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A very general covering property

PAOLO LIPPARINI

Abstract. We introduce a general notion of covering property, of which many
classical definitions are particular instances. Notions of closure under various
sorts of convergence, or, more generally, under taking kinds of accumulation
points, are shown to be equivalent to a covering property in the sense considered
here (Corollary 3.10). Conversely, every covering property is equivalent to the
existence of appropriate kinds of accumulation points for arbitrary sequences on
some fixed index set (Corollary 3.5).

We discuss corresponding notions related to sequential compactness, and to
pseudocompactness, or, more generally, properties connected with the existence
of limit points of sequences of subsets. In spite of the great generality of our
treatment, many results here appear to be new even in very special cases, such
as D-compactness and D-pseudocompactness, for D an ultrafilter, and weak
(quasi) M-(pseudo)-compactness, for M a set of ultrafilters, as well as for [3, a]-
compactness, with 8 and « ordinals.
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1. Introduction

“Covering property” in the title refers to a property of the form “every open
cover has a subcover by a tractable class of elements”. The most general and
easiest form of establishing what “tractable” is to be intended simply amounts to
enumerate those sets which are to be considered tractable. We are thus led to the
following definition, where P(A) denotes the set of all subsets of the set A.

Definition 1.1 ([19, Definition 7.7]). If A is a set, and B C P(A), we say that
a topological space X is [B, A]-compact if and only if, whenever (O,).ca is a
sequence of open sets of X such that |J,.4 Oa = X, then there is H € B such
that (J,cy Oa = X

Of course, (full) compactness is the particular case when A is infinite and
arbitrarily large, and B is the set of all finite subsets of A. If in the above
sentence we replace finite by countable, we get Lindeldfness. On the other hand,
if we instead restrict only to countable A, we get countable compactness. More
general examples of cardinal (and ordinal) notions reducible to [B, A]-compactness
will be presented below.
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We first show how to produce counterexamples to [B, A]-compactness in a
standard way.

Ezample 1.2. Suppose that A is a set, B C P(A4), B is nonempty, and A ¢ B
(the assumption A ¢ B is necessary by Fact 2.2(1) below).

(a) As a typical counterexample to [B, A]-compactness, we can exhibit B itself,
with the topology a subbase of which consists of the sets a* = {H € B |a ¢ H},
a varying in A.

With the above topology, B is not [B, A]-compact, as the a*s themselves wit-
ness. Indeed, the a¥s are a cover of B, since A ¢ B. However, for every H € B,
(a®)aerr is not a cover of B, since H belongs to no a*, for a € H.

We believe that, in a sense still to be made precise, B with the above topology
is the typical example of a non [B, A]-compact topological space. This is sug-
gested by particular cases concerning ordinal compactness, see [19, Theorems 5.4
and 5.7].

Notice that B, with the above topology, is Ty, but, in general, not even Tj.
However, the example can be turned into a Tychonoff topological space by intro-
ducing a finer topology as in (b) below.

Observe that P(A) is in a bijective correspondence, via characteristic functions,
with 4{0, 1}, the set of all functions from A to {0, 1}, hence with the product of
A-many copies of {0,1}. Via the above identifications, if we give to {0,1} the
topology in which {0} is open, but {1} is not open, then the topology described
above is the subspace topology induced on B by the (Tychonoff) product topology
on 4{0,1}.

(b) If we instead give to {0, 1} the discrete topology, then the subset topology
induced on B by the topology on A{O, 1} makes B a Tychonoff topological space,
which is still a counterexample to [B, A]-compactness. This latter topology, too,
admits an explicit description: it is the topology a subbase of which consists of the
sets which have either the form a* = {H € B|a ¢ H},ora< = {H € B |a € H},
for some a € A.

If B is closed under symmetrical difference, then, with this topology, B inherits
from 4{0, 1} the structure of a topological group. If B is closed both under finite
unions and finite intersections, then B inherits from 4{0,1} the structure of a
topological lattice.

We now consider some more specific instances of Definition 1.1.

The most general form of a covering notion involving cardinality as a measure
of “tractability” is [u, A]-compactness, where p and X are cardinals. It is the
particular case of Definition 1.1 when A = X\ and B = P,()\) is the set of all
subsets of A of cardinality < p. The notion of [u, A]-compactness originated in
the 20’s in the past century [1], and thus has a very long history. See, e.g., [§],
[14], [22], [23], [25], [26], [27], [28] for results and references.

In [19] we generalized cardinal compactness to ordinals, that is, we considered
the particular case of Definition 1.1 in which A is an ordinal (or, anyway, a
well-ordered set), and the “tractability” of some subset H of A is measured by
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considering the order type of H. In more detail, for a and § ordinals, [§,a]-
compactness is obtained from Definition 1.1 by letting A = a, and letting B equal
to the set of all subsets of a having order type < 8. The notion is interesting, since
one can prove many non trivial results of the form “every [/, a]-compact space is
[8', a']-compact”, for various ordinals, while only trivial results of this kind hold,
when restricted to cardinals. Moreover, there are examples of spaces satisfying
exactly the same [u, \]-compactness (cardinal) properties, but which behave in
a very different way as far as (ordinal) [§, a]-compactness is concerned. Just
to present the simplest possible example, if k is a regular uncountable cardinal,
then k, with the order topology, is [k + k, k + k]-compact, but the disjoint union
of two copies of k is not [k + K,k + k]-compact (here + denotes ordinal sum).
Furthermore, there are many rather deep connections among [, a]-compactness,
cardinalities and separation properties of spaces. In [19] we also introduced an
ordinal version of the Lindel6f number of a topological space, and showed that this
ordinal version gives much more information about the space than the cardinal
version.

So far, we have not yet provided really strong motivations in favor of the
great generality of Definition 1.1. Indeed, at first sight, the ordinal version of
compactness, that is, [, a]-compactness, appears to be a quite very sensitive and
fine notion, well suited for exactly measuring the covering properties enjoyed by
some topological space. However, other interesting properties naturally insert
themselves into the general framework given by Definition 1.1. In fact, besides
considering [, a]-compactness, we reached the notion of [B, A]-compactness after
a careful look at the proposition below, which characterizes D-compactness.

Recall that if D is an ultrafilter, say over some set I, then a topological space
X is said to be D-compact if and only if every sequence (z;);cr of elements of X
D-converges to some point of x, where a sequence (x;);er is said to D-converge
to some point x € X if and only if {i € I | x; € U} € D, for every neighborhood
U of ¢z in X.

In [18, Corollary 34] we proved the following proposition, which is also a par-
ticular case of Theorem 3.9 below (see Remark 3.12).

Proposition 1.3. Let D be an ultrafilter over 1. A topological space X is D-
compact if and only if, for every open cover (Oz)zcp of X, there is some i € T
such that (Oz):cz is a cover of X.

Thus also D-compactness is equivalent to a covering property, namely, the
particular case of Definition 1.1 in which A is D itself, and B = {i< | i € I},
where, for i € I, we put i< = {Z € D | i € Z}. In words, B is the set of all
the intersections of D with some principal ultrafilter. Hence, in the sense of D-
compactness, being “tractable” means (having indices) lying in the intersection
of D with some principal ultrafilter.

Reflecting on the above example, we soon realized that many other conditions
asking closure under appropriate types of convergence are equivalent to cover-
ing properties. Furthermore, this is the case also for the existence of kinds of
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accumulation points, as we shall show in Section 3. Historically, the interplay be-
tween covering properties and accumulation properties has been a central theme
in topology, starting from [1], if not earlier. In this respect, see also the discussion
in Remark 2.5.

Also a generalization of D-compactness, weak M-compactness, involving a set
M of ultrafilters, is equivalent to a covering property, as will be shown in Corol-
lary 3.14. See Corollary 5.15 for a characterization of a further related notion:
quasi M-compactness.

