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Metrization of fun
tion spa
es with the Fell topologyHanbiao YangAbstra
t. For a Ty
hono� spa
e X, let # CF (X) be the family of hypographsof all 
ontinuous maps from X to [0; 1℄ endowed with the Fell topology. It isproved that X has a dense separable metrizable lo
ally 
ompa
t open subsetif # CF (X) is metrizable. Moreover, for a �rst-
ountable spa
e X, #CF (X) ismetrizable if and only if X itself is a lo
ally 
ompa
t separable metrizable spa
e.There exists a Ty
hono� spa
e X su
h that #CF (X) is metrizable but X is not�rst-
ountable.Keywords: spa
e of 
ontinuous maps, Fell topology, hyperspa
e, metrizable, hy-pograph, separable, �rst-
ountableClassi�
ation: 54C35, 54E45, 54B201. Introdu
tion and main resultsFor a topologi
al spa
e X , let C(X) denote the set of all 
ontinuous maps fromX to the unit 
losed interval I = [0; 1℄ with the usual topology. Then we 
an endowC(X) with various topologies. For example, the topology of uniform 
onvergen
e,the topology of pointwise 
onvergen
e and the 
ompa
t-open topology are wellknown. In [4℄{[10℄, C(X) is endowed with other natural topologies inherited fromthe spa
es Cld(X � I) of nonempty 
losed sets in X � I.For a spa
e Y , let Cld(Y ) be the set of all nonempty 
losed sets in Y . For anopen set U in Y , letU� = fA 2 Cld(Y ) : A \ U 6= ;g and U+ = fA 2 Cld(Y ) : A � Ug:The most well-known topology of Cld(Y ), 
alled the Vietoris topology , is genera-ted by fU�; U+ : U is open in Y g:In this paper, we 
onsider the Fell topology of Cld(Y ), whi
h is generated byfU�; (Y nK)+ : U is open and K is 
ompa
t in Y g:The hyperspa
es Cld(Y ) with the above two topologies are denoted by CldV (Y )and CldF (Y ), respe
tively. It is well-known that CldV (Y ) (resp. CldF (Y )) ismetrizable if and only if Y is a 
ompa
t (resp. lo
ally 
ompa
t and separable)metrizable spa
e. Obviously, when Y is 
ompa
t, the Fell topology of Cld(Y ) isequal to the Vietoris topology.



308 H. YangFor every f 2 C(X), let#f = f(x; s) 2 X � I : s � f(x)g 2 Cld(X � I);whi
h is 
alled the hypograph of f . By identifying ea
h f 2 C(X) with #f 2CldV (X � I), we 
an regard C(X) as the subset#C(X) = f#f : f 2 C(X)g � Cld(X � I):Let # CV (X) and # CF (X) be the spa
es with the topologies inherited fromCldV (X � I) and CldF (X � I), respe
tively. These topologies are di�erent fromthe three topologies mentioned previously (see [4, Corollary 1℄). In [9, Theorem 1℄,it was proved that, for a Ty
hono� spa
e X , #CV (X) is metrizable if and onlyif #CV (X) is se
ond-
ountable if and only if X is 
ompa
t and metrizable. Thefollowing theorem is our main result.Theorem 1. For a Ty
hono� spa
e X , the following 
onditions are equivalent:(a) #CF (X) is separable metrizable;(b) #CF (X) is metrizable.In 
ase X is �rst-
ountable, the above two 
onditions are equivalent to(
) X is a lo
ally 
ompa
t and separable metrizable spa
e.We also prove the following theorem.Theorem 2. LetLs2S Ys be the topologi
al sum of Ty
hono� spa
es Ys, s 2 S,and as 2 Ys a non-isolated point for every s 2 S. Let, further, Y be the quotientspa
e of Ls2S Ys with the set fas : s 2 Sg identi�ed to a point. Then #CF (Y ) ishomeomorphi
 to a subspa
e of the produ
t spa
e Qs2S #CF (Ys).Applying this theorem, we show the following.Corollary 1. There exists a Ty
hono� spa
e X su
h that #CF (X) is separablemetrizable but X is not �rst-
ountable.The above 
orollary shows that the �rst-
ountability of X is essential for theequivalen
e between (a) and (
) in Theorem 1. The following Theorem 3 tells usthat, the non-
ompa
t 
ase is very di�erent from the 
ompa
t one.Theorem 3. There exists a 
ountable Ty
hono� spa
e X su
h that #CF (X) isHausdor� and se
ond-
ountable but not regular.In [1, 5.1.2 Proposition℄, it was proved that, for a Ty
hono� spa
e X , thefollowing 
onditions are equivalent: (a) CldF (X) is Hausdor�, (b) CldF (X) isregular, (
) CldF (X) is Ty
hono�, and (d) X is lo
ally 
ompa
t. Theorem 3shows that we 
annot repla
e CldF (X) by #CF (X) in [1, 5.1.2 Proposition℄.The following Theorem 4 states that, even for a 
ompa
t spa
eX , the regularityand the �rst-
ountability of #CF (X) do not imply the metrizability of it.Theorem 4. There exists a 
ompa
t spa
e X su
h that #CF (X) is Ty
hono�,separable and �rst-
ountable but not metrizable.



