
Comment.Math.Univ.Carolin. 53,2 (2012) 281{306 281
A very general 
overing propertyPaolo LippariniAbstra
t. We introdu
e a general notion of 
overing property, of whi
h many
lassi
al de�nitions are parti
ular instan
es. Notions of 
losure under varioussorts of 
onvergen
e, or, more generally, under taking kinds of a

umulationpoints, are shown to be equivalent to a 
overing property in the sense 
onsideredhere (Corollary 3.10). Conversely, every 
overing property is equivalent to theexisten
e of appropriate kinds of a

umulation points for arbitrary sequen
es onsome �xed index set (Corollary 3.5).We dis
uss 
orresponding notions related to sequential 
ompa
tness, and topseudo
ompa
tness, or, more generally, properties 
onne
ted with the existen
eof limit points of sequen
es of subsets. In spite of the great generality of ourtreatment, many results here appear to be new even in very spe
ial 
ases, su
has D-
ompa
tness and D-pseudo
ompa
tness, for D an ultra�lter, and weak(quasi) M-(pseudo)-
ompa
tness, for M a set of ultra�lters, as well as for [�;�℄-
ompa
tness, with � and � ordinals.Keywords: 
overing property, sub
over, 
ompa
tness, a

umulation point, 
on-vergen
e, pseudo
ompa
tness, limit pointClassi�
ation: Primary 54D20; Se
ondary 54A201. Introdu
tion\Covering property" in the title refers to a property of the form \every open
over has a sub
over by a tra
table 
lass of elements". The most general andeasiest form of establishing what \tra
table" is to be intended simply amounts toenumerate those sets whi
h are to be 
onsidered tra
table. We are thus led to thefollowing de�nition, where P(A) denotes the set of all subsets of the set A.De�nition 1.1 ([19, De�nition 7.7℄). If A is a set, and B � P(A), we say thata topologi
al spa
e X is [B;A℄-
ompa
t if and only if, whenever (Oa)a2A is asequen
e of open sets of X su
h that Sa2AOa = X , then there is H 2 B su
hthat Sa2H Oa = X .Of 
ourse, (full) 
ompa
tness is the parti
ular 
ase when A is in�nite andarbitrarily large, and B is the set of all �nite subsets of A. If in the abovesenten
e we repla
e �nite by 
ountable, we get Lindel�ofness . On the other hand,if we instead restri
t only to 
ountable A, we get 
ountable 
ompa
tness . Moregeneral examples of 
ardinal (and ordinal) notions redu
ible to [B;A℄-
ompa
tnesswill be presented below.



282 P. LippariniWe �rst show how to produ
e 
ounterexamples to [B;A℄-
ompa
tness in astandard way.Example 1.2. Suppose that A is a set, B � P(A), B is nonempty, and A =2 B(the assumption A =2 B is ne
essary by Fa
t 2.2(1) below).(a) As a typi
al 
ounterexample to [B;A℄-
ompa
tness, we 
an exhibit B itself,with the topology a subbase of whi
h 
onsists of the sets a� = fH 2 B j a =2 Hg,a varying in A.With the above topology, B is not [B;A℄-
ompa
t, as the a�s themselves wit-ness. Indeed, the a�s are a 
over of B, sin
e A =2 B. However, for every H 2 B,(a�)a2H is not a 
over of B, sin
e H belongs to no a�, for a 2 H .We believe that, in a sense still to be made pre
ise, B with the above topologyis the typi
al example of a non [B;A℄-
ompa
t topologi
al spa
e. This is sug-gested by parti
ular 
ases 
on
erning ordinal 
ompa
tness, see [19, Theorems 5.4and 5.7℄.Noti
e that B, with the above topology, is T0, but, in general, not even T1.However, the example 
an be turned into a Ty
hono� topologi
al spa
e by intro-du
ing a �ner topology as in (b) below.Observe that P(A) is in a bije
tive 
orresponden
e, via 
hara
teristi
 fun
tions,with Af0; 1g, the set of all fun
tions from A to f0; 1g, hen
e with the produ
t ofA-many 
opies of f0; 1g. Via the above identi�
ations, if we give to f0; 1g thetopology in whi
h f0g is open, but f1g is not open, then the topology des
ribedabove is the subspa
e topology indu
ed on B by the (Ty
hono�) produ
t topologyon Af0; 1g.(b) If we instead give to f0; 1g the dis
rete topology, then the subset topologyindu
ed on B by the topology on Af0; 1g makes B a Ty
hono� topologi
al spa
e,whi
h is still a 
ounterexample to [B;A℄-
ompa
tness. This latter topology, too,admits an expli
it des
ription: it is the topology a subbase of whi
h 
onsists of thesets whi
h have either the form a� = fH 2 B j a =2 Hg, or a< = fH 2 B j a 2 Hg,for some a 2 A.If B is 
losed under symmetri
al di�eren
e, then, with this topology, B inheritsfrom Af0; 1g the stru
ture of a topologi
al group. If B is 
losed both under �niteunions and �nite interse
tions, then B inherits from Af0; 1g the stru
ture of atopologi
al latti
e.We now 
onsider some more spe
i�
 instan
es of De�nition 1.1.The most general form of a 
overing notion involving 
ardinality as a measureof \tra
tability" is [�; �℄-
ompa
tness , where � and � are 
ardinals. It is theparti
ular 
ase of De�nition 1.1 when A = � and B = P�(�) is the set of allsubsets of � of 
ardinality < �. The notion of [�; �℄-
ompa
tness originated inthe 20's in the past 
entury [1℄, and thus has a very long history. See, e.g., [8℄,[14℄, [22℄, [23℄, [25℄, [26℄, [27℄, [28℄ for results and referen
es.In [19℄ we generalized 
ardinal 
ompa
tness to ordinals, that is, we 
onsideredthe parti
ular 
ase of De�nition 1.1 in whi
h A is an ordinal (or, anyway, awell-ordered set), and the \tra
tability" of some subset H of A is measured by
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onsidering the order type of H . In more detail, for � and � ordinals, [�; �℄-
ompa
tness is obtained from De�nition 1.1 by letting A = �, and letting B equalto the set of all subsets of � having order type < �. The notion is interesting, sin
eone 
an prove many non trivial results of the form \every [�; �℄-
ompa
t spa
e is[�0; �0℄-
ompa
t", for various ordinals, while only trivial results of this kind hold,when restri
ted to 
ardinals. Moreover, there are examples of spa
es satisfyingexa
tly the same [�; �℄-
ompa
tness (
ardinal) properties, but whi
h behave ina very di�erent way as far as (ordinal) [�; �℄-
ompa
tness is 
on
erned. Justto present the simplest possible example, if � is a regular un
ountable 
ardinal,then �, with the order topology, is [�+ �; �+ �℄-
ompa
t, but the disjoint unionof two 
opies of � is not [� + �; � + �℄-
ompa
t (here + denotes ordinal sum).Furthermore, there are many rather deep 
onne
tions among [�; �℄-
ompa
tness,
ardinalities and separation properties of spa
es. In [19℄ we also introdu
ed anordinal version of the Lindel�of number of a topologi
al spa
e, and showed that thisordinal version gives mu
h more information about the spa
e than the 
ardinalversion.So far, we have not yet provided really strong motivations in favor of thegreat generality of De�nition 1.1. Indeed, at �rst sight, the ordinal version of
ompa
tness, that is, [�; �℄-
ompa
tness, appears to be a quite very sensitive and�ne notion, well suited for exa
tly measuring the 
overing properties enjoyed bysome topologi
al spa
e. However, other interesting properties naturally insertthemselves into the general framework given by De�nition 1.1. In fa
t, besides
onsidering [�; �℄-
ompa
tness, we rea
hed the notion of [B;A℄-
ompa
tness aftera 
areful look at the proposition below, whi
h 
hara
terizes D-
ompa
tness.Re
all that if D is an ultra�lter, say over some set I , then a topologi
al spa
eX is said to be D-
ompa
t if and only if every sequen
e (xi)i2I of elements of XD-
onverges to some point of x, where a sequen
e (xi)i2I is said to D-
onvergeto some point x 2 X if and only if fi 2 I j xi 2 Ug 2 D, for every neighborhoodU of x in X .In [18, Corollary 34℄ we proved the following proposition, whi
h is also a par-ti
ular 
ase of Theorem 3.9 below (see Remark 3.12).Proposition 1.3. Let D be an ultra�lter over I . A topologi
al spa
e X is D-
ompa
t if and only if, for every open 
over (OZ)Z2D of X , there is some i 2 Isu
h that (OZ)i2Z is a 
over of X .Thus also D-
ompa
tness is equivalent to a 
overing property, namely, theparti
ular 
ase of De�nition 1.1 in whi
h A is D itself, and B = fi< j i 2 Ig,where, for i 2 I , we put i< = fZ 2 D j i 2 Zg. In words, B is the set of allthe interse
tions of D with some prin
ipal ultra�lter. Hen
e, in the sense of D-
ompa
tness, being \tra
table" means (having indi
es) lying in the interse
tionof D with some prin
ipal ultra�lter.Re
e
ting on the above example, we soon realized that many other 
onditionsasking 
losure under appropriate types of 
onvergen
e are equivalent to 
over-ing properties. Furthermore, this is the 
ase also for the existen
e of kinds of
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umulation points, as we shall show in Se
tion 3. Histori
ally, the interplay be-tween 
overing properties and a

