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A very general overing propertyPaolo LippariniAbstrat. We introdue a general notion of overing property, of whih manylassial de�nitions are partiular instanes. Notions of losure under varioussorts of onvergene, or, more generally, under taking kinds of aumulationpoints, are shown to be equivalent to a overing property in the sense onsideredhere (Corollary 3.10). Conversely, every overing property is equivalent to theexistene of appropriate kinds of aumulation points for arbitrary sequenes onsome �xed index set (Corollary 3.5).We disuss orresponding notions related to sequential ompatness, and topseudoompatness, or, more generally, properties onneted with the existeneof limit points of sequenes of subsets. In spite of the great generality of ourtreatment, many results here appear to be new even in very speial ases, suhas D-ompatness and D-pseudoompatness, for D an ultra�lter, and weak(quasi) M-(pseudo)-ompatness, for M a set of ultra�lters, as well as for [�;�℄-ompatness, with � and � ordinals.Keywords: overing property, subover, ompatness, aumulation point, on-vergene, pseudoompatness, limit pointClassi�ation: Primary 54D20; Seondary 54A201. Introdution\Covering property" in the title refers to a property of the form \every openover has a subover by a tratable lass of elements". The most general andeasiest form of establishing what \tratable" is to be intended simply amounts toenumerate those sets whih are to be onsidered tratable. We are thus led to thefollowing de�nition, where P(A) denotes the set of all subsets of the set A.De�nition 1.1 ([19, De�nition 7.7℄). If A is a set, and B � P(A), we say thata topologial spae X is [B;A℄-ompat if and only if, whenever (Oa)a2A is asequene of open sets of X suh that Sa2AOa = X , then there is H 2 B suhthat Sa2H Oa = X .Of ourse, (full) ompatness is the partiular ase when A is in�nite andarbitrarily large, and B is the set of all �nite subsets of A. If in the abovesentene we replae �nite by ountable, we get Lindel�ofness . On the other hand,if we instead restrit only to ountable A, we get ountable ompatness . Moregeneral examples of ardinal (and ordinal) notions reduible to [B;A℄-ompatnesswill be presented below.



282 P. LippariniWe �rst show how to produe ounterexamples to [B;A℄-ompatness in astandard way.Example 1.2. Suppose that A is a set, B � P(A), B is nonempty, and A =2 B(the assumption A =2 B is neessary by Fat 2.2(1) below).(a) As a typial ounterexample to [B;A℄-ompatness, we an exhibit B itself,with the topology a subbase of whih onsists of the sets a� = fH 2 B j a =2 Hg,a varying in A.With the above topology, B is not [B;A℄-ompat, as the a�s themselves wit-ness. Indeed, the a�s are a over of B, sine A =2 B. However, for every H 2 B,(a�)a2H is not a over of B, sine H belongs to no a�, for a 2 H .We believe that, in a sense still to be made preise, B with the above topologyis the typial example of a non [B;A℄-ompat topologial spae. This is sug-gested by partiular ases onerning ordinal ompatness, see [19, Theorems 5.4and 5.7℄.Notie that B, with the above topology, is T0, but, in general, not even T1.However, the example an be turned into a Tyhono� topologial spae by intro-duing a �ner topology as in (b) below.Observe that P(A) is in a bijetive orrespondene, via harateristi funtions,with Af0; 1g, the set of all funtions from A to f0; 1g, hene with the produt ofA-many opies of f0; 1g. Via the above identi�ations, if we give to f0; 1g thetopology in whih f0g is open, but f1g is not open, then the topology desribedabove is the subspae topology indued on B by the (Tyhono�) produt topologyon Af0; 1g.(b) If we instead give to f0; 1g the disrete topology, then the subset topologyindued on B by the topology on Af0; 1g makes B a Tyhono� topologial spae,whih is still a ounterexample to [B;A℄-ompatness. This latter topology, too,admits an expliit desription: it is the topology a subbase of whih onsists of thesets whih have either the form a� = fH 2 B j a =2 Hg, or a< = fH 2 B j a 2 Hg,for some a 2 A.If B is losed under symmetrial di�erene, then, with this topology, B inheritsfrom Af0; 1g the struture of a topologial group. If B is losed both under �niteunions and �nite intersetions, then B inherits from Af0; 1g the struture of atopologial lattie.We now onsider some more spei� instanes of De�nition 1.1.The most general form of a overing notion involving ardinality as a measureof \tratability" is [�; �℄-ompatness , where � and � are ardinals. It is thepartiular ase of De�nition 1.1 when A = � and B = P�(�) is the set of allsubsets of � of ardinality < �. The notion of [�; �℄-ompatness originated inthe 20's in the past entury [1℄, and thus has a very long history. See, e.g., [8℄,[14℄, [22℄, [23℄, [25℄, [26℄, [27℄, [28℄ for results and referenes.In [19℄ we generalized ardinal ompatness to ordinals, that is, we onsideredthe partiular ase of De�nition 1.1 in whih A is an ordinal (or, anyway, awell-ordered set), and the \tratability" of some subset H of A is measured by



A very general overing property 283onsidering the order type of H . In more detail, for � and � ordinals, [�; �℄-ompatness is obtained from De�nition 1.1 by letting A = �, and letting B equalto the set of all subsets of � having order type < �. The notion is interesting, sineone an prove many non trivial results of the form \every [�; �℄-ompat spae is[�0; �0℄-ompat", for various ordinals, while only trivial results of this kind hold,when restrited to ardinals. Moreover, there are examples of spaes satisfyingexatly the same [�; �℄-ompatness (ardinal) properties, but whih behave ina very di�erent way as far as (ordinal) [�; �℄-ompatness is onerned. Justto present the simplest possible example, if � is a regular unountable ardinal,then �, with the order topology, is [�+ �; �+ �℄-ompat, but the disjoint unionof two opies of � is not [� + �; � + �℄-ompat (here + denotes ordinal sum).Furthermore, there are many rather deep onnetions among [�; �℄-ompatness,ardinalities and separation properties of spaes. In [19℄ we also introdued anordinal version of the Lindel�of number of a topologial spae, and showed that thisordinal version gives muh more information about the spae than the ardinalversion.So far, we have not yet provided really strong motivations in favor of thegreat generality of De�nition 1.1. Indeed, at �rst sight, the ordinal version ofompatness, that is, [�; �℄-ompatness, appears to be a quite very sensitive and�ne notion, well suited for exatly measuring the overing properties enjoyed bysome topologial spae. However, other interesting properties naturally insertthemselves into the general framework given by De�nition 1.1. In fat, besidesonsidering [�; �℄-ompatness, we reahed the notion of [B;A℄-ompatness aftera areful look at the proposition below, whih haraterizes D-ompatness.Reall that if D is an ultra�lter, say over some set I , then a topologial spaeX is said to be D-ompat if and only if every sequene (xi)i2I of elements of XD-onverges to some point of x, where a sequene (xi)i2I is said to D-onvergeto some point x 2 X if and only if fi 2 I j xi 2 Ug 2 D, for every neighborhoodU of x in X .In [18, Corollary 34℄ we proved the following proposition, whih is also a par-tiular ase of Theorem 3.9 below (see Remark 3.12).Proposition 1.3. Let D be an ultra�lter over I . A topologial spae X is D-ompat if and only if, for every open over (OZ)Z2D of X , there is some i 2 Isuh that (OZ)i2Z is a over of X .Thus also D-ompatness is equivalent to a overing property, namely, thepartiular ase of De�nition 1.1 in whih A is D itself, and B = fi< j i 2 Ig,where, for i 2 I , we put i< = fZ 2 D j i 2 Zg. In words, B is the set of allthe intersetions of D with some prinipal ultra�lter. Hene, in the sense of D-ompatness, being \tratable" means (having indies) lying in the intersetionof D with some prinipal ultra�lter.Reeting on the above example, we soon realized that many other onditionsasking losure under appropriate types of onvergene are equivalent to over-ing properties. Furthermore, this is the ase also for the existene of kinds of



