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Metrization of funtion spaes with the Fell topologyHanbiao YangAbstrat. For a Tyhono� spae X, let # CF (X) be the family of hypographsof all ontinuous maps from X to [0; 1℄ endowed with the Fell topology. It isproved that X has a dense separable metrizable loally ompat open subsetif # CF (X) is metrizable. Moreover, for a �rst-ountable spae X, #CF (X) ismetrizable if and only if X itself is a loally ompat separable metrizable spae.There exists a Tyhono� spae X suh that #CF (X) is metrizable but X is not�rst-ountable.Keywords: spae of ontinuous maps, Fell topology, hyperspae, metrizable, hy-pograph, separable, �rst-ountableClassi�ation: 54C35, 54E45, 54B201. Introdution and main resultsFor a topologial spae X , let C(X) denote the set of all ontinuous maps fromX to the unit losed interval I = [0; 1℄ with the usual topology. Then we an endowC(X) with various topologies. For example, the topology of uniform onvergene,the topology of pointwise onvergene and the ompat-open topology are wellknown. In [4℄{[10℄, C(X) is endowed with other natural topologies inherited fromthe spaes Cld(X � I) of nonempty losed sets in X � I.For a spae Y , let Cld(Y ) be the set of all nonempty losed sets in Y . For anopen set U in Y , letU� = fA 2 Cld(Y ) : A \ U 6= ;g and U+ = fA 2 Cld(Y ) : A � Ug:The most well-known topology of Cld(Y ), alled the Vietoris topology , is genera-ted by fU�; U+ : U is open in Y g:In this paper, we onsider the Fell topology of Cld(Y ), whih is generated byfU�; (Y nK)+ : U is open and K is ompat in Y g:The hyperspaes Cld(Y ) with the above two topologies are denoted by CldV (Y )and CldF (Y ), respetively. It is well-known that CldV (Y ) (resp. CldF (Y )) ismetrizable if and only if Y is a ompat (resp. loally ompat and separable)metrizable spae. Obviously, when Y is ompat, the Fell topology of Cld(Y ) isequal to the Vietoris topology.



308 H. YangFor every f 2 C(X), let#f = f(x; s) 2 X � I : s � f(x)g 2 Cld(X � I);whih is alled the hypograph of f . By identifying eah f 2 C(X) with #f 2CldV (X � I), we an regard C(X) as the subset#C(X) = f#f : f 2 C(X)g � Cld(X � I):Let # CV (X) and # CF (X) be the spaes with the topologies inherited fromCldV (X � I) and CldF (X � I), respetively. These topologies are di�erent fromthe three topologies mentioned previously (see [4, Corollary 1℄). In [9, Theorem 1℄,it was proved that, for a Tyhono� spae X , #CV (X) is metrizable if and onlyif #CV (X) is seond-ountable if and only if X is ompat and metrizable. Thefollowing theorem is our main result.Theorem 1. For a Tyhono� spae X , the following onditions are equivalent:(a) #CF (X) is separable metrizable;(b) #CF (X) is metrizable.In ase X is �rst-ountable, the above two onditions are equivalent to() X is a loally ompat and separable metrizable spae.We also prove the following theorem.Theorem 2. LetLs2S Ys be the topologial sum of Tyhono� spaes Ys, s 2 S,and as 2 Ys a non-isolated point for every s 2 S. Let, further, Y be the quotientspae of Ls2S Ys with the set fas : s 2 Sg identi�ed to a point. Then #CF (Y ) ishomeomorphi to a subspae of the produt spae Qs2S #CF (Ys).Applying this theorem, we show the following.Corollary 1. There exists a Tyhono� spae X suh that #CF (X) is separablemetrizable but X is not �rst-ountable.The above orollary shows that the �rst-ountability of X is essential for theequivalene between (a) and () in Theorem 1. The following Theorem 3 tells usthat, the non-ompat ase is very di�erent from the ompat one.Theorem 3. There exists a ountable Tyhono� spae X suh that #CF (X) isHausdor� and seond-ountable but not regular.In [1, 5.1.2 Proposition℄, it was proved that, for a Tyhono� spae X , thefollowing onditions are equivalent: (a) CldF (X) is Hausdor�, (b) CldF (X) isregular, () CldF (X) is Tyhono�, and (d) X is loally ompat. Theorem 3shows that we annot replae CldF (X) by #CF (X) in [1, 5.1.2 Proposition℄.The following Theorem 4 states that, even for a ompat spaeX , the regularityand the �rst-ountability of #CF (X) do not imply the metrizability of it.Theorem 4. There exists a ompat spae X suh that #CF (X) is Tyhono�,separable and �rst-ountable but not metrizable.