Metrization of fun
tion spa
es with the Fell topology 309Finally, we will give a ne
essary 
ondition for the metrizability of #CF (X).Theorem 5. For a Ty
hono� spa
e X , if #CF (X) is metrizable, then there existsa dense, lo
ally 
ompa
t, open and separable metrizable subspa
e of X . But the
onverse is not true.2. Preparatory resultsIn the following, we always assume that X is a Ty
hono� spa
e and p : X�I!X is the proje
tion. For s 2 I, we use s to denote the 
onstant fun
tion fromX to I whi
h maps all elements to s. By R and Q, we denote the sets of allreal numbers and of all rational numbers, respe
tively. Let 
lY and intY be the
losure-operator and the interior-operator in a spa
e Y . If Y = X , the subs
riptin the above operators will be omitted. And, for a 
losed set F in Y , letF � = (Y n F )+ = fA 2 Cld(Y ) : A \ F = ;g:By the de�nition, the topology of #CF (X) is generated, as a base, by the followingsets: n\i=1G�i \K�\ #C(X);where G1; G2; � � � ; Gn are open sets in X � (0; 1℄ and K is a 
ompa
t set inX � (0; 1℄. In parti
ular,� n\i=1G�i \ #C(X) : G1; � � � ; Gn are nonempty open in X � (0; 1℄�and fK�\ #C(X) : K is 
ompa
t in X � (0; 1℄gare neighborhood bases at #1 and #0 in #CF (X), respe
tively.To prove our theorems, we need some lemmas. At �rst, we show the followinglemma.Lemma 1. For a spa
e X , the following hold:(1) #CF (X) is T1;(2) #CF (X) is Hausdor� if and only if there exists a dense open subset U ofX whi
h is lo
ally 
ompa
t.Proof: (1): Let f 6= g 2 C(X). We may assume that f(x0) < g(x0) for somex0 2 X . Then x0 has an open neighborhood W su
h that f(x) < a < g(x)for every x 2 W , where a = f(x0)+g(x0)2 . Thus #f 2 (fx0g � [a; 1℄)� 63#g and#g 2 (W � (a; 1℄)� 63#f .(2): The \if" part: Take f; g 2 C(X), x0 2W and a 2 I as the same as in (1).Sin
e f and g are 
ontinuous, we assume that x0 2 U . Be
ause U is lo
ally
ompa
t, we have an open set V in X su
h that x0 2 V � 
lV � U \W and
lV is 
ompa
t. Sin
e f(x) < a < g(x) for x 2 
lV , (
lV � [a; 1℄)�\ #C(X) and(V � (a; 1℄)�\ #C(X) are disjoint neighborhoods of #f and #g, respe
tively.