284 P. Lippariniaumulation points, as we shall show in Setion 3. Historially, the interplay be-tween overing properties and aumulation properties has been a entral themein topology, starting from [1℄, if not earlier. In this respet, see also the disussionin Remark 2.5.Also a generalization of D-ompatness, weak M -ompatness, involving a setM of ultra�lters, is equivalent to a overing property, as will be shown in Corol-lary 3.14. See Corollary 5.15 for a haraterization of a further related notion:quasi M -ompatness.If in De�nition 1.1 we take B = P(A) n fAg, then a ounterexample to [B;A℄-ompatness is what is usually alled an irreduible (or minimal) over. Irre-duible overs, as well as spaes in whih every over an be re�ned to a (possibly�nite) irreduible over have been the objet of some study. See [2℄, [15℄ andfurther referenes there. In a sense, an in�nite irreduible over produes a maxi-mal form of inompatness. Indeed, e.g. by Fat 2.2(2)(6) below in ontrapositiveform, if some topologial spae X has an irreduible over of ardinality �, thenX is not [B;A℄-ompat, for every set A suh that jAj � �, and every B � P(A)suh that A =2 B.If X is a T1 topologial spae whih is not ountably ompat, then anyopen over witnessing ountable inompatness an be re�ned to an irreduibleountably in�nite open over. This follows, for example, from the proof of [19,Lemma 6.4℄. Compare also with [2, Theorem 2.1℄. Thus we get the followingproposition.Proposition 1.4. For a T1 topologial spae X , the following onditions areequivalent.(1) X is not ountably ompat.(2) X is not [P(A) n fAg; A℄-ompat, for every ountable nonempty set A.(3) X is not [B;A℄-ompat, for some ountably in�nite set A, and someB � P(A) suh that B ontains all �nite subsets of A.The above equivalenes do not generalize to unountable ardinals. The spae�, with the order topology, is not [�; �℄-ompat, but it is [�+ !; �+ !℄-ompat[19, Example 3.2(3)℄ (here + denotes ordinal sum). Moreover the hypothesis thatX is T1 is neessary, by [19, Example 3.2(2)℄.Though simple, De�nition 1.1 uni�es many disparate situations, and allows forthe possibility of proving some interesting and non trivial results, whih sometimesare new and useful even in very partiular ases.When restrited to (ardinal) [�; �℄-ompatness, some of the results presentedin this note might be seen as a revisitation of known results. They are new in thease of (ordinal) [�; �℄-ompatness. Atually, the study of properties of [�; �℄-ompatness has been the leading motivation for the present researh. Restritedto this partiular ase, this note may be seen as a ontinuation of [19℄. As soonas we realized that the results naturally �t into a more general setting, with no



A very general overing property 285essential further tehnial ompliation, we deided to present them in their moregeneral form.As far as D-ompatness, and other notions of onvergene are onerned,the results presented here an improve shedding new light into the subjet. Inpartiular, they hopefully provide a new point of view about the relationshipbetween onvergene, aumulation and overing properties.It might be of some interest the fat that there is also a version for notionsrelated to pseudoompatness. As well known, for Tyhono� spaes, there is anequivalent formulation of pseudoompatness whih involves open overs: a Ty-hono� spae is pseudoompat if and only if every ountable open over has asubset with dense union. Here the premise is the same as in ountable ompat-ness, with a weakened onlusion. De�nition 1.1, too, an be modi�ed in the sameway (De�nition 4.1), and essentially all the results we prove for [B;A℄-ompat-ness have a version for this pseudoompat-like notion. The notion of onvergene(or aumulation) of a sequene of points will be replaed with notions of limitpoints of a sequene of subsets .Furthermore, in Setion 5, we present variations whih inlude overing prop-erties equivalent to sequential ompatness, sequential pseudoompatness, quasiM -ompatness, the Menger property and the Rothberger property. Many othernotions an be obtained as partiular ases of De�nition 5.7. De�nition 5.7 prob-ably deserves further study.We assume no separation axiom, unless otherwise spei�ed.2. Equivalents of a overing propertyIn this setion we show that, for every B and A as in De�nition 1.1, thereare many equivalent formulations of [B;A℄-ompatness. In partiular, it an beharaterized by a sort of aumulation property, in a sense whih will be expliitlydesribed in the next setion. Parts of the results presented in this setion areknown for [�; �℄-ompatness, hene, in partiular, for ountable ompatness,Lindel�ofness et. They are new for (ordinal) [�; �℄-ompatness, and for othergeneral notions of ompatness.We begin with a trivial but useful fat.Fat 2.1. A topologial spae is [B;A℄-ompat if and only if, for every sequene(Ca)a2A of losed sets, if Ta2H Ca 6= ;, for every H 2 B, then Ta2ACa 6= ;.Proof: Immediate from the de�nition of [B;A℄-ompatness, in ontrapositiveform, and by taking omplements. �We now state some other easy fats about [B;A℄-ompatness.Fat 2.2. Suppose that X is a topologial spae, A is a set, and B;B0 � P(A).(1) If A 2 B, then every topologial spae is [B;A℄-ompat. In partiular,every topologial spae is [fAg; A℄-ompat.(2) If B � B0, and X is [B;A℄-ompat, then X is [B0; A℄-ompat.



286 P. Lipparini(3) More generally, if, for every H 2 B, there is H 0 2 B0 suh that H � H 0,then every [B;A℄-ompat topologial spae is [B0; A℄-ompat.(4) If X is [B;A℄-ompat, and A0 � A, then X is [BjA0 ; A0℄-ompat, whereBjA0 = fH \ A0 j H 2 Bg.(5) Suppose that, for every H 2 B, DH � P(H), and let D = SH2B DH . IfX is [B;A℄-ompat, and [DH ; H ℄-ompat, for every H 2 B, then X is[D;A℄-ompat.(6) If C is a set, f : C ! A is a funtion, and D = ff�1(H) j H 2 Bg, thenevery [B;A℄-ompat topologial spae is [D;C℄-ompat.Fat (5) above is a broad generalization of standard arguments, e.g., the argu-ment showing that Lindel�ofness and ountable ompatness imply ompatness.Fat (6) follows immediately from the fat that a union of open sets is stillopen. Indeed, if (O)2C is an open over of X , then (Qa)a2A is an open overof X , where Qa = Sf()=aO, for a 2 A.Remark 2.3. Let us say that B � P(A) is losed under subsets if and only if,whenever H 0 2 B and H � H 0, then H 2 B. Notie that, by (2) and (3) above, ifB0 � P(A) and B is the smallest subset of P(A) whih ontains B0 and is losedunder subsets, then a topologial spae X is [B;A℄-ompat if and only if it is[B0; A℄-ompat. Thus, in the de�nition of [B;A℄-ompatness, it is no loss ofgenerality to onsider only those B whih are losed under subsets.If X is a topologial spae, and P � X , we denote by P the losure of P in X ,and by P Æ its interior. The topologial spae in whih we are taking losure andinterior will always be lear from the ontext.If B � P(A) and a 2 A, we let a<B = fH 2 B j a 2 Hg.Theorem 2.4. Suppose that A is a set, B � P(A), and X is a topologial spae.Then the following onditions are equivalent.(1) X is [B;A℄-ompat.(2) For every sequene (Pa)a2A of subsets of X , if, for every H 2 B,Ta2H Pa 6= ;, then Ta2A P a 6= ;.(3) Same as (2), with the further assumption that jPaj � ja<B j, for everya 2 A.(4) For every sequene fxH j H 2 Bg of elements of X , it happens thatTa2A fxH j H 2 a<Bg 6= ;.(5) For every sequene fxH j H 2 Bg of elements of X , there is x 2 X suhthat, for every neighborhood U of x in X , and for every a 2 A, there isH 2 B suh that a 2 H and xH 2 U .(6) For every sequene fYH j H 2 Bg of nonempty subsets of X , it happensthat Ta2ASfYH j H 2 a<Bg 6= ;.(7) For every sequene fDH j H 2 Bg of nonempty losed subsets of X ,Ta2ASfDH j H 2 a<Bg 6= ;.



A very general overing property 287(8) For every sequene fOH j H 2 Bg of open proper subsets of X , if, forevery a 2 A, we put Qa = (TfOH j H 2 a<Bg)Æ, then (Qa)a2A is not aover of X .Proof: (1) ) (2) Just take Ca = P a, for a 2 A, and use the equivalent formu-lation of [B;A℄-ompatness in terms of losed sets, as given in Fat 2.1.(2) ) (3) is trivial.(3) ) (4) For a 2 A, put Pa = fxH j H 2 a<Bg. Thus jPaj � ja<B j. Moreover,if a 2 H 2 B, then xH 2 Pa, hene xH 2 Ta2H Pa, thus Ta2H Pa 6= ;. Byapplying (3), Ta2A Pa = Ta2A fxH j H 2 a<Bg 6= ;.(5) is learly a reformulation of (4), hene they are equivalent.(4) trivially implies (6), sine if, for everyH 2 B, we hoose xH 2 YH 6= ;, thenTa2ASfYH j H 2 a<Bg � Ta2A fxH j H 2 a<Bg, and this latter set is nonemptyby (4).(6) ) (7) is trivial, sine (7) is a partiular ase of (6).(7) ) (1) We shall use the equivalent formulation of [B;A℄-ompatness givenby Fat 2.1. Suppose that (Ca)a2A are losed subsets ofX suh thatTa2H Ca 6= ;,for every H 2 B. For eah H 2 B, put DH = Ta2H Ca, thus Ca � DH ,whenever a 2 H , hene, for every a 2 A, Ca � SfDH j H 2 a<Bg. By (7),Ta2A Ca � Ta2ASfDH j H 2 a<Bg 6= ;.(8) , (7) is immediate by taking omplements. �Notie that Conditions (6) and (7) an be reformulated in a way similar to thereformulation (5) of (4). As we shall explain in detail in Setion 3, Condition (5)an be seen as a statement that asserts the existene of some kind of aumulationpoint for the sequene fxH j H 2 Bg.Remark 2.5. Some partiular ases of Theorem 2.4 are known, sometimes beinglassial results.As we mentioned in the introdution, ountable ompatness is the partiularase of De�nition 1.1 when A is ountable (without loss of generality we antake A = !), and B is the set of all �nite subsets of !. It is easy to see thatwe an equivalently take B = f[0; n) j n 2 !g; this follows, for example, fromRemark 2.3. In a di�erent ontext, a similar argument has been exploited in [18℄;see in partiular Remark 24 there. Remark 2.3 (and Fat 2.2(2)(3)) have furtherinteresting appliations whih will be presented elsewhere.Reall that, for an in�nite ardinal �, a topologial spae X satis�es CAP� ifand only if every subset Y � X with jY j = � has a omplete aumulation pointx, that is, a point x suh that jU \ Y j = �, for every neighborhood U of x.For the above hoie of A = ! and B = f[0; n) j n 2 !g, the equivalene of (1)and (5) in Theorem 2.4 shows that ountable ompatness is equivalent to CAP!.This is beause a sequene (xH )H2B an be thought as a sequene (xn)n2!, viathe obvious orrespondene between B and !. The astute reader will notie thatthe above argument (and Theorem 2.4, in general) deals with sequenes, while



