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Identities and the group of isostrophismsAle�s Dr�apal, Vitor ShherbaovAbstrat. In this paper we reexamine the onept of isostrophy. We onnet it tothe notion of term equivalene, and desribe the ation of dihedral groups thatare assoiated with loops by means of isostrophy. We also use it to prove andpresent in a new way some well known fats on m-inverse loops and middle Bolloops.Keywords: isostrophe, isostrophism, paratope, paratopism, middle BolClassi�ation: Primary 20N05; Seondary 15A30Let A, B and C be penils of a 3-net. If �, � and  bijet a set Q upon A,B and C, respetively, then there exists a (unique) quasigroup on Q(�) suh thatxy = z if and only if �(x), �(y) and (z) meet in a ommon point. It is wellknown that if Q is one of the lines of the 3-net, then �, � and  an be de�nednaturally in suh a way that a distinguished element of Q (say 1) beomes theunit of Q. This onstrution will serve as the departing point of the paper.Suppose thus that Q 2 A and that 1 2 Q. De�ne � and  in suh a way thatboth �(a) 2 B and (a) 2 C are inident to a, for every a 2 Q. If Q(�) is to be aloop with unit 1, then there must be a � 1 = a, and hene �(a) 2 A has to be theline that is inident to the intersetion of �(1) and (a). With this de�nition of �we get �(1) = Q sine �(1) and (1) meet in 1. Now, �(1) = Q implies 1 � a = afor every a 2 Q, by the de�nition of � and . We have obtained a loop Q(�; 1).Consider now a loop Q = Q(Æ; 1) that is obtained by this method when rôlesof B and C are exhanged. Then x Æ y = z if and only �(x), (y) and �(z) meetin a point. In partiular, �(a), (1) and �(a) have a ommon point, and thatde�nes �. The existene of the ommon point means that ��1(�(a)) � a = 1 forevery a 2 Q. Thus ��1(�(a)) = 1=a, and therefore �(a) = �(1=a). We see thatx Æ y = z , �(1=x), (y) and �(z) meet in a ommon point , (1=x) � z = y ,z = (1=x)ny.We have desribed the geometrial meaning of operation (1=x)ny. The opera-tion is indued by the transposition (B C) of the set fA;B; Cg. In fat, every ofthe six permutations an be used to indue a loop. Artzy [3℄ seems to have beenthe �rst who systematially investigated these transformations of loops. He alledthem isostrophisms . The onept is reexamined in this paper. Our approah ispurely algebrai.The �rst author (Ale�s Dr�apal) was supported by grant VF20102015006.



348 A. Dr�apal, V. ShherbaovFor a loop Q denote by l(Q) the loop with operation (1=x)ny and by o(Q) theloop with operation yx (the opposite loop | it orresponds to the transpositionof A and B). It is easy to verify that l(l(Q)) = Q = o(o(Q)). Nevertheless,alternating appliations of l and o produe a set of loops I(Q) that an be in�nite(however, it ontains at most six isomorphism lasses). Operators l and o at uponI(Q) as involutions and generate a permutation group I(Q). This group is eitherdihedral, or yli of orders 1 or 2. (The Klein four-group is regarded as a dihedralgroup.)We shall observe that I(Q) ats nearly always regularly. There are only threeexeptional situations, two of whih an be onsidered as related to Bol loops (andthat is why we shall disuss the middle Bol identity as well). In these exeptionalases j I(Q)j 2 f3; 6g.Our main aim is to present the onept of isostrophy in a oherent and ompatway. There are some new results and there are many new proofs of old results.However, it should be stressed that no ideas in this paper are prinipally new.Furthermore, many statements that are new might have been present in someform in minds of those who oined and studied the onepts of this paper in thesixties. We hope that this paper will sueed in illustrating that these oneptsare relevant to ontemporary loop theory and an motivate further researh.Very important among the objets of our study are the m-inverse loops de�nedby Karkli�n�s and Karkli�n [14℄. They arise in a natural way as a generalization ofross inverse [1℄, [2℄ and weak inverse properties [21℄. It was observed alreadyby Artzy in [3℄ that CI and WI properties an be obtained via identi�ations ofertain isostrophes. We shall see that suh an approah an be extended to allm-inverse loops. In fat, our desription has a parallel in the work of Karkli�n�sand Karkli�n [14℄ and an be regarded as an interpretation of their Setion 2.The isostrophes of Q (i.e. the elements of I(Q)) have been alled inverse loops(of Q) by Belousov [7℄. He also mentions them in his book [6, p. 19℄. Using theterminology of Belousov as inspiration, we suggest to all l(Q) the left inverse ofQ (we shall de�ne the right inverse r(Q) as a mirror image).A thorough geometrial treatment of isostrophy an be found in Chapter II ofPugfelder's book [22℄. (In the Prefae to [22℄ Pugfelder writes \To Rafael ArtzyI am grateful for his enouragement and advie and for writing the original text ofChapter II.") Artzy himself o�ered in [4, Setion 2℄ a more strutured approahto the material of [3℄. In Setion 3 of the same paper he de�ned net motions .The algebrai expression of net motions is paratopy, whih is, together with loopterms, a main tool of this paper.Note that m-inverse loops have been reently studied with respet to a possibleappliation in ryptography [17℄ and that Buhsteiner loops were disovered [8℄to be 1-inverse (synonymously, doubly weak inverse).Problems that involve the struture of I(Q) might be of interest in the futuresine this is an area where the algebrai struture (loops) gets mixed with theombinatorial struture (normalized latin squares). Hene a future appliationto ryptography annot be exluded, while its guiding priniple may be di�erent



Identities and the group of isostrophisms 349than that expressed by Keedwell in [16℄ (whih motivated [17℄ and the subsequentpapers [18℄ and [19℄).Setion 1 desribes endomorphisms of a monogenerated free loop. Setion 2shows that isostrophies an be viewed as paratopies that yield term equivalentloops. In Setion 3 we de�ne the group of isostrophisms I(Q) and disuss itsstrutural properties. The impat upon nulei is presented in Setion 4. Thenumber of isostrophi isomorphism lasses is studied in Setion 5. In that setionwe also de�ne loops of odd type as loops that are either ommutative or have anautomorphism Ir for an odd r. We show how suh loops an be desribed viaI(Q). Setion 6 presents the onept of isostrophi varieties and employs it tointerpret several standard results on LIP, RIP, AAIP and Bol loops.In this paper the mappings are omposed from right to left.1. Free loops in one generatorThis setion is of an auxiliary harater. It proves in an elementary way thatall automorphisms of a free loop generated by a single element x (denote it byF (x)) are those substitutions that map x to one of its iterated inverses. Thisresult was published already in 1953 by Evans [10, Theorem 1℄. We shall use itin Corollary 2.9.The proof of Evans is short and elegant. It depends upon the theory of loopsthat are relatively free with respet to a set of (de�ning) relations that are in alosed form. This theory was developed by Evans in [9℄. A speial ase is thease of the void set of relations, that is the ase of a free loop. The assoiatedset of rewriting rules (f. Table 1) beame part of a folklore knowledge. In fat itis one of few results of loop and quasigroup theory that is well known by manynon-speialists. However, the general theory of relations in a losed form is notnearly as well-known. That is why we o�er a proof that uses nothing else butthe well understood struture of a free loop. As a bonus we prove that everynontrivial endomorphism of F (x) is injetive | a fat that seems to be evident,but for whih we do not know a referene.For a set of variables X onsider the totally free algebra of terms W (X) overthe binary operations �, =, n and the nullary operation 1. An element w 2W (X) issaid to be redued if none of its subterms an be subjeted to one of the rewritingrules that appear in Table 1.t1 � (t1nt2)! t2 t1n(t1 � t2)! t2 t1=(t2nt1)! t2 t1 � 1! t1 t1=1! t1(t2=t1) � t1 ! t2 (t2 � t1)=t1 ! t2 (t1=t2)nt1 ! t2 1 � t1 ! t1 1nt1 ! t1Table 1. The rewriting rules for loop termsIt is lear that eah term w 2 W (X) an be transformed by a sequene ofrewriting rules to a redued term. There may be many suh sequenes. However,



350 A. Dr�apal, V. Shherbaovbeause the above system of rewriting rules is known to be onuent [9℄, a ter-minal element of suh a sequene will always be the same redued term (in otherwords the terminal term is independent of the hosen path). We shall denote the(terminal) redued term by �(w). The set of all redued terms will be denotedF (X) alluring thus to the fat that the redued terms yield a model of a free loopfor whih X is the free base (f. [9℄, [10℄ for details).If u and v are redued, then their term produt u � v need not be redued.Hene the produt in F (X) is de�ned as �(u � v). Left and right division aretreated similarly.As a synonym for tn1 write I(t). Similarly interpret I�1(t) as 1=t. Notethat �(II�1(t)) = �(t) = �(I�1I(t)) sine 1=(tn1) ! t and (1=t)n1 ! t. Thus�(IrIs(t)) = �(Ir+s(t)) for any r; s 2 Z.We shall write F (x) and W (x) in plae of F (X) and W (X) when X = fxg.For t 2 F (x) de�ne a mapping �t : F (x) ! F (x) so that it expresses thesubstitution x 7! t. Thus for s = s(x) 2 F (x) we set �t(s) = �(s(t)). For example�x2(xn(1=x)) = x2n(1=x2) and �I(x)(xn(1=x)) = (xn1)nx.It is easy to see that for every t 2 F (x) there exist unique k 2 Z and t0 2W (x)suh that(1.1) t = Ik(t0) and t0 6= I�1(s) for all s 2 W (x):For example, if t = 1=(1=x2), then k = �2 and t0 = x2.Call t0 the I-ore of t and k the I-depth of t. For the next three statementslet us assume that t 6= 1 is redued and that t0 and k are the I-ore and I-depthof t, respetively.Lemma 1.1. Ij(t0) 2 F (x) for every j 2 Z.Proof: Any subterm of a redued term has to be redued, and thus t0 2 F (x).We an proeed by indution on j sine the mirror symmetry allows us to assumej � 1. Note that t0n1 is redued unless t0 = 1 or t0 = 1=s for some s 2 W (x).The latter situation is exluded by the de�nition of the I-ore, while t0 = 1would imply t = 1. The statement thus holds for j = 1. Assume j � 2 and sets = Ij�2(t0). Then Ij�1(t0) = sn1 2 F (x), and hene Ij(t0) = (sn1)n1 2 F (x) aswell. �Corollary 1.2. �t(Ij(x)) = Ij+k(t0) for every j 2 Z.Proof: We have �t(Ij(x)) = �(Ij(t)) = �(Ij(Ik(t0))) = �(Ij+k(t0)). However,Ij+k(t0) is redued, by Lemma 1.1. �For s 2 W (x) de�ne the weight jsj as 2i+j, where i is the number of ourrenesof x and j is the number of ourrenes of 1. For example, j1=(1=x2)j = 6.Let a; b 2 W (x). Then a � b an mean any of a � b, a=b and anb. If more thanone operation is involved, we shall also use a Æ b.