umulation properties has been a 
entral themein topology, starting from [1℄, if not earlier. In this respe
t, see also the dis
ussionin Remark 2.5.Also a generalization of D-
ompa
tness, weak M -
ompa
tness, involving a setM of ultra�lters, is equivalent to a 
overing property, as will be shown in Corol-lary 3.14. See Corollary 5.15 for a 
hara
terization of a further related notion:quasi M -
ompa
tness.If in De�nition 1.1 we take B = P(A) n fAg, then a 
ounterexample to [B;A℄-
ompa
tness is what is usually 
alled an irredu
ible (or minimal) 
over. Irre-du
ible 
overs, as well as spa
es in whi
h every 
over 
an be re�ned to a (possibly�nite) irredu
ible 
over have been the obje
t of some study. See [2℄, [15℄ andfurther referen
es there. In a sense, an in�nite irredu
ible 
over produ
es a maxi-mal form of in
ompa
tness. Indeed, e.g. by Fa
t 2.2(2)(6) below in 
ontrapositiveform, if some topologi
al spa
e X has an irredu
ible 
over of 
ardinality �, thenX is not [B;A℄-
ompa
t, for every set A su
h that jAj � �, and every B � P(A)su
h that A =2 B.If X is a T1 topologi
al spa
e whi
h is not 
ountably 
ompa
t, then anyopen 
over witnessing 
ountable in
ompa
tness 
an be re�ned to an irredu
ible
ountably in�nite open 
over. This follows, for example, from the proof of [19,Lemma 6.4℄. Compare also with [2, Theorem 2.1℄. Thus we get the followingproposition.Proposition 1.4. For a T1 topologi
al spa
e X , the following 
onditions areequivalent.(1) X is not 
ountably 
ompa
t.(2) X is not [P(A) n fAg; A℄-
ompa
t, for every 
ountable nonempty set A.(3) X is not [B;A℄-
ompa
t, for some 
ountably in�nite set A, and someB � P(A) su
h that B 
ontains all �nite subsets of A.The above equivalen
es do not generalize to un
ountable 
ardinals. The spa
e�, with the order topology, is not [�; �℄-
ompa
t, but it is [�+ !; �+ !℄-
ompa
t[19, Example 3.2(3)℄ (here + denotes ordinal sum). Moreover the hypothesis thatX is T1 is ne
essary, by [19, Example 3.2(2)℄.Though simple, De�nition 1.1 uni�es many disparate situations, and allows forthe possibility of proving some interesting and non trivial results, whi
h sometimesare new and useful even in very parti
ular 
ases.When restri
ted to (
ardinal) [�; �℄-
ompa
tness, some of the results presentedin this note might be seen as a revisitation of known results. They are new in the
ase of (ordinal) [�; �℄-
ompa
tness. A
tually, the study of properties of [�; �℄-
ompa
tness has been the leading motivation for the present resear
h. Restri
tedto this parti
ular 
ase, this note may be seen as a 
ontinuation of [19℄. As soonas we realized that the results naturally �t into a more general setting, with no
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hni
al 
ompli
ation, we de
ided to present them in their moregeneral form.As far as D-
ompa
tness, and other notions of 
onvergen
e are 
on
erned,the results presented here 
an improve shedding new light into the subje
t. Inparti
ular, they hopefully provide a new point of view about the relationshipbetween 
onvergen
e, a

umulation and 
overing properties.It might be of some interest the fa
t that there is also a version for notionsrelated to pseudo
ompa
tness. As well known, for Ty
hono� spa
es, there is anequivalent formulation of pseudo
ompa
tness whi
h involves open 
overs: a Ty-
hono� spa
e is pseudo
ompa
t if and only if every 
ountable open 
over has asubset with dense union. Here the premise is the same as in 
ountable 
ompa
t-ness, with a weakened 
on
lusion. De�nition 1.1, too, 
an be modi�ed in the sameway (De�nition 4.1), and essentially all the results we prove for [B;A℄-
ompa
t-ness have a version for this pseudo
ompa
t-like notion. The notion of 
onvergen
e(or a

umulation) of a sequen
e of points will be repla
ed with notions of limitpoints of a sequen
e of subsets .Furthermore, in Se
tion 5, we present variations whi
h in
lude 
overing prop-erties equivalent to sequential 
ompa
tness, sequential pseudo
ompa
tness, quasiM -
ompa
tness, the Menger property and the Rothberger property. Many othernotions 
an be obtained as parti
ular 
ases of De�nition 5.7. De�nition 5.7 prob-ably deserves further study.We assume no separation axiom, unless otherwise spe
i�ed.2. Equivalents of a 
overing propertyIn this se
tion we show that, for every B and A as in De�nition 1.1, thereare many equivalent formulations of [B;A℄-
ompa
tness. In parti
ular, it 
an be
hara
terized by a sort of a

umulation property, in a sense whi
h will be expli
itlydes
ribed in the next se
tion. Parts of the results presented in this se
tion areknown for [�; �℄-
ompa
tness, hen
e, in parti
ular, for 
ountable 
ompa
tness,Lindel�ofness et
. They are new for (ordinal) [�; �℄-
ompa
tness, and for othergeneral notions of 
ompa
tness.We begin with a trivial but useful fa
t.Fa
t 2.1. A topologi
al spa
e is [B;A℄-
ompa
t if and only if, for every sequen
e(Ca)a2A of 
losed sets, if Ta2H Ca 6= ;, for every H 2 B, then Ta2ACa 6= ;.Proof: Immediate from the de�nition of [B;A℄-
ompa
tness, in 
ontrapositiveform, and by taking 
omplements. �We now state some other easy fa
ts about [B;A℄-
ompa
tness.Fa
t 2.2. Suppose that X is a topologi
al spa
e, A is a set, and B;B0 � P(A).(1) If A 2 B, then every topologi
al spa
e is [B;A℄-
ompa
t. In parti
ular,every topologi
al spa
e is [fAg; A℄-
ompa
t.(2) If B � B0, and X is [B;A℄-
ompa
t, then X is [B0; A℄-
ompa
t.



286 P. Lipparini(3) More generally, if, for every H 2 B, there is H 0 2 B0 su
h that H � H 0,then every [B;A℄-
ompa
t topologi
al spa
e is [B0; A℄-
ompa
t.(4) If X is [B;A℄-
ompa
t, and A0 � A, then X is [BjA0 ; A0℄-
ompa
t, whereBjA0 = fH \ A0 j H 2 Bg.(5) Suppose that, for every H 2 B, DH � P(H), and let D = SH2B DH . IfX is [B;A℄-
ompa
t, and [DH ; H ℄-
ompa
t, for every H 2 B, then X is[D;A℄-
ompa
t.(6) If C is a set, f : C ! A is a fun
tion, and D = ff�1(H) j H 2 Bg, thenevery [B;A℄-
ompa
t topologi
al spa
e is [D;C℄-
ompa
t.Fa
t (5) above is a broad generalization of standard arguments, e.g., the argu-ment showing that Lindel�ofness and 
ountable 
ompa
tness imply 
ompa
tness.Fa
t (6) follows immediately from the fa
t that a union of open sets is stillopen. Indeed, if (O
)
2C is an open 
over of X , then (Qa)a2A is an open 
overof X , where Qa = Sf(
)=aO
, for a 2 A.Remark 2.3. Let us say that B � P(A) is 
losed under subsets if and only if,whenever H 0 2 B and H � H 0, then H 2 B. Noti
e that, by (2) and (3) above, ifB0 � P(A) and B is the smallest subset of P(A) whi
h 
ontains B0 and is 
losedunder subsets, then a topologi
al spa
e X is [B;A℄-
ompa
t if and only if it is[B0; A℄-
ompa
t. Thus, in the de�nition of [B;A℄-
ompa
tness, it is no loss ofgenerality to 
onsider only those B whi
h are 
losed under subsets.If X is a topologi
al spa
e, and P � X , we denote by P the 
losure of P in X ,and by P Æ its interior. The topologi
al spa
e in whi
h we are taking 
losure andinterior will always be 
lear from the 
ontext.If B � P(A) and a 2 A, we let a<B = fH 2 B j a 2 Hg.Theorem 2.4. Suppose that A is a set, B � P(A), and X is a topologi
al spa
e.Then the following 
onditions are equivalent.(1) X is [B;A℄-
ompa
t.(2) For every sequen
e (Pa)a2A of subsets of X , if, for every H 2 B,Ta2H Pa 6= ;, then Ta2A P a 6= ;.(3) Same as (2), with the further assumption that jPaj � ja<B j, for everya 2 A.(4) For every sequen
e fxH j H 2 Bg of elements of X , it happens thatTa2A fxH j H 2 a<Bg 6= ;.(5) For every sequen
e fxH j H 2 Bg of elements of X , there is x 2 X su
hthat, for every neighborhood U of x in X , and for every a 2 A, there isH 2 B su
h that a 2 H and xH 2 U .(6) For every sequen
e fYH j H 2 Bg of nonempty subsets of X , it happensthat Ta2ASfYH j H 2 a<Bg 6= ;.(7) For every sequen
e fDH j H 2 Bg of nonempty 
losed subsets of X ,Ta2ASfDH j H 2 a<Bg 6= ;.
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overing property 287(8) For every sequen
e fOH j H 2 Bg of open proper subsets of X , if, forevery a 2 A, we put Qa = (TfOH j H 2 a<Bg)Æ, then (Qa)a2A is not a
over of X .Proof: (1) ) (2) Just take Ca = P a, for a 2 A, and use the equivalent formu-lation of [B;A℄-
ompa
tness in terms of 
losed sets, as given in Fa
t 2.1.(2) ) (3) is trivial.(3) ) (4) For a 2 A, put Pa = fxH j H 2 a<Bg. Thus jPaj � ja<B j. Moreover,if a 2 H 2 B, then xH 2 Pa, hen
e xH 2 Ta2H Pa, thus Ta2H Pa 6= ;. Byapplying (3), Ta2A Pa = Ta2A fxH j H 2 a<Bg 6= ;.(5) is 
learly a reformulation of (4), hen
e they are equivalent.(4) trivially implies (6), sin
e if, for everyH 2 B, we 
hoose xH 2 YH 6= ;, thenTa2ASfYH j H 2 a<Bg � Ta2A fxH j H 2 a<Bg, and this latter set is nonemptyby (4).(6) ) (7) is trivial, sin
e (7) is a parti
ular 
ase of (6).(7) ) (1) We shall use the equivalent formulation of [B;A℄-
ompa
tness givenby Fa
t 2.1. Suppose that (Ca)a2A are 
losed subsets ofX su
h thatTa2H Ca 6= ;,for every H 2 B. For ea
h H 2 B, put DH = Ta2H Ca, thus Ca � DH ,whenever a 2 H , hen
e, for every a 2 A, Ca � SfDH j H 2 a<Bg. By (7),Ta2A Ca � Ta2ASfDH j H 2 a<Bg 6= ;.(8) , (7) is immediate by taking 
omplements. �Noti
e that Conditions (6) and (7) 
an be reformulated in a way similar to thereformulation (5) of (4). As we shall explain in detail in Se
tion 3, Condition (5)
an be seen as a statement that asserts the existen
e of some kind of a