288 P. Lipparinithe de�nition of CAP! deals with subsets; that is, in the former ase, repetitionsare allowed, while in the latter ase they are not allowed. However, it is easy tosee that, in the partiular ase at hand, the di�erene produes no substantiale�et. See Remark 3.3 below and [17, Setion 3℄ for further details.Arguments similar to the above ones an be arried over, with no essentialhange, for every regular ardinal �. In this ase, we get that [�; �℄-ompatnessis equivalent to CAP�. These results are very lassial, and, indeed, are immedi-ate onsequenes of [1, Setion 9℄. For � singular, the haraterization of [�; �℄-ompatness is not that neat. The point is that, for � regular, a subset of � o�nalin � has neessarily ardinality �; this is false when � is singular.We have disussed in some detail the equivalene between CAP� and [�; �℄-ompatness, for � regular, sine it might be seen as a prototype of all the resultsproved in the present paper. In fat, we establish an interplay between notionsof ompatness, on one hand, and satisfation of aumulation properties, on theother hand. Suh an interplay holds in very general situations, sometimes ratherfar removed from the above partiular and nowadays standard example.Turning to the more general notion of [�; �℄-ompatness, the speial ase ofthe equivalene of (1) and (2) in Theorem 2.4 appears in [8, Theorem 1.1℄. See[26, Lemma 5(b)℄. For [�; �℄-ompatness, Conditions (1){(4) in Theorem 2.4 arethe partiular ase of [18, Proposition 32(1){(4)℄, taking F to be the set of allsingletons of X . In the partiular ase � = !, [!; �℄-ompatness is usually alledinitial �-ompatness . In this ase there are muh more haraterizations: see[23, Setion 2℄ and [26℄. Some equivalenes hold also for � > !, under additionalassumptions. See [26, Theorem 2℄.The equivalenes in Theorem 2.4 have been inspired by results from Caiedo[4, Setion 3℄, who impliitly uses similar methods in order to deal with [�; �℄-ompatness. In our opinion, Caiedo [4℄ has provided an essentially new pointof view about [�; �℄-ompatness. Apart from [4℄, it is diÆult to trak bakwhih parts of Theorem 2.4, in this partiular ase, have appeared in some formor another in the literature. This is due to the hidden assumption, used by manyauthors, of the regularity of some of the ardinals involved, or of some forms ofthe generalized ontinuum hypothesis. See [26℄.Theorem 2.4 is new in the partiular ase of [�; �℄-ompatness, for � and �ordinals. Sine it was our leading motivation for working on suh matters, westate expliitly the equivalene of (1) and (4) in Theorem 2.4 for this speial ase.We let P�(�) denote the set of all subsets of � having order type < �. Notiethat this notation is onsistent with the ase introdued before when � and � areardinals.Corollary 2.6. Suppose that X is a topologial spae and � and � are ordinals.Then the following onditions are equivalent.(1) X is [�; �℄-ompat.(2) For every sequene fxz j z 2 P�(�)g of elements of X , if, for  2 �, weput P = fxz j z 2 P�(�) and  2 zg, then T2� P  6= ;.



A very general overing property 289As we mentioned in the introdution, also D-ompatness turns out to beequivalent to a overing property in the sense of De�nition 1.1. More generally,many notions of being losed under onvergene, or under taking partiular kindsof aumulation points are equivalent to a overing property, as we shall show inthe next setion. Theorem 2.4 applies in eah of the above ases.As a �nal remark in this setion, let us mention that Condition (5) in Theo-rem 2.4 suggests the following relativized notion of a luster point of a net.De�nition 2.7. Suppose that (�;�) is a direted set, and (x�)�2� is a net ina topologial spae X . If T � �, we say that x 2 X is a luster point restritedto T of the net (x�)�2� if and only if for every � 2 T and every neighborhood Uof x, there is � 2 � suh that � � � and x� 2 U .In fat, if � = B � P(A), � is inlusion, and we suppose that B ontains allsingletons of P(A), then, in the terminology of De�nition 2.7, Condition 2.4(5)asserts that every �-indexed net (x�)�2� has some luster point restrited to theset of all singletons of P(A).This might explain the diÆulties in �nding an equivalent formulation of [�; �℄-ompatness in terms of luster points of nets [26℄. The ondition in De�nition 2.7is generally weaker than the request for a luster point: the de�nition of a lusterpoint of a net is obtained from 2.7 in the partiular ase when T = � (or, moregenerally, when T is o�nal in �, that is, T is suh that, for every � 2 �, there is�0 2 T suh that � � �0).3. Every notion of aumulation (and more) is a overing propertyAn unompromising way of de�ning a general notion of \aumulation point"is simply to �x some index set I , and to presribe exatly whih subsets of I areallowed to be the (index sets of) elements ontained in the neighborhoods of somex | supposed to be an aumulation point of some I-indexed sequene.Just to present the simplest nontrivial example, if I is in�nite, and we allowall subsets of I with ardinality jI j, we get the notion of a omplete aumulationpoint (for sequenes all whose points are distint).To state it preisely, let us give the following de�nition.De�nition 3.1. Let I be a set, E be a subset of P(I), and x = (xi)i2I be anI-indexed sequene of elements of some topologial spae X .If U � X , let Ix;U = fi 2 I j xi 2 Ug. We say that a point x 2 X is anaumulation point in the sense of E, or simply an E-aumulation point , of thesequene x if and only if Ix;U 2 E, for every open neighborhood U of x.We say that X satis�es the E-aumulation property if and only if every I-indexed sequene of elements ofX has some (not neessarily unique) aumulationpoint in the sense of E.Remark 3.2. Trivially, if E = P(I), then every spae satis�es the E-aumulationproperty. Under ertain assumptions, we an get a smaller \minimal" E.



290 P. LippariniFor every I-indexed sequene x of elements of X , and every x 2 X , there isa smallest set E � P(I) suh that x is an E-aumulation point of x: just takeE = Ex;x = fIx;U j U an open neighborhood of xg. Notie that Ex;x is losedunder �nite intersetions and arbitrary unions.More generally, if � is a set of I-indexed sequenes of elements of X and, forevery x 2 �, Yx is a subset ofX , then E = SfEx;x j x 2 �; x 2 Yxg is the smallestset E suh that x is an E-aumulation point of x, for every x 2 � and x 2 Yx. Inother words, if we �x in advane some abstrat relation of being an aumulationpoint of a sequene, then there is a minimal E whih realizes this relation (ofourse, in general, E will realize many more instanes of aumulation).Remark 3.3. As we hinted before De�nition 3.1, if I is in�nite, and E is the set ofall subsets of I of ardinality jI j, then the notion of an E-aumulation point or-responds to that of a omplete aumulation point. There is a tehnial di�erenethat should be mentioned: here we are dealing with sequenes, rather than sub-sets. In order to get the standard de�nition of a omplete aumulation point, weshould require that all the elements of the sequene are distint, otherwise somedi�erenes might our. However, if jI j is a regular ardinal, then a topologialspae satis�es CAPjIj if and only if it satis�es the E-aumulation property, forthe above E.The whole matter has been disussed in detail in [17, Setion 3℄, see in partiu-lar Remark 3.2 and Proposition 3.3 there, taking F to be the set of all singletonsof X . We believe that, in general, dealing with sequenes is the most natural way;for sure, it is the best way for our purposes here.Remark 3.4. De�nition 3.1 has some resemblane with the notion of �lter on-vergene. However, we are not asking E to be neessarily a �lter. This is beausewe want to inlude notions of aumulation and sine, for example, in the aseof omplete aumulation points the orresponding E is not losed under inter-setion. Indeed, the intersetion of two subsets of I of ardinality jI j may haveardinality stritly smaller than jI j.Of ourse, given some �xed sequene (xi)i2I and some �xed element x 2 X ,the topologial relations between (xi)i2I and x are ompletely determined bythe (possibly improper) �lter F generated by the sets fi 2 I j xi 2 Ug, Uvarying among the neighborhoods of x in X . However, as the example of ompleteaumulation points shows, if we allow x vary, we get a more general (and useful)notion by onsidering an arbitrary subset E, rather than just a �lter.In this onnetion, however, see also Remark 5.4.De�nition 3.1 inorporates essentially all possible notions of \aumulation".It aptures also many notions of onvergene. For example, a sequene (xn)n2!onverges to x if and only if, for every neighborhood U of X , the set ! n fn 2 ! jxn 2 Ug is �nite. In this ase, I = ! and E onsists of the o�nite subsets of !.In a similar way, we an deal with onvergene of trans�nite sequenes. Atually,even net onvergene is a partiular ase of De�nition 3.1. If (�;�) is the diretedset on whih the net is built, then the net onverges to x if and only if x is an