If in Definition 1.1 we take B = P(A) \ {4}, then a counterexample to [B, A]-
compactness is what is usually called an irreducible (or minimal) cover. Irre-
ducible covers, as well as spaces in which every cover can be refined to a (possibly
finite) irreducible cover have been the object of some study. See [2], [15] and
further references there. In a sense, an infinite irreducible cover produces a maxi-
mal form of incompactness. Indeed, e.g. by Fact 2.2(2)(6) below in contrapositive
form, if some topological space X has an irreducible cover of cardinality A, then
X is not [B, A]-compact, for every set A such that |A| < A, and every B C P(A)
such that A ¢ B.

If X is a T topological space which is not countably compact, then any
open cover witnessing countable incompactness can be refined to an irreducible
countably infinite open cover. This follows, for example, from the proof of [19,
Lemma 6.4]. Compare also with [2, Theorem 2.1]. Thus we get the following
proposition.

Proposition 1.4. For a T topological space X, the following conditions are
equivalent.

(1) X is not countably compact.
(2) X is not [P(A) \ {4}, A]-compact, for every countable nonempty set A.

(3) X is not [B, A]-compact, for some countably infinite set A, and some
B C P(A) such that B contains all finite subsets of A.

The above equivalences do not generalize to uncountable cardinals. The space
k, with the order topology, is not [k, k]-compact, but it is [k + w, k + w]-compact
[19, Example 3.2(3)] (here + denotes ordinal sum). Moreover the hypothesis that
X is Ty is necessary, by [19, Example 3.2(2)].

Though simple, Definition 1.1 unifies many disparate situations, and allows for
the possibility of proving some interesting and non trivial results, which sometimes
are new and useful even in very particular cases.

When restricted to (cardinal) [p, A]-compactness, some of the results presented
in this note might be seen as a revisitation of known results. They are new in the
case of (ordinal) [3, a]-compactness. Actually, the study of properties of [3, al-
compactness has been the leading motivation for the present research. Restricted
to this particular case, this note may be seen as a continuation of [19]. As soon
as we realized that the results naturally fit into a more general setting, with no
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essential further technical complication, we decided to present them in their more
general form.

Ag far as D-compactness, and other notions of convergence are concerned,
the results presented here can improve shedding new light into the subject. In
particular, they hopefully provide a new point of view about the relationship
between convergence, accumulation and covering properties.

It might be of some interest the fact that there is also a version for notions
related to pseudocompactness. As well known, for Tychonoff spaces, there is an
equivalent formulation of pseudocompactness which involves open covers: a Ty-
chonoff space is pseudocompact if and only if every countable open cover has a
subset with dense union. Here the premise is the same as in countable compact-
ness, with a weakened conclusion. Definition 1.1, too, can be modified in the same
way (Definition 4.1), and essentially all the results we prove for [B, A]-compact-
ness have a version for this pseudocompact-like notion. The notion of convergence
(or accumulation) of a sequence of points will be replaced with notions of limit
points of a sequence of subsets.

Furthermore, in Section 5, we present variations which include covering prop-
erties equivalent to sequential compactness, sequential pseudocompactness, quasi
M-compactness, the Menger property and the Rothberger property. Many other
notions can be obtained as particular cases of Definition 5.7. Definition 5.7 prob-
ably deserves further study.

We assume no separation axiom, unless otherwise specified.

2. Equivalents of a covering property

In this section we show that, for every B and A as in Definition 1.1, there
are many equivalent formulations of [B, A]-compactness. In particular, it can be
characterized by a sort of accumulation property, in a sense which will be explicitly
described in the next section. Parts of the results presented in this section are
known for [u, A\]-compactness, hence, in particular, for countable compactness,
Lindeltfness etc. They are new for (ordinal) [8, a]-compactness, and for other
general notions of compactness.

We begin with a trivial but useful fact.

Fact 2.1. A topological space is [B, A]-compact if and only if, for every sequence
(Ca)aca of closed sets, if (\,cy Ca # 0, for every H € B, then [, 4 Co # 0.

PrOOF: Immediate from the definition of [B, A]-compactness, in contrapositive
form, and by taking complements. O

We now state some other easy facts about [B, A]-compactness.

Fact 2.2. Suppose that X is a topological space, A is a set, and B, B' C P(A).
(1) If A € B, then every topological space is [B, A]-compact. In particular,
every topological space is [{A}, A]-compact.
(2) If BC B', and X is [B, A]-compact, then X is [B', A]-compact.
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(3) More generally, if, for every H € B, there is H' € B' such that H C H',
then every [B, A]-compact topological space is [B', A]-compact.

(4) If X is [B, A]-compact, and A" C A, then X is [B|ar, A']-compact, where
Bla={HNA'| H € B}.

(5) Suppose that, for every H € B, Dy C P(H), and let D = Jycp Dg. If
X is [B, A]-compact, and [Dy, H]-compact, for every H € B, then X is
[D, A]-compact.

(6) If Cisaset, f:C — Ais a function, and D = {f~'(H) | H € B}, then
every [B, A]-compact topological space is [D, C]-compact.

Fact (5) above is a broad generalization of standard arguments, e.g., the argu-
ment, showing that Lindel6fness and countable compactness imply compactness.

Fact (6) follows immediately from the fact that a union of open sets is still
open. Indeed, if (O.)ccc is an open cover of X, then (Q4).ca is an open cover
of X, where @, = Uf(c):a O., for a € A.

Remark 2.3. Let us say that B C P(A) is closed under subsets if and only if,
whenever H' € B and H C H', then H € B. Notice that, by (2) and (3) above, if
B' C P(A) and B is the smallest subset of P(A) which contains B’ and is closed
under subsets, then a topological space X is [B, A]-compact if and only if it is
[B', A]-compact. Thus, in the definition of [B, A]-compactness, it is no loss of
generality to consider only those B which are closed under subsets.

If X is a topological space, and P C X, we denote by P the closure of P in X,
and by P° its interior. The topological space in which we are taking closure and

interior will always be clear from the context.
If BCP(A)anda€ A, welet ag={H € Bla€ H}.

Theorem 2.4. Suppose that A is a set, B C P(A), and X is a topological space.
Then the following conditions are equivalent.

(1) X is [B, A]-compact.

(2) For every sequence (P,),ca of subsets of X, if, for every H € B,

Nocrr Pa # 0, then N,c 4 Pa # 0.
(3) Same as (2), with the further assumption that |P,| < |aj|, for every

a € A.

(4) For every sequence {xr | H € B} of elements of X, it happens that
Naealzn | H € aj} # 0.

(5) For every sequence {xy | H € B} of elements of X, there is x € X such
that, for every neighborhood U of x in X, and for every a € A, there is
H € B such that a € H and xyg € U.

(6) For every sequence {Yy | H € B} of nonempty subsets of X, it happens
that ,ca U{Yr | H € a5} # 0.

(7) For every sequence {Dy | H € B} of nonempty closed subsets of X,

Naca U{Dn | H € ag} # 0.
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(8) For every sequence {Oy | H € B} of open proper subsets of X, if, for
every a € A, we put Q, = (({Om | H € ag})°, then (Qu)aca Is not a
cover of X.

PROOF: (1) = (2) Just take C, = P,, for a € A, and use the equivalent formu-
lation of [B, A]-compactness in terms of closed sets, as given in Fact 2.1.

(2) = (3) is trivial.

(3) = (4) For a € A, put P, = {zg | H € ax}. Thus |P,| < |ag|. Moreover,
if a € H € B, then g € P,, hence xg € (,cf Pa, thus N,cpy Pa # 0. By
applying (3), Noea Pa = Nuca {2z | H € aj} #0.

(5) is clearly a reformulation of (4), hence they are equivalent.