Identities and the group of isostrophisms 351Lemma 1.3. Let s0 be the I-ore of s 2 F (x) and let j be its I-depth. Then�t(s) = 8<: 1 if s = 1;Ij+k(t0) if s0 = x;Ij(�t(a) � �t(b)) if s0 = a � b:Furthermore, the mapping �t : F (x)! F (x) is injetive.Proof: It is obvious that �t(1) = 1. Corollary 1.2 gives the formula for s = Ij(x).For the rest we shall proeed by indution on jsj. The indution step onsists ofshowing that(a) �t(s) = Ij(�t(a) ��t(b)) where a � b is the I-ore of s and j is the I-depthof s; and that(b) �t(s) = �t(s0) implies s = s0 if s; s0 2 F (x) and jsj � js0j.If jsj � 2, then s = 1 or s = x. Part (a) is voidly true sine (a) assumes s = a � b.Part (b) is obvious.To prove (a) for jsj � 3 we need to show that Ij(�t(a)��t(b)) is redued. Notethat �t(a) = 1 implies a = 1 by part (b) and the indution assumption. However,if a = 1, then either a � b is not redued, or j is not the I-depth of s. Hene a 6= 1and �t(a) 6= 1. Similarly b 6= 1 and �t(b) 6= 1. Therefore Ij(�t(a) � �t(b)) 2 F (x)if �t(a) � �t(b) 2 F (x). That follows by indution if j 6= 0. Assume j = 0and suppose that there is a rule in Table 1 that applies to �t(a) � �t(b). Wehave observed that it an be none of the four rules that involve 1. In view ofthe left-right (mirror) symmetry we an assume that �t(b) = u Æ v and that therewriting rule mathes �t(a) � (u Æ v). (Hene the rewriting rule must be one oft1n(t1 � t2)! t2, t1=(t2nt1) ! t2 and t1 � (t1nt2)! t2.) Let b0 be the I-ore of b.We know that b0 6= 1. Assume b0 6= x. By the indution assumption the strutureof �t(b) opies the struture of b. Hene b =  Æ d where u = �t() and v = �t(d).From part (b) we know that if �t(a) = �t() then a = , and if �t(a) = �t(d)then a = d. The rewriting rule that mathes �t(a) � (�t() Æ�t(d)) thus applies tos = a � ( Æ d) as well. That is a ontradition sine s is assumed to be redued.To �nish the proof of (a) it remains to treat the ase of b0 = x. Then b = Ir(x)for some r 2 Z and u Æ v = �t(b) = Ir+k(t0), by Corollary 1.2. From part (a) ofthe indution assumption and from Corollary 1.2 we see that j�t(a)j � jt0j. Bothu and v are subterms of t0 if r + k = 0. In suh a ase juj < j�t(a)j, jvj < j�t(a)j,and none of the above mentioned three rewriting rules mathes �t(a) � (u Æ v).Thus r + k 6= 0 and the operation Æ is equal to n or =. None of the three rulesallows the alternative of =, and so Æ equals n. That means r + k > 0 and v = 1.Sine �t(a) 6= 1, the only possibility for simpli�ation is that of u � (un1) ! 1.From un1 = �t(b) we see that the weight of the I-ore of u is equal to jt0j. If theI-ore of a is di�erent from x, then the I-ore of u = �t(a) is of weight at least2jt0j, by part (a) of the indution argument. Hene a = Iq(x) for some q 2 Z.Then �t(a) = Iq+k(t0) = u whih yields r = q + 1 and s = Iq(x) � Iq+1(x). Thisis a reduible term both for q � 0 and q < 0.



352 A. Dr�apal, V. ShherbaovTo prove (b) �rst note that j�t(s0)j > 1 if s0 6= 1. Hene s0 6= 1 an be assumed.By onsidering again the weights of I-ores, this time with respet to �t(s) and�t(s0), we easily distinguish the ase when the I-ore of s is equal to x and theI-ore of s0 is not equal to x (or vie versa). Now, Corollary 1.2 an be employedif both I-ores are equal to x. Suppose that none of the I-ores equals x. Thenthe I-depth of �t(s) agrees with the I-depth of s, and hene (b) follows from (a)by a diret indution argument. �Theorem 1.4. A mapping ' : F (x)! F (x) is an endomorphism of the free loopF (x) if and only if there exists t 2 F (x) suh that ' = �t. The endomorphism �tis injetive if and only if t 6= 1. It is an automorphism if and only if t = Ik(x)for some k 2 Z.Proof: Beause fxg is the free base of F (x) there exists for every t 2 F (x) aunique endomorphism ' with '(x) = t. This endomorphism ful�ls '(s(x)) =�(s(t)) for any s 2 F (x) and hene it agrees with �t. If t 6= 1, then �t is injetiveby Lemma 1.3. Of ourse, �1 maps every element of F (x) to 1. Let us assumet 6= 1 and let t0 be the I-ore of t. From Lemma 1.3 we see that j�t(s)j � jt0jfor every s 6= 1. Note that the endomorphism �t is an automorphism if andonly if x 2 Im(�t). Sine this annot happen if jt0j > 2 there must be t0 = xand t = Ik(x), where k is the I-depth of t. In suh a ase x = �t(I�k(x)), byLemma 1.3. �Corollary 1.5 (Evans). Aut(F (x)) is an in�nite yli group that is generatedby the substitution x 7! 1=x.2. Paratopisms, isostrophisms and termsQuasigroups an be seen as sets of triples (a1; a2; a3) suh that two elementsof the triple an be hosen freely from the given set Q while the third element isdetermined uniquely by this hoie. It is usual to set a3 = a1 �a2, a2 = a1na3 anda1 = a3=a2. Put also a3 = a2 Æ a1, a2 = a3nna1 and a1 = a2==a3. In this way weget six quasigroup operations that are alled parastrophes . They are related bypermutations � 2 S3. Say that Q(�) is a � parastrophe of Q = Q(�) if a1 �a2 = a3is equivalent to a�(1) � a�(2) = a�(3). In other words, if we start from triples(a1; a2; a3) where a3 = a1 � a2, then the new triples are obtained by sending aifrom the position i to the position �(i). It follows that the � parastrophe of a �parastrophe is the �� parastrophe.If Q1 and Q2 are quasigroups, then � = (�1; �2; �3) is an isotopism Q1 ! Q2if all �i are bijetions Q1 ! Q2 and �1(x) � �2(y) = �3(xy) for all x; y 2 Q1.By ombining the notions of parastrophy and isotopy we get the notion ofparatopy . This term was oined by Sade [24℄. It provides an algebrai frame-work for the ombinatorial notion of main lasses. (The alternative isostrophy =isotopy + parastrophy has a di�erent meaning in this paper. Admittedly, theremay exist authors who use it as a synonym for paratopy.)Let Q1 and Q2 be quasigroups. The pair (�; �) = (�; (�1; �2; �3)) is said to bea paratopism from Q1 to Q2 if �i : Q1 ! Q2 is a bijetion for all i 2 f1; 2; 3g, if



Identities and the group of isostrophisms 353� 2 S3 and if ���1(1)(a��1(1)) � ���1(2)(a��1(2)) = ���1(3)(a��1(3))whenever a1a2 = a3 holds in Q1. It is not diÆult to dedue that � is an iso-topism from Q1 to the ��1 parastrophe of Q2, and that by omposing paratopisms(�; �) : Q1 ! Q2 and (�; �) : Q2 ! Q3 we obtain a paratopism Q1 ! Q3. Theomposition follows the rule(�; �)(�; �) = (��; ���); where (�1; �2; �3)� = (��(1); ��(2); ��(3)):Hene (�; �)�1 = (��1; (��1)��1). Thereforeb1 � b2 = b3 in Q2 , ��11 (b�(1)) � ��12 (b�(2)) = ��13 (b�(3)) in Q1:For a quasigroup Q, a set S, a permutation � 2 S3 and bijetions �i : Q ! S,i 2 f1; 2; 3g, there exists a unique quasigroup struture on S suh that (�; �)is a paratopism Q ! S. It is alled the quasigroup paratopially indued by(�; �). The multipliation and the left and right divisions of suh quasigroups areexpliitly shown in Table 2 for eah � 2 S3.� 2 S3 multipliation left division right divisionid �3(��11 (x) � ��12 (y)) �2(��11 (x)n��13 (y)) �1(��13 (x)=��12 (y))(1 2 3) �2(��11 (y)n��13 (x)) �1(��13 (x)=��12 (y)) �3(��11 (y) � ��12 (x))(1 3 2) �1(��13 (y)=��12 (x)) �3(��11 (y) � ��12 (x)) �2(��11 (x)n��13 (y))(1 2) �3(��11 (y) � ��12 (x)) �1(��13 (y)=��12 (x)) �2(��11 (y)n��13 (x))(2 3) �2(��11 (x)n��13 (y)) �3(��11 (x) � ��12 (y)) �1(��13 (y)=��12 (x))(1 3) �1(��13 (x)=��12 (y)) �2(��11 (y)n��13 (x)) �3(��11 (x) � ��12 (y))Table 2. Paratopi quasigroup operations indued by (�; �)Let Q be a loop. Put I(x) = xn1 and J(x) = 1=x for every x 2 Q. Then bothIQ = I and JQ = J permute Q, and J = I�1. Further permutations of Q are theleft translations La : x 7! ax and the right translations Ra : x 7! xa, for everya 2 Q.An isotopism of loops (�1; �2; �3) : Q ! �Q is alled prinipal if �3 = idQ. Insuh a ase there exist e; f 2 Q suh that �1 = Rf and �2 = Le. Furthermore,�Q = Q(Æ) where x Æ y = (x=f)(eny) for all x; y 2 Q. Loops Q(Æ) are known asthe prinipal isotopes of Q.Every isotopism of loops � : Q ! �Q an be written as (Rf ; Le; ) wheree; f 2 Q. Thus it an be expressed as a omposition of an isomorphism  :Q(Æ)! �Q with a prinipal isotopism (Rf ; Le; idQ) : Q! Q(Æ).A paratopims (�; (�1; �2; �3)) : Q1 ! Q2 of loops Q1 and Q2 will be alledunital if �1(1) = �2(1) = �3(1) = 1.