A very general overing property 291E-aumulation point in the sense of De�nition 3.1 for the following hoie of E.Take I = � and let E be the set of all subsets of I whih ontain at least one setof the form �<, where, for � 2 �, we put �< = f�0 2 � j � � �0g. Of ourse, thisis the usual argument showing that net onvergene an be seen as an instane of�lter onvergene.De�nition 3.1 is more general. If, for a net as above, we take E to be the set ofall subsets of � whih are o�nal in �, then an E-aumulation point orrespondsto a luster point of the net. Also the notion of a restrited luster point, asintrodued in De�nition 2.7, an be expressed in terms of E-aumulation, forsome appropriate E.If E = D is an ultra�lter over I , then the existene of an E-aumulation pointorresponds exatly to D-onvergene.It is rather astonishing that suh a bunh of disparate notions turn out to beeah equivalent to some overing property in the sense of De�nition 1.1, as weshall show in Corollary 3.10 below.Before embarking in the proof, we notie that also the onverse holds, thatis, every overing property is equivalent to some aumulation property. This issimply a reformulation, in terms of E-aumulation, of the equivalene (1) , (5)in Theorem 2.4.Corollary 3.5. Suppose that X is a topologial spae, A is a set, B � P(A),and put I = B and E = fZ � B j for every a 2 A there is H 2 Z suh thata 2 Hg = fZ � B j SZ = Ag. Then the following onditions are equivalent.(1) X is [B;A℄-ompat.(2) X satis�es the E-aumulation property.Example 3.6. As in Remark 2.5, if A = � is a regular in�nite ardinal, andB = f[0; �) j � < �g, then the E given by Corollary 3.5 onsists of all subsets ofB of ardinality �. In this partiular ase, Corollary 3.5 amounts exatly to theequivalene of [�; �℄-ompatness and CAP�.Example 3.7. As another simple example, suppose that A is any set, and letB = fA n fag j a 2 Ag. For this hoie of B, a topologial spae X is [B;A℄-ompat if and only if X has no irreduible over of ardinality jAj. The E givenby Corollary 3.5 in this situation is the set of all subsets of B whih ontainat least two elements from B. In this ase, the failure of the E-aumulationproperty means that there exists an jAj-indexed sequene of elements of X suhthat every element of X has a neighborhood interseting at most one elementfrom the sequene. If X is T1, this is equivalent to saying that X has a disretelosed subset of ardinality jAj.In onlusion, in this partiular ase, Corollary 3.5 shows that a T1 topologialspae has an irreduible over of ardinality � if and only if it has a disretelosed subset of ardinality �. This is a lassial result, impliit in the proof of[2, Theorem 2.1℄.



292 P. LippariniNow we are going to prove the promised onverse of Corollary 3.5, namely,that every E-aumulation property in the sense of De�nition 3.1 is equivalent tosome overing property, under the reasonable hypothesis that E is losed undertaking supersets.De�nition 3.8. If I is a set, and E � P(I), we let E+ = fa � I j a \ e 6= ;, forevery e 2 Eg.We say that E � P(I) is losed under supersets if and only if, whenever e 2 Eand e � f � I , then f 2 E (this is half the de�nition of a �lter : if E is also losedunder �nite intersetions, then it is a �lter).Trivially, for every E, we have that E+ is losed under supersets. Moreover,it is easy to see that E++ = E if and only if E is losed under supersets. Notiethat if E is a �lter, then E is an ultra�lter if and only if E = E+.If A � P(I), then, for every i 2 I , we put i<A = fa 2 A j i 2 ag.We an now state the main result of this setion.Theorem 3.9. Suppose that X is a topologial spae, I is a set, A � P(I), andlet E = A+. Then the following onditions are equivalent.(1) X satis�es the E-aumulation property.(2) For every open over (Oa)a2A of X , there is i 2 I suh that (Oa)i2a2A isa over of X .(3) X is [B;A℄-ompat, for B = fi<A j i 2 Ig.(4) For every sequene (xi)i2I of elements of X , if, for eah a 2 A, we putCa = fxi j i 2 ag, then Ta2A Ca 6= ;.Before proving Theorem 3.9, we state its main orollary, and then we presenta stronger loal version for the equivalene of Conditions (1) and (4).Corollary 3.10. For every E � P(I) suh that E is losed under supersets,there are A � P(I) and B � P(A) suh that, for every topologial spae, theE-aumulation property is equivalent to [B;A℄-ompatness.Proof: If E � P(I) is losed under supersets, then E = E++, hene, by takingA = E+, we have E = E++ = A+. Thus we get from Theorem 3.9 (1), (3) that,for every E losed under supersets, the E-aumulation property is equivalent tosome ompatness property in the sense of De�nition 1.1. �Proposition 3.11. Suppose that X is a topologial spae, x 2 X , I is a set, and(xi)i2I is a sequene of elements of X . Suppose that A � P(I), E = A+, and,for a 2 A, put Ca = fxi j i 2 ag. Then the following onditions are equivalent.(1) x is an E-aumulation point of (xi)i2I .(2) x 2 Ta2A Ca.Proof: If (1) holds, then, for every open neighborhood U of x, the set eU = fi 2I j xi 2 Ug belongs to E. We are going to show that x 2 Ta2A Ca.



A very general overing property 293Hene, suppose that a 2 A. For every open neighborhood U of x, a \ eU 6= ;,by the �rst statement, and the de�nition of E. This means that there is i 2 Isuh that i 2 a \ eU , that is, xi 2 Ca \ U , hene Ca \ U 6= ;. Sine Ca is losed,and the above inequality holds for every open neighborhood U of x, then x 2 Ca.Sine this holds for every a 2 A, we have x 2 Ta2ACa.Now assume that (2) holds. Suppose that U is a neighborhood of x, and lete = fi 2 I j xi 2 Ug. We have to show that e 2 E = A+, that is, e \ a 6= ;, forevery a 2 A. Let us �x a 2 A. By (2), x 2 Ca and, by the de�nition of Ca, thereis i 2 a suh that xi 2 U . By the de�nition of e, i 2 e, thus i 2 e \ a 6= ;. Sinethis argument works for every neighborhood U of x, we have proved (1). �The partiular ase of Proposition 3.11 in whih x is a luster point of somenet is Exerise 1.6.A in [7℄. Cf. also [5, IV℄, and Remark 4.7 below.Proof of Theorem 3.9: (2) , (3) is immediate from the de�nitions.(3), (4) is a partiular ase of Theorem 2.4 (1), (4). Indeed, in the situationat hand, members of B have the form H = i<A, for i 2 I . For suh an H , we havethat H 2 a<B if and only if a 2 H = i<A if and only if i 2 a, thus Condition (4) inTheorem 2.4 reads exatly as Condition (4) in Theorem 3.9.(1) , (4) is immediate from Proposition 3.11.Alternatively, the proof of 3.9 an be ompleted avoiding the use of Proposi-tion 3.11, and using Corollary 3.5 in order to prove (1) , (3). Indeed, under therespetive assumptions, and modulo the obvious orrespondene between I andB = fi<A j i 2 Ig, the E given by the statement of 3.5 orresponds exatly to the Egiven by the statement of 3.9. To hek this, let I 0 = B and, for e � I , let e0 � I 0be de�ned by e0 = fi<A j i 2 eg. Applying Corollary 3.5 to I 0, the resulting E0turns out to be equal to fe0 � I 0 j for every a 2 A, there is i 2 I suh that i<A 2 e0and i 2 ag = fe0 � I 0 j e \ a 6= ;, for every a 2 Ag = fe0 j e 2 Eg. Corollary 3.5thus shows that [B;A℄-ompatness is equivalent to the E0-aumulation prop-erty, whih, through the above mentioned orrespondene, is trivially equivalentto the E-aumulation property. �Remark 3.12. If D is an ultra�lter over I , then, by taking A = D in Theorem 3.9,the equivalene of (1) and (2) furnishes a proof of Proposition 1.3, sine, for Dan ultra�lter, we have that D+ = D.In [18, Proposition 17℄ we also proved a haraterization of D-pseudoompat-ness analogous to Proposition 1.3. The methods of Setions 2 and 3 do applyalso in ase of notions related to pseudoompatness. We shall devote the nextsetion to this endeavor. Before proeeding, we show that Theorem 3.9 furnishesa haraterization of weak M -ompatness.De�nition 3.13. IfM is a set of ultra�lters over some set I , a topologial spae issaid to be weakly M-ompat if and only if, for every sequene (xi)i2I of elementsof X , there is x 2 X suh that, for every neighborhood U of x, there is D 2 Msuh that fi 2 I j xi 2 Ug. See [9℄ for more information, redits, referenes and