Metrization of funtion spaes with the Fell topology 309Finally, we will give a neessary ondition for the metrizability of #CF (X).Theorem 5. For a Tyhono� spae X , if #CF (X) is metrizable, then there existsa dense, loally ompat, open and separable metrizable subspae of X . But theonverse is not true.2. Preparatory resultsIn the following, we always assume that X is a Tyhono� spae and p : X�I!X is the projetion. For s 2 I, we use s to denote the onstant funtion fromX to I whih maps all elements to s. By R and Q, we denote the sets of allreal numbers and of all rational numbers, respetively. Let lY and intY be thelosure-operator and the interior-operator in a spae Y . If Y = X , the subsriptin the above operators will be omitted. And, for a losed set F in Y , letF � = (Y n F )+ = fA 2 Cld(Y ) : A \ F = ;g:By the de�nition, the topology of #CF (X) is generated, as a base, by the followingsets: n\i=1G�i \K�\ #C(X);where G1; G2; � � � ; Gn are open sets in X � (0; 1℄ and K is a ompat set inX � (0; 1℄. In partiular,� n\i=1G�i \ #C(X) : G1; � � � ; Gn are nonempty open in X � (0; 1℄�and fK�\ #C(X) : K is ompat in X � (0; 1℄gare neighborhood bases at #1 and #0 in #CF (X), respetively.To prove our theorems, we need some lemmas. At �rst, we show the followinglemma.Lemma 1. For a spae X , the following hold:(1) #CF (X) is T1;(2) #CF (X) is Hausdor� if and only if there exists a dense open subset U ofX whih is loally ompat.Proof: (1): Let f 6= g 2 C(X). We may assume that f(x0) < g(x0) for somex0 2 X . Then x0 has an open neighborhood W suh that f(x) < a < g(x)for every x 2 W , where a = f(x0)+g(x0)2 . Thus #f 2 (fx0g � [a; 1℄)� 63#g and#g 2 (W � (a; 1℄)� 63#f .(2): The \if" part: Take f; g 2 C(X), x0 2W and a 2 I as the same as in (1).Sine f and g are ontinuous, we assume that x0 2 U . Beause U is loallyompat, we have an open set V in X suh that x0 2 V � lV � U \W andlV is ompat. Sine f(x) < a < g(x) for x 2 lV , (lV � [a; 1℄)�\ #C(X) and(V � (a; 1℄)�\ #C(X) are disjoint neighborhoods of #f and #g, respetively.



310 H. YangThe \only if" part: We de�ne an open setU =[fintK : K is ompat in Xg � X:Then U is loally ompat. We show that U is dense in X . Assume that Uis not dense in X . Then there exists a nonempty open set V in X suh thatthe interior of every ompat subset of V is empty. Beause X is Tyhono�,we an hoose f 2 C(X) suh that f(X n V ) � f1g and f(x0) = 0 for somex0 2 V . Sine #CF (X) is Hausdor�, there exist disjoint open sets U and V in#CF (X) suh that #1 2 U and #f 2 V . Then we an �nd nonempty open setsG1; G2; � � � ; Gn; � � � ; Gm � X � (0; 1℄ and a ompat set K � X � (0; 1℄ suh that#1 2 G�1 \G�2 \ � � � \G�n\ #C(X) � U and#f 2 G�n+1 \ � � � \G�m \K�\ #C(X) � V :Sine f(X nV ) � f1g, it follows that p(K) � V , whih implies that int p(K) = ;.For every i � m, p(Gi)np(K) 6= ; sine p(Gi) is a nonempty open set in X . Takexi 2 p(Gi) n p(K). Beause X is Tyhono�, we have g 2 C(X) satisfyingg(xi) = 1 for i � m and g(p(K)) = f0g:Then #g 2 U \ V , whih ontradits that U \ V = ;. �Lemma 2. If #CF (X) is �rst-ountable, then there exist ompat sets C1 �C2 � � � � in X suh that every ompat set in X is ontained in some Cn. Inpartiular, X = S1n=1 Cn.Proof: Beause #CF (X) is �rst-ountable, we an �nd ompat sets K1 � K2 �� � � in X � (0; 1℄ suh that fK�n\ #C(X) : n = 1; 2; : : : g is a neighborhood base of#0 in #CF (X). Then Cn = p(Kn), n = 1; 2; : : : , are the desired ompat sets in X .We verify that every ompat set C in X is ontained in some Cn. Otherwise, forevery n, we an hoose xn 2 C n Cn and de�ne fn 2 C(X) suh that fn(xn) = 1and fn(Cn) = f0g. Then #fn 2 K�n for every n and hene #fn !