umulationpoint for the sequen
e fxH j H 2 Bg.Remark 2.5. Some parti
ular 
ases of Theorem 2.4 are known, sometimes being
lassi
al results.As we mentioned in the introdu
tion, 
ountable 
ompa
tness is the parti
ular
ase of De�nition 1.1 when A is 
ountable (without loss of generality we 
antake A = !), and B is the set of all �nite subsets of !. It is easy to see thatwe 
an equivalently take B = f[0; n) j n 2 !g; this follows, for example, fromRemark 2.3. In a di�erent 
ontext, a similar argument has been exploited in [18℄;see in parti
ular Remark 24 there. Remark 2.3 (and Fa
t 2.2(2)(3)) have furtherinteresting appli
ations whi
h will be presented elsewhere.Re
all that, for an in�nite 
ardinal �, a topologi
al spa
e X satis�es CAP� ifand only if every subset Y � X with jY j = � has a 
omplete a

umulation pointx, that is, a point x su
h that jU \ Y j = �, for every neighborhood U of x.For the above 
hoi
e of A = ! and B = f[0; n) j n 2 !g, the equivalen
e of (1)and (5) in Theorem 2.4 shows that 
ountable 
ompa
tness is equivalent to CAP!.This is be
ause a sequen
e (xH )H2B 
an be thought as a sequen
e (xn)n2!, viathe obvious 
orresponden
e between B and !. The astute reader will noti
e thatthe above argument (and Theorem 2.4, in general) deals with sequen
es, while



288 P. Lipparinithe de�nition of CAP! deals with subsets; that is, in the former 
ase, repetitionsare allowed, while in the latter 
ase they are not allowed. However, it is easy tosee that, in the parti
ular 
ase at hand, the di�eren
e produ
es no substantiale�e
t. See Remark 3.3 below and [17, Se
tion 3℄ for further details.Arguments similar to the above ones 
an be 
arried over, with no essential
hange, for every regular 
ardinal �. In this 
ase, we get that [�; �℄-
ompa
tnessis equivalent to CAP�. These results are very 
lassi
al, and, indeed, are immedi-ate 
onsequen
es of [1, Se
tion 9℄. For � singular, the 
hara
terization of [�; �℄-
ompa
tness is not that neat. The point is that, for � regular, a subset of � 
o�nalin � has ne
essarily 
ardinality �; this is false when � is singular.We have dis
ussed in some detail the equivalen
e between CAP� and [�; �℄-
ompa
tness, for � regular, sin
e it might be seen as a prototype of all the resultsproved in the present paper. In fa
t, we establish an interplay between notionsof 
ompa
tness, on one hand, and satisfa
tion of a

umulation properties, on theother hand. Su
h an interplay holds in very general situations, sometimes ratherfar removed from the above parti
ular and nowadays standard example.Turning to the more general notion of [�; �℄-
ompa
tness, the spe
ial 
ase ofthe equivalen
e of (1) and (2) in Theorem 2.4 appears in [8, Theorem 1.1℄. See[26, Lemma 5(b)℄. For [�; �℄-
ompa
tness, Conditions (1){(4) in Theorem 2.4 arethe parti
ular 
ase of [18, Proposition 32(1){(4)℄, taking F to be the set of allsingletons of X . In the parti
ular 
ase � = !, [!; �℄-
ompa
tness is usually 
alledinitial �-
ompa
tness . In this 
ase there are mu
h more 
hara
terizations: see[23, Se
tion 2℄ and [26℄. Some equivalen
es hold also for � > !, under additionalassumptions. See [26, Theorem 2℄.The equivalen
es in Theorem 2.4 have been inspired by results from Cai
edo[4, Se
tion 3℄, who impli
itly uses similar methods in order to deal with [�; �℄-
ompa
tness. In our opinion, Cai
edo [4℄ has provided an essentially new pointof view about [�; �℄-
ompa
tness. Apart from [4℄, it is diÆ
ult to tra
k ba
kwhi
h parts of Theorem 2.4, in this parti
ular 
ase, have appeared in some formor another in the literature. This is due to the hidden assumption, used by manyauthors, of the regularity of some of the 
ardinals involved, or of some forms ofthe generalized 
ontinuum hypothesis. See [26℄.Theorem 2.4 is new in the parti
ular 
ase of [�; �℄-
ompa
tness, for � and �ordinals. Sin
e it was our leading motivation for working on su
h matters, westate expli
itly the equivalen
e of (1) and (4) in Theorem 2.4 for this spe
ial 
ase.We let P�(�) denote the set of all subsets of � having order type < �. Noti
ethat this notation is 
onsistent with the 
ase introdu
ed before when � and � are
ardinals.Corollary 2.6. Suppose that X is a topologi
al spa
e and � and � are ordinals.Then the following 
onditions are equivalent.(1) X is [�; �℄-
ompa
t.(2) For every sequen
e fxz j z 2 P�(�)g of elements of X , if, for 
 2 �, weput P
 = fxz j z 2 P�(�) and 
 2 zg, then T
2� P 
 6= ;.



A very general 
overing property 289As we mentioned in the introdu
tion, also D-
ompa
tness turns out to beequivalent to a 
overing property in the sense of De�nition 1.1. More generally,many notions of being 
losed under 
onvergen
e, or under taking parti
ular kindsof a

umulation points are equivalent to a 
overing property, as we shall show inthe next se
tion. Theorem 2.4 applies in ea
h of the above 
ases.As a �nal remark in this se
tion, let us mention that Condition (5) in Theo-rem 2.4 suggests the following relativized notion of a 
luster point of a net.De�nition 2.7. Suppose that (�;�) is a dire
ted set, and (x�)�2� is a net ina topologi
al spa
e X . If T � �, we say that x 2 X is a 
luster point restri
tedto T of the net (x�)�2� if and only if for every � 2 T and every neighborhood Uof x, there is � 2 � su
h that � � � and x� 2 U .In fa
t, if � = B � P(A), � is in
lusion, and we suppose that B 
ontains allsingletons of P(A), then, in the terminology of De�nition 2.7, Condition 2.4(5)asserts that every �-indexed net (x�)�2� has some 
luster point restri
ted to theset of all singletons of P(A).This might explain the diÆ
ulties in �nding an equivalent formulation of [�; �℄-
ompa
tness in terms of 
luster points of nets [26℄. The 
ondition in De�nition 2.7is generally weaker than the request for a 
luster point: the de�nition of a 
lusterpoint of a net is obtained from 2.7 in the parti
ular 
ase when T = � (or, moregenerally, when T is 
o�nal in �, that is, T is su
h that, for every � 2 �, there is�0 2 T su
h that � � �0).3. Every notion of a

umulation (and more) is a 
overing propertyAn un
ompromising way of de�ning a general notion of \a

umulation point"is simply to �x some index set I , and to pres
ribe exa
tly whi
h subsets of I areallowed to be the (index sets of) elements 
ontained in the neighborhoods of somex | supposed to be an a

umulation point of some I-indexed sequen
e.Just to present the simplest nontrivial example, if I is in�nite, and we allowall subsets of I with 
ardinality jI j, we get the notion of a 
omplete a

umulationpoint (for sequen
es all whose points are distin
t).To state it pre
isely, let us give the following de�nition.De�nition 3.1. Let I be a set, E be a subset of P(I), and x = (xi)i2I be anI-indexed sequen
e of elements of some topologi
al spa
e X .If U � X , let Ix;U = fi 2 I j xi 2 Ug. We say that a point x 2 X is ana

umulation point in the sense of E, or simply an E-a

umulation point , of thesequen
e x if and only if Ix;U 2 E, for every open neighborhood U of x.We say that X satis�es the E-a

umulation property if and only if every I-indexed sequen
e of elements ofX has some (not ne
essarily unique) a

umulationpoint in the sense of E.Remark 3.2. Trivially, if E = P(I), then every spa
e satis�es the E-a

umulationproperty. Under 
ertain assumptions, we 
an get a smaller \minimal" E.