354 A. Dr�apal, V. ShherbaovLemma 2.1. Let (�; �) : Q1 ! Q2 be a paratopism of loops. Then there existsa unital paratopism (�; �) : Q1 ! Q3 and a prinipal isotopism � : Q3 ! Q2 suhthat (�; �) = (id; �)(�; �).Proof: The inverse of a prinipal isotopism is a prinipal isotopism. Thereforeit suÆes to �nd a prinipal isotopism � : Q2 ! Q3 suh that (id; �)(�; �) = (�; �)is a unital paratopism of loops.The isotopism � will be of the form (Rf ; Le; idQ2) for some e; f 2 Q2. Then���1(1) = Rf���1(1), ���1(2) = Le���1(2) and ���1(3) = ���1(3). Put e =���1(1)(1) and f = ���1(2)(1). In every loop 1 � 1 = 1. Thus ef = ���1(3)(1) =���1(3)(1) = ���1(2)(1) = ���1(1)(1). The element ef serves as the unit of Q3. �Lemma 2.2. Let Q be a loop, S a quasigroup, and (�; �) a paratopism Q ! Ssuh that �i(1) = 1 for every i 2 f1; 2; 3g. Then S is a loop if and only if thereexists a bijetion � : Q! S, �(1) = 1, suh that(a) � = (�; �; �) if � = id or � = (1 2);(b) � = (�I; �; �) if � = (1 2 3) or � = (2 3); and() � = (�; �J; �) if � = (1 3 2) and � = (1 3).Proof: Assume, for example, that � = (1 2 3). By Table 2 the operation in San be expressed as �2(��11 (y)n��13 (x)). Setting y = 1 yields �2 = �3. Denotethis mapping by �. Setting x = 1 yields y = �I��11 (y) for all y 2 Q. Thus�1 = �I . Other ases are similar. �For eah unital paratopism (�; �) of loops there thus exists a (unique) bijetion� suh that there are at least two distint i; j 2 f1; 2; 3gwith �i = �j = �. A unitalparatopism is fully desribed by the pair (�; �). We shall say that it is arriedby (�; �). In Table 3 we reord expliitly the multipliation in S when Q ! Sis a unital paratopism arried by (�; �). The table an be obtained by applyingLemma 2.2 to Table 2. For every loop Q these are the loops paratopially induedby (�; �).id �(��1(x) � ��1(y))(1 2 3) �(J��1(y)n��1(x))(1 3 2) �(��1(y)=I��1(x)) (1 2) �(��1(y) � ��1(x))(2 3) �(J��1(x)n��1(y))(1 3) �(��1(x)=I��1(y))Table 3. Paratopially indued loop operationsLet Q be a loop. The loop paratopially indued by ((1 2); idQ) is the oppositeloop Qop, while ((2 3); idQ) and (1 3); idQ) indue the left inverse loop and theright inverse loop of Q, respetively.Left and right inverse loops and the opposite loop are speial ases of isostro-phes of Q. A loop is said to be an isostrophe of Q if it is paratopially induedby (�; Im), for some m 2 Z and � 2 S3. A (unital) paratopism Q ! S is alledan isostrophism if it is arried by (�; Im) for some m 2 Z and � 2 S3.



Identities and the group of isostrophisms 355Lemma 2.3. Let Q1 ! Q2 be a unital paratopism that is arried by (�; #). If' : Q0 ! Q1 and  : Q2 ! Q3 are isomorphisms of loops, then (�;  #') arriesa unital paratopism Q0 ! Q3.Proof: This follows diretly from the rule for omposition of paratopisms. �Corollary 2.4. Every unital paratopism an be expressed as a omposition ofan isomorphism and of an isostrophism that is arried by (�; idQ), where Q is aloop and � 2 S3.Proof: Combine Lemmas 2.2 and 2.3. �The set of all isostrophes of Q will be denoted by I(Q). We an thus saythat I(Q) onsists of all possible targets for isostrophisms starting from Q. Iso-strophisms from Q to Q ould be alled autostrophisms . However, we shall notuse this term in this paper. Autostrophisms of Q orrespond to the elements inthe point stabilizer of Q in the group I(Q) (the group is de�ned in Setion 3).For a permutation � 2 S3 de�ne the sign sgn(�) = " so that " = 1 if � is aneven permutation and " = �1 if � is an odd permutation (a transposition).Lemma 2.5. Consider a unital paratopism of loops Q ! S that is arried by(�; �). Put I = IQ. Then IS = �Isgn(�)��1.Proof: Suppose that x; y 2 S are suh that xy = 1. We shall use Table 3. If� = (1 2 3), then J��1(y) = ��1(x) and so y = �I��1(x), as required. Otherases are similar. �Lemma 2.6. A omposition of two isostrophisms is again an isostrophism. Theinverse of an isostrophism is also an isostrophism.Proof: Let (�; �) : Q1 ! Q2 be a unital paratopism of loops. Put I = IQ1 .From Lemma 2.2 we see immediately that this paratopism is an isostrophismif and only if there exist ki 2 Z suh that �i = Iki for all i 2 f1; 2; 3g. Let(�; �) : Q2 ! Q3 be another paratopism of loops. If (�; �) is an isostrophism,then IQ2 = I�1 by Lemma 2.5. If both (�; �) and (�; ) are isostrophisms, thenthere exist `i suh that �i = I`i . Formulas for the omposition and inverse ofparatopisms yield the rest. �Corollary 2.7. Let Q1 and Q2 be loops. Then Q1 2 I(Q2) if and only ifQ2 2 I(Q1).Proof: For loops A and B on a set S write (A;B) 2 � if and only if B 2I(A). The relation � is symmetri and transitive by Lemma 2.6. Hene it is anequivalene. �We shall now desribe another approah to isostrophy. It is inspired by notionsof universal algebra. A loop Q2 is said to be a term paratope of a loop Q1 if thereexist terms ti 2 F (x), 1 � i � 3, and � 2 S3 suh that (�; �) : Q1 ! Q2 is aparatopism, where �i(u) = ti(u) for eah u 2 Q1. (Loops Q2 and Q1 are assumedto have the same underlying set.)



356 A. Dr�apal, V. ShherbaovTerm paratopy is a speial ase of a more general onept: Let Q1 be a loopwith binary operations x � y, xny and x=y, the unit of whih is equal to 1. LetQ2 be a loop upon the same underlying set, and with the same unit 1. Supposethat the three binary operations of Q2 an be expressed as t1(x; y), t2(x; y) andt3(x; y), where the terms t1; t2; t3 2 F (x; y) are evaluated in Q1. If we an passfrom Q2 to Q1 in a similar way, we all Q1 and Q2 term equivalent .From Corollary 2.7 and from Tables 2 and 3 we see that every isostrophe of aloop Q is a term paratope of Q. Hene we have:Corollary 2.8. Let Q1 and Q2 be loops suh that Q2 2 I(Q1). Then Q1 andQ2 are term equivalent. Furthermore, Q1 is a term paratope of Q2 and Q2 is aterm paratope of Q1.Corollary 2.9. A loop is a term paratope of the free loop F (x) if and only if itis an isostrophe of F (x).Proof: This follows from Theorem 1.4 sine u 7! ti(u) does not permute Q =F (x) if ti is not of the form Im(x). �Isostrophes are hene the only term paratopes that an be onstruted withoutassuming some additional equational properties of the loop Q.Term equivalene is a standard notion of universal algebra. Term equivalentalgebras share subalgebras and ongruenes. This is easy to verify, and in thease of loops the proof is even easier. We an hene state:Proposition 2.10. LetQ1 andQ2 be term equivalent loops. Then S is a (normal)subloop of Q1 if and only if it is a (normal) subloop of Q2. In partiular, this istrue if Q2 is an isostrophe of Q1.A further disussion of onnetions between loop terms and isostrophy an befound in Setions 6 and 7.3. Isostrophisms and their groupsLet us investigate what exatly happens when we ompose two isostrophisms.As an example onsider 'Æ , whereQ, R and S are loops with the same underlyingset, and  = ((1 3); (I; id; I)) : Q ! R and ' = ((1 2 3); (I; id; id)) : R ! S areparatopisms. Note that I in  means IQ, while I in ' means IR. By Lemma 2.5,to base both paratopisms in Q we have to replae I in ' by J = I�1. Using theformula for omposing paratopisms we an express ' Æ  as((2 3); (I; id; id)) = ((1 2 3); (I; id; id)) Æ ((1 3); (I; id; I)):In this equality I means IQ in the outer triples, and it means IR in the middletriple. Loops Q, R and S share the same underlying set, and hene idQ = idR =idS . The hoie of R is determined by  , while the hoie of S is determined by '.The equality an be thus seen as true relative to Q. Of ourse, it is true for anyhoie of a loop Q. Therefore we an view the equality as a rule that expressesthe omposition of ' and  as if they had been onsidered to be mappings that