(4) trivially implies (6), since if, for every H € B, we choose zy € Yg # 0, then
Naca U{Ya | H €ag} D Nyea {zr | H € ax}, and this latter set is nonempty
by (4).

(6) = (7) is trivial, since (7) is a particular case of (6).

(7) = (1) We shall use the equivalent formulation of [B, A]-compactness given
by Fact 2.1. Suppose that (Cy)aca are closed subsets of X such that (), Co # 0,
for every H € B. For each H € B, put Dy = (),.y Ca, thus C, 2 Dp,

whenever a € H, hence, for every a € A, C, 2 U{Du | H € aj}. By (7),

maeA Cﬂ 2 maeA U{‘DH | H € ag} 75 @
(8) & (7) is immediate by taking complements. O

Notice that Conditions (6) and (7) can be reformulated in a way similar to the
reformulation (5) of (4). As we shall explain in detail in Section 3, Condition (5)
can be seen as a statement that asserts the existence of some kind of accumulation
point for the sequence {zy | H € B}.

Remark 2.5. Some particular cases of Theorem 2.4 are known, sometimes being
classical results.

As we mentioned in the introduction, countable compactness is the particular
case of Definition 1.1 when A is countable (without loss of generality we can
take A = w), and B is the set of all finite subsets of w. It is easy to see that
we can equivalently take B = {[0,n) | n € w}; this follows, for example, from
Remark 2.3. In a different context, a similar argument has been exploited in [18];
see in particular Remark 24 there. Remark 2.3 (and Fact 2.2(2)(3)) have further
interesting applications which will be presented elsewhere.

Recall that, for an infinite cardinal A, a topological space X satisfies CAP) if
and only if every subset Y C X with |Y| = X has a complete accumulation point
x, that is, a point z such that [UNY| = A, for every neighborhood U of z.

For the above choice of A = w and B = {[0,n) | n € w}, the equivalence of (1)
and (5) in Theorem 2.4 shows that countable compactness is equivalent to CAP,,.
This is because a sequence (xg)mep can be thought as a sequence (Z,)new, via
the obvious correspondence between B and w. The astute reader will notice that
the above argument (and Theorem 2.4, in general) deals with sequences, while
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the definition of CAP,, deals with subsets; that is, in the former case, repetitions
are allowed, while in the latter case they are not allowed. However, it is easy to
see that, in the particular case at hand, the difference produces no substantial
effect. See Remark 3.3 below and [17, Section 3] for further details.

Arguments similar to the above ones can be carried over, with no essential
change, for every regular cardinal A. In this case, we get that [A, A]-compactness
is equivalent to CAP,. These results are very classical, and, indeed, are immedi-
ate consequences of [1, Section 9]. For A singular, the characterization of [\, A]-
compactness is not that neat. The point is that, for A regular, a subset of X cofinal
in A has necessarily cardinality A; this is false when X is singular.

We have discussed in some detail the equivalence between CAP) and [\, A]-
compactness, for A regular, since it might be seen as a prototype of all the results
proved in the present paper. In fact, we establish an interplay between notions
of compactness, on one hand, and satisfaction of accumulation properties, on the
other hand. Such an interplay holds in very general situations, sometimes rather
far removed from the above particular and nowadays standard example.

Turning to the more general notion of [u, A]-compactness, the special case of
the equivalence of (1) and (2) in Theorem 2.4 appears in [8, Theorem 1.1]. See
[26, Lemma 5(b)]. For [u, A]-compactness, Conditions (1)—(4) in Theorem 2.4 are
the particular case of [18, Proposition 32(1)—(4)], taking F to be the set of all
singletons of X . In the particular case u = w, [w, A]-compactness is usually called
initial \-compactness. In this case there are much more characterizations: see
[23, Section 2] and [26]. Some equivalences hold also for u > w, under additional
assumptions. See [26, Theorem 2].

The equivalences in Theorem 2.4 have been inspired by results from Caicedo
[4, Section 3], who implicitly uses similar methods in order to deal with [u, A]-
compactness. In our opinion, Caicedo [4] has provided an essentially new point
of view about [u,A]-compactness. Apart from [4], it is difficult to track back
which parts of Theorem 2.4, in this particular case, have appeared in some form
or another in the literature. This is due to the hidden assumption, used by many
authors, of the regularity of some of the cardinals involved, or of some forms of
the generalized continuum hypothesis. See [26].

Theorem 2.4 is new in the particular case of [, a]-compactness, for § and «
ordinals. Since it was our leading motivation for working on such matters, we
state explicitly the equivalence of (1) and (4) in Theorem 2.4 for this special case.
We let Ps(a) denote the set of all subsets of a having order type < 8. Notice
that this notation is consistent with the case introduced before when o and 3 are
cardinals.

Corollary 2.6. Suppose that X is a topological space and « and 8 are ordinals.
Then the following conditions are equivalent.
(1) X is[B, a]-compact.
(2) For every sequence {z, | z € Pg(a)} of elements of X, if, for v € a, we
put P, = {z. | z € Pg(a) and v € 2}, then (., P # 0.

YEQ
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As we mentioned in the introduction, also D-compactness turns out to be
equivalent to a covering property in the sense of Definition 1.1. More generally,
many notions of being closed under convergence, or under taking particular kinds
of accumulation points are equivalent to a covering property, as we shall show in
the next section. Theorem 2.4 applies in each of the above cases.

As a final remark in this section, let us mention that Condition (5) in Theo-
rem 2.4 suggests the following relativized notion of a cluster point of a net.

Definition 2.7. Suppose that (X, <) is a directed set, and (2, ),ecx is a net in
a topological space X. If T' C X, we say that x € X is a cluster point restricted
to T of the net (z,),ex if and only if for every 7 € T' and every neighborhood U
of z, there is 0 € ¥ such that ¢ > 7 and z, € U.

In fact, if ¥ = B C P(A), < is inclusion, and we suppose that B contains all
singletons of P(A), then, in the terminology of Definition 2.7, Condition 2.4(5)
asserts that every ¥-indexed net (z,),ecx has some cluster point restricted to the
set of all singletons of P(A).

This might explain the difficulties in finding an equivalent formulation of [u, A
compactness in terms of cluster points of nets [26]. The condition in Definition 2.7
is generally weaker than the request for a cluster point: the definition of a cluster
point of a net is obtained from 2.7 in the particular case when T' = ¥ (or, more
generally, when T is cofinal in X, that is, T is such that, for every o € X, there is
o' € T such that o < o').

3. Every notion of accumulation (and more) is a covering property

An uncompromising way of defining a general notion of “accumulation point”
is simply to fix some index set I, and to prescribe exactly which subsets of I are
allowed to be the (index sets of) elements contained in the neighborhoods of some
x — supposed to be an accumulation point of some I-indexed sequence.

Just to present the simplest nontrivial example, if I is infinite, and we allow
all subsets of I with cardinality |I], we get the notion of a complete accumulation
point (for sequences all whose points are distinct).

To state it precisely, let us give the following definition.

Definition 3.1. Let I be a set, E be a subset of P(I), and x = (z;);cs be an
I-indexed sequence of elements of some topological space X.

U CX,let Iy ={i€l]|z; €U}, Wesay that a point z € X is an
accumulation point in the sense of E, or simply an E-accumulation point, of the
sequence x if and only if Ix iy € E, for every open neighborhood U of z.

We say that X satisfies the E-accumulation property if and only if every I-
indexed sequence of elements of X has some (not necessarily unique) accumulation
point in the sense of E.

Remark 3.2. Trivially, if E = P(I), then every space satisfies the E-accumulation
property. Under certain assumptions, we can get a smaller “minimal” E.
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For every I-indexed sequence x of elements of X, and every x € X, there is
a smallest set E C P(I) such that = is an E-accumulation point of x: just take
E = Ex, = {Ixv | U an open neighborhood of z}. Notice that Ex , is closed
under finite intersections and arbitrary unions.