290 P. LippariniFor every I-indexed sequen
e x of elements of X , and every x 2 X , there isa smallest set E � P(I) su
h that x is an E-a

umulation point of x: just takeE = Ex;x = fIx;U j U an open neighborhood of xg. Noti
e that Ex;x is 
losedunder �nite interse
tions and arbitrary unions.More generally, if � is a set of I-indexed sequen
es of elements of X and, forevery x 2 �, Yx is a subset ofX , then E = SfEx;x j x 2 �; x 2 Yxg is the smallestset E su
h that x is an E-a

umulation point of x, for every x 2 � and x 2 Yx. Inother words, if we �x in advan
e some abstra
t relation of being an a

umulationpoint of a sequen
e, then there is a minimal E whi
h realizes this relation (of
ourse, in general, E will realize many more instan
es of a

umulation).Remark 3.3. As we hinted before De�nition 3.1, if I is in�nite, and E is the set ofall subsets of I of 
ardinality jI j, then the notion of an E-a

umulation point 
or-responds to that of a 
omplete a

umulation point. There is a te
hni
al di�eren
ethat should be mentioned: here we are dealing with sequen
es, rather than sub-sets. In order to get the standard de�nition of a 
omplete a

umulation point, weshould require that all the elements of the sequen
e are distin
t, otherwise somedi�eren
es might o

ur. However, if jI j is a regular 
ardinal, then a topologi
alspa
e satis�es CAPjIj if and only if it satis�es the E-a

umulation property, forthe above E.The whole matter has been dis
ussed in detail in [17, Se
tion 3℄, see in parti
u-lar Remark 3.2 and Proposition 3.3 there, taking F to be the set of all singletonsof X . We believe that, in general, dealing with sequen
es is the most natural way;for sure, it is the best way for our purposes here.Remark 3.4. De�nition 3.1 has some resemblan
e with the notion of �lter 
on-vergen
e. However, we are not asking E to be ne
essarily a �lter. This is be
ausewe want to in
lude notions of a

umulation and sin
e, for example, in the 
aseof 
omplete a

umulation points the 
orresponding E is not 
losed under inter-se
tion. Indeed, the interse
tion of two subsets of I of 
ardinality jI j may have
ardinality stri
tly smaller than jI j.Of 
ourse, given some �xed sequen
e (xi)i2I and some �xed element x 2 X ,the topologi
al relations between (xi)i2I and x are 
ompletely determined bythe (possibly improper) �lter F generated by the sets fi 2 I j xi 2 Ug, Uvarying among the neighborhoods of x in X . However, as the example of 
ompletea

umulation points shows, if we allow x vary, we get a more general (and useful)notion by 
onsidering an arbitrary subset E, rather than just a �lter.In this 
onne
tion, however, see also Remark 5.4.De�nition 3.1 in
orporates essentially all possible notions of \a

umulation".It 
aptures also many notions of 
onvergen
e. For example, a sequen
e (xn)n2!
onverges to x if and only if, for every neighborhood U of X , the set ! n fn 2 ! jxn 2 Ug is �nite. In this 
ase, I = ! and E 
onsists of the 
o�nite subsets of !.In a similar way, we 
an deal with 
onvergen
e of trans�nite sequen
es. A
tually,even net 
onvergen
e is a parti
ular 
ase of De�nition 3.1. If (�;�) is the dire
tedset on whi
h the net is built, then the net 
onverges to x if and only if x is an
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umulation point in the sense of De�nition 3.1 for the following 
hoi
e of E.Take I = � and let E be the set of all subsets of I whi
h 
ontain at least one setof the form �<, where, for � 2 �, we put �< = f�0 2 � j � � �0g. Of 
ourse, thisis the usual argument showing that net 
onvergen
e 
an be seen as an instan
e of�lter 
onvergen
e.De�nition 3.1 is more general. If, for a net as above, we take E to be the set ofall subsets of � whi
h are 
o�nal in �, then an E-a

umulation point 
orrespondsto a 
luster point of the net. Also the notion of a restri
ted 
luster point, asintrodu
ed in De�nition 2.7, 
an be expressed in terms of E-a

umulation, forsome appropriate E.If E = D is an ultra�lter over I , then the existen
e of an E-a

umulation point
orresponds exa
tly to D-
onvergen
e.It is rather astonishing that su
h a bun
h of disparate notions turn out to beea
h equivalent to some 
overing property in the sense of De�nition 1.1, as weshall show in Corollary 3.10 below.Before embarking in the proof, we noti
e that also the 
onverse holds, thatis, every 
overing property is equivalent to some a

umulation property. This issimply a reformulation, in terms of E-a

umulation, of the equivalen
e (1) , (5)in Theorem 2.4.Corollary 3.5. Suppose that X is a topologi
al spa
e, A is a set, B � P(A),and put I = B and E = fZ � B j for every a 2 A there is H 2 Z su
h thata 2 Hg = fZ � B j SZ = Ag. Then the following 
onditions are equivalent.(1) X is [B;A℄-
ompa
t.(2) X satis�es the E-a

umulation property.Example 3.6. As in Remark 2.5, if A = � is a regular in�nite 
ardinal, andB = f[0; �) j � < �g, then the E given by Corollary 3.5 
onsists of all subsets ofB of 
ardinality �. In this parti
ular 
ase, Corollary 3.5 amounts exa
tly to theequivalen
e of [�; �℄-
ompa
tness and CAP�.Example 3.7. As another simple example, suppose that A is any set, and letB = fA n fag j a 2 Ag. For this 
hoi
e of B, a topologi
al spa
e X is [B;A℄-
ompa
t if and only if X has no irredu
ible 
over of 
ardinality jAj. The E givenby Corollary 3.5 in this situation is the set of all subsets of B whi
h 
ontainat least two elements from B. In this 
ase, the failure of the E-a

umulationproperty means that there exists an jAj-indexed sequen
e of elements of X su
hthat every element of X has a neighborhood interse
ting at most one elementfrom the sequen
e. If X is T1, this is equivalent to saying that X has a dis
rete
losed subset of 
ardinality jAj.In 
on
lusion, in this parti
ular 
ase, Corollary 3.5 shows that a T1 topologi
alspa
e has an irredu
ible 
over of 
ardinality � if and only if it has a dis
rete
losed subset of 
ardinality �. This is a 
lassi
al result, impli
it in the proof of[2, Theorem 2.1℄.



292 P. LippariniNow we are going to prove the promised 
onverse of Corollary 3.5, namely,that every E-a

umulation property in the sense of De�nition 3.1 is equivalent tosome 
overing property, under the reasonable hypothesis that E is 
losed undertaking supersets.De�nition 3.8. If I is a set, and E � P(I), we let E+ = fa � I j a \ e 6= ;, forevery e 2 Eg.We say that E � P(I) is 
losed under supersets if and only if, whenever e 2 Eand e � f � I , then f 2 E (this is half the de�nition of a �lter : if E is also 
losedunder �nite interse
tions, then it is a �lter).Trivially, for every E, we have that E+ is 
losed under supersets. Moreover,it is easy to see that E++ = E if and only if E is 
losed under supersets. Noti
ethat if E is a �lter, then E is an ultra�lter if and only if E = E+.If A � P(I), then, for every i 2 I , we put i<A = fa 2 A j i 2 ag.We 
an now state the main result of this se
tion.Theorem 3.9. Suppose that X is a topologi
al spa
e, I is a set, A � P(I), andlet E = A+. Then the following 
onditions are equivalent.(1) X satis�es the E-a

umulation property.(2) For every open 
over (Oa)a2A of X , there is i 2 I su
h that (Oa)i2a2A isa 
over of X .(3) X is [B;A℄-
ompa
t, for B = fi<A j i 2 Ig.(4) For every sequen
e (xi)i2I of elements of X , if, for ea
h a 2 A, we putCa = fxi j i 2 ag, then Ta2A Ca 6= ;.Before proving Theorem 3.9, we state its main 
orollary, and then we presenta stronger lo
al version for the equivalen
e of Conditions (1) and (4).Corollary 3.10. For every E � P(I) su
h that E is 
losed under supersets,there are A � P(I) and B � P(A) su
h that, for every topologi
al spa
e, theE-a

umulation property is equivalent to [B;A℄-
ompa
tness.Proof: If E � P(I) is 
losed under supersets, then E = E++, hen
e, by takingA = E+, we have E = E++ = A+. Thus we get from Theorem 3.9 (1), (3) that,for every E 
losed under supersets, the E-a