Identities and the group of isostrophisms 357at upon the lass of all loops. For set theoretial reasons we annot de�ne amapping upon the lass of all loops. However, we an de�ne ' and  as mappingsupon any set of loops that is losed under isostrophes.Our next aim is to determine a general omposition rule, i.e. to desribe by aformula the isostrophism that is obtained when there is omposed an isostrophismthat is arried by (�; In) with an isostrophism that is arried by (�; Im). In everygiven ase the result an be omputed similarly as above. Table 4 gives the resultsfor situations when m = n = 0. The table uses an abbreviated form in whih 0represents id, and spaes, ommas and outer parentheses are suppressed.0 (000) (123)(I00) (132)(0J0) (12)(000) (23)(I00) (13)(0J0)(123)(I00) (132)(I0I) 0 (000) (13)(0J0) (12)(000) (23)(0JJ)(132)(0J0) 0 (000) (123)(0JJ) (23)(I00) (13)(I0I) (12)(000)(12)(000) (23)(I00) (13)(0J0) 0 (000) (123)(I00) (132)(0J0)(23)(I00) (13)(I0I) (12)(000) (132)(0J0) 0 (000) (123)(0JJ)(13)(0J0) (12)(000) (23)(0JJ) (123)(I00) (132)(I0I) 0 (000)Table 4. Compositions of isostrophisms that are arried by the identityProposition 3.1. Let  : Q ! R and ' : R ! S be isostrophisms suh that  is arried by (�; ImQ ) and ' by (�; InR). Then ' is an isostrophism Q ! S thatis arried by (��; IkQ) where k = m+ sgn(�)n + d(�; �) and where d : S3 � S3 !f0;�1; 1g is determined by the following table:id (1 2 3) (1 3 2) (1 2) (2 3) (1 3)id 0 0 0 0 0 0(1 2 3) 0 1 0 0 0 �1(1 3 2) 0 0 �1 0 1 0(1 2) 0 0 0 0 0 0(2 3) 0 1 0 0 0 �1(1 3) 0 0 �1 0 1 0Proof: In this proof we shall denote by 0(T ) the isostrophism that is arriedby (; idT ), for every  2 S3 and every loop T . We see (f. Corollary 2.4) that = �0( �Q)ImQ , where �Q is de�ned so that ImQ : Q ! �Q is an isomorphism.Similarly ' = �0( �R)InR. Put n0 = sgn(�)n. We an express ' as �0( �R)In0Q , byLemma 2.5. Consider now the isostrophism In0Q �0( �Q). It is arried by (�; In0Q )and so it equals �0(T )In0Q , where T is the loop suh that In0Q : �Q ! T is anisomorphism. Note that IT = I �Q = IQ, by Lemma 2.5. We an express ' as �0( �R)�0(T )Im+n0Q . The fat that �0( �R)�0(T ) is arried by (��; Id(�;�)T ) followsfrom Table 4. �



358 A. Dr�apal, V. ShherbaovThe omposition rule for isostrophisms thus indues a group on S3�Z in whih(�; n)(�;m) = (��; sgn(�)n +m+ d(�; �)):The group will be denoted by I. It ats in a natural way upon any set of loopsthat is losed under isostrophes. Writing (�;m)(Q) = R means that there existsa (unique) isostrophism Q! R that is arried by (�; ImQ ). If (�; n)(R) = S, then((�; n)(�;m))(Q) = S.It an be easily veri�ed that I ats faithfully upon I(F ) when F is a free loop.Before investigating possible kernels of the ation upon I(Q) for other loops Q,we shall �rst study the abstrat nature of I. It is quite easy to see that I is anin�nite dihedral group.Indeed, put s = ((1 2 3); 0). From the de�nition of I we see that s2 = ((1 3 2); 1)and s3 = (id; 1). Hene s3k = (id; k) for every k 2 Z and so hsi = f(�; i) 2 I;sgn(�) = 1g. Put also o = ((1 2); 0), l = ((2 3); 0) and r = ((1 3); 0). Furtheromputations in I yield the following results:Proposition 3.2 (Artzy). The group I satis�es de�ning relations ho; s; o2 =1;oso = s�1i. Furthermore, l = os, r = os�1, r = s2l and I = ho; li = ho; ri.In the rest of this paper we shall treat I as an (in�nite dihedral) group thatis determined by the de�ning relations of Proposition 3.2, and shall not use theidenti�ation of elements of I as pairs (�;m).Reall that identities J(x)(xy) = y, (xy)I(y) = x, J(xy)x = y, J(x)(yx) = yand J(xy) = J(y)J(x) de�ne what is known as LIP, RIP, WIP, CIP and AAIPloops. The respetive \Inverse Property" is thus Left or Right or Weak or Crossor Anti-Automorphi. Loops that are both LIP and RIP are alled IP (inverseproperty) loops. Note that Q is ommutative if and only if o(Q) = Q.Lemma 3.3 (Artzy). Let Q be loop. Then Q is an LIP or RIP or AAIP loop ifand only if l(Q) = Q, r(Q) = Q, or os3(Q) = Q, respetively. In eah of theseases I = J .Proof: The ase of LIP is immediate sine LIP an be learly expressed in aweaker form that for every x 2 Q there exists x0 2 Q suh that x0(xy) = y for allx 2 Q. Using Tables 3 and 4 we see that os3(Q) = Q if and only if I(J(y)�J(x)) =xy for all x; y 2 Q. The equality I = J is well known and easy (in ase of LIPuse J(x) = J(x)(xI(x)) = I(x), for AAIP employ 1 = J(xI(x)) = xJ(x)). �We have observed that the isostrophism s3 equals (id; (I; I; I)), and so it isin fat an isomorphism. This fat is reorded in the next lemma for the sake ofreferene. The inverses of loops Q and S oinide, say, by Lemma 2.5.Lemma 3.4. Let Q be a loop. Put S = s3(Q). Then I = IQ = IS is anisomorphism Q �= S.Suppose that the set of all fk 2 Z; sk(Q) = Qg is nontrivial. Then there existsexatly one t > 0 suh that sk(Q) = Q if and only if t divides k. If t is not



Identities and the group of isostrophisms 359divisible by 3, then there exists a unique m 2 Z suh that j3m+ 1j = t. In suha ase s3m+1(Q) = Q.The isostrophism s3m+1 is arried by ((1 2 3); Im). Table 3 implies that ifs3m+1(Q) = Q, then xy = Im(JI�m(y)nI�m(x)) for all x; y 2 Q. This is equiv-alent to Jm+1(y)Jm(xy) = Jm(x). Every loop satisfying suh an law is alledm-inverse [14℄.The m-inverse law an be equivalently expressed as Im(yx)Im+1(y) = Im(x)[14℄, [8℄. A proof along the lines of this presentation an be obtained if we putm0 = �m � 1 and note that s3m0+2 is arried by ((1 3 2); Im0+1). We havem0 +1 = �m and j3m0 +2j = t, and so Table 3 yields xy = Jm(Im(y)=Im+1(x)).That is the same as Im(xy)Im+1(x) = Im(y).Note that 0-inverse loops are the CIP loops (t = 1), and that (�1)-inverseloops are the WIP loops (t = 2).Proposition 3.5. Let Q be a loop and let t > 0 be suh that st(Q) = Q andthat t is the least possible.(i) If t = 3k, then Ik 2 Aut(Q) and Q is not n-inverse for any n 2 Z.Furthermore, I` 2 Aut(Q) if and only if k divides `.(ii) If t = 3k�1, put m = �k. Then t = j3m+1j. The loop Q is an n-inverseloop if and only if 3m + 1 divides 3n + 1. Furthermore, I` 2 Aut(Q) ifand only if 3m+ 1 divides `.Proof: If Q is an n-inverse loop, then we an reverse the proess desribedabove to show that s3n+1(Q) = Q. This is possible if and only if 3n + 1 isdivisible by t. For the rest use the fat that Ik 2 AutQ if and only of s3k(Q) = Q(Lemma 3.4). �The value of m in the de�nition of an m-inverse loop an be thus seen as a wayof oding the positive integer t = 3k � 1. Up to now there is no evidene of aninteresting algebrai theory that would involve m-inverse loops for higher valuesof jmj. Known onnetions to other lasses of loops are restrited to situationswhen t is a small power of two. If t = 2k, then m = ((�2)k � 1)=3. In suhases an m-inverse loop is alled [8℄ a WkIP loop (it has the k-fold weak inverseproperty). Note that then I2k 2 Aut(Q), by Proposition 3.5.Note also that a CIP loop is m-inverse for any m 2 Z. In partiular, the CIproperty implies the WI property.The group I ats upon I(Q). The image of this ation will be denoted byI(Q). Hene I(Q) is a permutation group that is either trivial, or yli of ordertwo, or the Klein four-group or a nonommutative dihedral group. Thus I(Q) isommutative if and only if jI(Q)j is a divisor of 4.Proposition 3.6. Let Q be a loop suh that jI(Q)j divides 4. Then exatly oneof the following ases takes plae:(1) Q is a nonommutative WIP loop that is not IP; j I(Q)j = 4.(2) Q is a nonommutative IP loop; j I(Q)j = 2.(3) Q is a ommutative WIP loop that is not IP; j I(Q)j = 2.