More generally, if ¥ is a set of I-indexed sequences of elements of X and, for
every x € X, Yy isasubset of X, then E = |J{Fx,, | x € £, = € Y} is the smallest
set E such that z is an E-accumulation point of x, for every x € ¥ and z € Y. In
other words, if we fix in advance some abstract relation of being an accumulation
point of a sequence, then there is a minimal E which realizes this relation (of
course, in general, E will realize many more instances of accumulation).

Remark 3.3. As we hinted before Definition 3.1, if I is infinite, and E is the set of
all subsets of I of cardinality |I|, then the notion of an E-accumulation point cor-
responds to that of a complete accumulation point. There is a technical difference
that should be mentioned: here we are dealing with sequences, rather than sub-
sets. In order to get the standard definition of a complete accumulation point, we
should require that all the elements of the sequence are distinct, otherwise some
differences might occur. However, if |I| is a regular cardinal, then a topological
space satisfies CAP |7 if and only if it satisfies the E-accumulation property, for
the above E.

The whole matter has been discussed in detail in [17, Section 3], see in particu-
lar Remark 3.2 and Proposition 3.3 there, taking F to be the set of all singletons
of X. We believe that, in general, dealing with sequences is the most natural way;
for sure, it is the best way for our purposes here.

Remark 3.4. Definition 3.1 has some resemblance with the notion of filter con-
vergence. However, we are not asking E to be necessarily a filter. This is because
we want to include notions of accumulation and since, for example, in the case
of complete accumulation points the corresponding E is not closed under inter-
section. Indeed, the intersection of two subsets of I of cardinality |I| may have
cardinality strictly smaller than |I|.

Of course, given some fized sequence (z;);cr and some fized element z € X,
the topological relations between (z;);c; and x are completely determined by
the (possibly improper) filter F' generated by the sets {i € I | ; € U}, U
varying among the neighborhoods of z in X. However, as the example of complete
accumulation points shows, if we allow z vary, we get a more general (and useful)
notion by considering an arbitrary subset E, rather than just a filter.

In this connection, however, see also Remark 5.4.

Definition 3.1 incorporates essentially all possible notions of “accumulation”.
It captures also many notions of convergence. For example, a sequence (z,)new
converges to z if and only if, for every neighborhood U of X, the set w\ {n € w |
z, € U} is finite. In this case, I = w and E consists of the cofinite subsets of w.
In a similar way, we can deal with convergence of transfinite sequences. Actually,
even net convergence is a particular case of Definition 3.1. If (¥, <) is the directed
set on which the net is built, then the net converges to z if and only if z is an
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E-accumulation point in the sense of Definition 3.1 for the following choice of E.
Take I = ¥ and let E be the set of all subsets of I which contain at least one set
of the form o<, where, for ¢ € X, we put 0< = {0’ € ¥ | ¢ < ¢'}. Of course, this
is the usual argument showing that net convergence can be seen as an instance of
filter convergence.

Definition 3.1 is more general. If, for a net as above, we take E to be the set of
all subsets of ¥ which are cofinal in ¥, then an E-accumulation point corresponds
to a cluster point of the net. Also the notion of a restricted cluster point, as
introduced in Definition 2.7, can be expressed in terms of E-accumulation, for
some appropriate F.

If E = D is an ultrafilter over I, then the existence of an E-accumulation point
corresponds exactly to D-convergence.

It is rather astonishing that such a bunch of disparate notions turn out to be
each equivalent to some covering property in the sense of Definition 1.1, as we
shall show in Corollary 3.10 below.

Before embarking in the proof, we notice that also the converse holds, that
is, every covering property is equivalent to some accumulation property. This is
simply a reformulation, in terms of E-accumulation, of the equivalence (1) < (5)
in Theorem 2.4.

Corollary 3.5. Suppose that X is a topological space, A is a set, B C P(A),
and put I = B and E = {Z C B | for every a € A there is H € Z such that
a€ H} ={Z CB|UZ = A}. Then the following conditions are equivalent.

(1) X is [B, A]-compact.
(2) X satisfies the E-accumulation property.

Example 3.6. As in Remark 2.5, if A = X is a regular infinite cardinal, and
B = {[0,a) | @ < A}, then the E given by Corollary 3.5 consists of all subsets of
B of cardinality A. In this particular case, Corollary 3.5 amounts exactly to the
equivalence of [A, A]-compactness and CAP).

Example 3.7. As another simple example, suppose that A is any set, and let
B = {A\ {a} | a € A}. For this choice of B, a topological space X is [B, A]-
compact if and only if X has no irreducible cover of cardinality |A|. The E given
by Corollary 3.5 in this situation is the set of all subsets of B which contain
at least two elements from B. In this case, the failure of the E-accumulation
property means that there exists an |A|-indexed sequence of elements of X such
that every element of X has a neighborhood intersecting at most one element
from the sequence. If X is T1, this is equivalent to saying that X has a discrete
closed subset of cardinality |A|.

In conclusion, in this particular case, Corollary 3.5 shows that a T} topological
space has an irreducible cover of cardinality A if and only if it has a discrete
closed subset of cardinality A. This is a classical result, implicit in the proof of
[2, Theorem 2.1].
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Now we are going to prove the promised converse of Corollary 3.5, namely,
that every E-accumulation property in the sense of Definition 3.1 is equivalent to
some covering property, under the reasonable hypothesis that E is closed under
taking supersets.

Definition 3.8. If I is a set, and E C P(I), welet Et ={a C I |ane#0, for
every e € E}.

We say that E C P(I) is closed under supersets if and only if, whenever e € E
and e C f C I, then f € F (this is half the definition of a filter: if E is also closed
under finite intersections, then it is a filter).

Trivially, for every E, we have that ET is closed under supersets. Moreover,
it is easy to see that ET+ = E if and only if E is closed under supersets. Notice
that if E is a filter, then F is an ultrafilter if and only if E = Et.

If AC P(I), then, for every i € I, we put i = {a € A|i € a}.

We can now state the main result of this section.

Theorem 3.9. Suppose that X is a topological space, I is a set, A C P(I), and
let E = A%, Then the following conditions are equivalent.
(1) X satisfies the E-accumulation property.
(2) For every open cover (Oy)aca of X, there isi € I such that (Oq)icaca is
a cover of X.
(3) X is [B, A]-compact, for B = {i5 |i € I'}.
(4) For every sequence (x;);ecr of elements of X, if, for each a € A, we put

Co ={x;|i € a}, then ,c 4, Ca # 0.

Before proving Theorem 3.9, we state its main corollary, and then we present
a stronger local version for the equivalence of Conditions (1) and (4).

Corollary 3.10. For every E C P(I) such that E is closed under supersets,
there are A C P(I) and B C P(A) such that, for every topological space, the
E-accumulation property is equivalent to [B, A]-compactness.