umulation property is equivalent tosome 
ompa
tness property in the sense of De�nition 1.1. �Proposition 3.11. Suppose that X is a topologi
al spa
e, x 2 X , I is a set, and(xi)i2I is a sequen
e of elements of X . Suppose that A � P(I), E = A+, and,for a 2 A, put Ca = fxi j i 2 ag. Then the following 
onditions are equivalent.(1) x is an E-a

umulation point of (xi)i2I .(2) x 2 Ta2A Ca.Proof: If (1) holds, then, for every open neighborhood U of x, the set eU = fi 2I j xi 2 Ug belongs to E. We are going to show that x 2 Ta2A Ca.
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e, suppose that a 2 A. For every open neighborhood U of x, a \ eU 6= ;,by the �rst statement, and the de�nition of E. This means that there is i 2 Isu
h that i 2 a \ eU , that is, xi 2 Ca \ U , hen
e Ca \ U 6= ;. Sin
e Ca is 
losed,and the above inequality holds for every open neighborhood U of x, then x 2 Ca.Sin
e this holds for every a 2 A, we have x 2 Ta2ACa.Now assume that (2) holds. Suppose that U is a neighborhood of x, and lete = fi 2 I j xi 2 Ug. We have to show that e 2 E = A+, that is, e \ a 6= ;, forevery a 2 A. Let us �x a 2 A. By (2), x 2 Ca and, by the de�nition of Ca, thereis i 2 a su
h that xi 2 U . By the de�nition of e, i 2 e, thus i 2 e \ a 6= ;. Sin
ethis argument works for every neighborhood U of x, we have proved (1). �The parti
ular 
ase of Proposition 3.11 in whi
h x is a 
luster point of somenet is Exer
ise 1.6.A in [7℄. Cf. also [5, IV℄, and Remark 4.7 below.Proof of Theorem 3.9: (2) , (3) is immediate from the de�nitions.(3), (4) is a parti
ular 
ase of Theorem 2.4 (1), (4). Indeed, in the situationat hand, members of B have the form H = i<A, for i 2 I . For su
h an H , we havethat H 2 a<B if and only if a 2 H = i<A if and only if i 2 a, thus Condition (4) inTheorem 2.4 reads exa
tly as Condition (4) in Theorem 3.9.(1) , (4) is immediate from Proposition 3.11.Alternatively, the proof of 3.9 
an be 
ompleted avoiding the use of Proposi-tion 3.11, and using Corollary 3.5 in order to prove (1) , (3). Indeed, under therespe
tive assumptions, and modulo the obvious 
orresponden
e between I andB = fi<A j i 2 Ig, the E given by the statement of 3.5 
orresponds exa
tly to the Egiven by the statement of 3.9. To 
he
k this, let I 0 = B and, for e � I , let e0 � I 0be de�ned by e0 = fi<A j i 2 eg. Applying Corollary 3.5 to I 0, the resulting E0turns out to be equal to fe0 � I 0 j for every a 2 A, there is i 2 I su
h that i<A 2 e0and i 2 ag = fe0 � I 0 j e \ a 6= ;, for every a 2 Ag = fe0 j e 2 Eg. Corollary 3.5thus shows that [B;A℄-
ompa
tness is equivalent to the E0-a

umulation prop-erty, whi
h, through the above mentioned 
orresponden
e, is trivially equivalentto the E-a

umulation property. �Remark 3.12. If D is an ultra�lter over I , then, by taking A = D in Theorem 3.9,the equivalen
e of (1) and (2) furnishes a proof of Proposition 1.3, sin
e, for Dan ultra�lter, we have that D+ = D.In [18, Proposition 17℄ we also proved a 
hara
terization of D-pseudo
ompa
t-ness analogous to Proposition 1.3. The methods of Se
tions 2 and 3 do applyalso in 
ase of notions related to pseudo
ompa
tness. We shall devote the nextse
tion to this endeavor. Before pro
eeding, we show that Theorem 3.9 furnishesa 
hara
terization of weak M -
ompa
tness.De�nition 3.13. IfM is a set of ultra�lters over some set I , a topologi
al spa
e issaid to be weakly M-
ompa
t if and only if, for every sequen
e (xi)i2I of elementsof X , there is x 2 X su
h that, for every neighborhood U of x, there is D 2 Msu
h that fi 2 I j xi 2 Ug. See [9℄ for more information, 
redits, referen
es and
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hara
terization. In the terminology of De�nition 3.1, X is weakly M -
ompa
tif and only if it satis�es the E-a

umulation property, for E = SD2M D.Corollary 3.14. Suppose that X is a topologi
al spa
e, M is a set of ultra�ltersover I , and let F = TD2M D. Then the following 
onditions are equivalent.(1) X is weakly M -
ompa
t.(2) For every open 
over (OZ)Z2F of X , there is some i 2 I su
h that(OZ)i2Z2F is a 
over of X .Proof: By Theorem 3.9, taking A = F , and noti
ing that E = A+ = SD2M D.�4. Pseudo
ompa
tness and the likeDe�nitions 1.1 and 3.1 
an be generalized in the setting presented in [17℄, [18℄;in parti
ular, in su
h a way that in
orporates pseudo
ompa
t-like notions.Let us �x a family F of subsets of a topologi
al spa
e X . The most interesting
ase will be when F = O is the family of all the nonempty open sets of X . At�rst reading, the reader might want to 
onsider this parti
ular 
ase only.We relativize De�nitions 1.1 and 3.1 to F . The notion of [B;A℄-
ompa
tnessis modi�ed by repla
ing the 
on
lusion with the requirement that the union ofthe elements of an appropriate subsequen
e interse
ts ever member of F . As faras notions of a

umulation are 
on
erned, instead of 
onsidering a

umulationpoints of elements, we shall now 
onsider limit points of sequen
es of elementsof F .The two most signi�
ant 
ases are when F is the family of all singletons of X ,in whi
h 
ase we get ba
k the de�nitions and results of Se
tions 2 and 3, and, aswe mentioned, when F = O is the family of all the nonempty open sets of X , inwhi
h 
ase we get notions and results related to pseudo
ompa
tness or variantsof pseudo
ompa
tness.De�nition 4.1. If A is a set, B � P(A), X is a topologi
al spa
e, and F is afamily of subsets of X , we say that X is F-[B;A℄-
ompa
t if and only if one ofthe following equivalent 
onditions holds.(1) For every open 
over (Oa)a2A of X , there is H 2 B su
h that Sa2H Oainterse
ts every member of F (that is, for every F 2 F , there is a 2 Hsu
h that Oa \ F 6= ;).(2) For every sequen
e (Ca)a2A of 
losed subsets of X , if, for every H 2 B,there exists F 2 F su
h that Ta2H Ca � F , then Ta2ACa 6= ;.The equivalen
e of the above 
onditions is trivial, by taking 
omplements.Noti
e that, in the parti
ular 
ase when F = O, the 
on
lusion in De�ni-tion 4.1(1) asserts that Sa2AOa is dense in X .De�nition 4.2. Let I be a set, E be a subset of P(I), and (Fi)i2I be an I-indexedsequen
e of subsets of some topologi
al spa
e X .
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overing property 295We say that a point x 2 X is a limit point in the sense of E, or simply anE-limit point , of the sequen
e (Fi)i2I if and only if, for every open neighborhoodU of x, the set fi 2 I j Fi \ U 6= ;g belongs to E.If F is a family of subsets of X , we say that X satis�es the F-E-a

umulationproperty if and only if every I-indexed sequen
e of elements of F has some limitpoint in the sense of E.In the parti
ular 
ase when F is the family of all singletons of X De�nitions 4.1and 4.2 redu
e to De�nitions 1.1 and 3.1, respe
tively.As in Remark 3.2, if E = P(I), then every spa
e satis�es the F-E-a

