y is a �Z-set by Proposition 9. Sin
e ea
hFYn is a �nite-dimensional 
ompa
tum, we 
an apply Theorem A.We prove the se
ond assertion. In the 
ase when Y is dis
rete, FYn is anin�nite-dimensional 
onvex 
ompa
tum for some n. When Y is not dis
rete, it
ontains an in�nite 
ompa
tum Y 0 and FY 0 is an in�nite-dimensional 
onvex
ompa
tum. We apply Proposition 9 and Theorem B.For the third assertion, note that the pair (PX;P�Y ) is homeomorphi
 to(Q;�!) [2℄. Sin
e F is strongly 
onvex, we have (FX n F�Y ) \ a� F�Y = ;. Weapply Lemma 2, Proposition 9 and Theorem C. �Corollary 2. Suppose that F is a strongly 
onvex fun
tor. Then for any sepa-rable metrizable spa
e X(1) X �= N implies F�(X) �= Qf in 
ase F (n) is �nite-dimensional for anyn 2 N or F�(X) �= � otherwise;(2) if X is lo
ally 
ompa
t non-dis
rete and non-
ompa
t then F�(X) �= �;(3) if X is topologi
ally 
omplete not lo
ally 
ompa
t then F�(X) �= �!.Referen
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