360 A. Dr�apal, V. Shherbaov(4) Q is a nonommutative CIP loop; j I(Q)j = 2.(5) Q is a ommutative IP loop; j I(Q)j = 1.Proof: Our assumption an be also expressed by saying that s2 ats triviallyupon I(Q). Hene Q is a WIP loop. From r = s2l we see that l(Q) = Q isequivalent to r(Q) = Q. That happens exatly when Q is an IP loop. Eah of s,o and l ats upon I(Q) either trivially or as an involution. If none of them atstrivially, then we get ase (1). Cases (2){(4) desribe situations when exatly oneof them ats trivially (note that an IP CIP loop is ommutative). �A permutation group G on 
 is said to be regular if it is transitive and ifg = id
 whenever g 2 G is suh that g(!) = ! for some ! 2 
. If Q is a loop,then I(Q) is transitive, but not neessarily regular. We shall see that there areonly few nonregular ases. A transitive ommutative permutation group is alwaysregular. Therefore a �nite nonregular I(Q) has to be isomorphi to the dihedralgroup D2n for some n � 3. We shall see that n 2 f3; 6g. Note that D6 �= S3.A loop Q is said to have automorphi inverse property (AIP) if I 2 Aut(Q)(i.e. I(xy) = I(x)I(y) for all x; y 2 Q. Equivalently J(xy) = J(x)J(y).) For aloop to have the AI property it is not neessary that I = J . However, AIP loopsourring in Proposition 3.7 have I = J (then I(x) = J(x) is written as x�1).Note that if Q has the AIP, then every element of I(Q) has the AIP.Note also that I 2 Aut(Q) if and only if s3(Q) = Q, by Proposition 3.5.Proposition 3.7. Let Q be a loop suh that I(Q) is not regular. Then one ofthe following ases takes plae:(1) I(Q) �= S3, j I(Q)j = 3 and there exists a unique ommutative AIP loopQ1 2 I(Q) suh that I(Q) = fQ1; s(Q1); s�1(Q1)g. Then s(Q1) has theLIP and the AIP, and s�1(Q1) has the RIP and the AIP. On the otherhand, I(Q) �= S3 and j I(Q)j = 3 whenever Q is an AIP loop that is notIP, and is ommutative or RIP or LIP.(2) I(Q) �= D12, j I(Q)j = 6 and there exist in I(Q) two di�erent ommutativeloops Q1 and Q2 suh that I : Q1 �= Q2 and I(Q) = fQi; l(Qi); r(Qi);i 2 f1; 2gg. On the other hand if Q is a ommutative loop without theAIP, then j I(Q)j = 6 and I(Q) �= D12.(3) I(Q) �= D12, j I(Q)j = 6 and I(Q) onsists of two LIP loops, two RIPloops and two AAIP loops, none of whih is ommutative or an IP loopor an AIP loop. On the other hand, if Q is neither an IP loop nor an AIPloop, but it is an LIP loop or an RIP loop or an AAIP loop, then it is notommutative, I(Q) �= D12 and j I(Q)j = 6.Proof: Suppose that I(Q) is not regular. Then it is isomorphi to D2n for somen � 3. If I = J , then I2 = idQ, and hene s6(Q) = Q. Thus n 2 f3; 6g ifI = J . If n is odd, then I(Q) ontains only one onjugay lass of involutions.If n is even, then in I(Q) there are two lasses of nonentral involutions. Oneof the lasses ontains the nonentral involutions that are �xed point free, whilethe other lass ontains the involutions that �x exatly two points. If n is even,



Identities and the group of isostrophisms 361then l and o yield involutions that are not onjugate. We an thus assume thatQ ful�ls l(Q) = Q or o(Q) = Q. Both ases imply I = J (f. Lemma 3.3), and son 2 f3; 6g.Suppose �rst that n = 3. Then all elements of I(Q) are AIP loops sineI = J 2 Aut(Q), by Lemma 3.4. There is only one lass of involutions, and so wean assume that Q is ommutative. Then ls(Q) = os2(Q) = os2o(Q) = s�2(Q) =s(Q) sine l = os and sine s3(Q) = Q. Thus l �xes s(Q) and, similarly, r �xess�1(Q). This proves ase (1), by Lemma 3.3.Suppose now that n = 6. If o(Q) = Q, then os3(Q) = os3o(Q) = s�3(Q) =s3(Q). We an thus put Q1 = Q and Q2 = s3(Q). Then I : Q1 �= Q2, byLemma 3.4, and the rest of ase (2) follows from l(Qi) = lo(Qi) = s�1(Qi) andr(Qi) = ro(Qi) = s(Qi), i 2 f1; 2g.It remains to onsider the ase when n = 6 and l(Q) = Q. Then ls3(Q) =ls�3l(Q) = s3(Q). To prove (3) it thus suÆes to verify that rs(Q) = s(Q) andthat os3(s�1(Q)) = s�1(Q), by Lemma 3.3. From Proposition 3.2 we obtain thatrs(Q) = s2lsl(Q) = s2s�1(Q) = s(Q) and that os2(Q) = lsl(Q) = s�1(Q). �Let us investigate more losely ase (2) of Proposition 3.7. It involves (a)ommutative loops, (b) loops in whih the left inverse is ommutative and ()loops in whih the right inverse is ommutative. Sine JQ = IQ when Q isommutative, there is JQ = IQ in other ases as well.Now, l(Q) is ommutative if and only if J(x)ny = J(y)nx for all x; y 2 Q. Thelatter law an be equivalently expressed as xny = J(y)nI(x) or y = J(xy)nI(x)or J(xy)y = I(x).Proposition 3.8. Let Q be a loop.(i) If Q satis�es for some "; � 2 f�1; 1g a law xny = J"(y)nJ�(x) or a lawJ"(xy)y = J�(x), then I = J , and Q satis�es all eight these laws. Thistakes plae if and only if l(Q) is a ommutative loop.(ii) If Q satis�es for some "; � 2 f�1; 1g a law y=x = I�(x)=I"(y) or a lawyI"(yx) = I�(x), then I = J , and Q satis�es all eight these laws. Thistakes plae if and only if r(Q) is a ommutative loop.If both l(Q) and r(Q) are ommutative loops, then Q is a ommutative WIP loopand l(Q) = r(Q). If l(Q) (or r(Q)) is ommutative and Q is not ommutative,then I(Q) �= D12=d and j I(Q)j = 6=d, where d = 2 if Q satis�es the AIP, andd = 1 otherwise.Proof: If xny = J"(y)nJ�(x), then y = J"(xy)nJ�(x) and J"(xy)y = J�(x). IfJ(xy)y = J(x), then I(x) = J(xI(x))I(x) = J(x). If J(xy)y = I(x) or I(xy)y =J(x), then I(x) = J(x) an be obtained by setting y = 1. If I(xy)y = I(x), thenI(y)y = 1, and so I(y) = J(y). We have already observed above that l(Q) isommutative if and only if xny = J(y)nI(x) for all x; y 2 Q. That proves point(i). Point (ii) follows by mirror symmetry.Now, l = os and r = os�1, by Proposition 3.2. Hene ol(Q) = l(Q), s(Q) =os(Q), Q = os2(Q), and or(Q) = r(Q) , s�1(Q) = os�1(Q), Q = os�2(Q).



362 A. Dr�apal, V. ShherbaovIf both ol(Q) = l(Q) and or(Q) = r(Q) are true, then s3(Q) = s�1(Q) is om-mutative, and hene Q �= s3(Q) is ommutative as well, by Lemma 3.4. In suh aase Q = s2(Q), Q is a ommutative WIP loop and we an use Proposition 3.6.If l(Q) is ommutative and Q is not ommutative, then no ase of Proposi-tion 3.6 applies, and hene one of ases of Proposition 3.7 has to be satis�ed. �Loops that satisfy the equality J(xy)y = J(x) (i.e. loops in whih the leftinverse is ommutative) were introdued by Johnson and Sharma [13℄ and re-ently studied by Greer and Kinyon [12℄. They are known as weak ommutativeinverse property loops, or WCIP loops. In this paper we shall all them left ross-ommutative loops. Loops in whih the right inverse is ommutative will be alledright ross-ommutative. By saying that Q is ross-ommutative we mean that itis left ross-ommutative or right ross-ommutative.Situations that are not overed by Proposition 3.7 and Proposition 3.6 aredesribed in the following statement. The laims about the m-inversity followfrom Proposition 3.5.Proposition 3.9. Suppose that Q is neither WIP nor LIP nor RIP nor AAIPloop, and that it is neither ommutative nor ross-ommutative. Then I(Q) is aregular permutation group that is isomorphi either to the in�nite dihedral group,or to D2n, n � 3. If n = 3k + ", where " 2 f�1; 1g, then Q is "k-inverse. Ifn = 3k, then Ik 2 AutQ (and Q is m-inverse for no m 2 Z). On the otherhand, if I(Q) is regular and nonommutative, then Q is neither ommutative norross-ommutative nor WIP nor LIP nor RIP nor AAIP loop.Lemma 3.4 implies that I(Q) ontains at most six isomorphism lasses. Thisis preised in detail in Setion 5.4. Paratopisms and nuleiLet Q be a quasigroup. Isotopisms Q! Q are alled autotopisms . They forma group that will be denoted by Atp(Q). An autotopism � an be seen as aparatopism (id; �) : Q! Q, and vie versa.Hene eah paratopism f = (�; �) : Q ! R yields an isomorphism f� :Atp(Q)! Atp(R) that sends � 2 Atp(Q) to (���)��1 2 Atp(R). Indeed,(�; �)(id; �)(�; �)�1 = (�; ��)(��1 ; (��1)��1) = (id; (����1)��1):For every i 2 f1; 2; 3g denote by Atpi(Q) the group of all (�1; �2; �3) 2 Atp(Q)with �i = idQ.Lemma 4.1. Let f = (�; �) : Q ! R be a paratopism of quasigroups. Thenf�(Atpi(Q)) = Atp�(i)(R) for every i 2 f1; 2; 3g.Proof: If � 2 Atp(Q), then � 2 Atpi(Q) if and only if �i = idQ. Now, the�(i)th omponent of (����1)��1 is equal to �i�i��1i . Clearly �i�i��1i = idR ifand only if �i = idQ. �



Identities and the group of isostrophisms 363We shall inlude a well known fat about nulei of loops. The proof is simpleenough to warrant omitting. Reall that N� = N�(Q) = fa 2 Q; a(xy) = (ax)yfor all x; y 2 Qg is known as the left nuleus , while the middle and right nuleiN� and N� are obtained by shifting to the right the position of a.Lemma 4.2. Let Q be a loop. Then Atp1(Q) equals f(idQ; Ra; Ra); a 2 N�g,Atp2(Q) equals f(La; idQ; La); a 2 N�g, and Atp3(Q) equals f(R�1a ; La; idQ);a 2 N�g.The onnetion makes understandable why Atpi(Q) is alled an Ai-nuleus bysome authors. Lemma 4.2 makes lear that for loops the onstrut of Atpi(Q) isnot needed, unless it an be employed with advantage in a proof. This is exatlywhat we shall do below. To make the onnetion diret, we dub N�(Q) as N1(Q),N�(Q) as N2(Q) and N�(Q) as N3(Q).Lemma 4.3. Let (�; �) : Q ! R be a paratopism of loops suh that �i(1) = 1for all i 2 f1; 2; 3g. ThenN�(i)(R) = �j(Ni(Q)) for all i; j 2 f1; 2; 3g suh that i 6= j:Proof: Let i and j be as assumed. By Lemma 4.2, elements of Ni(Q) areexatly those that an be expressed as �j(1) for � = (�1; �2; �3) 2 Atpi(Q). If� 2 Atpi(Q), then (����1)��1 2 Atp�(i)(R) by Lemma 4.1. Elements ofN�(i)(R)an be expressed as �(j)(1), where  2 Atp�(i)(R), by Lemma 4.2. If  =(����1)��1 , � 2 Atpi(Q), then �(j) = �j�j��1j . Thus �(j)(1) = �j(�j(1)) 2�j(Ni). We have proved that �j(Ni(Q)) � N�(i)(R). By onsidering (�; �)�1we get ��1j (N�(i)(R)) � Ni(Q), and hene the required equality really takesplae. �If (�; �) : Q ! R is an isostrophism, then N�(i)(R) = Ni(Q) sine �j is apower of I . Table 5 shows the nulei of the isostrophe that appears in the seondolumn (say s3k+1(Q)). The value of � is in the �rst olumn ((1 2 3) for s3k+1),and olumns 3-5 show the soures for nulei of the given loop in the order N�,N� and N�. For example � appears in the olumn 3 in the row of s3k+1(Q), andthat means that N�(s3k+1(Q)) = N�(Q).id s3k(Q) � � �(1 2 3) s3k+1(Q) � � �(1 3 2) s3k+2(Q) � � �(1 2) os3k(Q) � � �(2 3) ls3k(Q) � � �(1 3) rs3k(Q) � � �Table 5. Isostrophies and the interdependene of nulei



364 A. Dr�apal, V. ShherbaovThe fat that isostrophisms swith the nulei was observed already by Artzy [3℄.He also noted the onsequenes for LIP, RIP and AAIP loops.In m-inverse loops s3m+1(Q) = Q, and so Table 5 shows that all three nuleihave to oinide. That was proved by Karkli�n�s and Karkli�n [14℄ in a diret way.We reord these results in the next statement. The proof an be derived diretlyfrom Table 5.Proposition 4.4. If Q is an m-inverse loop, then N� = N� = N�. If Q has theLIP, then N� = N�. If Q has the RIP, then N� = N�. If Q has the AAIP or isommutative, then N� = N�.Karkli�n�s and Karkli�n [14℄ also note that N(Q) = Z(Q) if Q is 2k-inverse. Weshall explain this phenomenon in Corollary 4.8. As a preparatory step let usreord the following easy fats:Lemma 4.5. Let Q be a loop. If a 2 N� \ N�, then I(ax) = I(x)a�1 andJ(xa) = a�1J(x). If a 2 N�, then I(xa) = a�1I(x) and J(ax) = J(x)a�1.Proof: Ful�lling I(ax) = I(x)a means ful�lling 1 = (ax)(I(x)a). That learlyholds if a 2 N� \N�. The other ases an be proved similarly. �Corollary 4.6. Let Q be a loop. If a 2 N(Q), x 2 Q and k 2 Z, thenI2k(ax) = aI2k(x); I2k(xa) = I2k(x)a;I2k+1(ax) = I2k+1(x)a�1 and I2k+1(xa) = a�1I2k+1(x):Proof: Proeed by indution using Lemma 4.5. �Theorem 4.7. Let Q be a loop. Then I2k+1 2 Aut(Q) for some k 2 Z if andonly if s is of an odd order in I(Q). In suh a ase N(Q) = Z(Q).Proof: By Lemma 3.4, s3r(Q) = Q if and only if Ir 2 Aut(Q). If this is true foran odd r, then Ir(xa) = Ir(x)Ir(a) = Ir(x)a�1 for every x 2 Q and a 2 N(Q).However, by Corollary 4.6 we also have Ir(xa) = a�1Ir(x). �Corollary 4.8 (Karkli�n�s and Karkli�n). If Q is a 2h-inverse loop for some h 2 Z,then N(Q) = Z(Q).Proof: If Q is 2h-inverse, then I` 2 Aut(Q) for ` = 6h+ 1, by Proposition 3.5.�5. Isomorphisms and the left and right inversesLemma 5.1. Suppose that � 2 S3, and that (�; �i) is a quasigroup paratopismQi ! Ri, i 2 f1; 2g. Then Q1 is isotopi to Q2 if and only if R1 is isotopi to R2.Proof: An isotopism R1 ! R2 an be obtained from an isotopism � : Q1 ! Q2as a omposition (�; �2)(id; �)(�; �1)�1 = (�; �2�)(��1; (��11 )��1) =(id; �2�(��11 )��1). �



Identities and the group of isostrophisms 365Proposition 5.2. Let Q1 and Q2 be loops and let f 2 I be an isostrophism.Then Q1 �= Q2 if and only if f(Q1) �= f(Q2). Furthermore, Q1 is isotopi to Q2if and only if f(Q1) is isotopi to f(Q2).Proof: The part about isotopy follows from Lemma 5.1. For the isomorphismsjust note that if ' : Q1 �= Q2, then '(t(x; y)) = t('(x); '(y)) for any t 2 F (x; y).�Proposition 5.3. Let Q be an m-inverse loop for some m 2 Z. Then everyelement of I(Q) is isomorphi toQ or toQop. If Q is ommutative, thenQ = Qop.If Q is an AAIP loop, then Q �= Qop as well.Proof: If Q1; Q2 2 I(Q) are in the same orbit of s, then there exists k � 1 suhthat s3k(Q1) = Q2 sine the length of the orbit is j3m+ 1j. By Lemma 3.4 thissettles the ase of m-inverse loops. The rest is obvious. �Proposition 5.4. Let Q be a loop that is not an IP loop. If Q is a LIP or RIP orAAIP or ommutative loop, then I(Q) ontains exatly three isomorphism types.They are represented by sk(Q), jkj � 1.Proof: By Proposition 3.7 eah element of I(Q) an be expressed as sk(Q),k 2 Z. Hene we get all possible isomorphism types if k is restrited to �1, 0 and1, by Lemma 3.4. We need to prove that no two of them may be isomorphi. Forases (1) and (3) of Proposition 3.7 this follows from the fat a loop is an IP loopif it satis�es at least two of the LI, RI and AAI properties. Suppose now that Qis ommutative. Then o annot �x sk(Q) for k 2 f�1; 1; 2g sine Q and s3(Q) arethe only points of I(Q) that are �xed by o. If s�1(Q) �= s(Q), then Q �= s2(Q)by Proposition 5.2. However, the ommutative loop Q annot be isomorphi to anonommutative loop sk(Q), k 2 f�1; 1; 2g. �By Proposition 3.9, the only ases not overed by Propositions 5.3 and 5.4 arethose for whih I(Q) is regular and, if �nite, of order 6k, k � 1. For suh loopswe an use the following general statement:Theorem 5.5 (Artzy). Let Q be a loop. Then I(Q) ontains 1 or 2 or 3 or 6isomorphism lasses.Proof: By Proposition 5.2 isomorphi loops yield upon I(Q) a set of onjugatebloks. Consider the ation of I(Q) upon this set. The kernel of the ationontains s3, by Lemma 3.4. The image of the ation is hene equivalent to atransitive ation of S3 sine I=hs3i �= S3. �In the rest of this setion we shall address the following question: Starting fromQ iteratively onstrut left and right inverses. When do we get full I(Q)?Note �rst that by Proposition 3.2 the subgroup hl; ri � I is of index 2, andequals hl; s2i = hos; s2i = fs2k;os2k+1; k 2 Zg. Hene either hl; ri(Q) = I(Q), orhl; ri halves I(Q) into two di�erent orbits. In the former ase we shall say thatQ is of odd type, while in the latter ase Q will be of even type.