310 H. YangThe \only if" part: We de�ne an open setU =[fintK : K is 
ompa
t in Xg � X:Then U is lo
ally 
ompa
t. We show that U is dense in X . Assume that Uis not dense in X . Then there exists a nonempty open set V in X su
h thatthe interior of every 
ompa
t subset of V is empty. Be
ause X is Ty
hono�,we 
an 
hoose f 2 C(X) su
h that f(X n V ) � f1g and f(x0) = 0 for somex0 2 V . Sin
e #CF (X) is Hausdor�, there exist disjoint open sets U and V in#CF (X) su
h that #1 2 U and #f 2 V . Then we 
an �nd nonempty open setsG1; G2; � � � ; Gn; � � � ; Gm � X � (0; 1℄ and a 
ompa
t set K � X � (0; 1℄ su
h that#1 2 G�1 \G�2 \ � � � \G�n\ #C(X) � U and#f 2 G�n+1 \ � � � \G�m \K�\ #C(X) � V :Sin
e f(X nV ) � f1g, it follows that p(K) � V , whi
h implies that int p(K) = ;.For every i � m, p(Gi)np(K) 6= ; sin
e p(Gi) is a nonempty open set in X . Takexi 2 p(Gi) n p(K). Be
ause X is Ty
hono�, we have g 2 C(X) satisfyingg(xi) = 1 for i � m and g(p(K)) = f0g:Then #g 2 U \ V , whi
h 
ontradi
ts that U \ V = ;. �Lemma 2. If #CF (X) is �rst-
ountable, then there exist 
ompa
t sets C1 �C2 � � � � in X su
h that every 
ompa
t set in X is 
ontained in some Cn. Inparti
ular, X = S1n=1 Cn.Proof: Be
ause #CF (X) is �rst-
ountable, we 
an �nd 
ompa
t sets K1 � K2 �� � � in X � (0; 1℄ su
h that fK�n\ #C(X) : n = 1; 2; : : : g is a neighborhood base of#0 in #CF (X). Then Cn = p(Kn), n = 1; 2; : : : , are the desired 
ompa
t sets in X .We verify that every 
ompa
t set C in X is 
ontained in some Cn. Otherwise, forevery n, we 
an 
hoose xn 2 C n Cn and de�ne fn 2 C(X) su
h that fn(xn) = 1and fn(Cn) = f0g. Then #fn 2 K�n for every n and hen
e #fn !#0 in #CF (X).But every #fn is not 
ontained in the neighborhood (C � f1g)� of #0, whi
h isa 
ontradi
tion. �Lemma 3. If X and #CF (X) are �rst-
ountable, then X is lo
ally 
ompa
t.Proof: Suppose there exists x0 2 X , whi
h has no 
ompa
t neighborhood. Be-
ause X is �rst-
ountable, x0 has a 
ountable open neighborhood base fUn :n = 1; 2; : : :g, where Un � Un+1 for every n. Sin
e # CF (X) is also �rst-
ountable, we 
an �nd 
ompa
t sets K1 � K2 � � � � in X � (0; 1℄ su
h thatfK�n\ #C(X) : n = 1; 2; : : : g is a neighborhood base at #0 in #C(X). By the as-sumption, p(Kn) 6� Un for every n = 1; 2; : : : , hen
e we 
an take xn 2 Un np(Kn).Then xn ! x0 in X . Sin
e X is Ty
hono�, we have fn 2 C(X) su
h thatfn(xn) = 1 and fn(p(Kn) [ (X nUn)) = f0g:



Metrization of fun
tion spa
es with the Fell topology 311Then #fn 2 K�n and hen
e #fn !#0. On the 
ontrary,(fxn : n = 0; 1; 2; � � � g � f1g)�\ #C(X)is a neighborhood of #0 in #CF (X) whi
h does not 
ontain any #fn. �When X is lo
ally 
ompa
t and non-
ompa
t, let �X = X [ f1g be the one-point 
ompa
ti�
ation of X . Using Lemmas 2 and 3, we may prove the followingProposition 1. If X and #CF (X) are �rst-
ountable, then(1) X is lo
ally 
ompa
t and �X is also �rst-
ountable;(2) #CF (�X) is �rst-
ountable;(3) #CF (�X) is se
ond-
ountable if #CF (X) is se
ond-
ountable.Proof: The assertion (1) dire
tly follows from Lemmas 2 and 3. To show (2)and (3), we only 
onsider the 
ase that X is not 
ompa
t. Let fUn : n = 1; 2; : : : gbe a 
ountable open neighborhood base at 1 in �X , and let � : C(�X)! C(X)be the restri