Proor: If E C P(I) is closed under supersets, then E = ET¥ hence, by taking
A=FE* wehave E = ETT = A", Thus we get from Theorem 3.9 (1) < (3) that,
for every E closed under supersets, the E-accumulation property is equivalent to
some compactness property in the sense of Definition 1.1. O

Proposition 3.11. Suppose that X is a topological space, x € X, I is a set, and
(x;)icr is a sequence of elements of X. Suppose that A C P(I), E = At, and,
fora € A, put C, = {x; | i € a}. Then the following conditions are equivalent.
(1) z is an E-accumulation point of (x;)ier.
(2) T € ﬂaeA CU"
Proor: If (1) holds, then, for every open neighborhood U of z, the set ey = {i €
I'| z; € U} belongs to E. We are going to show that = € ﬂaeA C,.
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Hence, suppose that a € A. For every open neighborhood U of z, a Ney # 0,
by the first statement, and the definition of E. This means that there is i € [
such that ¢ € aNey, that is, x; € C, N U, hence C, NU # P. Since C, is closed,
and the above inequality holds for every open neighborhood U of z, then z € C,,.
Since this holds for every a € A, we have z € [, 4 Ca-

Now assume that (2) holds. Suppose that U is a neighborhood of z, and let
e=1{iel|z; € U}. We have to show that e € E = AT, that is, eNa # 0, for
every a € A. Let us fix a € A. By (2), z € C, and, by the definition of C,, there
is i € a such that z; € U. By the definition of e, i € e, thus i € e N a # (. Since
this argument works for every neighborhood U of x, we have proved (1). O

The particular case of Proposition 3.11 in which x is a cluster point of some
net is Exercise 1.6.A in [7]. Cf. also [5, IV], and Remark 4.7 below.

PROOF OF THEOREM 3.9: (2) & (3) is immediate from the definitions.

(3) & (4) is a particular case of Theorem 2.4 (1) < (4). Indeed, in the situation
at hand, members of B have the form H =¥, for i € I. For such an H, we have
that H € ay if and only if a € H =45 if and only if i € a, thus Condition (4) in
Theorem 2.4 reads exactly as Condition (4) in Theorem 3.9.

(1) & (4) is immediate from Proposition 3.11.

Alternatively, the proof of 3.9 can be completed avoiding the use of Proposi-
tion 3.11, and using Corollary 3.5 in order to prove (1) < (3). Indeed, under the
respective assumptions, and modulo the obvious correspondence between I and
B = {i5 | i € I'}, the E given by the statement of 3.5 corresponds exactly to the E
given by the statement of 3.9. To check this, let I' = B and, fore C I, let ¢’ C I
be defined by e’ = {i§ | i € e}. Applying Corollary 3.5 to I', the resulting E'
turns out to be equal to {¢’ C I' | for every a € A, there is i € I such that i € ¢’
andi€a}={e' CI' |ena#, forevery a € A} = {e' | e € E}. Corollary 3.5
thus shows that [B, A]-compactness is equivalent to the E’-accumulation prop-
erty, which, through the above mentioned correspondence, is trivially equivalent
to the E-accumulation property. O

Remark 3.12. If D is an ultrafilter over I, then, by taking A = D in Theorem 3.9,
the equivalence of (1) and (2) furnishes a proof of Proposition 1.3, since, for D
an ultrafilter, we have that DT = D.

In [18, Proposition 17] we also proved a characterization of D-pseudocompact-
ness analogous to Proposition 1.3. The methods of Sections 2 and 3 do apply
also in case of notions related to pseudocompactness. We shall devote the next
section to this endeavor. Before proceeding, we show that Theorem 3.9 furnishes
a characterization of weak M-compactness.

Definition 3.13. If M is a set of ultrafilters over some set I, a topological space is
said to be weakly M -compact if and only if, for every sequence (z;);cr of elements
of X, there is x € X such that, for every neighborhood U of z, there is D € M
such that {i € I | z; € U}. See [9] for more information, credits, references and
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a characterization. In the terminology of Definition 3.1, X is weakly M-compact
if and only if it satisfies the E-accumulation property, for E = {Jpc,, D-

Corollary 3.14. Suppose that X is a topological space, M is a set of ultrafilters
over I, and let F' = (5, D. Then the following conditions are equivalent.

(1) X is weakly M -compact.
(2) For every open cover (Oz)zer of X, there is some i € I such that
(Oz)iczer Is a cover of X.

ProOOF: By Theorem 3.9, taking A = F, and noticing that £ = AT = J,, D.

4. Pseudocompactness and the like

Definitions 1.1 and 3.1 can be generalized in the setting presented in [17], [18];
in particular, in such a way that incorporates pseudocompact-like notions.

Let us fix a family F of subsets of a topological space X. The most interesting
case will be when F = O is the family of all the nonempty open sets of X. At
first reading, the reader might want to consider this particular case only.

We relativize Definitions 1.1 and 3.1 to F. The notion of [B, A]-compactness
is modified by replacing the conclusion with the requirement that the union of
the elements of an appropriate subsequence intersects ever member of F. As far
as notions of accumulation are concerned, instead of considering accumulation
points of elements, we shall now consider limit points of sequences of elements
of F.

The two most significant cases are when F is the family of all singletons of X,
in which case we get back the definitions and results of Sections 2 and 3, and, as
we mentioned, when F = O is the family of all the nonempty open sets of X, in
which case we get notions and results related to pseudocompactness or variants
of pseudocompactness.

Definition 4.1. If A is a set, B C P(A), X is a topological space, and F is a
family of subsets of X, we say that X is F-[B, A]-compact if and only if one of
the following equivalent conditions holds.

(1) For every open cover (O4)qca of X, there is H € B such that (J,c 5 Oa
intersects every member of F (that is, for every F' € F, there is a € H
such that O, N F # ().

(2) For every sequence (C,)aca of closed subsets of X, if, for every H € B,
there exists F' € F such that (),. Ca 2 F, then (), 4, Co # 0.

The equivalence of the above conditions is trivial, by taking complements.
Notice that, in the particular case when F = O, the conclusion in Defini-
tion 4.1(1) asserts that |J,c 4 Oq is dense in X.

Definition 4.2. Let I be a set, E be a subset of P(I), and (F;);cr be an I-indexed
sequence of subsets of some topological space X.
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We say that a point @ € X is a limit point in the sense of E, or simply an
E-limit point, of the sequence (F;);cy if and only if, for every open neighborhood
U of z, the set {i € I | F;NU # (} belongs to E.

If F is a family of subsets of X, we say that X satisfies the F-E-accumulation
property if and only if every I-indexed sequence of elements of F has some limit
point in the sense of E.

In the particular case when F is the family of all singletons of X Definitions 4.1
and 4.2 reduce to Definitions 1.1 and 3.1, respectively.

Asin Remark 3.2, if E = P(I), then every space satisfies the F-E-accumulation
property, for every F.

More generally, for every sequence (F;);cr of subsets of X, and every z € X,
there is a smallest set E C P(I) such that z is an E-limit point of (F});cr: just
take E = {Iy | U an open neighborhood of z}, where Iy = {i € I | F; N U # 0}.
In the same way, and exactly as in Remark 3.2, for every family of I-indexed
sequences, and respective families of elements of X, there is the smallest E such
that each element in the family is a limit point of the corresponding sequence.

Remark 4.3. If F is a family of subsets of some topological space X, let F denote
the set of all closures of elements of F.

If G is another family of subsets of X, let us write F [> G to mean that, for
every F' € F, there is G € G such that FF O G. We write F = G to mean that
both 7> G and G > F.

It is trivial to see that, in Definitions 4.1 and 4.2, as well as in the theorems
below, we get equivalent conditions if we replace F either by F, or by G, in case
F = G (in this latter case, as far as Definition 4.2 is concerned, the condition
turns out to be equivalent provided we assume that E is closed under supersets).

In particular, when F = O, we get equivalent definitions and results if we
replace O by either

(1) the set B of the nonempty elements of some fixed base of X, or

(

2)
(3) the set B of the closures of the nonempty elements of some base of X, or
4)

(

The connection of Definitions 4.1 and 4.2 with pseudocompactness goes as
follows. A Tychonoff space X is pseudocompact if and only if every countable
open cover of X has a finite subcollection whose union is dense in X. This is
Condition (Cs) in [24], and corresponds to the particular case A = w, B = P, (w)
of O-[B, A]-compactness, in the sense of Definition 4.1.