#0 in #CF (X).But every #fn is not ontained in the neighborhood (C � f1g)� of #0, whih isa ontradition. �Lemma 3. If X and #CF (X) are �rst-ountable, then X is loally ompat.Proof: Suppose there exists x0 2 X , whih has no ompat neighborhood. Be-ause X is �rst-ountable, x0 has a ountable open neighborhood base fUn :n = 1; 2; : : :g, where Un � Un+1 for every n. Sine # CF (X) is also �rst-ountable, we an �nd ompat sets K1 � K2 � � � � in X � (0; 1℄ suh thatfK�n\ #C(X) : n = 1; 2; : : : g is a neighborhood base at #0 in #C(X). By the as-sumption, p(Kn) 6� Un for every n = 1; 2; : : : , hene we an take xn 2 Un np(Kn).Then xn ! x0 in X . Sine X is Tyhono�, we have fn 2 C(X) suh thatfn(xn) = 1 and fn(p(Kn) [ (X nUn)) = f0g:



Metrization of funtion spaes with the Fell topology 311Then #fn 2 K�n and hene #fn !#0. On the ontrary,(fxn : n = 0; 1; 2; � � � g � f1g)�\ #C(X)is a neighborhood of #0 in #CF (X) whih does not ontain any #fn. �When X is loally ompat and non-ompat, let �X = X [ f1g be the one-point ompati�ation of X . Using Lemmas 2 and 3, we may prove the followingProposition 1. If X and #CF (X) are �rst-ountable, then(1) X is loally ompat and �X is also �rst-ountable;(2) #CF (�X) is �rst-ountable;(3) #CF (�X) is seond-ountable if #CF (X) is seond-ountable.Proof: The assertion (1) diretly follows from Lemmas 2 and 3. To show (2)and (3), we only onsider the ase that X is not ompat. Let fUn : n = 1; 2; : : : gbe a ountable open neighborhood base at 1 in �X , and let � : C(�X)! C(X)be the restrition, that is,�(f) = f jX for every f 2 C(�X):Then it is not hard to verify that # � :#CF (�X) !#CF (X) is a ontinuousinjetion. Unfortunately, it is not an embedding. However, the following S is asubbase of #CF (�X):S = f(#�)�1(G) : G 2 Gg[ f(l�X Un � [r; 1℄)�\ #C(�X) : r 2 Q \ (0; 1℄; n = 1; 2; : : : g;where G is an open base for #CF (X). Obviously, S is a subfamily of the topologyof #CF (�X). For every open set V in �X � I, V \ (X � I) is open in X � I andV �\ #C(�X) = (#�)�1((V \ (X � I))�\ #C(�X)):For every ompat set K in �X � (0; 1℄, if K \ (f1g � I) = ;, then K is alsoompat in X � I andK�\ #C(�X) = (#�)�1(K�\ #C(X)):If K \ (f1g � I) 6= ;, then for every #f 2 K�\ #C(�X), using the Wallae'sTheorem, there exist n and a rational number r 2 (0; 1℄ suh that(l�X Un � [r; 1℄)\ #f = ; andK \ (l�X Un � I) � l�X Un � [r; 1℄:Let K1 = (K \ ((�X n Un)� I)) [ (l�X Un � [r; 1℄):