tion, that is,�(f) = f jX for every f 2 C(�X):Then it is not hard to verify that # � :#CF (�X) !#CF (X) is a 
ontinuousinje
tion. Unfortunately, it is not an embedding. However, the following S is asubbase of #CF (�X):S = f(#�)�1(G) : G 2 Gg[ f(
l�X Un � [r; 1℄)�\ #C(�X) : r 2 Q \ (0; 1℄; n = 1; 2; : : : g;where G is an open base for #CF (X). Obviously, S is a subfamily of the topologyof #CF (�X). For every open set V in �X � I, V \ (X � I) is open in X � I andV �\ #C(�X) = (#�)�1((V \ (X � I))�\ #C(�X)):For every 
ompa
t set K in �X � (0; 1℄, if K \ (f1g � I) = ;, then K is also
ompa
t in X � I andK�\ #C(�X) = (#�)�1(K�\ #C(X)):If K \ (f1g � I) 6= ;, then for every #f 2 K�\ #C(�X), using the Walla
e'sTheorem, there exist n and a rational number r 2 (0; 1℄ su
h that(
l�X Un � [r; 1℄)\ #f = ; andK \ (
l�X Un � I) � 
l�X Un � [r; 1℄:Let K1 = (K \ ((�X n Un)� I)) [ (
l�X Un � [r; 1℄):



312 H. YangThen K1 is 
ompa
t in �X � (0; 1℄, K1 � K and K1\ #f = ;. Thus, #f 2 K�1 �K�. Note thatK�1\ #CF (�X) = (#�)�1((K \ ((�X n Un)� I)��)\ (
l(Un)� [r; 1℄��\ #CF (�X);that is, K�1\ #CF (�X) is an interse
tion of two elements of S.As a 
on
lusion, S is a subbase for #CF (�X). Therefore, #CF (�X) is �rst-
ountable. Moreover, #CF (�X) is se
ond-
ountable if #CF (X) is se
ond-
ount-able. Hen
e (2) and (3) hold. �Lemma 4. We 
onsider the following statements.(a) #CF (X) is �rst-
ountable.(b) #CF (X) has a 
ountable neighborhood base at #1.(
) There exists a 
ountable family U of nonempty open sets in X su
h thatevery nonempty open set in X in
ludes an element of U , that is, U is a
ountable �-base for X .(d) #CF (X) is separable.Then the impli
ations (a))(b))(
))(d) hold.Furthermore, when X is 
ompa
t, the impli
ation (
))(a) holds and hen
e(a), (b) and (
) are equivalent.Proof: The impli
ation (a))(b) is trivial.(b))(
): We may assume thatf(Gn1 )� \ (Gn2 )� \ � � � \ (Gnk(n))�\ #C(X) : n = 1; 2; : : : gis a 
ountable neighborhood base at #1 in #CF (X). LetU = fp(Gni ) : i = 1; 2; : : : ; k(n); n = 1; 2; : : :g:Then U is a 
ountable family of nonempty open sets in X . We show that everynonempty open set U in X in
ludes an element of U . Take f 2 C(X) su
h thatf(X n U) � f1g and f(x0) = 0 for some point x0 2 U . Be
ause #CF (X) is T1 byLemma 1(1), #f =2 Tk(n)i=1 (Gni )� for some n, hen
e #f =2 (Gni )� for some i � k(n).Then #f \Gni = ;. Sin
e f(X n U) � f1g, we have U � p(Gni ), as required.(
))(d): Let U be a 
ountable �-base forX . For every U 2 U and r 2 Q\(0; 1℄,we 
an take a 
ontinuous map f(U;r) : X ! [0; r℄ su
h that f(U;r)(X n U) � f0gand f(U;r)(x) = r for some x 2 U . LetD = fmaxff(U;r) : U 2 F ; r 2 Fg : F and F are�nite subsets of U and Q \ (0; 1℄, resp.g:Then #D = f#f : f 2 Dg is a 
ountable subset of #C(X). It remains to verifythat #D is dense in #CF (X). Let f 2 C(X), K be 
ompa
t in X � (0; 1℄ and Gi,



Metrization of fun
tion spa
es with the Fell topology 313i � k, open in X � (0; 1℄, su
h that#f 2 G�1 \G�2 \ � � � \G�k \K�\ #C(X):We have x1; � � � ; xk 2 X su
h that fxig � [0; f(xi)℄ \ Gi 6= ; for ea
h i � k.Be
ause fxig � [0; f(xi)℄ \K = ;, we have an open neighborhood Wi of xi in Xand si < ti su
h that Wi � (si; ti) � Gi and Wi � [0; ti℄ \K = ;. Thus, by (
),