umulationproperty, for every F .More generally, for every sequen
e (Fi)i2I of subsets of X , and every x 2 X ,there is a smallest set E � P(I) su
h that x is an E-limit point of (Fi)i2I : justtake E = fIU j U an open neighborhood of xg, where IU = fi 2 I j Fi \ U 6= ;g.In the same way, and exa
tly as in Remark 3.2, for every family of I-indexedsequen
es, and respe
tive families of elements of X , there is the smallest E su
hthat ea
h element in the family is a limit point of the 
orresponding sequen
e.Remark 4.3. If F is a family of subsets of some topologi
al spa
e X , let F denotethe set of all 
losures of elements of F .If G is another family of subsets of X , let us write F � G to mean that, forevery F 2 F , there is G 2 G su
h that F � G. We write F � G to mean thatboth F � G and G �F .It is trivial to see that, in De�nitions 4.1 and 4.2, as well as in the theoremsbelow, we get equivalent 
onditions if we repla
e F either by F , or by G, in 
aseF � G (in this latter 
ase, as far as De�nition 4.2 is 
on
erned, the 
onditionturns out to be equivalent provided we assume that E is 
losed under supersets).In parti
ular, when F = O, we get equivalent de�nitions and results if werepla
e O by either(1) the set B of the nonempty elements of some �xed base of X , or(2) the set O of all nonempty regular 
losed subsets of X , or(3) the set B of the 
losures of the nonempty elements of some base of X , or(4) the set R of all nonempty regular open subsets of X (sin
e R = O).The 
onne
tion of De�nitions 4.1 and 4.2 with pseudo
ompa
tness goes asfollows. A Ty
hono� spa
e X is pseudo
ompa
t if and only if every 
ountableopen 
over of X has a �nite sub
olle
tion whose union is dense in X . This isCondition (C5) in [24℄, and 
orresponds to the parti
ular 
ase A = !, B = P!(!)of O-[B;A℄-
ompa
tness, in the sense of De�nition 4.1.As another 
hara
terization of pseudo
ompa
tness, Gli
ksberg [13℄ proved thata Ty
hono� spa
eX is pseudo
ompa
t if and only if the following 
ondition holds:(*) for every sequen
e of nonempty open sets of X , there is some point x 2 Xsu
h that ea
h neighborhood of x interse
ts in�nitely many elements ofthe sequen
e.
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orresponds to the parti
ular 
ase of De�nition 4.2 in whi
h F = O, I = !and E equals the set of all in�nite subsets of !. A
tually, as a very parti
ular 
aseof Theorem 4.4 (1) , (5) below, and arguing as in Remark 2.5, we get anotherproof of Gli
ksberg result, in the sense that we get a proof that (*) and (C5)above are equivalent, for every topologi
al spa
e (no separation axiom assumed).The situation is entirely parallel to the 
hara
terization of 
ountable 
ompa
t-ness, whi
h is equivalent to CAP!, as dis
ussed in detail in Remark 2.5. Indeed,
onditions analogous to (*) and (C5) above are still equivalent when ! is repla
edby any in�nite regular 
ardinal; see [17, Theorem 4.4℄ for exa
t statements. Thiskind of analogies, together with many generalizations, had been the main themeof [17℄, [18℄. In the present paper we show that su
h analogies 
an be 
arried overmu
h further.The 
onne
tions between 
overing properties and general a

umulation prop-erties, as des
ribed in Se
tion 3, do hold even in the extended setting we are now
onsidering. In other words, the relationships between the properties introdu
edin De�nitions 1.1 and 3.1 are exa
tly the same as the relationships between theproperties introdu
ed in De�nitions 4.1 and 4.2. This will be stated in Theo-rem 4.5.We �rst state the result analogous to Theorem 2.4 (and Corollary 3.5).Theorem 4.4. Suppose that A is a set, B � P(A), X is a topologi
al spa
e, andF is a family of subsets of X . Then the following 
onditions are equivalent.(1) X is F-[B;A℄-
ompa
t.(2) For every sequen
e (Pa)a2A of subsets of X , if, for every H 2 B, thereexists F 2 F su
h that Ta2H Pa � F , then Ta2A P a 6= ;.(3) Same as (2), with the further assumption that, for every a 2 A, Pa is theunion of � �a-many elements of F , where �a = ja<B j.(4) For every sequen
e fFH j H 2 Bg of elements of F , it happens thatTa2ASfFH j H 2 a<Bg 6= ;.(5) For every sequen
e fFH j H 2 Bg of elements of F , there is x 2 X su
hthat, for every neighborhood U of x in X , and for every a 2 A, there isH 2 B su
h that a 2 H and FH \ U 6= ;.(6) For every sequen
e fYH j H 2 Bg of subsets of X su
h that ea
h YH
ontains some FH 2 F , Ta2ASfYH j H 2 a<Bg 6= ;.(7) For every sequen
e fDH j H 2 Bg of 
losed subsets of X su
h that ea
hDH 
ontains some FH 2 F , it happens that Ta2ASfDH j H 2 a<Bg 6= ;.(8) For every sequen
e fOH j H 2 Bg of open subsets of X su
h that, forea
h H 2 B, there is FH 2 F disjoint from OH , if, for every a 2 A, weput Qa = (TfOH j H 2 a<Bg)Æ, then (Qa)a2A is not a 
over of X .(9) X satis�es the F-E-a

umulation property, for I = B and E = fZ � B jfor every a 2 A there is H 2 Z su
h that a 2 Hg.
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h 
ase, we get equivalent 
onditions by repla
ing F with either F , or G,in 
ase F � G.Proof: The proof is similar to the proof of Theorem 2.4. Cf. also parts of theproof of [18, Proposition 6℄.It is not obvious that we get equivalent statements for all 
onditions, when Fis repla
ed by F , or by G, when F � G. However, this is true for, say, Condition(1), and the proof of the equivalen
es of (1){(9) works for an arbitrary family. �As a simple example of the equivalen
e of (1) and (9), and arguing as in Exam-ple 3.7, a topologi
al spa
e X has an open 
over of 
ardinality � with no properdense subfamily if and only if X 
ontains a dis
rete family of � open sets.We now state the results 
orresponding to those in Se
tion 3. There is noessential di�eren
e in proofs.Theorem 4.5. Suppose that X is a topologi
al spa
e, F is a family of subsetsof X , I is a set, A � P(I) and E = A+. Then the following 
onditions areequivalent.(1) X satis�es the F-E-a

umulation property.(2) For every sequen
e (Ca)a2A of 
losed subsets of X , if, for every i 2 I ,there exists F 2 F su
h that Ti2a2A Ca � F , then Ta2A Ca 6= ;.(3) X is F-[B;A℄-
ompa
t, where B = fi<A j i 2 Ig.(4) For every sequen
e (Fi)i2I of elements in F , if, for ea
h a 2 A, we putCa = Si2a Fi, then Ta2ACa 6= ;.In ea
h 
ase, we get equivalent 
onditions by repla
ing F with either F , or G,in 
ase F � G.We state expli
itly also the analogue of Proposition 3.11, sin
e it does notfollow formally from Theorem 4.5.Proposition 4.6. Suppose that X is a topologi
al spa
e, x 2 X , I is a set, and(Fi)i2I is a sequen
e of subsets of X . Suppose that A � P(I), E = A+, and, fora 2 A, put Ca = Si2a Fi. Then the following 
onditions are equivalent.(1) x is an E-limit point of (Fi)i2I .(2) x 2 Ta2A Ca.Remark 4.7. A version of Proposition 4.6 appears in [5, IV℄, using di�erent ter-minology and notations, and possibly with a misprint. Proposition 4.6 appearsto be slightly more general, sin
e E does not ne
essarily be
ome a �lter (
f. Re-mark 3.4).As an example, Theorem 4.5 
an be applied to notions related to ultra�lter
onvergen
e, in parti
ular, to D-pseudo
ompa
tness.De�nition 4.8. Let D be an ultra�lter over some set I , X be a topologi
al spa
e,and F be a family of subsets of X .



298 P. LippariniWe say [17, De�nition 2.1℄ that X is F-D-
ompa
t if and only if every sequen
e(Fi)i2I of members of F has some D-limit point in X .In 
ase F is the set of all singletons of X , we get ba
k the notion of D-
ompa
tness. In 
ase F = O we get the notion of D-pseudo
ompa
tness, asintrodu
ed in [12℄, [11℄.Corollary 4.9 ([18, Proposition 33℄). Suppose that X is a topologi
al spa
e, Fis a family of subsets of X , and D is an ultra�lter over some set I . Then thefollowing are equivalent.(1) X is F-D-
ompa
t.(2) For every sequen
e fFi j i 2 Ig of members of F , if, for Z 2 D, we putCZ = Si2Z Fi, then we have that TZ2D CZ 6= ;.(3) Whenever (CZ)Z2D is a sequen
e of 
losed sets of X with the propertythat, for every i 2 I , there exists some F 2 F su
h that Ti2Z CZ � F ,then TZ2D CZ 6= ;.(4) For every open 
over (OZ)Z2D of X , there is some i 2 I su
h thatF \Si2Z OZ 6= ;, for every F 2 F .In the parti
ular 
ase F = O, Corollary 4.9 provides a 
hara
terization ofD-pseudo
ompa
tness parallel to the 
hara
terization of D-
ompa
tness given inProposition 1.3. This 
hara
terization of D-pseudo
ompa
tness had been expli
-itly stated with a dire
t proof in [18, Proposition 17℄. Also Corollary 3.14 
an begeneralized without diÆ
ulty. We leave this to the reader.Of 
ourse, all the results of Se
tions 2 and 3, in parti
ular, Theorems 2.4and 3.9, 
ould be obtained as parti
ular 
ases of the results in the present se
tion,by taking F to be the set of all singletons of X . In prin
iple, we 
ould have�rst proved Theorems 4.4 and 4.5, and then obtain Theorems 2.4 and 3.9 as
orollaries. We have 
hosen the other way for easiness of presentation, and sin
ealready Se
tions 2 and 3 appear to be abstra
t enough. Probably, there aremore readers (if any at all!) interested in Theorems 2.4 and 3.9 rather than inTheorems 4.4 and 4.5 in su
h a generality.However, the parti
ular 
ase F = O in the results of the present se
tion appearsto be of interest. We stated the results in the general F-dependent form forthree reasons. First, to point out that, even if it is possible that the results areparti
ularly interesting only in the 
ase F = O, nevertheless almost nowhere wemade use of the spe
i�
 form of the members of O. Se
ond, sin
e it is not alwaystrivial that we 
an equivalently repla
e O with anyone of the families (1){(4) ofRemark 4.3. The general form of our statements thus provides many equivalen
esat the same time. The third reason for stating the theorems in the F-form isto make 
lear that there is absolutely no di�eren
e, in the proofs and in thearguments, with the 
ase dealt in the pre
eding se
tions, that is, when dealingwith sequen
es of points, rather than general subsets. In fa
t, the statements ofTheorems 4.4 and 4.5 unify the two 
ases. This is similar to what we have done