As another characterization of pseudocompactness, Glicksberg [13] proved that
a Tychonoff space X is pseudocompact if and only if the following condition holds:

the set O of all nonempty regular closed subsets of X, or

the set R of all nonempty regular open subsets of X (since R = O).

(*) for every sequence of nonempty open sets of X, there is some point z € X
such that each neighborhood of z intersects infinitely many elements of
the sequence.
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This corresponds to the particular case of Definition 4.2 in which F = O, [ = w
and E equals the set of all infinite subsets of w. Actually, as a very particular case
of Theorem 4.4 (1) < (5) below, and arguing as in Remark 2.5, we get another
proof of Glicksberg result, in the sense that we get a proof that (*) and (Cs)
above are equivalent, for every topological space (no separation axiom assumed).

The situation is entirely parallel to the characterization of countable compact-
ness, which is equivalent to CAP,,, as discussed in detail in Remark 2.5. Indeed,
conditions analogous to (*) and (Cs) above are still equivalent when w is replaced
by any infinite regular cardinal; see [17, Theorem 4.4] for exact statements. This
kind of analogies, together with many generalizations, had been the main theme
of [17], [18]. In the present paper we show that such analogies can be carried over
much further.

The connections between covering properties and general accumulation prop-
erties, as described in Section 3, do hold even in the extended setting we are now
considering. In other words, the relationships between the properties introduced
in Definitions 1.1 and 3.1 are exactly the same as the relationships between the
properties introduced in Definitions 4.1 and 4.2. This will be stated in Theo-
rem 4.5.

We first state the result analogous to Theorem 2.4 (and Corollary 3.5).

Theorem 4.4. Suppose that A is a set, B C P(A), X is a topological space, and
F is a family of subsets of X. Then the following conditions are equivalent.

(1) X is F-[B, A]-compact.

(2) For every sequence (P,)q,ca of subsets of X, if, for every H € B, there
exists F' € F such that (. Po 2 F, then (), 4 Pa # 0.

(3) Same as (2), with the further assumption that, for every a € A, P, is the
union of < k,-many elements of F, where k, = |ag|.

(4) For every sequence {Fy | H € B} of elements of F, it happens that
Naea U{Fr | H € aj} #0.

(5) For every sequence {Fy | H € B} of elements of F, there is x € X such

that, for every neighborhood U of z in X, and for every a € A, there is
H € B such that a € H and Fg NU # 0.

(6) For every sequence {Yy | H € B} of subsets of X such that each Yy
contains some Fry € F, (N,ea U{YE | H € a5} # 0.

(7) For every sequence {Dg | H € B} of closed subsets of X such that each
Dy contains some Fy € F, it happens that (\,. 4 U{Dn | H € a5} # 0.

(8) For every sequence {Op | H € B} of open subsets of X such that, for
each H € B, there is Fg € F disjoint from Oy, if, for every a € A, we
put Qo = (N{On | H € a3})°, then (Qq)aca is not a cover of X.

(9) X satisfies the F-E-accumulation property, for I = B and E = {Z C B |
for every a € A there is H € Z such that a € H}.
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In each case, we get equivalent conditions by replacing F with either F, or G,
in case F = G.

PROOF: The proof is similar to the proof of Theorem 2.4. Cf. also parts of the
proof of [18, Proposition 6].

It is not obvious that we get equivalent statements for all conditions, when F
is replaced by F, or by G, when F = G. However, this is true for, say, Condition
(1), and the proof of the equivalences of (1)—(9) works for an arbitrary family. O

As a simple example of the equivalence of (1) and (9), and arguing as in Exam-
ple 3.7, a topological space X has an open cover of cardinality A with no proper
dense subfamily if and only if X contains a discrete family of A open sets.

We now state the results corresponding to those in Section 3. There is no
essential difference in proofs.

Theorem 4.5. Suppose that X is a topological space, F is a family of subsets
of X, Iisaset, AC P(I) and E = At. Then the following conditions are
equivalent.

(1) X satisfies the F-E-accumulation property.

(2) For every sequence (Cy)aca of closed subsets of X, if, for every i € I,
there exists F' € F such that (\;c,c4 Ca 2 F, then ), 4 Co # 0.

(3) X is F-[B, A]-compact, where B = {i% | i € I}.
(4) For every sequence (F;);cr of elements in F, if, for each a € A, we put
Ca = U;eq Fi, then N ,c 4, Co # 0.
In each case, we get equivalent conditions by replacing F with either F, or G,
in case F = G.

We state explicitly also the analogue of Proposition 3.11, since it does not
follow formally from Theorem 4.5.

Proposition 4.6. Suppose that X is a topological space, x € X, I is a set, and
(F;)ier is a sequence of subsets of X. Suppose that A C P(I), E = AT, and, for
a € A, put Cy = |J;¢, Fi- Then the following conditions are equivalent.

(1) z is an E-limit point of (F})cr.

(2) v € maeA Cla-

Remark 4.7. A version of Proposition 4.6 appears in [5, IV], using different ter-
minology and notations, and possibly with a misprint. Proposition 4.6 appears

to be slightly more general, since E does not necessarily become a filter (cf. Re-
mark 3.4).

As an example, Theorem 4.5 can be applied to notions related to ultrafilter
convergence, in particular, to D-pseudocompactness.

Definition 4.8. Let D be an ultrafilter over some set I, X be a topological space,
and F be a family of subsets of X.
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We say [17, Definition 2.1] that X is F-D-compact if and only if every sequence
(F})ier of members of F has some D-limit point in X.

In case F is the set of all singletons of X, we get back the notion of D-
compactness. In case F = O we get the notion of D-pseudocompactness, as
introduced in [12], [11].

Corollary 4.9 ([18, Proposition 33]). Suppose that X is a topological space, F
is a family of subsets of X, and D is an ultrafilter over some set I. Then the
following are equivalent.

(1) X is F-D-compact.
(2) For every sequence {F; | i € I} of members of F, if, for Z € D, we put

Cz = U;ez Fi, then we have that (),., Cz # 0.

(3) Whenever (Cz)zep is a sequence of closed sets of X with the property
that, for every i € I, there exists some F € F such that (\,.,Cz 2 F,
then (. Cz # 0.

(4) For every open cover (Oz)zep of X, there is some i € I such that
FNU;c; Oz #0, for every F € F.

In the particular case F = O, Corollary 4.9 provides a characterization of
D-pseudocompactness parallel to the characterization of D-compactness given in
Proposition 1.3. This characterization of D-pseudocompactness had been explic-
itly stated with a direct proof in [18, Proposition 17]. Also Corollary 3.14 can be
generalized without difficulty. We leave this to the reader.

Of course, all the results of Sections 2 and 3, in particular, Theorems 2.4
and 3.9, could be obtained as particular cases of the results in the present section,
by taking F to be the set of all singletons of X. In principle, we could have
first proved Theorems 4.4 and 4.5, and then obtain Theorems 2.4 and 3.9 as
corollaries. We have chosen the other way for easiness of presentation, and since
already Sections 2 and 3 appear to be abstract enough. Probably, there are
more readers (if any at all!) interested in Theorems 2.4 and 3.9 rather than in
Theorems 4.4 and 4.5 in such a generality.

However, the particular case 7 = O in the results of the present section appears
to be of interest. We stated the results in the general F-dependent form for
three reasons. First, to point out that, even if it is possible that the results are
particularly interesting only in the case F = O, nevertheless almost nowhere we
made use of the specific form of the members of ©. Second, since it is not always
trivial that we can equivalently replace @ with anyone of the families (1)—(4) of
Remark 4.3. The general form of our statements thus provides many equivalences
at the same time. The third reason for stating the theorems in the F-form is
to make clear that there is absolutely no difference, in the proofs and in the
arguments, with the case dealt in the preceding sections, that is, when dealing
with sequences of points, rather than general subsets. In fact, the statements of
Theorems 4.4 and 4.5 unify the two cases. This is similar to what we have done
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in [17]; indeed, some results of [17] can be obtained as corollaries of results proved
here.