hoose ri 2 Q \ (si; ti) and Ui 2 U su
h that Ui �Wi. Then #f(Ui;ri) 2 G�i \K�and hen
e #maxff(Ui;ri) : i � kg 2#D \G�1 \G�2 \ � � � \G�k \K�:Now, we show (
))(a) under the assumption that X is 
ompa
t. Let U be a
ountable �-base of X . Then, X � I has the following 
ountable �-base:G = fU � (s; t) : U 2 U ; s < t 2 Q \ (0; 1)g:For every f 2 C(X) and n = 1; 2; : : : , letG(f) = fG 2 G :#f 2 G�g; Kn(f) = f(x; t) 2 X � I : t � f(x) + n�1g:For every open set H in X � (0; 1℄ with H� 3#f , there exists x0 2 X su
h thatfx0g � [0; f(x0)℄ \ H 6= ;. Sin
e f(x0) > 0, we 
an �nd an open neighborhoodV of x0 in X and s < t 2 Q � (0; 1) su
h that s < f(x0), V � (s; t) � H ands < f(x) for every x 2 V . Sin
e U is a �-base for X , V 
ontains some U 2 U .Then we have G = U � (s; t) 2 G and #f 2 G� � H�. Moreover, for every
ompa
t set K in X � I with K� 3#f , by the 
ompa
tness of X , there exists nsu
h that Kn(f) � K and hen
e #f 2 Kn(f)� � K�. Therefore,fG�1 \ � � � \G�k \Kn(f)�\ #C(X) : Gi 2 G(f) for i � k; k; n = 1; 2; : : : gis a 
ountable neighborhood base at #f in #CF (X). �As a 
onsequen
e of Lemma 4, we have the equivalen
e between (a) and (b) inTheorem 1, that is,Proposition 2. The spa
e #CF (X) is metrizable if and only if it is separablemetrizable. �We need the following two lemmas whi
h were proved in [8℄, [9℄, respe
tively.Lemma 5. If V is open in X su
h that 
lV is 
ompa
t, then the restri
tion� :#CF (X) !#CF (
lV ) de�ned by �(#f) =#f j 
lV is a 
ontinuous open surje
-tion. �Lemma 6. If X is 
ompa
t and #CF (X) =#CV (X) is se
ond-
ountable, then Xis metrizable. �



314 H. Yang3. Proofs of main resultsIn this se
tion, we show our main results.Proof of Theorem 1: The equivalen
e between (a) and (b) is Proposition 2.If X is �rst-
ountable, then X is lo
ally 
ompa
t by Proposition 1(1). UsingProposition 1(3), the 
ondition (b) implies that #C(�X) is se
ond-
ountable. Itfollows from Lemma 6 that �X is metrizable. Hen
e the 
ondition (
) holds. Thatis, the impli
ation (b))(
) holds under the assumption that X is �rst-
ountable.The 
ondition (
) implies that CldF (X � I) is metrizable ([1, 5.1.5 Theorem℄),hen
e so is #CF (X), i.e., (b) holds. Therefore, the impli
ation (
))(b) holds. �Proof of Theorem 2: We may think that every Ys is a subspa
e of Y . De�ne� : C(Y )!Qs2S C(Ys) by�(f) = (f jYs)s2S for ea
h f 2 C(Y ):Evidently, � is an inje
tion and its image is�(C(Y )) = �g 2 Ys2SC(Ys) : g(s)(as) = g(s0)(as0 ) for s; s0 2 S�:Now we show that #� :#CF (Y ) ! Qs2S #CF (Ys) is an embedding. Let ps :Qs2S #CF (Ys)!#CF (Ys) be the proje
tion.To show the 
ontinuity of #�, it is suÆ
ient to verify that psÆ #� is 
ontinuousfor every s 2 S. For every open set G in Ys � (0; 1℄, G n (fasg � I) is open inY � (0; 1℄. Sin
e as is a non-isolated point in Ys,(psÆ #�)�1(G�\ #C(Ys)) = (G n (fasg � I))�\ #C(Y ):For ea
h 
ompa
t set K in Ys � (0; 1℄,(psÆ #�)�1(K�\ #C(Ys)) = K�\ #C(Y ):Hen
e, psÆ #� :#CF (Y )!#CF (Ys) is 
ontinuous for every s 2 S.Moreover, for every open set H in Y � (0; 1℄, if #f 2 H� #CF (Y ), then thereexists s 2 S su
h that #f jYs 2 (H \ (Ys � I))�. Hen
e#�(H�\ #CF (Y )) = [s2S (H \ (Ys � I))� � Yt2Snfsg #C(Yt)!\ #�(#(C(Y ))):It shows that #�(H�\ #CF (Y )) is open in #�(#(CF (Y ))). For every 