A very general 
overing property 299in [17℄; indeed, some results of [17℄ 
an be obtained as 
orollaries of results provedhere.Of 
ourse, the possibility is left open for interesting appli
ations of Theo-rems 4.4 and 4.5 in other 
ases, besides the 
ases of singletons and of nonemptyopen sets.5. Notions related to sequential 
ompa
tnessSequential 
ompa
tness is not a parti
ular 
ase of De�nition 3.1. However,De�nition 3.1 
an be modi�ed in order to in
lude also notions su
h as sequential
ompa
tness. The results in Se
tions 3 and 4 generalize even to this situation.De�nition 5.1. Suppose that I is a set, E is a set of subsets of P(I), and X isa topologi
al spa
e.(1) If (xi)i2I is a sequen
e of elements of X , we say that x 2 X is an E-a

umulation point of (xi)i2I if and only if there is E 2 E su
h that x isan E-a

umulation point of (xi)i2I (in the sense of De�nition 3.1).We say that X satis�es the E-a

umulation property if and only if everyI-indexed sequen
e of elements of X has some E-a

umulation point.(2) If (Fi)i2I is an I-indexed sequen
e of subsets of X , we say that a pointx 2 X is an E-limit point of the sequen
e (Fi)i2I if and only if, for someE 2 E , x is an E-limit point of (Fi)i2I (
f. De�nition 4.2).If F is a family of subsets of X , we say that X satis�es the F-E-a

umulation property if and only if every I-indexed sequen
e of elementsof F has some E-limit point.Case (1) in De�nition 5.1 is the parti
ular 
ase of (2) when F is taken to bethe set of all singletons of X .When E = fEg has just one member, De�nitions 5.1(1)(2) redu
e to De�ni-tions 3.1 and 4.2, respe
tively.Remark 5.2. Noti
e that if in the se
ond statement in De�nition 5.1(1) we take I =! and we let E be the set of all nonprin
ipal ultra�lters over !, we get still anotherequivalent formulation of 
ountable 
ompa
tness. This is the reformulation ofa nowadays standard fa
t (see, e.g., [12℄). The equivalen
e follows also fromRemark 5.4 below, and the fa
t (Remark 2.5) that 
ountable 
ompa
tness isequivalent to CAP!. More generally, if � is regular, and in De�nition 5.1(1) wetake I = � and E the set of all uniform ultra�lters over �, we get an equivalentformulation of [�; �℄-
ompa
tness, equivalently, of CAP�.We now show how to get the de�nition of sequential 
ompa
tness as a parti
ular
ase of De�nition 5.1(1).De�nitions 5.3. As usual, if W � ! is in�nite, we let [W ℄! denote the set of allin�nite subsets of W . If Z 2 [!℄!, we let FZ = fW � ! j jZ nW j is �niteg, thatis, FZ is the �lter on ! generated by the Fre
het �lter on Z.



300 P. LippariniWe now get sequential 
ompa
tness if in De�nition 5.1(1) we take I = !, andE = fFZ j Z 2 [!℄!g.With the above 
hoi
e of I and E , and taking F = O in 5.1(2) (that is, 
on-sidering sequen
es (Oi)i2I of nonempty open sets of X), we get a notion 
alledsequential pseudo
ompa
tness in [3℄, and sequential feeble 
ompa
tness in [6℄. No-ti
e that in [3℄ the Oi's are requested to be pairwise disjoint; however, it 
an beshown [20℄ that we get equivalent de�nitions, whether or not we suppose the Oi'sto be disjoint.Remark 5.4. Suppose that ea
h element of E is 
losed under supersets, and letE 0 = fF � P(I) j F is a �lter on I and F � E, for some E 2 Eg. Then somepoint x is an E-a

umulation point of some sequen
e x = (xi)i2I if and only ifx is an E 0-a

umulation point of x. Indeed, E 0-a

umulation trivially implies E-a

umulation. On the other dire
tion, if x is an E-a

umulation point of x, thenthere is E 2 E su
h that Ix;U = fi 2 I j xi 2 Ug 2 E, for every open neighborhoodU of x. If F is the �lter generated by G = fIx;U j U is an open neighborhoodof xg, then F � E, sin
e G is 
losed under interse
tion, and E is 
losed undersupersets. Thus F 2 E 0, and F witnesses that x is an E 0-a

umulation point of x(
f. also Remarks 3.2 and 3.4).In parti
ular, under the above assumptions on E and E 0, a topologi
al spa
esatis�es the E-a

umulation property if and only if it satis�es the E 0-a

umulationproperty. Thus, in 
ontrast with Remark 3.4, and as far as De�nition 5.1 is
on
erned, it is no loss of generality to assume that all members of E are �lters.Of 
ourse, the above observation applies only in 
ase we are not 
on
erned withthe 
ardinality of E , sin
e, in the above situation, the 
ardinality of E 0 is generallystri
tly larger than the 
ardinality of E .Noti
e that the above argument 
arries over even when we 
onsider E 00 = fF �P(I) j F is a �lter on I and, for some E 2 E , F � E and F is maximal among the�lters 
ontained in Eg (be
ause every �lter F � E 
an be extended to a maximal�lter with this property, using Zorn's Lemma). Sometimes this turns out to beuseful.We now introdu
e the generalization of De�nitions 1.1 and 4.1 whi
h furnishesthe equivalent of De�nition 5.1 in terms of properties of open 
overs.De�nition 5.5. Suppose that A is a set, B;G � P(A), and X is a topologi
alspa
e.(1) We say that X is [B;G℄-
ompa
t if and only if one of the following equiv-alent 
onditions hold.(a) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is a
over of X , then there is H 2 B su
h that (Oa)a2H is a 
over of X ,(b) If (Ca)a2A is a sequen
e of 
losed subsets of X , and, for everyH 2 B,Ta2H Ca 6= ;, then there is K 2 G su
h that Ta2K Ca 6= ;.(2) If F is a family of subsets of X , we say that X is F-[B;G℄-
ompa
t if andonly if one of the following equivalent 
onditions hold.
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overing property 301(a) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is a
over of X , then there is H 2 B su
h that, for every F 2 F , there isa 2 H su
h that Oa \ F 6= ;.(b) If (Ca)a2A are 
losed sets of X , and, for every H 2 B, there existsF 2 F su
h that Ta2H Ca � F , then there is K 2 G su
h thatTa2K Ca 6= ;.Case (1) in De�nition 5.5 is the parti
ular 
ase of (2) when F is taken to bethe set of all singletons of X .De�nitions 1.1 and 4.1 are the parti
ular 
ases of the above de�nition whenG = fAg.Remark 5.6. Some known notions are parti
ular 
ases of [B;G℄-
ompa
tness, asintrodu
ed in De�nition 5.5.Indeed, in the parti
ular 
ase when G is a partition of A, say into � 
lasses, thehypothesis in Condition (1)(a) of De�nition 5.5 amounts exa
tly to 
onsidering afamily of � open 
overs of X , ea
h 
over having the same 
ardinality as the 
or-responding 
lass. In the rest of this remark we shall deal only with the parti
ular
ase when A is 
ountable and G is a partition of A into !-many 
lasses, ea
h 
lasshaving 
ardinality !.If, under the above assumptions, we let B 
onsist of all subsets of A su
hthat B has �nite interse
tion with ea
h element of G, then Condition (1)(a) inDe�nition 5.5 asserts that, given a 
ountable family of 
ountable 
overs of X , we
an extra
t a 
over of X by sele
ting a �nite number of elements from ea
h one ofthe original 
overs. This property turns out to be equivalent to what nowadays is
alled the Menger property , and is denoted by S�n(O;O) in [21, Se
tion 5℄ (herewe are following the notations from [21℄, and O denotes the 
olle
tion of all open
overs of X).On the other hand, if B 
onsists of all subsets of A su
h that B interse
ts ea
helement of G in exa
tly one element, we get the Rothberger property , denoted byS1(O;O) in [21, Se
tion 6℄.The 
onne
tions between De�nition 5.5 and the notions introdu
ed in [21℄probably deserve further analysis. Noti
e that here we put no restri
tion on 
overs,while [21℄ also deals with spe
ial 
lasses of 
overs, su
h as large 
overs , !-
oversand so on. One probably gets interesting notions modifying De�nitions 1.1, 5.5et
., by putting restri
tions on the nature of the starting 
over and of the resultingsub
over. This suggests the next de�nition.De�nition 5.7. Suppose that A is a set, B;G � P(A), X is a topologi
al spa
e,and A, B are 
olle
tions of subsets of X .X is [BB; GA℄-
ompa
t (feebly [BB; GA℄-
ompa
t , respe
tively) if and only ifwhenever (Oa)a2A are subsets of X , and, for every K 2 G, (Oa)a2K is a 
over inA, then there is H 2 B su
h that (Oa)a2H is a 
over in B ((Oa)a2H is in B andits union is dense in X , respe
tively).