312 H. YangThen K1 is ompat in �X � (0; 1℄, K1 � K and K1\ #f = ;. Thus, #f 2 K�1 �K�. Note thatK�1\ #CF (�X) = (#�)�1((K \ ((�X n Un)� I)��)\ (l(Un)� [r; 1℄��\ #CF (�X);that is, K�1\ #CF (�X) is an intersetion of two elements of S.As a onlusion, S is a subbase for #CF (�X). Therefore, #CF (�X) is �rst-ountable. Moreover, #CF (�X) is seond-ountable if #CF (X) is seond-ount-able. Hene (2) and (3) hold. �Lemma 4. We onsider the following statements.(a) #CF (X) is �rst-ountable.(b) #CF (X) has a ountable neighborhood base at #1.() There exists a ountable family U of nonempty open sets in X suh thatevery nonempty open set in X inludes an element of U , that is, U is aountable �-base for X .(d) #CF (X) is separable.Then the impliations (a))(b))())(d) hold.Furthermore, when X is ompat, the impliation ())(a) holds and hene(a), (b) and () are equivalent.Proof: The impliation (a))(b) is trivial.(b))(): We may assume thatf(Gn1 )� \ (Gn2 )� \ � � � \ (Gnk(n))�\ #C(X) : n = 1; 2; : : : gis a ountable neighborhood base at #1 in #CF (X). LetU = fp(Gni ) : i = 1; 2; : : : ; k(n); n = 1; 2; : : :g:Then U is a ountable family of nonempty open sets in X . We show that everynonempty open set U in X inludes an element of U . Take f 2 C(X) suh thatf(X n U) � f1g and f(x0) = 0 for some point x0 2 U . Beause #CF (X) is T1 byLemma 1(1), #f =2 Tk(n)i=1 (Gni )� for some n, hene #f =2 (Gni )� for some i � k(n).Then #f \Gni = ;. Sine f(X n U) � f1g, we have U � p(Gni ), as required.())(d): Let U be a ountable �-base forX . For every U 2 U and r 2 Q\(0; 1℄,we an take a ontinuous map f(U;r) : X ! [0; r℄ suh that f(U;r)(X n U) � f0gand f(U;r)(x) = r for some x 2 U . LetD = fmaxff(U;r) : U 2 F ; r 2 Fg : F and F are�nite subsets of U and Q \ (0; 1℄, resp.g:Then #D = f#f : f 2 Dg is a ountable subset of #C(X). It remains to verifythat #D is dense in #CF (X). Let f 2 C(X), K be ompat in X � (0; 1℄ and Gi,



Metrization of funtion spaes with the Fell topology 313i � k, open in X � (0; 1℄, suh that#f 2 G�1 \G�2 \ � � � \G�k \K�\ #C(X):We have x1; � � � ; xk 2 X suh that fxig � [0; f(xi)℄ \ Gi 6= ; for eah i � k.Beause fxig � [0; f(xi)℄ \K = ;, we have an open neighborhood Wi of xi in Xand si < ti suh that Wi � (si; ti) � Gi and Wi � [0; ti℄ \K = ;. Thus, by (),hoose ri 2 Q \ (si; ti) and Ui 2 U suh that Ui �Wi. Then #f(Ui;ri) 2 G�i \K�and hene #maxff(Ui;ri) : i � kg 2#D \G�1 \G�2 \ � � � \G�k \K�:Now, we show ())(a) under the assumption that X is ompat. Let U be aountable �-base of X . Then, X � I has the following ountable �-base:G = fU � (s; t) : U 2 U ; s < t 2 Q \ (0; 1)g:For every f 2 C(X) and n = 1; 2; : : : , letG(f) = fG 2 G :#f 2 G�g; Kn(f) = f(x; t) 2 X � I : t � f(x) + n�1g:For every open set H in X � (0; 1℄ with H� 3#f , there exists x0 2 X suh thatfx0g � [0; f(x0)℄ \ H 6= ;. Sine f(x0) > 0, we an �nd an open neighborhoodV of x0 in X and s < t 2 Q � (0; 1) suh that s < f(x0), V � (s; t) � H ands < f(x) for every x 2 V . Sine U is a �-base for X , V ontains some U 2 U .Then we have G = U � (s; t) 2 G and #f 2 G� � H�. Moreover, for everyompat set K in X � I with K� 3#f , by the ompatness of X , there exists nsuh that Kn(f) � K and hene #f 2 Kn(f)� � K�. Therefore,fG�1 \ � � � \G�k \Kn(f)�\ #C(X) : Gi 2 G(f) for i � k; k; n = 1; 2; : : : gis a ountable neighborhood base at #f in #CF (X). �As a onsequene of Lemma 4, we have the equivalene between (a) and (b) inTheorem 1, that is,Proposition 2. The spae #CF (X) is metrizable if and only if it is separablemetrizable. �We need the following two lemmas whih were proved in [8℄, [9℄, respetively.Lemma 5. If V is open in X suh that lV is ompat, then the restrition� :#CF (X) !#CF (lV ) de�ned by �(#f) =#f j lV is a ontinuous open surje-tion. �Lemma 6. If X is ompat and #CF (X) =#CV (X) is seond-ountable, then Xis metrizable. �



314 H. Yang3. Proofs of main resultsIn this setion, we show our main results.Proof of Theorem 1: The equivalene between (a) and (b) is Proposition 2.If X is �rst-ountable, then X is loally ompat by Proposition 1(1). UsingProposition 1(3), the ondition (b) implies that #C(�X) is seond-ountable. Itfollows from Lemma 6 that �X is metrizable. Hene the ondition () holds. Thatis, the impliation (b))() holds under the assumption that X is �rst-ountable.The ondition () implies that CldF (X � I) is metrizable ([1, 5.1.5 Theorem℄),hene so is #CF (X), i.e., (b) holds. Therefore, the impliation ())(b) holds. �Proof of Theorem 2: We may think that every Ys is a subspae of Y . De�ne� : C(Y )!Qs2S C(Ys) by�(f) = (f jYs)s2S for eah f 2 C(Y ):Evidently, � is an injetion and its image is�(C(Y )) = �g 2 Ys2SC(Ys) : g(s)(as) = g(s0)(as0 ) for s; s0 2 S�:Now we show that #� :#CF (Y ) ! Qs2S #CF (Ys) is an embedding. Let ps :Qs2S #CF (Ys)!#CF (Ys) be the projetion.To show the ontinuity of #�, it is suÆient to verify that psÆ #� is ontinuousfor every s 2 S. For every open set G in Ys � (0; 1℄, G n (fasg � I) is open inY � (0; 1℄. Sine as is a non-isolated point in Ys,(psÆ #�)�1(G�\ #C(Ys)) = (G n (fasg � I))�\ #C(Y ):For eah ompat set K in Ys � (0; 1℄,(psÆ #�)�1(K�\ #C(Ys)) = K�\ #C(Y ):Hene, psÆ #� :#CF (Y )!#CF (Ys) is ontinuous for every s 2 S.Moreover, for every open set H in Y � (0; 1℄, if #f 2 H� #CF (Y ), then thereexists s 2 S suh that #f jYs 2 (H \ (Ys � I))�. Hene#�(H�\ #CF (Y )) = [s2S (H \ (Ys � I))� � Yt2Snfsg #C(Yt)!\ #�(#(C(Y ))):It shows that #�(H�\ #CF (Y )) is open in #�(#(CF (Y ))). For every ompat setK in Y �(0; 1℄, there exists a �nite subset S0 of S suh that K � Ss2S0 Ys�(0; 1℄.Then K \ Ys � (0; 1℄ is ompat for every s 2 S0 and#�(K�\ #C(Y )) =  Ys2S0(K \ Ys � (0; 1℄)� � Ys2SnS0 #C(Ys)!\ #�(#C(Y )):



Metrization of funtion spaes with the Fell topology 315It follows that #�(K�\ #C(Y )) is open in #�(#(CF (Y ))). Sine � is one-to-one,we have that #� maps every open set in #CF (Y ) to an open set in #�(#(CF (Y ))).Therefore, #� :#CF (Y )!Qs2S #CF (Ys) is an embedding. �Remark 1. Even for a set S of two points, if as is an isolated point in Ys for somes, the map #� de�ned in the above proof needs not be ontinuous. For example,let Y1 = f1g � (f0g [ [1; 2℄); Y2 = f2g � I as subspaes of R2 . If we think thata1 = (1; 0); a2 = (2; 0), then p1Æ #� :#C(Y ) !#C(Y1) is not ontinuous. In fat,hoose fn 2 C(Y ) suh that fn(2; 0) = fn(1; 0) = 0 and fn(x) = 1 for everyx 2 Y n (f2g � [0; n�1℄). Then #fn !#1 but (p1Æ #�)(#fn) 6! (p1Æ #�)(#1).Proof of Corollary 1: Let fYn : n = 1; 2; : : :g be a family of pairwise disjointloally ompat separable metrizable spaes Yn with a non-isolated point an.Then, by Theorems 1 and 2, the spae Y de�ned in Theorem 2 is as required. �Proof of Theorem 3: Let �! be the �Ceh-Stone ompati�ation of the dis-rete spae ! of non-negative integers and q 2 �! n !. Then the subspaeX = ! [ fqg of �! satis�es the onditions in Theorem 3. By Lemma 1(2),#CF (X) is Hausdor�.Before showing that #CF (X) is seond-ountable but not regular, we verify thatevery ompat subset of X is �nite. In