294 P. Lipparinia haraterization. In the terminology of De�nition 3.1, X is weakly M -ompatif and only if it satis�es the E-aumulation property, for E = SD2M D.Corollary 3.14. Suppose that X is a topologial spae, M is a set of ultra�ltersover I , and let F = TD2M D. Then the following onditions are equivalent.(1) X is weakly M -ompat.(2) For every open over (OZ)Z2F of X , there is some i 2 I suh that(OZ)i2Z2F is a over of X .Proof: By Theorem 3.9, taking A = F , and notiing that E = A+ = SD2M D.�4. Pseudoompatness and the likeDe�nitions 1.1 and 3.1 an be generalized in the setting presented in [17℄, [18℄;in partiular, in suh a way that inorporates pseudoompat-like notions.Let us �x a family F of subsets of a topologial spae X . The most interestingase will be when F = O is the family of all the nonempty open sets of X . At�rst reading, the reader might want to onsider this partiular ase only.We relativize De�nitions 1.1 and 3.1 to F . The notion of [B;A℄-ompatnessis modi�ed by replaing the onlusion with the requirement that the union ofthe elements of an appropriate subsequene intersets ever member of F . As faras notions of aumulation are onerned, instead of onsidering aumulationpoints of elements, we shall now onsider limit points of sequenes of elementsof F .The two most signi�ant ases are when F is the family of all singletons of X ,in whih ase we get bak the de�nitions and results of Setions 2 and 3, and, aswe mentioned, when F = O is the family of all the nonempty open sets of X , inwhih ase we get notions and results related to pseudoompatness or variantsof pseudoompatness.De�nition 4.1. If A is a set, B � P(A), X is a topologial spae, and F is afamily of subsets of X , we say that X is F-[B;A℄-ompat if and only if one ofthe following equivalent onditions holds.(1) For every open over (Oa)a2A of X , there is H 2 B suh that Sa2H Oaintersets every member of F (that is, for every F 2 F , there is a 2 Hsuh that Oa \ F 6= ;).(2) For every sequene (Ca)a2A of losed subsets of X , if, for every H 2 B,there exists F 2 F suh that Ta2H Ca � F , then Ta2ACa 6= ;.The equivalene of the above onditions is trivial, by taking omplements.Notie that, in the partiular ase when F = O, the onlusion in De�ni-tion 4.1(1) asserts that Sa2AOa is dense in X .De�nition 4.2. Let I be a set, E be a subset of P(I), and (Fi)i2I be an I-indexedsequene of subsets of some topologial spae X .



A very general overing property 295We say that a point x 2 X is a limit point in the sense of E, or simply anE-limit point , of the sequene (Fi)i2I if and only if, for every open neighborhoodU of x, the set fi 2 I j Fi \ U 6= ;g belongs to E.If F is a family of subsets of X , we say that X satis�es the F-E-aumulationproperty if and only if every I-indexed sequene of elements of F has some limitpoint in the sense of E.In the partiular ase when F is the family of all singletons of X De�nitions 4.1and 4.2 redue to De�nitions 1.1 and 3.1, respetively.As in Remark 3.2, if E = P(I), then every spae satis�es the F-E-aumulationproperty, for every F .More generally, for every sequene (Fi)i2I of subsets of X , and every x 2 X ,there is a smallest set E � P(I) suh that x is an E-limit point of (Fi)i2I : justtake E = fIU j U an open neighborhood of xg, where IU = fi 2 I j Fi \ U 6= ;g.In the same way, and exatly as in Remark 3.2, for every family of I-indexedsequenes, and respetive families of elements of X , there is the smallest E suhthat eah element in the family is a limit point of the orresponding sequene.Remark 4.3. If F is a family of subsets of some topologial spae X , let F denotethe set of all losures of elements of F .If G is another family of subsets of X , let us write F � G to mean that, forevery F 2 F , there is G 2 G suh that F � G. We write F � G to mean thatboth F � G and G �F .It is trivial to see that, in De�nitions 4.1 and 4.2, as well as in the theoremsbelow, we get equivalent onditions if we replae F either by F , or by G, in aseF � G (in this latter ase, as far as De�nition 4.2 is onerned, the onditionturns out to be equivalent provided we assume that E is losed under supersets).In partiular, when F = O, we get equivalent de�nitions and results if wereplae O by either(1) the set B of the nonempty elements of some �xed base of X , or(2) the set O of all nonempty regular losed subsets of X , or(3) the set B of the losures of the nonempty elements of some base of X , or(4) the set R of all nonempty regular open subsets of X (sine R = O).The onnetion of De�nitions 4.1 and 4.2 with pseudoompatness goes asfollows. A Tyhono� spae X is pseudoompat if and only if every ountableopen over of X has a �nite subolletion whose union is dense in X . This isCondition (C5) in [24℄, and orresponds to the partiular ase A = !, B = P!(!)of O-[B;A℄-ompatness, in the sense of De�nition 4.1.As another haraterization of pseudoompatness, Gliksberg [13℄ proved thata Tyhono� spaeX is pseudoompat if and only if the following ondition holds:(*) for every sequene of nonempty open sets of X , there is some point x 2 Xsuh that eah neighborhood of x intersets in�nitely many elements ofthe sequene.



296 P. LippariniThis orresponds to the partiular ase of De�nition 4.2 in whih F = O, I = !and E equals the set of all in�nite subsets of !. Atually, as a very partiular aseof Theorem 4.4 (1) , (5) below, and arguing as in Remark 2.5, we get anotherproof of Gliksberg result, in the sense that we get a proof that (*) and (C5)above are equivalent, for every topologial spae (no separation axiom assumed).The situation is entirely parallel to the haraterization of ountable ompat-ness, whih is equivalent to CAP!, as disussed in detail in Remark 2.5. Indeed,onditions analogous to (*) and (C5) above are still equivalent when ! is replaedby any in�nite regular ardinal; see [17, Theorem 4.4℄ for exat statements. Thiskind of analogies, together with many generalizations, had been the main themeof [17℄, [18℄. In the present paper we show that suh analogies an be arried overmuh further.The onnetions between overing properties and general aumulation prop-erties, as desribed in Setion 3, do hold even in the extended setting we are nowonsidering. In other words, the relationships between the properties introduedin De�nitions 1.1 and 3.1 are exatly the same as the relationships between theproperties introdued in De�nitions 4.1 and 4.2. This will be stated in Theo-rem 4.5.We �rst state the result analogous to Theorem 2.4 (and Corollary 3.5).Theorem 4.4. Suppose that A is a set, B � P(A), X is a topologial spae, andF is a family of subsets of X . Then the following onditions are equivalent.(1) X is F-[B;A℄-ompat.(2) For every sequene (Pa)a2A of subsets of X , if, for every H 2 B, thereexists F 2 F suh that Ta2H Pa � F , then Ta2A P a 6= ;.(3) Same as (2), with the further assumption that, for every a 2 A, Pa is theunion of � �a-many elements of F , where �a = ja<B j.(4) For every sequene fFH j H 2 Bg of elements of F , it happens thatTa2ASfFH j H 2 a<Bg 6= ;.(5) For every sequene fFH j H 2 Bg of elements of F , there is x 2 X suhthat, for every neighborhood U of x in X , and for every a 2 A, there isH 2 B suh that a 2 H and FH \ U 6= ;.(6) For every sequene fYH j H 2 Bg of subsets of X suh that eah YHontains some FH 2 F , Ta2ASfYH j H 2 a<Bg 6= ;.(7) For every sequene fDH j H 2 Bg of losed subsets of X suh that eahDH ontains some FH 2 F , it happens that Ta2ASfDH j H 2 a<Bg 6= ;.(8) For every sequene fOH j H 2 Bg of open subsets of X suh that, foreah H 2 B, there is FH 2 F disjoint from OH , if, for every a 2 A, weput Qa = (TfOH j H 2 a<Bg)Æ, then (Qa)a2A is not a over of X .(9) X satis�es the F-E-aumulation property, for I = B and E = fZ � B jfor every a 2 A there is H 2 Z suh that a 2 Hg.