366 A. Dr�apal, V. ShherbaovIt is lear that Q is of odd type if it is ommutative or if it is a CIP loop. WIPloops are those loops Q for whih l(Q) = r(Q), and so nonommutative WIPloops are of even type, by Proposition 3.6.The nonregular groups of Proposition 3.7 are of odd type in ases (1) and (2),and of even type in ase (3).Suppose that I(Q) is regular nonommutative (Proposition 3.9). If it is in�nite,then it is of even type, and that is also true in the �nite ase if 4 divides j I(Qj =jI(Q)j. The remaining ases are of odd type.We thus know when Q is of odd or even type in all ases. Using Proposition 3.5it is easy to verify that our results an be formulated in the following ompatway:Theorem 5.6. A loop Q is of odd type if I(Q) ontains a ommutative loop orif there exists k 2 Z suh that I2k+1 2 Aut(Q).We an thus restate Theorem 4.7 as: If a loop is of odd type, then the entreand the nuleus oinide.Lemma 5.7. A loop Q is of odd type if and only if the ations of l and r generatethe group I(Q).Proof: If I(Q) is regular, then there is nothing to prove. So it suÆes to verifythat l and r generate I(Q) in ases (1) and (2) of Proposition 3.7. That is easy. �The haraterization of odd type loops in Theorem 5.6 gives immediately:Corollary 5.8. A subloop or a fatorloop of an odd type loop is an odd typeloop.Proposition 5.9. Let Q be an odd type loop. Suppose that V � U � Q aresubloops suh that V �U and that U=V is an IP loop. Then U=V is ommutative.Proof: The loop U=V is of an odd type by Corollary 5.8. Hene I(U=V ) isgenerated by l and r, by Lemma 5.7. Sine we are assuming l(U=V ) = r(U=V ) =U=V , the set I(U=V ) has to ontain only one element. Thus o(U=V ) = U=V . �6. Isostrophial varietiesSometimes it is useful to denote a quasigroup operation by a letter instead ofby a binary operator. If Q(A) is a quasigroup, then by A� we shall denote the� parastrophe. (This is an ad ho notation that will be used only in the �rst partof this setion.) Thus A = Aid, and if A(x; y) = x � y, then A(2 3)(x; y) = xny,A(1 3)(x; y) = x=y et. We have A�(a1; a2) = a3 , A(a�(1); a�(2)) = a�(3), whihwe reord in the formA�(a�(1); a�(2)) = a�(3) , A(a��(1); a��(2)) = a��(3):



Identities and the group of isostrophisms 367Lemma 6.1. Suppose that f = (�; �) : Q(A) ! S(B) is a paratopism. ThenB(x; y) = ���1(3)(A�(��1��1(1)(x); ��1��1(2)(y))). If � 2 S3, thenB� (x; y) = ���1��1(3)(A��(��1��1��1(1)(x); ��1��1��1(2)(y))):Proof: The fat that f is a paratopism an be expressed byB� (���1��1(1)(a��1��1(1)); ���1��1(2)(a���1(2))) = ���1��1(3)(a��1��1(3))as (��1��1)� = �. Set x= ���1��1(1)(a��1��1(1)) and y= ���1��1(2)(a��1��1(2)).Our formula states that B� (x; y) = ���1��1(3)(z), where z = a��1��1(3) is equalto A��(a��1��1(1); a��1��1��1(2)). By the hoie of x, a��1��1(1) = ��1��1��1(1)(x).The seond argument depends upon y in a similar way, and that gives the requiredexpression of B� (x; y). �The above lemma is nothing else, but a formal veri�ation that if f = (�; �)is a paratopism, then � is an isotopism to the ��1 parastrophe of the targetquasigroup | a fat that has been mentioned in Setion 2. Sine the operationB depends fully upon f and A, we an denote it by f(A). Note that Table 2tabulates f(A) for the all possible values of �.Lemma 6.2. Suppose that f : Q1 ! Q2 and g : Q2 ! Q3 are paratopisms.Denote the quasigroup operation of Q1 by A. Then the quasigroup operation ofQ3 an be expressed both as g(f(A)) and as (gf)(A).Proof: Sine gf is a paratopism Q1 ! Q3, the operation of Q3 is equal to(gf)(A). However, it is also equal to g(B), where B = f(A) is the operationof Q2. �Lemma 6.3. Consider a free loop F (X). Then f(F (X)) is also a free loop withbase X , for every f 2 I.Proof: Every loop an be expressed as f(Q), for some loop Q. A mapping' : X ! Q an be extended to a (unique) loop homomorphism  : F (X) ! Q.By term equivalene, a mapping  : F (X) ! Q is a homomorphism if and onlyif it is a homomorphism f(F (X))! f(Q). �Suppose now that X = fx1; x2; : : : g. By Lemma 6.3 there exists a unique loophomomorphism f� : F (X) ! f(F (X)) suh that f�(xi) = xi for every i � 1. Toompute f�(t) for a term t use either Lemma 6.1 or Table 2. Note that f� is amapping from F (X) to F (X), and hene it maps a redued loop term upon aredued loop term.Lemma 6.4. If f ;g 2 I, then g�f� = (fg)�. In partiular, (f�)�1 = (f�1)�.Proof: Denote the operation of F (X) by A. Then f� : F (X)(A)! F (X)(f(A))and g� : F (X)(A)! F (X)(g(A)) are loop homomorphisms. Heneg� : F (X)(f(A)) ! F (X)(fg(A)) is also a loop homomorphism, and g�f� :



368 A. Dr�apal, V. ShherbaovF (X)! F (X)(fg(A)) is a loop homomomorphism as well. This homomorphismis idential upon X , and hene it has to agree with (fg)�. �Lemma 6.5. Suppose that Q is a loop, f 2 I, s; t = F (x1; : : : ; xm) and thata1; : : : ; am 2 Q. Then s(a1; : : : ; am) is equal to t(a1; : : : ; am) in f(Q) if and onlyif (f�(s))(a1; : : : ; am) is equal to (f�(t))(a1; : : : ; am) in Q.Proof: Put F = F (x1; : : : ; xm) and denote by  the homomorphism F ! f(Q)that sends xi to ai. Furthermore, denote by ' the homomorphism f(F ) ! f(Q)that sends xi to ai. The homomorphisms  and 'f� agree upon x1; : : : ; xm, andhene they agree everywhere. Sine ' an be also interpreted as a homomorphism' : F ! Q we an write the equality (f�(s))(a1; : : : ; am) = (f�(t))(a1; : : : ; am)(whih is assumed to be true in Q) as '(f�(s)) = '(f�(t)). This is the same as (s) =  (t), and that means that s(a1; : : : ; am) = t(a1; : : : ; am) in f(Q). �Corollary 6.6. Let V be a variety of loops and let f 2 I. Then the lass ofall f(Q), Q 2 V is also a variety of loops (we shall denote it by f(V)). A laws(x1; : : : ; xn) = t(x1; : : : ; xn) holds in f(V) if and only if the law f�(s) = f�(t)holds in V .Varieties V and f�(V) are said to be isostrophi. By Lemma 3.4, Q �= s3(Q) forany loop Q. Hene f(V) = fs3k(V). We see that S3 ats upon varieties isostrophito V .Corollary 6.7. There are 1 or 2 or 3 or 6 varieties isostrophi to a variety V .Every suh variety is equal to V of l(V) or r(V), or it is a variety that is oppositeto one of these three varieties.To desribe isostrophi varieties it thus suÆes to be able to express the mul-tipliation and divisions in o(Q), l(Q), r(Q) and r(Q). We do so in Table 6.loop Q o(Q) l(Q) r(Q)multipliation xy yx (1=x)ny x=(yn1)left division xny y=x (1=x)y 1=(ynx)right division x=y ynx (y=x)n1 x(yn1)Table 6. Operations in isostrophi loopsProposition 6.8. Assume m 2 Z. Every variety isostrophi to the variety ofm-inverse loops is equal to that variety.Proof: A loop Q is m-inverse if it ful�ls Jm+1(x)Jm(yx) = Jm(y). The latterlaw is equivalent to Im(xy)Im+1(x) = Im(y) (f. Setion 3). Now,o�(Jm+1(x)Jm(yx)) = Im(xy)Im+1(x) and o�(Jm(y)) = Im(y). Thus Qop is alsoan m-inverse loop. The statement thus follows from Proposition 5.3. �The variety of all loops that ful�ll a law s(x1; : : : ; xm) = t(x1; : : : ; xm) will bedenoted by Eq[s(x1; : : : ; xm) = t(x1; : : : ; xm)℄. In formulas we shall use LIP, RIPet. to desribe the orresponding variety of loops. E.g. LIP = Eq[(1=x)(xy) = y℄.



Identities and the group of isostrophisms 369Lemma 6.9. Suppose that "; � 2 f�1; 1g. Then:(i) LIP = Eq[I"(x)(xy) = y℄ = Eq[(x=y)(y=x) = 1℄;(ii) RIP = Eq[(yx)I"(x) = y℄ = Eq[(xny)(ynx) = 1℄; and(iii) AAIP = Eq[I"(x)I�(y) = I(yx)℄ = Eq[J"(x)J�(y) = J(yx)℄.Proof: In a LIP loop I(x) = J(x) by Lemma 3.3. If I(x)(xy) = y holds, theny = 1 yields I(x)x = 1, and so I(x) = J(x) again. Now, (x=y)(y=x) = 1 isequivalent to y=(xy) = xn1, and that is y = J(x)(xy).In an AAIP loop I(x) = J(x) by Lemma 3.3. If any of " and � is equal to �1,then we get I = J by setting x = 1 or y = 1. The rest is lear. �From Corollary 6.6 and Table 6 we see that l�(I(x)(xy)) = xn(J(x)ny). Sinexn(J(x)ny) = y if and only if J(x)(xy) = y we see that l�(LIP) = LIP. Fur-thermore, r�((x=y)(y=x)) = (xI(y))=I(y(I(x)), and so r�(LIP) = Eq[J(x)I(y) =I(yx)℄ = AAIP. In this way we obtain a diret proof for the following statement.The statement an be also derived from Proposition 3.7. We have hosen a diretproof to illustrate the onept of isostrophi varieties upon a well known and easyexample.Proposition 6.10. r�(AAIP) = LIP = o�(RIP), l�(AAIP) = RIP = o�(LIP),and r�(LIP) = AAIP = l�(RIP). Furthermore, l�(LIP) = LIP, r�(RIP) = RIP,and o�(AAIP) = AAIP.Every loop variety V ontains a subvariety Itp(V) of loops Q suh that everyloop isotope of Q is in V . Loops of this kind are alled isotopially invariant oruniversal (with respet to V). Note that Itp(Itp(V)) = Itp(V).Proposition 6.11. Let V and W be isostrophi varieties, with W = f(V), wheref 2 I. Then Itp(W) = f(Itp(V)). In partiular, if Itp(V) = V , then Itp(W) =W .Proof: This follows from the fat that f maps lasses of isotopes to lasses ofisotopes, by Proposition 5.2. �It is well known (and easy to prove) that ItpEq[xy = yx℄ is the variety ofabelian groups. If V is the variety of left ross-ommutative loops (f. Proposi-tion 3.8), then Itp(V) is the variety of abelian groups again, by Proposition 6.11.Put lBol = Itp(LIP), mBol = Itp(AAIP) and rBol = Itp(RIP). Proposi-tions 6.10 and 6.11 immediately yield:Corollary 6.12. r�(mBol) = lBol = o�(rBol), l�(mBol) = rBol = o�(lBol), andr�(lBol) = mBol = l�(rBol). Furthermore, l�(lBol) = lBol, r�(rBol) = rBol, ando�(mBol) = mBol.Lemma 6.13. Let V be a variety of loops suh that Q �= Qop 2 V for everyQ 2 V . Then Itp(V) onsists of all loops Q suh that the left isotope (x=e)ybelongs to V for every e 2 Q.Proof: Suppose that a loop Q ful�ls the ondition of the statement. We need toshow that a right isotope x � (eny) belongs to V as well, for every e 2 Q. Fix e and