302 P. LippariniArguing as in Remark 5.6, the properties S�n(A;B) and S1(A;B) from [21℄ areparti
ular 
ases of De�nition 5.7.The parti
ular 
ase of De�nition 5.5 in whi
h A = �, G is the set of subsets of� of 
ardinality �, and B = P�(�) has been brie
y hinted on [16, p. 1380℄ underthe name almost [�; �℄-
ompa
tness .In the next theorems we give the 
onne
tions between the notions introdu
edin De�nitions 5.1 and 5.5.Re
all the de�nition of a<B given just before Theorem 2.4.Theorem 5.8. Suppose that A is a set, B;G � P(A), and X is a topologi
alspa
e. Then the following 
onditions are equivalent.(1) X is [B;G℄-
ompa
t.(2) For every sequen
e (Pa)a2A of subsets of X , if, for every H 2 B,Ta2H Pa 6= ;, then there is K 2 G su
h that Ta2K P a 6= ;.(3) For every sequen
e fxH j H 2 Bg of elements of X , there is K 2 G su
hthat Ta2K fxH j H 2 a<Bg 6= ;.(4) For every sequen
e fYH j H 2 Bg of nonempty subsets of X , there isK 2 G su
h that Ta2K SfYH j H 2 a<Bg 6= ;.(5) X satis�es the E-a

umulation property, for I = B and E = fEK j K 2Gg where, for K 2 G, we put EK = fZ � B j for every a 2 K there isH 2 Z su
h that a 2 Hg.Theorem 5.9. Suppose that A is a set, B;G � P(A), X is a topologi
al spa
e,and F is a family of subsets of X . Then the following 
onditions are equivalent.(1) X is F-[B;G℄-
ompa
t.(2) For every sequen
e (Pa)a2A of subsets of X , if, for every H 2 B, thereexists F 2 F su
h that Ta2H Pa � F , then there is K 2 G su
h thatTa2K P a 6= ;.(3) For every sequen
e fFH j H 2 Bg of elements of F , there is K 2 G su
hthat Ta2K SfFH j H 2 a<Bg 6= ;.(4) For every sequen
e fYH j H 2 Bg of subsets of X su
h that ea
h YH 
on-tains some FH 2 F , there isK 2 G su
h thatTa2K SfYH j H 2 a<Bg 6= ;.(5) X satis�es the F-E-a

umulation property, for I and E as in Condi-tion 5.8(5) above.When G = fAg, the 
onditions in Theorems 5.8 and 5.9 turn out to 
oin
idewith the 
orresponding 
onditions in Theorems 2.4 and 4.4 and Corollary 3.5.Theorem 5.10. Suppose that X is a topologi
al spa
e, I is a set, G is a set ofsubsets of P(I), and put E = fK+ j K 2 Gg and A = SG. Then the following
onditions are equivalent.(1) X satis�es the E-a

umulation property.(2) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is a 
overof X , then there is i 2 I su
h that (Oa)i2a2A is a 
over of X .
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overing property 303(3) X is [B;G℄-
ompa
t, where B = fi<A j i 2 Ig.(4) For every sequen
e (xi)i2I of elements of X , there is K 2 G su
h that if,for ea
h a 2 K, we put Ca = fxi j i 2 ag, then Ta2K Ca 6= ;.Proof: Similar to the proof of Theorem 3.9. Noti
e that (2), (3) is immediatefrom the de�nitions, using Condition (1)(a) in De�nition 5.5, and that (1) , (4)follows dire
tly from Proposition 3.11. �Theorem 5.11. Under the assumptions in Theorem 5.10, and if F is a familyof subsets of X , then the following 
onditions are equivalent.(1) X satis�es the F-E-a

umulation property.(2) X is F-[B;G℄-
ompa
t, where B = fi<A j i 2 Ig.(3) For every sequen
e (Fi)i2I of elements of F , there is K 2 G su
h that if,for ea
h a 2 K, we put Ca = Si2a Fi, then Ta2K Ca 6= ;.Theorem 5.10 is the parti
ular 
ase of Theorem 5.11 when F is the family ofall singletons of X . Theorems 3.9 and 4.5 are the parti
ular 
ases of, respe
tively,Theorems 5.10 and 5.11 when G = fAg has just one member.The following 
hara
terization of sequential 
ompa
tness in terms of open 
ov-ers might be known, but we know no referen
e for it.Corollary 5.12. A topologi
al spa
e X is sequentially 
ompa
t (sequentiallyfeebly 
ompa
t, respe
tively) if and only if, for every open 
over fOa j a 2 [!℄!gof X su
h that fOa j a 2 [Z℄!g is still a 
over of X , for every Z 2 [!℄!, thereis n 2 ! su
h that fOa j n 2 a 2 [!℄!g is a 
over of X (has dense union in X ,respe
tively).Proof: Take I = ! and G = f[Z℄! j Z 2 [!℄!g in Theorems 5.10 and 5.11.If K = [Z℄! 2 G, then K+ = FZ , in the notations of De�nition 5.3. Thusthe 
orollary is a parti
ular 
ase of the equivalen
e (1) , (2) in Theorems 5.10and 5.11, respe
tively,Of 
ourse, also a dire
t proof of Corollary 5.12 is not diÆ
ult. �As a spe
ial 
ase of Theorem 5.8 (1) , (3), we get the following 
hara
teriza-tions (probably folklore) of the Rothberger and the Menger properties.Corollary 5.13. A topologi
al spa
e X satis�es the Rothberger property if andonly if, for every sequen
e fxf j f : ! ! !g of elements of X , there is n 2 ! su
hthat Tm2! fxf j f(n) = mg 6= ;.A topologi
al spa
e X satis�es the Menger property if and only if, for everysequen
e fxf j f : ! ! [!℄<!g of elements of X , there is n 2 ! su
h thatTm2! fxf j m 2 f(n)g 6= ;.The ideas in Se
tion 4 suggest the following de�nition (known under di�erentterminology).De�nition 5.14. A topologi
al spa
e X is feebly Rothberger (feebly Menger ,respe
tively) if and only if, for every 
ountable family of 
ountable 
overs of X ,
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an sele
t one member (a �nite number of members, respe
tively) from ea
h
over in su
h a way that the union of the sele
ted members is dense in X .The above properties 
an be 
hara
terized in a way similar to Corollary 5.13,by means of Theorem 5.9.If I is a set, and M is a set of ultra�lters over I , then a topologi
al spa
e X issaid to be quasi M-
ompa
t if and only if, for every I-indexed sequen
e (xi)i2Iof elements of X , there exists D 2 M su
h that (xi)i2I D-
onverges to somepoint of X . Of 
ourse, if M = fDg is a singleton, then quasi M -
ompa
tnessis the same as D-
ompa
tness, and is also equivalent to weak M -
ompa
tness(De�nition 3.13). See [9℄ for further referen
es about these notions.The spa
e X is quasi M-pseudo
ompa
t if and only if, for every I-indexedsequen
e (Oi)i2I of nonempty open sets of X , there exists D 2 M su
h that(Oi)i2I has some D-limit point in X . Noti
e that, for I = !, the above notionis 
alled M-pseudo
ompa
tness in [10, De�nition 2.1℄. We have 
hosen the namequasi M -pseudo
ompa
tness in analogy with quasi M -
ompa
tness.Corollary 5.15. Suppose that M is a set of ultra�lters over some set I , andlet A = SD2M D. Then a topologi
al spa
e X is quasi M -
ompa
t (quasi M -pseudo
ompa
t, respe
tively) if and only if, whenever (Oa)a2A are open sets of X ,and, for every D 2 M , (Oa)a2D is a 
over of X , then there is i 2 I su
h that(Oa)i2a2A is a 
over of X (has dense union in X , respe
tively).Proof: By Theorems 5.10 and 5.11 (1) , (2), with G = M , sin
e, as alreadynoti
ed, if D is an ultra�lter, then D+ = D. �Remark 5.16. As a �nal remark, let us mention that not every \
overing property"present in the literature has the form given in De�nitions 1.1, 4.1, or 5.5, themost notable 
ase being para
ompa
tness. More generally, all 
overing propertiesinvolving some parti
ular properties (lo
al �niteness, point �niteness, et
.) of theoriginal 
over, or of the resulting sub
over, are not part of the framework givenby De�nition 1.1, as it stands.There are even equivalent formulations of 
ountable 
ompa
tness whi
h, atleast formally, are not parti
ular 
ases of De�nition 1.1. Indeed, a spa
e X is
ountably 
ompa
t if and only if, for every 
ountable open 
over (On)n2! su
hthat On � Om, for n � m < !, there is n 2 ! su
h that On = X . The above
ondition 
annot be dire
tly expressed as a parti
ular 
ase of De�nition 1.1.In spite of the above remarks, we believe to have demonstrated that De�-nition 1.1 and its variants are general enough to 
apture many disparate andseemingly unrelated notions, being at the same time suÆ
iently 
on
rete andmanageable so that interesting results 
an be proved about them.Of 
ourse, as we did in De�nition 5.7, there is the possibility of modifyingDe�nition 1.1 and its variants by 
onsidering only parti
ular 
overs with spe
ialproperties (
f. also Remark 5.6). We have not yet pursued this promising line ofresear
h.
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