A very general overing property 297In eah ase, we get equivalent onditions by replaing F with either F , or G,in ase F � G.Proof: The proof is similar to the proof of Theorem 2.4. Cf. also parts of theproof of [18, Proposition 6℄.It is not obvious that we get equivalent statements for all onditions, when Fis replaed by F , or by G, when F � G. However, this is true for, say, Condition(1), and the proof of the equivalenes of (1){(9) works for an arbitrary family. �As a simple example of the equivalene of (1) and (9), and arguing as in Exam-ple 3.7, a topologial spae X has an open over of ardinality � with no properdense subfamily if and only if X ontains a disrete family of � open sets.We now state the results orresponding to those in Setion 3. There is noessential di�erene in proofs.Theorem 4.5. Suppose that X is a topologial spae, F is a family of subsetsof X , I is a set, A � P(I) and E = A+. Then the following onditions areequivalent.(1) X satis�es the F-E-aumulation property.(2) For every sequene (Ca)a2A of losed subsets of X , if, for every i 2 I ,there exists F 2 F suh that Ti2a2A Ca � F , then Ta2A Ca 6= ;.(3) X is F-[B;A℄-ompat, where B = fi<A j i 2 Ig.(4) For every sequene (Fi)i2I of elements in F , if, for eah a 2 A, we putCa = Si2a Fi, then Ta2ACa 6= ;.In eah ase, we get equivalent onditions by replaing F with either F , or G,in ase F � G.We state expliitly also the analogue of Proposition 3.11, sine it does notfollow formally from Theorem 4.5.Proposition 4.6. Suppose that X is a topologial spae, x 2 X , I is a set, and(Fi)i2I is a sequene of subsets of X . Suppose that A � P(I), E = A+, and, fora 2 A, put Ca = Si2a Fi. Then the following onditions are equivalent.(1) x is an E-limit point of (Fi)i2I .(2) x 2 Ta2A Ca.Remark 4.7. A version of Proposition 4.6 appears in [5, IV℄, using di�erent ter-minology and notations, and possibly with a misprint. Proposition 4.6 appearsto be slightly more general, sine E does not neessarily beome a �lter (f. Re-mark 3.4).As an example, Theorem 4.5 an be applied to notions related to ultra�lteronvergene, in partiular, to D-pseudoompatness.De�nition 4.8. Let D be an ultra�lter over some set I , X be a topologial spae,and F be a family of subsets of X .



298 P. LippariniWe say [17, De�nition 2.1℄ that X is F-D-ompat if and only if every sequene(Fi)i2I of members of F has some D-limit point in X .In ase F is the set of all singletons of X , we get bak the notion of D-ompatness. In ase F = O we get the notion of D-pseudoompatness, asintrodued in [12℄, [11℄.Corollary 4.9 ([18, Proposition 33℄). Suppose that X is a topologial spae, Fis a family of subsets of X , and D is an ultra�lter over some set I . Then thefollowing are equivalent.(1) X is F-D-ompat.(2) For every sequene fFi j i 2 Ig of members of F , if, for Z 2 D, we putCZ = Si2Z Fi, then we have that TZ2D CZ 6= ;.(3) Whenever (CZ)Z2D is a sequene of losed sets of X with the propertythat, for every i 2 I , there exists some F 2 F suh that Ti2Z CZ � F ,then TZ2D CZ 6= ;.(4) For every open over (OZ)Z2D of X , there is some i 2 I suh thatF \Si2Z OZ 6= ;, for every F 2 F .In the partiular ase F = O, Corollary 4.9 provides a haraterization ofD-pseudoompatness parallel to the haraterization of D-ompatness given inProposition 1.3. This haraterization of D-pseudoompatness had been expli-itly stated with a diret proof in [18, Proposition 17℄. Also Corollary 3.14 an begeneralized without diÆulty. We leave this to the reader.Of ourse, all the results of Setions 2 and 3, in partiular, Theorems 2.4and 3.9, ould be obtained as partiular ases of the results in the present setion,by taking F to be the set of all singletons of X . In priniple, we ould have�rst proved Theorems 4.4 and 4.5, and then obtain Theorems 2.4 and 3.9 asorollaries. We have hosen the other way for easiness of presentation, and sinealready Setions 2 and 3 appear to be abstrat enough. Probably, there aremore readers (if any at all!) interested in Theorems 2.4 and 3.9 rather than inTheorems 4.4 and 4.5 in suh a generality.However, the partiular ase F = O in the results of the present setion appearsto be of interest. We stated the results in the general F-dependent form forthree reasons. First, to point out that, even if it is possible that the results arepartiularly interesting only in the ase F = O, nevertheless almost nowhere wemade use of the spei� form of the members of O. Seond, sine it is not alwaystrivial that we an equivalently replae O with anyone of the families (1){(4) ofRemark 4.3. The general form of our statements thus provides many equivalenesat the same time. The third reason for stating the theorems in the F-form isto make lear that there is absolutely no di�erene, in the proofs and in thearguments, with the ase dealt in the preeding setions, that is, when dealingwith sequenes of points, rather than general subsets. In fat, the statements ofTheorems 4.4 and 4.5 unify the two ases. This is similar to what we have done



A very general overing property 299in [17℄; indeed, some results of [17℄ an be obtained as orollaries of results provedhere.Of ourse, the possibility is left open for interesting appliations of Theo-rems 4.4 and 4.5 in other ases, besides the ases of singletons and of nonemptyopen sets.5. Notions related to sequential ompatnessSequential ompatness is not a partiular ase of De�nition 3.1. However,De�nition 3.1 an be modi�ed in order to inlude also notions suh as sequentialompatness. The results in Setions 3 and 4 generalize even to this situation.De�nition 5.1. Suppose that I is a set, E is a set of subsets of P(I), and X isa topologial spae.(1) If (xi)i2I is a sequene of elements of X , we say that x 2 X is an E-aumulation point of (xi)i2I if and only if there is E 2 E suh that x isan E-aumulation point of (xi)i2I (in the sense of De�nition 3.1).We say that X satis�es the E-aumulation property if and only if everyI-indexed sequene of elements of X has some E-aumulation point.(2) If (Fi)i2I is an I-indexed sequene of subsets of X , we say that a pointx 2 X is an E-limit point of the sequene (Fi)i2I if and only if, for someE 2 E , x is an E-limit point of (Fi)i2I (f. De�nition 4.2).If F is a family of subsets of X , we say that X satis�es the F-E-aumulation property if and only if every I-indexed sequene of elementsof F has some E-limit point.Case (1) in De�nition 5.1 is the partiular ase of (2) when F is taken to bethe set of all singletons of X .When E = fEg has just one member, De�nitions 5.1(1)(2) redue to De�ni-tions 3.1 and 4.2, respetively.Remark 5.2. Notie that if in the seond statement in De�nition 5.1(1) we take I =! and we let E be the set of all nonprinipal ultra�lters over !, we get still anotherequivalent formulation of ountable ompatness. This is the reformulation ofa nowadays standard fat (see, e.g., [12℄). The equivalene follows also fromRemark 5.4 below, and the fat (Remark 2.5) that ountable ompatness isequivalent to CAP!. More generally, if � is regular, and in De�nition 5.1(1) wetake I = � and E the set of all uniform ultra�lters over �, we get an equivalentformulation of [�; �℄-ompatness, equivalently, of CAP�.We now show how to get the de�nition of sequential ompatness as a partiularase of De�nition 5.1(1).De�nitions 5.3. As usual, if W � ! is in�nite, we let [W ℄! denote the set of allin�nite subsets of W . If Z 2 [!℄!, we let FZ = fW � ! j jZ nW j is �niteg, thatis, FZ is the �lter on ! generated by the Frehet �lter on Z.