fat, let C be an in�nite ompat subsetof X . Then q 2 C. Write C = A[B[fqg suh that A and B are disjoint in�nitesubsets of !. De�ne a ontinuous map f : ! ! f0; 1g as f�1(0) = A. Then thereexists a ontinuous extension f : X ! f0; 1g sine X is a subspae of �!. Iff(q) = 0, then B is losed in X and hene is ompat. But it is impossible sineB is in�nite disrete. If f(q) = 1, then A is losed in X and hene is ompat. Itis also impossible sine A is also in�nite disrete.Now, we de�ne a produt spae Y = Qx2X Ix, where Ix is a opy of the unitinterval [0; 1℄ with the usual topology for x 2 ! and Iq is [0; 1℄ with the topologygenerated by f[0; r) : r 2 [0; 1℄ \ Qg [ f[0; 1℄g. Then Y is seond-ountable. Wemay regard #C(X) � Y by identifying #f with (f(x))x2X for every f 2 C(X).To show that #CF (X) is seond-ountable, it suÆes to verify that #CF (X) isthe subspae of the spae Y . It is easy to see that for eah x 2 X , the mappx :#CF (Y ) ! Ix de�ned by px(#f) = f(x) is ontinuous. Hene the subspaetopology is oarser than the Fell topology on #C(X). Conversely, take a ompatset K � X � (0; 1℄ and f 2 C(X). Then p(K) is ompat in X . Then p(K) is a�nite set in X and #f \K = ; if and only if f(x) < m(x) = minfs : (x; s) 2 Kgfor every x 2 p(X). Hene we an identifyK�\ #C(X) =  Yx2p(K)[0;mx)� Yx2Xnp(K) Ix!\ #C(X)is open in the subspae topology of Y . For every open set G in X � (0; 1℄ and



316 H. Yangf 2 C(X), #f \G 6= ; if and only if #f \G n (fqg� I) 6= ; if and only if f(n) > snfor some n 2 p(G) \ !, where sn = inffs : (n; s) 2 Gg. HeneG�\ #C(X) =  [n2p(G)\! p�1n (sn; 1℄!\ #C(X);where pn : Y ! In is the projetion, is open in the subspae topology of Y .Therefore, #CF (X) is the subspae of Y .To show that #CF (X) is not regular, we onsider an open neighborhood U =(fqg� [ 12 ; 1℄)�\ #C(X) of #0. For every ompat set K in X�(0; 1℄, p(K) is �nite.De�ne f 2 C(X) suh that f�1(0) = p(K)\! and f�1(1) = X n(p(K)\!). Then#f 2 l#CF (X)(K� \ #CF (X)) n U . In fat, every neighborhood of #f in #CF (Y )ontains the following neighborhood of #f :G = G�1 \ � � � \G�k \G� \ C� \ #CF (X);where Gi = fnig � (si; ti) for 1 � i � k and G = (A [ fqg)� (s; t) are open andC is ompat in X � (0; 1℄. Then A is an in�nite subset of ! and hene we mayhoose n0 2 A n p(K [ C). Now, de�ne g 2 C(X) asg(x) = 8><>:0 if x 2 A [ fqg n fni : 0 � i � kg;1 if x = n0;f(x) otherwise:Then it is easy to verify that #g 2 G \K�. This shows that #f 2 l#CF (X)(K� \#CF (X)). Beause f(q) = 1, we have #f =2 U . Hene, l#CF (X)(K�\ #C(X)) 6� Ufor any ompat K in X� (0; 1℄. Note that the family of all of suh K�\#CF (X)is a neighborhood base at #0 in #CF (X). Therefore, #CF (X) is not regular. �Proof of Theorem 4: Choose a ompat Hausdor� non-metrizable spae Xsatisfying () in Lemma 4, for example, �! or Helly spae (see [2, Problem 5.M℄).Then, by Lemma 4, #CF (X) is separable and �rst-ountable. By [3℄ (f. [1,5.1.2 Proposition℄), CldF (X � I) = CldV (X � I) is Tyhono� and hene so is#CF (X). SineX is ompat and non-metrizable, #CF (X) is not seond-ountablebeause of Lemma 6. Aording to Proposition 2, if #CF (X) is metrizable, then#CF (X) is separable metrizable, hene seond-ountable. Therefore, #CF (X) isnot metrizable. �Proof of Theorem 5: Assume that #CF (X) is metrizable, whih means that#CF (X) is separable metrizable by Proposition 2. Then #CF (X) is seond-ountable. By Lemma 1(2), there exists a dense open set U in X suh that U isloally ompat. To omplete the proof, it remains to verify that U is separablemetrizable. By Lemma 2, there exists a ountable family C = fC1; C2; � � � g ofompat sets in X suh that every ompat set in X is ontained in some Cn. Foreah n, let Un = int(U \ Cn). Then, lUn is ompat beause lUn � Cn. By