ompa
t setK in Y �(0; 1℄, there exists a �nite subset S0 of S su
h that K � Ss2S0 Ys�(0; 1℄.Then K \ Ys � (0; 1℄ is 
ompa
t for every s 2 S0 and#�(K�\ #C(Y )) =  Ys2S0(K \ Ys � (0; 1℄)� � Ys2SnS0 #C(Ys)!\ #�(#C(Y )):



Metrization of fun
tion spa
es with the Fell topology 315It follows that #�(K�\ #C(Y )) is open in #�(#(CF (Y ))). Sin
e � is one-to-one,we have that #� maps every open set in #CF (Y ) to an open set in #�(#(CF (Y ))).Therefore, #� :#CF (Y )!Qs2S #CF (Ys) is an embedding. �Remark 1. Even for a set S of two points, if as is an isolated point in Ys for somes, the map #� de�ned in the above proof needs not be 
ontinuous. For example,let Y1 = f1g � (f0g [ [1; 2℄); Y2 = f2g � I as subspa
es of R2 . If we think thata1 = (1; 0); a2 = (2; 0), then p1Æ #� :#C(Y ) !#C(Y1) is not 
ontinuous. In fa
t,
hoose fn 2 C(Y ) su
h that fn(2; 0) = fn(1; 0) = 0 and fn(x) = 1 for everyx 2 Y n (f2g � [0; n�1℄). Then #fn !#1 but (p1Æ #�)(#fn) 6! (p1Æ #�)(#1).Proof of Corollary 1: Let fYn : n = 1; 2; : : :g be a family of pairwise disjointlo
ally 
ompa
t separable metrizable spa
es Yn with a non-isolated point an.Then, by Theorems 1 and 2, the spa
e Y de�ned in Theorem 2 is as required. �Proof of Theorem 3: Let �! be the �Ce
h-Stone 
ompa
ti�
ation of the dis-
rete spa
e ! of non-negative integers and q 2 �! n !. Then the subspa
eX = ! [ fqg of �! satis�es the 
onditions in Theorem 3. By Lemma 1(2),#CF (X) is Hausdor�.Before showing that #CF (X) is se
ond-
ountable but not regular, we verify thatevery 
ompa
t subset of X is �nite. In fa
t, let C be an in�nite 
ompa
t subsetof X . Then q 2 C. Write C = A[B[fqg su
h that A and B are disjoint in�nitesubsets of !. De�ne a 
ontinuous map f : ! ! f0; 1g as f�1(0) = A. Then thereexists a 
ontinuous extension f : X ! f0; 1g sin
e X is a subspa
e of �!. Iff(q) = 0, then B is 
losed in X and hen
e is 
ompa
t. But it is impossible sin
eB is in�nite dis
rete. If f(q) = 1, then A is 
losed in X and hen
e is 
ompa
t. Itis also impossible sin
e A is also in�nite dis
rete.Now, we de�ne a produ
t spa
e Y = Qx2X Ix, where Ix is a 
opy of the unitinterval [0; 1℄ with the usual topology for x 2 ! and Iq is [0; 1℄ with the topologygenerated by f[0; r) : r 2 [0; 1℄ \ Qg [ f[0; 1℄g. Then Y is se
ond-
ountable. Wemay regard #C(X) � Y by identifying #f with (f(x))x2X for every f 2 C(X).To show that #CF (X) is se
ond-
ountable, it suÆ
es to verify that #CF (X) isthe subspa
e of the spa
e Y . It is easy to see that for ea
h x 2 X , the mappx :#CF (Y ) ! Ix de�ned by px(#f) = f(x) is 
ontinuous. Hen
e the subspa
etopology is 
oarser than the Fell topology on #C(X). Conversely, take a 
ompa
tset K � X � (0; 1℄ and f 2 C(X). Then p(K) is 
ompa
t in X . Then p(K) is a�nite set in X and #f \K = ; if and only if f(x) < m(x) = minfs : (x; s) 2 Kgfor every x 2 p(X). Hen
e we 
an identifyK�\ #C(X) =  Yx2p(K)[0;mx)� Yx2Xnp(K) Ix!\ #C(X)is open in the subspa
e topology of Y . For every open set G in X � (0; 1℄ and



316 H. Yangf 2 C(X), #f \G 6= ; if and only if #f \G n (fqg� I) 6= ; if and only if f(n) > snfor some n 2 p(G) \ !, where sn = inffs : (n; s) 2 Gg. Hen
eG�\ #C(X) =  [n2p(G)\! p�1n (sn; 1℄!\ #C(X);where pn : Y ! In is the proje