300 P. LippariniWe now get sequential ompatness if in De�nition 5.1(1) we take I = !, andE = fFZ j Z 2 [!℄!g.With the above hoie of I and E , and taking F = O in 5.1(2) (that is, on-sidering sequenes (Oi)i2I of nonempty open sets of X), we get a notion alledsequential pseudoompatness in [3℄, and sequential feeble ompatness in [6℄. No-tie that in [3℄ the Oi's are requested to be pairwise disjoint; however, it an beshown [20℄ that we get equivalent de�nitions, whether or not we suppose the Oi'sto be disjoint.Remark 5.4. Suppose that eah element of E is losed under supersets, and letE 0 = fF � P(I) j F is a �lter on I and F � E, for some E 2 Eg. Then somepoint x is an E-aumulation point of some sequene x = (xi)i2I if and only ifx is an E 0-aumulation point of x. Indeed, E 0-aumulation trivially implies E-aumulation. On the other diretion, if x is an E-aumulation point of x, thenthere is E 2 E suh that Ix;U = fi 2 I j xi 2 Ug 2 E, for every open neighborhoodU of x. If F is the �lter generated by G = fIx;U j U is an open neighborhoodof xg, then F � E, sine G is losed under intersetion, and E is losed undersupersets. Thus F 2 E 0, and F witnesses that x is an E 0-aumulation point of x(f. also Remarks 3.2 and 3.4).In partiular, under the above assumptions on E and E 0, a topologial spaesatis�es the E-aumulation property if and only if it satis�es the E 0-aumulationproperty. Thus, in ontrast with Remark 3.4, and as far as De�nition 5.1 isonerned, it is no loss of generality to assume that all members of E are �lters.Of ourse, the above observation applies only in ase we are not onerned withthe ardinality of E , sine, in the above situation, the ardinality of E 0 is generallystritly larger than the ardinality of E .Notie that the above argument arries over even when we onsider E 00 = fF �P(I) j F is a �lter on I and, for some E 2 E , F � E and F is maximal among the�lters ontained in Eg (beause every �lter F � E an be extended to a maximal�lter with this property, using Zorn's Lemma). Sometimes this turns out to beuseful.We now introdue the generalization of De�nitions 1.1 and 4.1 whih furnishesthe equivalent of De�nition 5.1 in terms of properties of open overs.De�nition 5.5. Suppose that A is a set, B;G � P(A), and X is a topologialspae.(1) We say that X is [B;G℄-ompat if and only if one of the following equiv-alent onditions hold.(a) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is aover of X , then there is H 2 B suh that (Oa)a2H is a over of X ,(b) If (Ca)a2A is a sequene of losed subsets of X , and, for everyH 2 B,Ta2H Ca 6= ;, then there is K 2 G suh that Ta2K Ca 6= ;.(2) If F is a family of subsets of X , we say that X is F-[B;G℄-ompat if andonly if one of the following equivalent onditions hold.



A very general overing property 301(a) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is aover of X , then there is H 2 B suh that, for every F 2 F , there isa 2 H suh that Oa \ F 6= ;.(b) If (Ca)a2A are losed sets of X , and, for every H 2 B, there existsF 2 F suh that Ta2H Ca � F , then there is K 2 G suh thatTa2K Ca 6= ;.Case (1) in De�nition 5.5 is the partiular ase of (2) when F is taken to bethe set of all singletons of X .De�nitions 1.1 and 4.1 are the partiular ases of the above de�nition whenG = fAg.Remark 5.6. Some known notions are partiular ases of [B;G℄-ompatness, asintrodued in De�nition 5.5.Indeed, in the partiular ase when G is a partition of A, say into � lasses, thehypothesis in Condition (1)(a) of De�nition 5.5 amounts exatly to onsidering afamily of � open overs of X , eah over having the same ardinality as the or-responding lass. In the rest of this remark we shall deal only with the partiularase when A is ountable and G is a partition of A into !-many lasses, eah lasshaving ardinality !.If, under the above assumptions, we let B onsist of all subsets of A suhthat B has �nite intersetion with eah element of G, then Condition (1)(a) inDe�nition 5.5 asserts that, given a ountable family of ountable overs of X , wean extrat a over of X by seleting a �nite number of elements from eah one ofthe original overs. This property turns out to be equivalent to what nowadays isalled the Menger property , and is denoted by S�n(O;O) in [21, Setion 5℄ (herewe are following the notations from [21℄, and O denotes the olletion of all openovers of X).On the other hand, if B onsists of all subsets of A suh that B intersets eahelement of G in exatly one element, we get the Rothberger property , denoted byS1(O;O) in [21, Setion 6℄.The onnetions between De�nition 5.5 and the notions introdued in [21℄probably deserve further analysis. Notie that here we put no restrition on overs,while [21℄ also deals with speial lasses of overs, suh as large overs , !-oversand so on. One probably gets interesting notions modifying De�nitions 1.1, 5.5et., by putting restritions on the nature of the starting over and of the resultingsubover. This suggests the next de�nition.De�nition 5.7. Suppose that A is a set, B;G � P(A), X is a topologial spae,and A, B are olletions of subsets of X .X is [BB; GA℄-ompat (feebly [BB; GA℄-ompat , respetively) if and only ifwhenever (Oa)a2A are subsets of X , and, for every K 2 G, (Oa)a2K is a over inA, then there is H 2 B suh that (Oa)a2H is a over in B ((Oa)a2H is in B andits union is dense in X , respetively).



302 P. LippariniArguing as in Remark 5.6, the properties S�n(A;B) and S1(A;B) from [21℄ arepartiular ases of De�nition 5.7.The partiular ase of De�nition 5.5 in whih A = �, G is the set of subsets of� of ardinality �, and B = P�(�) has been briey hinted on [16, p. 1380℄ underthe name almost [�; �℄-ompatness .In the next theorems we give the onnetions between the notions introduedin De�nitions 5.1 and 5.5.Reall the de�nition of a<B given just before Theorem 2.4.Theorem 5.8. Suppose that A is a set, B;G � P(A), and X is a topologialspae. Then the following onditions are equivalent.(1) X is [B;G℄-ompat.(2) For every sequene (Pa)a2A of subsets of X , if, for every H 2 B,Ta2H Pa 6= ;, then there is K 2 G suh that Ta2K P a 6= ;.(3) For every sequene fxH j H 2 Bg of elements of X , there is K 2 G suhthat Ta2K fxH j H 2 a<Bg 6= ;.(4) For every sequene fYH j H 2 Bg of nonempty subsets of X , there isK 2 G suh that Ta2K SfYH j H 2 a<Bg 6= ;.(5) X satis�es the E-aumulation property, for I = B and E = fEK j K 2Gg where, for K 2 G, we put EK = fZ � B j for every a 2 K there isH 2 Z suh that a 2 Hg.Theorem 5.9. Suppose that A is a set, B;G � P(A), X is a topologial spae,and F is a family of subsets of X . Then the following onditions are equivalent.(1) X is F-[B;G℄-ompat.(2) For every sequene (Pa)a2A of subsets of X , if, for every H 2 B, thereexists F 2 F suh that Ta2H Pa � F , then there is K 2 G suh thatTa2K P a 6= ;.(3) For every sequene fFH j H 2 Bg of elements of F , there is K 2 G suhthat Ta2K SfFH j H 2 a<Bg 6= ;.(4) For every sequene fYH j H 2 Bg of subsets of X suh that eah YH on-tains some FH 2 F , there isK 2 G suh thatTa2K SfYH j H 2 a<Bg 6= ;.(5) X satis�es the F-E-aumulation property, for I and E as in Condi-tion 5.8(5) above.When G = fAg, the onditions in Theorems 5.8 and 5.9 turn out to oinidewith the orresponding onditions in Theorems 2.4 and 4.4 and Corollary 3.5.Theorem 5.10. Suppose that X is a topologial spae, I is a set, G is a set ofsubsets of P(I), and put E = fK+ j K 2 Gg and A = SG. Then the followingonditions are equivalent.(1) X satis�es the E-aumulation property.(2) If (Oa)a2A are open sets of X , and, for every K 2 G, (Oa)a2K is a overof X , then there is i 2 I suh that (Oa)i2a2A is a over of X .



A very general overing property 303(3) X is [B;G℄-ompat, where B = fi<A j i 2 Ig.(4) For every sequene (xi)i2I of elements of X , there is K 2 G suh that if,for eah a 2 K, we put Ca = fxi j i 2 ag, then Ta2K Ca 6= ;.Proof: Similar to the proof of Theorem 3.9. Notie that (2), (3) is immediatefrom the de�nitions, using Condition (1)(a) in De�nition 5.5, and that (1) , (4)follows diretly from Proposition 3.11. �Theorem 5.11. Under the assumptions in Theorem 5.10, and if F is a familyof subsets of X , then the following onditions are equivalent.(1) X satis�es the F-E-aumulation property.(2) X is F-[B;G℄-ompat, where B = fi<A j i 2 Ig.(3) For every sequene (Fi)i2I of elements of F , there is K 2 G suh that if,for eah a 2 K, we put Ca = Si2a Fi, then Ta2K Ca 6= ;.Theorem 5.10 is the partiular ase of Theorem 5.11 when F is the family ofall singletons of X . Theorems 3.9 and 4.5 are the partiular ases of, respetively,Theorems 5.10 and 5.11 when G = fAg has just one member.The following haraterization of sequential ompatness in terms of open ov-ers might be known, but we know no referene for it.Corollary 5.12. A topologial spae X is sequentially ompat (sequentiallyfeebly ompat, respetively) if and only if, for every open over fOa j a 2 [!℄!gof X suh that fOa j a 2 [Z℄!g is still a over of X , for every Z 2 [!℄!, thereis n 2 ! suh that fOa j n 2 a 2 [!℄!g is a over of X (has dense union in X ,respetively).Proof: Take I = ! and G = f[Z℄! j Z 2 [!℄!g in Theorems 5.10 and 5.11.If K = [Z℄! 2 G, then K+ = FZ , in the notations of De�nition 5.3. Thusthe orollary is a partiular ase of the equivalene (1) , (2) in Theorems 5.10and 5.11, respetively,Of ourse, also a diret proof of Corollary 5.12 is not diÆult. �As a speial ase of Theorem 5.8 (1) , (3), we get the following harateriza-tions (probably folklore) of the Rothberger and the Menger properties.Corollary 5.13. A topologial spae X satis�es the Rothberger property if andonly if, for every sequene fxf j f : ! ! !g of elements of X , there is n 2 ! suhthat Tm2! fxf j f(n) = mg 6= ;.A topologial spae X satis�es the Menger property if and only if, for everysequene fxf j f : ! ! [!℄<!g of elements of X , there is n 2 ! suh thatTm2! fxf j m 2 f(n)g 6= ;.The ideas in Setion 4 suggest the following de�nition (known under di�erentterminology).De�nition 5.14. A topologial spae X is feebly Rothberger (feebly Menger ,respetively) if and only if, for every ountable family of ountable overs of X ,