370 A. Dr�apal, V. Shherbaovonsider an isomorphism ' : Q ! Qop. We get '(x(eny)) = ('(y)='(e))'(x).The right isotope is hene isomorphi to the opposite loop of a left isotope. Sinethe left isotope belongs to V , the opposite loop has to belong to V as well. �Lemma 6.14. Let Q be a loop and e 2 Q. Denote by S the left isotope (x=e)y.Then JS(x) = (e=x)e and IS(x) = (x=e)ne.Proof: This an be veri�ed in a diret way. �The �rst part of the next statement was formulated by Robinson as Theo-rem 3.1 of [23℄. The seond part seems to have appeared for the �rst time inChapter XI of Belousov's book [6℄.Proposition 6.15. The variety lBol is equal to Eq[x(y � xz) = (x � yx)z℄, rBol isequal to Eq[z(xy �x) = (zx �y)x℄. Furthermore, mBol is equal to Eq[(x=y)(znx) =(x=(zy))x℄ = Eq[(x=y)(znx) = x((zy)nx)℄.Proof: By Corollary 6.12 it suÆes to prove only the �rst equality in the eahpart of the statement sine o(lBol) = rBol and o(mBol) = mBol.Denote by Lx the left translation y 7! xy. A loop Q has the LIP if and onlyif L�1y 2 fLx; x 2 Qg for eah y 2 Q (i.e. the left translations are losed underinverses).Let Q be a LIP loop. The left translations of a left priniple isotope (x=e)yare losed under inverses for any e 2 Q. The left translations of a right prinipleisotope x(fny) are losed under inverses if and only if for all x; f 2 Q there existsz 2 Q suh that (LxL�1f )�1 = LzL�1f . In suh a ase Lz = LfL�1x Lf . Thus ifQ 2 lBol, then for all x; y 2 Q there exists z 2 Q suh that LxLyLx = Lz, andso x(y � xw) = (x � yx)w for all x; y; x; w. By plugging y = 1=x we get the LIproperty, and hene the argument an be reversed.From Proposition 6.10 and Lemma 6.13 it follows that Q 2 mBol if and onlyif the loop (x=e)y has the AAIP for every e 2 Q. Fix e and denote the loop byS. From Lemma 6.14 we get JS(y) = (e=y)e and IS(ze) = zne. From Lemma 6.9it follows that S is an AAIP loop if and only if (e=y)(zne) = (e=(zy))e. �It is usual to all elements of lBol, rBol and mBol left, right and middle Bolloops, respetively.Let Q be a left Bol loop. Then xny = x�1y sine it is a LIP loop. The operationof the middle Bol loop r(Q) an be thus expressed as x=y�1. Gvaramija [11℄ notesthat there is another expression: y(y�1x � y). This follows from the fat that theleft Bol identity gives x=y = y�1(yx � y�1).Syrbu [25℄, [26℄ gives further middle Bol loop identities. These identities di�eronly by rearranging the right hand side, when we put u = zy and express x(unx)(or (x=u)x) in an equivalent way. We shall �nish this setion by showing that thisphenomenon an be explained by the properties ofItpEq[1=x = xn1℄ � lBol [ rBol: [mBol:



Identities and the group of isostrophisms 371Lemma 6.16. Every loop from the variety Itp Eq[1=x = xn1℄ satis�es the laws(y=x)nx = (x=y)x and x=(xny) = x(ynx).Proof: Using Lemma 6.14 we obtain the identity (x=e)ne = (e=x)e. The mirrorlaw desribes the oinidene of the left and right inverses in the right isotopes. �Corollary 6.17. The variety of middle Bol loops is equal to Eq[(x=y)(znx) =((zy)=x)nx℄ and to Eq[(x=y)(znx) = x=(xn(zy))℄.Proof: With respet to Lemma 6.16 and Proposition 6.15 it suÆes to show thatthe new identities imply the AAIP. However, that is immediate from Lemma 6.9(set x = 1). �7. Conlusions and open problemsLet V be a variety of loops. Say that Q1 and Q2 are equivalent modulo V ifthey are term equivalent and if t1, t2 and t3 an be hosen in both diretions(i.e. when passing from Q1 to Q2 and when passing from Q2 to Q1) in suh a waythat the equalities x �y = t1(x; y), xny = t2(x; y) and x=y = t3(x; y) are true in V .In the variety of abelian groups any term an be evaluated as ix + jy, wherei; j 2 Z. It is thus obvious that any two term equivalent abelian groups haveto oinide (indeed, if x � y = ix + jy then x = 0 yields j = 1 and y = 0yields i = 1). This means that any two term equivalent loops are equivalentmodulo the abelian groups. This observation an be strengthened by noting thata term t(x; y) 2 F (x; y) an be simpli�ed to xi � s(y), s 2 F (y) if x is assumedto be entral. If Q(Æ) is suh that x Æ y = t(x; y) and if x entral in Q(�), thenx Æ y = xi � s(y). In suh a ase we obtain i = 1 by setting y = 1, and s(y) = y bysetting x = 1. By working along these lines we see that the enters of two termequivalent loops always oinide. In view of Proposition 2.10 we hene ome tothis onlusion:Proposition 7.1. Term equivalent loops share both the upper and lower entralseries.Parallels between the ommutative and the assoiative law do exist, but theyare limited. This is well illustrated by the fat that the nuleus N(Q) = N�(Q)\N�(Q) \ N�(Q) need not be a normal subloop of Q, and so there is no diretanalogue of entral series that would be based not upon the notion of enter, butupon the notion of the nuleus.By Proposition 2.10 loops that are not only term equivalent, but also equivalentmodulo the variety of groups (we shall also say that they are equivalent moduloassoiativity) share strutures that an be de�ned via subloops and assoiativity.As an example take (the assoiator subloop) A(Q), i.e. the smallest subloop S�Qsuh that Q=S is a group.Loops Q and Qop are not neessarily equivalent modulo assoiativity (xy = yxdoes not hold in all groups). However, groups G and Gop are isomorphi viax 7! x�1. Hene strutures that are de�ned via subloops and the assoiativity



372 A. Dr�apal, V. Shherbaovare retained when passing from Q to Qop. As an example let us mention again theassoiator subloop A(Q). In fat, suh strutures are retained by any isostrophismas every loop is equivalent to its left (or right) inverse modulo the variety of IPloops. Hene any two elements of hl; ri(Q) are equivalent modulo the IP law(f. Setion 5).LIP and RIP and AAIP loops satisfy I = J . The intersetion of any two ofthe three named varieties is the variety of IP loops. There are many results onintersetions of loop varieties. However, there seem to be pratially no resultson their joins. Hene we ask:Problem 7.2. Let V be the least variety that ontains all LIP loops, all RIPloops and all AAIP loops. Is the variety V equal to the variety of all loops inwhih 1=x = xn1?Let us note that an aÆrmative answer would imply, amongst others, that allommutative loops are in V . A similar question an be stated for the assoiatedvarieties that are isotopially invariant:Problem 7.3. LetW be the least variety that ontains all left Bol loops, all rightBol loops and all middle Bol loops. Is the variety W equal to ItpEq[1=x = xn1℄?Left Bol loops an be also obtained as isotopially invariant left alternativeloops [23℄, i.e. lBol = ItpEq[x � xy = xx � y℄. In [25℄ Syrbu raised the questionwhether middle Bol loops orrespond to isotopially invariant exible loops (thelaw x � yx = xy � x). M. Kinyon found a middle Bol loop of order 16 that is notexible (personal ommuniation). Aording to him the following problem maybe still open:Problem 7.4. Let Q be a loop suh that every isotope of Q is exible and hasthe AAIP. Must Q be middle Bol?Isotopially invariant CI loops are abelian groups [1℄ and isotopially invariantWIP loops have the property that Q=N is Moufang (N = N(Q) is the nuleusand has to be a normal subloop) [21℄. Classial papers of Artzy [2℄ and Osborn[21℄ ontain a number of results on isotopes that are CI or WIP loops. It mightbe worth to reexamine their results and onsider the possibility of generalizationsto m-inverse loops.In [14℄ Karkli�n�s and Karkli�n investigated a situation when a CI loop Q is notneessarily an isotopially invariant CI loop, but every of its isotopes is an m-inverse loop for some m 2 Z. They proved that then Q has to be an abeliangroup if m is even, and ommutative Moufang loop if m is odd.Ono�� [20℄ gave an example of a (2k + 1)-inverse loop that is isotopi to an IPloop and is not a WIP loop.Buhsteiner loops are isotopially invariant [8℄ and hene they give an exampleof isotopially invariant 1-inverse loops (i.e. doubly WIP loops). No other lass ofalgebraially interesting isotopially invariant m-inverse loops seems to be known.
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