Of course, the possibility is left open for interesting applications of Theo-
rems 4.4 and 4.5 in other cases, besides the cases of singletons and of nonempty
open sets.

5. Notions related to sequential compactness

Sequential compactness is not a particular case of Definition 3.1. However,
Definition 3.1 can be modified in order to include also notions such as sequential
compactness. The results in Sections 3 and 4 generalize even to this situation.

Definition 5.1. Suppose that I is a set, £ is a set of subsets of P(I), and X is
a topological space.

(1) If (z;)ier is a sequence of elements of X, we say that x € X is an &-
accumulation point of (z;);cr if and only if there is E € £ such that z is
an E-accumulation point of (z;);cr (in the sense of Definition 3.1).
We say that X satisfies the £-accumulation property if and only if every
I-indexed sequence of elements of X has some £-accumulation point.
(2) If (F})icr is an I-indexed sequence of subsets of X, we say that a point
x € X is an £-limit point of the sequence (F;);cs if and only if, for some
E € &, x is an E-limit point of (F});cs (cf. Definition 4.2).
If F is a family of subsets of X, we say that X satisfies the F-&-
accumulation property if and only if every I-indexed sequence of elements
of F has some £-limit point.

Case (1) in Definition 5.1 is the particular case of (2) when F is taken to be
the set of all singletons of X.

When £ = {E} has just one member, Definitions 5.1(1)(2) reduce to Defini-
tions 3.1 and 4.2, respectively.

Remark 5.2. Notice that if in the second statement in Definition 5.1(1) we take I =
w and we let £ be the set of all nonprincipal ultrafilters over w, we get still another
equivalent formulation of countable compactness. This is the reformulation of
a nowadays standard fact (see, e.g., [12]). The equivalence follows also from
Remark 5.4 below, and the fact (Remark 2.5) that countable compactness is
equivalent to CAP,. More generally, if X is regular, and in Definition 5.1(1) we
take I = X and & the set of all uniform ultrafilters over A, we get an equivalent
formulation of [\, A]-compactness, equivalently, of CAP,.

We now show how to get the definition of sequential compactness as a particular
case of Definition 5.1(1).

Definitions 5.3. As usual, if W C w is infinite, we let [IW']* denote the set of all
infinite subsets of W. If Z € [w]¥, we let Fz = {W Cw | |Z \ W] is finite}, that
is, Fz is the filter on w generated by the Frechet filter on Z.
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We now get sequential compactness if in Definition 5.1(1) we take I = w, and
E={F;| Z € [w]“}.

With the above choice of T and &, and taking F = O in 5.1(2) (that is, con-
sidering sequences (0;);cr of nonempty open sets of X), we get a notion called
sequential pseudocompactness in [3], and sequential feeble compactness in [6]. No-
tice that in [3] the O;’s are requested to be pairwise disjoint; however, it can be
shown [20] that we get equivalent definitions, whether or not we suppose the O;’s
to be disjoint.

Remark 5.4. Suppose that each element of £ is closed under supersets, and let
E'={FCPI)| FisafilteronI and F C E, for some E € £}. Then some
point z is an £-accumulation point of some sequence x = (z;);cr if and only if
x is an £’-accumulation point of x. Indeed, £'-accumulation trivially implies £-
accumulation. On the other direction, if z is an £-accumulation point of x, then
thereis E € & such that Ix y = {i € I | x; € U} € E, for every open neighborhood
U of z. If F is the filter generated by G = {Ix,y | U is an open neighborhood
of z}, then F C E, since G is closed under intersection, and E is closed under
supersets. Thus F' € £', and F witnesses that z is an £'-accumulation point of x
(cf. also Remarks 3.2 and 3.4).

In particular, under the above assumptions on £ and &’, a topological space
satisfies the £-accumulation property if and only if it satisfies the £'-accumulation
property. Thus, in contrast with Remark 3.4, and as far as Definition 5.1 is
concerned, it is no loss of generality to assume that all members of £ are filters.
Of course, the above observation applies only in case we are not concerned with
the cardinality of £, since, in the above situation, the cardinality of £’ is generally
strictly larger than the cardinality of £.

Notice that the above argument carries over even when we consider £ = {F C
P(I) | Fis afilter on I and, for some E € £, F C E and F is maximal among the
filters contained in E} (because every filter F' C F can be extended to a maximal
filter with this property, using Zorn’s Lemma). Sometimes this turns out to be
useful.

We now introduce the generalization of Definitions 1.1 and 4.1 which furnishes
the equivalent of Definition 5.1 in terms of properties of open covers.

Definition 5.5. Suppose that A is a set, B,G C P(A), and X is a topological
space.

(1) We say that X is [B, G]-compact if and only if one of the following equiv-
alent conditions hold.
(a) If (On)aca are open sets of X, and, for every K € G, (O,)qck is a
cover of X, then there is H € B such that (O,).cnH is a cover of X,
(b) If (Cy)qeca is a sequence of closed subsets of X, and, for every H € B,
Nuerr Ca # 0, then there is K € G such that (), ., Ca # 0.
(2) If F is a family of subsets of X, we say that X is F-[B, G]-compact if and
only if one of the following equivalent conditions hold.
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(a) If (On)aca are open sets of X, and, for every K € G, (O,)qck is a
cover of X, then there is H € B such that, for every F' € F, there is
a € H such that O, N F # (.

(b) If (C,)aca are closed sets of X, and, for every H € B, there exists
F € F such that (), Cs 2 F, then there is K € G such that

maGK Ca ;é 0.

Case (1) in Definition 5.5 is the particular case of (2) when F is taken to be
the set of all singletons of X.
Definitions 1.1 and 4.1 are the particular cases of the above definition when

G = {A}.

Remark 5.6. Some known notions are particular cases of [B, G]-compactness, as
introduced in Definition 5.5.

Indeed, in the particular case when G is a partition of A, say into & classes, the
hypothesis in Condition (1)(a) of Definition 5.5 amounts exactly to considering a
family of x open covers of X, each cover having the same cardinality as the cor-
responding class. In the rest of this remark we shall deal only with the particular
case when A is countable and G is a partition of A into w-many classes, each class
having cardinality w.

If, under the above assumptions, we let B consist of all subsets of A such
that B has finite intersection with each element of G, then Condition (1)(a) in
Definition 5.5 asserts that, given a countable family of countable covers of X, we
can extract a cover of X by selecting a finite number of elements from each one of
the original covers. This property turns out to be equivalent to what nowadays is
called the Menger property, and is denoted by Sg, (O, O) in [21, Section 5] (here
we are following the notations from [21], and O denotes the collection of all open
covers of X).

On the other hand, if B consists of all subsets of A such that B intersects each
element of G in exactly one element, we get the Rothberger property, denoted by
S1(0,0) in [21, Section 6].

The connections between Definition 5.5 and the notions introduced in [21]
probably deserve further analysis. Notice that here we put no restriction on covers,
while [21] also deals with special classes of covers, such as large covers, w-covers
and so on. One probably gets interesting notions modifying Definitions 1.1, 5.5
etc., by putting restrictions on the nature of the starting cover and of the resulting
subcover. This suggests the next definition.

Definition 5.7. Suppose that A is a set, B,G C P(A4), X is a topological space,
and A, B are collections of subsets of X.

X is [Bg, G 4l]-compact (feebly [Bg, G .al-compact, respectively) if and only if
whenever (O,)q.ca are subsets of X, and, for every K € G, (O,)qck is a cover in
A, then there is H € B such that (O,).cn is a cover in B ((Og)qcq is in B and
its union is dense in X, respectively).
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Arguing as in Remark 5.6, the properties San (A, B) and S; (A, B) from [21] are
particular cases of Definition 5.7.