304 P. Lippariniwe an selet one member (a �nite number of members, respetively) from eahover in suh a way that the union of the seleted members is dense in X .The above properties an be haraterized in a way similar to Corollary 5.13,by means of Theorem 5.9.If I is a set, and M is a set of ultra�lters over I , then a topologial spae X issaid to be quasi M-ompat if and only if, for every I-indexed sequene (xi)i2Iof elements of X , there exists D 2 M suh that (xi)i2I D-onverges to somepoint of X . Of ourse, if M = fDg is a singleton, then quasi M -ompatnessis the same as D-ompatness, and is also equivalent to weak M -ompatness(De�nition 3.13). See [9℄ for further referenes about these notions.The spae X is quasi M-pseudoompat if and only if, for every I-indexedsequene (Oi)i2I of nonempty open sets of X , there exists D 2 M suh that(Oi)i2I has some D-limit point in X . Notie that, for I = !, the above notionis alled M-pseudoompatness in [10, De�nition 2.1℄. We have hosen the namequasi M -pseudoompatness in analogy with quasi M -ompatness.Corollary 5.15. Suppose that M is a set of ultra�lters over some set I , andlet A = SD2M D. Then a topologial spae X is quasi M -ompat (quasi M -pseudoompat, respetively) if and only if, whenever (Oa)a2A are open sets of X ,and, for every D 2 M , (Oa)a2D is a over of X , then there is i 2 I suh that(Oa)i2a2A is a over of X (has dense union in X , respetively).Proof: By Theorems 5.10 and 5.11 (1) , (2), with G = M , sine, as alreadynotied, if D is an ultra�lter, then D+ = D. �Remark 5.16. As a �nal remark, let us mention that not every \overing property"present in the literature has the form given in De�nitions 1.1, 4.1, or 5.5, themost notable ase being paraompatness. More generally, all overing propertiesinvolving some partiular properties (loal �niteness, point �niteness, et.) of theoriginal over, or of the resulting subover, are not part of the framework givenby De�nition 1.1, as it stands.There are even equivalent formulations of ountable ompatness whih, atleast formally, are not partiular ases of De�nition 1.1. Indeed, a spae X isountably ompat if and only if, for every ountable open over (On)n2! suhthat On � Om, for n � m < !, there is n 2 ! suh that On = X . The aboveondition annot be diretly expressed as a partiular ase of De�nition 1.1.In spite of the above remarks, we believe to have demonstrated that De�-nition 1.1 and its variants are general enough to apture many disparate andseemingly unrelated notions, being at the same time suÆiently onrete andmanageable so that interesting results an be proved about them.Of ourse, as we did in De�nition 5.7, there is the possibility of modifyingDe�nition 1.1 and its variants by onsidering only partiular overs with speialproperties (f. also Remark 5.6). We have not yet pursued this promising line ofresearh.



A very general overing property 305Aknowledgment. We thank anonymous referees for many helpful suggestionswhih greatly helped improving the paper. We thank our students from TorVergata University for stimulating questions. We thank Anna Endrii for enour-agement. Referenes[1℄ Alexandro� P., Urysohn P., M�emorie sur les �espaes topologiques ompats, Verh. Akad.Wetensh. Amsterdam 14 (1929), 1{96.[2℄ Arens R., Dugundji J., Remark on the onept of ompatness, Portugaliae Math. 9 (1950),141{143.[3℄ Artio G., Maroni U., Pelant J., Rotter L., Tkahenko M., Seletions and suborderability,Fund. Math. 175 (2002), 1{33.[4℄ Caiedo X., The abstrat ompatness theorem revisited , in Logi and Foundations of Math-ematis (A. Cantini et al. editors), Kluwer Aademi Publishers, Dordreht, 1999, pp. 131{141.[5℄ Choquet C., Sur les notions de �ltre et de grille, C.R. Aad. Si., Paris 224 (1947), 171{173.[6℄ Dow A., Porter J.R., Stephenson R.M., Woods R.G., Spaes whose pseudoompat sub-spaes are losed subsets, Appl. Gen. Topol. 5 (2004), 243{264.[7℄ Engelking R., General Topology, 2nd edition, Sigma Ser. Pure Math., 6, Heldermann,Berlin, 1989.[8℄ Gaal L.S., On the theory of (m;n)-ompat spaes, Pai� J. Math. 8 (1958), 721{734.[9℄ Gar��a-Ferreira S., On FU(p)-spaes and p-sequential spaes, Comment. Math. Univ. Ca-rolin. 32 (1991), 161{171.[10℄ Gar��a-Ferreira S., Some generalizations of pseudoompatness, Papers on General Topol-ogy and Appliations (Flushing, NY, 1992), Ann. New York Aad. Si., 728, New YorkAad. Si., New York, 1994, pp. 22{31.[11℄ Garia-Ferreira S., On two generalizations of pseudoompatness, Proeedings of the 14thSummer Conferene on General Topology and its Appliations (Brookville, NY, August4{8, 1999), Topology Pro. 24 (2001), 149{172.[12℄ Ginsburg J., Saks V., Some appliations of ultra�lters in topology, Pai� J. Math. 57(1975), 403{418.[13℄ Gliksberg I., Stone- �Ceh ompati�ations of produts, Trans. Amer. Math. So 90 (1959),369{382.[14℄ Good C., The Lindel�of property, in Enylopedia of General Topology, edited by K.P. Hart,J. Nagata and J.E. Vaughan, Elsevier Siene Publishers, Amsterdam, 2004, Chapter d-8,182{184.[15℄ Larson P.B., Irreduibility of produt spaes with �nitely many points removed , SpringTopology and Dynamial Systems Conferene, Topology Pro. 30 (2006), 327{333.[16℄ Lipparini P., Compat fators in �nally ompat produts of topologial spaes, TopologyAppl. 153 (2006), 1365{1382.[17℄ Lipparini P., Some ompatness properties related to pseudoompatness and ultra�lteronvergene, Topology Pro. 40 (2012), 29{51.[18℄ Lipparini P., More generalizations of pseudoompatness, Topology Appl. 158 (2011),1655{1666.[19℄ Lipparini P., Ordinal ompatness, submitted, preprint available at arXiv:1012.4737v2(2011).[20℄ Lipparini P., Produts of sequentially pseudoompat spaes, arXiv:1201.4832.[21℄ Sheepers M., Combinatoris of open overs. I. Ramsey theory, Topology Appl. 69 (1996),31{62.[22℄ Smirnov Y.M., On topologial spaes ompat in a given interval of powers (Russian),Izvestiya Akad. Nauk SSSR, Ser. Mat. 14 (1950), 155{178.



306 P. Lipparini[23℄ Stephenson R.M., Jr., Initially �-ompat and related spaes, in Handbook of Set-theoretiTopology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam, 1984, Chap-ter 13, pp. 603{632.[24℄ Stephenson R.M., Jr., Pseudoompat spaes, in Enylopedia of General Topology, editedby K.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Siene Publishers, B.V., Amsterdam,2004, Chapter d-07, pp. 177{181.[25℄ Vaughan J.E., Some reent results in the theory of [a; b℄-ompatness, in TOPO 72{GeneralTopology and its Appliations (Pro. Seond Pittsburgh Internat. Conf., Pittsburgh, Pa.,1972; dediated to the memory of Johannes H. de Groot), Leture Notes in Math., 378,Springer, Berlin, 1974, pp. 534{550.[26℄ Vaughan J.E., Some properties related to [a; b℄-ompatness, Fund. Math. 87 (1975), 251{260.[27℄ Vaughan J.E., Countably ompat and sequentially ompat spaes, in Handbook of Set-theoreti Topology, edited by K. Kunen and J.E. Vaughan, North-Holland, Amsterdam,1984, Chapter 12, pp. 569{602.[28℄ Vaughan J.E., Countable ompatness, in Enylopedia of General Topology, edited byK.P. Hart, J. Nagata and J.E. Vaughan, Elsevier Siene Publishers, Amsterdam, 2004,Chapter d-6, 174{176.Dipartimento di Matematia, Viale del Rioprimento Sientifio, II Univer-sit�a di Roma (Tor Vergata), I-00133 Rome, ItalyURL: http://www.mat.uniroma2.it/~lipparin(Reeived June 11, 2011, revised April 15, 2012)