Metrization of funtion spaes with the Fell topology 317Lemma 5, there exists a ontinuous open surjetion from #CF (X) onto #CF (lUn).Therefore, #CF (lUn) is seond-ountable, hene lUn is ompat and metrizableby Lemma 6. Thus every Un is also separable metrizable, hene it is seond-ountable. Moreover, for every x 2 U , there exists an open set V suh thatx 2 V , lV is ompat and lV � U . Hene there exists n suh that lV � Cn.Then, x 2 V � int(U \ Cn) = Un. It follows that U = S1n=1 Un. Therefore, U isseond-ountable, hene it is separable metrizable.As mentioned in proof of Theorem 4, �! is a ompat spae and #CF (�!) isnot metrizable but ! is a dense, loally ompat, open and separable metrizablesubspae of �!. Namely, the onverse is not true. �Remark 2. The referee pointed out that MCoy and Ntantu [11℄ obtained anal-ogous results in 1992. For example, Theorem 4.12 in [11℄ is similar to our Theo-rem 1. Our Theorem 3 for #CF (X; I) is true for "CF (X;R) using Theorems 3.5,3.7, 4.11 and Example 3.3 in [11℄, where "CF (X;R) is the subspae of CldF (X�R)onsisting of the epigraphs"f = f(x; s) 2 X � R : f(x) � sg 2 Cld(X � R);of all f 2 C(X;R). However our arguments are quite di�erent from their argu-ments in [11℄.Aknowledgment. The author is so grateful to Professors K. Sakai and K. Minefor their guidane of revising the original manusript. He also appreiates thereferee's omments on the results of MCoy and Ntantu in [11℄.Referenes[1℄ Beer G., Topologies on Closed and Closed Convex Sets, MIA 268, Kluwer Aad. Publ.,Dordreht, 1993.[2℄ Kelly J.L., General Topology, GTM 27, Springer, New York; Reprint of the 1955 ed. pub-lished by Van Nostrand, 1955.[3℄ Mihael E., Topologies on spaes of subsets, Trans. Amer. Math. So. 71 (1951), 152{182.[4℄ Yang Z., The hyperspae of the regions below of ontinuous maps is homeomorphi to 0,Topology Appl. 153 (2006), 2908{2921.[5℄ Yang Z., Fan L., The hyperspae of the regions below of ontinuous maps from the on-verging sequene, Northeast Math. J. 22 (2006), 45{54.[6℄ Yang Z., Wu N., The hyperspae of the regions below of ontinuous maps from S*S to I ,Questions Answers Gen. Topology 26 (2008), 29{39.[7℄ Yang Z., Wu N., A topologial position of the set of ontinuous maps in the set of uppersemiontinuous maps, Siene in China, Ser. A: Math. 52 (2009), 1815{1828.[8℄ Yang Z., Zhang B., The hyperspae of the regions below ontinuous maps with the Felltopology is homeomorphi to 0, Ata Math. Sinia, English Ser. 28 (2012), 57{66.[9℄ Yang Z., Zhou X., A pair of spaes of upper semi-ontinuous maps and ontinuous maps,Topology Appl. 154 (2007), 1737{1747.[10℄ Zhang Y., Yang Z., Hyperspaes of the regions below of upper semi-ontinuous maps onnon-ompat metri spaes, Advanes in Math. in China 39 (2010), 352{360 (Chinese).
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