tion, is open in the subspa
e topology of Y .Therefore, #CF (X) is the subspa
e of Y .To show that #CF (X) is not regular, we 
onsider an open neighborhood U =(fqg� [ 12 ; 1℄)�\ #C(X) of #0. For every 
ompa
t set K in X�(0; 1℄, p(K) is �nite.De�ne f 2 C(X) su
h that f�1(0) = p(K)\! and f�1(1) = X n(p(K)\!). Then#f 2 
l#CF (X)(K� \ #CF (X)) n U . In fa
t, every neighborhood of #f in #CF (Y )
ontains the following neighborhood of #f :G = G�1 \ � � � \G�k \G� \ C� \ #CF (X);where Gi = fnig � (si; ti) for 1 � i � k and G = (A [ fqg)� (s; t) are open andC is 
ompa
t in X � (0; 1℄. Then A is an in�nite subset of ! and hen
e we may
hoose n0 2 A n p(K [ C). Now, de�ne g 2 C(X) asg(x) = 8><>:0 if x 2 A [ fqg n fni : 0 � i � kg;1 if x = n0;f(x) otherwise:Then it is easy to verify that #g 2 G \K�. This shows that #f 2 
l#CF (X)(K� \#CF (X)). Be
ause f(q) = 1, we have #f =2 U . Hen
e, 
l#CF (X)(K�\ #C(X)) 6� Ufor any 
ompa
t K in X� (0; 1℄. Note that the family of all of su
h K�\#CF (X)is a neighborhood base at #0 in #CF (X). Therefore, #CF (X) is not regular. �Proof of Theorem 4: Choose a 
ompa
t Hausdor� non-metrizable spa
e Xsatisfying (
) in Lemma 4, for example, �! or Helly spa
e (see [2, Problem 5.M℄).Then, by Lemma 4, #CF (X) is separable and �rst-
ountable. By [3℄ (
f. [1,5.1.2 Proposition℄), CldF (X � I) = CldV (X � I) is Ty
hono� and hen
e so is#CF (X). Sin
eX is 
ompa
t and non-metrizable, #CF (X) is not se
ond-
ountablebe
ause of Lemma 6. A

ording to Proposition 2, if #CF (X) is metrizable, then#CF (X) is separable metrizable, hen
e se
ond-
ountable. Therefore, #CF (X) isnot metrizable. �Proof of Theorem 5: Assume that #CF (X) is metrizable, whi
h means that#CF (X) is separable metrizable by Proposition 2. Then #CF (X) is se
ond-
ountable. By Lemma 1(2), there exists a dense open set U in X su
h that U islo
ally 
ompa
t. To 
omplete the proof, it remains to verify that U is separablemetrizable. By Lemma 2, there exists a 
ountable family C = fC1; C2; � � � g of
ompa
t sets in X su
h that every 
ompa
t set in X is 
ontained in some Cn. Forea
h n, let Un = int(U \ Cn). Then, 
lUn is 
ompa
t be
ause 
lUn � Cn. By
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ontinuous open surje
tion from #CF (X) onto #CF (
lUn).Therefore, #CF (
lUn) is se
ond-
ountable, hen
e 
lUn is 
ompa
t and metrizableby Lemma 6. Thus every Un is also separable metrizable, hen
e it is se
ond-
ountable. Moreover, for every x 2 U , there exists an open set V su
h thatx 2 V , 
lV is 
ompa
t and 
lV � U . Hen
e there exists n su
h that 
lV � Cn.Then, x 2 V � int(U \ Cn) = Un. It follows that U = S1n=1 Un. Therefore, U isse
ond-
ountable, hen
e it is separable metrizable.As mentioned in proof of Theorem 4, �! is a 
ompa
t spa
e and #CF (�!) isnot metrizable but ! is a dense, lo
ally 
ompa
t, open and separable metrizablesubspa
e of �!. Namely, the 
onverse is not true. �Remark 2. The referee pointed out that M
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e of CldF (X�R)
onsisting of the epigraphs"f = f(x; s) 2 X � R : f(x) � sg 2 Cld(X � R);of all f 2 C(X;R). However our arguments are quite di�erent from their argu-ments in [11℄.A
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