The particular case of Definition 5.5 in which A = A, G is the set of subsets of
A of cardinality A, and B = P(\) has been briefly hinted on [16, p. 1380] under
the name almost [k, A]-compactness.

In the next theorems we give the connections between the notions introduced
in Definitions 5.1 and 5.5.

Recall the definition of aj; given just before Theorem 2.4.

Theorem 5.8. Suppose that A is a set, B,G C P(A), and X is a topological
space. Then the following conditions are equivalent.
(1) X is [B,G]-compact.
(2) For every sequence (P,),ca of subsets of X, if, for every H € B,
Nucr Pa # 0, then there is K € G such that (,cx Pa # 0.
(3) For every sequence {zy | H € B} of elements of X, there is K € G such
that ,cx {zm | H € ag} # 0.
(4) For every sequence {Yy | H € B} of nonempty subsets of X, there is
K € G such that (o U{Yr | H € a5} # 0.
(5) X satisfies the E-accumulation property, for I = B and £ = {Ex | K €

G} where, for K € G, we put Ex = {Z C B | for every a € K there is
H € Z such that a € H}.

Theorem 5.9. Suppose that A is a set, B,G C P(A), X is a topological space,

and F is a family of subsets of X. Then the following conditions are equivalent.
(1) X is F-|B, G]-compact.

(2) For every sequence (P,)a,ca of subsets of X, if, for every H € B, there

exists F' € F such that (\,c; Po 2 F, then there is K € G such that

ﬂaGK ﬁa ;é @

(3) For every sequence {Fy | H € B} of elements of F, there is K € G such
that ,cx U{Fu | H € a5} # 0.

(4) For every sequence {Yy | H € B} of subsets of X such that each Yy con-
tains some Fy € F, thereis K € G such that (e U{Yu | H € aj} # 0.

(5) X satisfies the F-E-accumulation property, for I and £ as in Condi-
tion 5.8(5) above.

When G = {4}, the conditions in Theorems 5.8 and 5.9 turn out to coincide
with the corresponding conditions in Theorems 2.4 and 4.4 and Corollary 3.5.

Theorem 5.10. Suppose that X is a topological space, I is a set, G is a set of
subsets of P(I), and put € = {K* | K € G} and A = |JG. Then the following
conditions are equivalent.

(1) X satisfies the £-accumulation property.

(2) If (On)aca are open sets of X, and, for every K € G, (0O,)ack s a cover
of X, then there is i € I such that (O,)icaca is a cover of X.
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(3) X is [B,G]-compact, where B = {i | i € I}.
(4) For every sequence (x;);ey of elements of X, there is K € G such that if,
for each a € K, we put Cq = {z; | i € a}, then ()., Co # 0.

PROOF: Similar to the proof of Theorem 3.9. Notice that (2) & (3) is immediate
from the definitions, using Condition (1)(a) in Definition 5.5, and that (1) < (4)
follows directly from Proposition 3.11. d

Theorem 5.11. Under the assumptions in Theorem 5.10, and if F is a family
of subsets of X, then the following conditions are equivalent.
(1) X satisfies the F-E-accumulation property.
(2) X is F-|B,G]-compact, where B = {i% | i € I'}.
(3) For every sequence (F;);cr of elements of F, there is K € G such that if,
for each a € K, we put Cy = {J;c, Fi, then (i Ca # 0.

Theorem 5.10 is the particular case of Theorem 5.11 when F is the family of
all singletons of X. Theorems 3.9 and 4.5 are the particular cases of, respectively,
Theorems 5.10 and 5.11 when G = {A} has just one member.

The following characterization of sequential compactness in terms of open cov-
ers might be known, but we know no reference for it.

Corollary 5.12. A topological space X is sequentially compact (sequentially
feebly compact, respectively) if and only if, for every open cover {O, | a € [w]*}
of X such that {O, | a € [Z]¥} is still a cover of X, for every Z € [w]¥, there
isn € w such that {O, | n € a € [w]“} is a cover of X (has dense union in X,
respectively).

ProoF: Take I = w and G = {[Z]Y | Z € [w]“} in Theorems 5.10 and 5.11.
If K = [Z]Y € G, then Kt = Fy, in the notations of Definition 5.3. Thus
the corollary is a particular case of the equivalence (1) < (2) in Theorems 5.10
and 5.11, respectively,

Of course, also a direct proof of Corollary 5.12 is not difficult. O

As a special case of Theorem 5.8 (1) < (3), we get the following characteriza-
tions (probably folklore) of the Rothberger and the Menger properties.

Corollary 5.13. A topological space X satisfies the Rothberger property if and
only if, for every sequence {zs | f : w = w} of elements of X, there isn € w such

A topological space X satisfies the Menger property if and only if, for every
sequence {zy | f : w — [W]<“} of elements of X, there is n € w such that

Ninew {27 Tm € F(n)} # 0.

The ideas in Section 4 suggest the following definition (known under different
terminology).

Definition 5.14. A topological space X is feebly Rothberger (feebly Menger,
respectively) if and only if, for every countable family of countable covers of X,
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we can select one member (a finite number of members, respectively) from each
cover in such a way that the union of the selected members is dense in X.

The above properties can be characterized in a way similar to Corollary 5.13,
by means of Theorem 5.9.

If I is a set, and M is a set of ultrafilters over I, then a topological space X is
said to be quasi M -compact if and only if, for every I-indexed sequence (z;);cr
of elements of X, there exists D € M such that (z;);c;r D-converges to some
point of X. Of course, if M = {D} is a singleton, then quasi M-compactness
is the same as D-compactness, and is also equivalent to weak M-compactness
(Definition 3.13). See [9] for further references about these notions.

The space X is quasi M -pseudocompact if and only if, for every I-indexed
sequence (O;);er of nonempty open sets of X, there exists D € M such that
(O;)ier has some D-limit point in X. Notice that, for I = w, the above notion
is called M -pseudocompactness in [10, Definition 2.1]. We have chosen the name
quasi M-pseudocompactness in analogy with quasi M-compactness.

Corollary 5.15. Suppose that M is a set of ultrafilters over some set I, and
let A = Jpep D- Then a topological space X is quasi M-compact (quasi M-
pseudocompact, respectively) if and only if, whenever (O,)qc 4 are open sets of X,
and, for every D € M, (O,)aep is a cover of X, then there is i € I such that
(On)icaca is a cover of X (has dense union in X, respectively).

ProOF: By Theorems 5.10 and 5.11 (1) & (2), with G = M, since, as already
noticed, if D is an ultrafilter, then D+t = D. O

Remark 5.16. As a final remark, let us mention that not every “covering property”
present in the literature has the form given in Definitions 1.1, 4.1, or 5.5, the
most notable case being paracompactness. More generally, all covering properties
involving some particular properties (local finiteness, point finiteness, etc.) of the
original cover, or of the resulting subcover, are not part of the framework given
by Definition 1.1, as it stands.

There are even equivalent formulations of countable compactness which, at
least formally, are not particular cases of Definition 1.1. Indeed, a space X is
countably compact if and only if, for every countable open cover (Oy,),ec. such
that O, C O,,, for n < m < w, there is n € w such that O, = X. The above
condition cannot be directly expressed as a particular case of Definition 1.1.

In spite of the above remarks, we believe to have demonstrated that Defi-
nition 1.1 and its variants are general enough to capture many disparate and
seemingly unrelated notions, being at the same time sufficiently concrete and
manageable so that interesting results can be proved about them.

Of course, as we did in Definition 5.7, there is the possibility of modifying
Definition 1.1 and its variants by considering only particular covers with special
properties (cf. also Remark 5.6). We have not yet pursued this promising line of
research.
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